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Abstract

We study a contest environment with a large number of players and prizes that

accommodates complete and incomplete information, and heterogeneity among players

and prizes. We characterize the effort-maximizing prize structure when players may

differ in their marginal valuations for prizes and when the valuation may differ from

the designer’s cost of providing the prizes. We also provide such a characterization

when players’ cost of effort differs from the designer’s benefit from the effort, as in

Moldovanu and Sela (2001).

Contest design with a discrete number of agents and prizes has proven difficult,

because even for a given set of prizes: (a) In the models which have been solved

in the existing literature, equilibria have complicated structure; (b) In some other

settings studied in the literature, the authors were able to provide only an algorithm

for deriving equilibria; (c) In some relevant settings, there is no existing characterization

of equilibria. In addition, contests can have multiple equilibria, so it is not obvious

whether optimal means for the best equilibrium, the worst, or something else.

Because, or perhaps despite of these difficulties, Moldovanu and Sela (2001) ob-

tained some interesting but only partial characterization of the optimal prize structure

in discrete contests. We avoid these difficulties by studying the limits of equilibria

of discrete contests as the number of players and prizes grow large. This analysis is
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possible due to the methods developed in Olszewski and Siegel (2014). We character-

ize the optimal prize structure in large (limit) contests. We confirm Moldovanu and

Sela’s results in our setting, and establish some additional features of the optimal prize

structure.

This is an incomplete paper. In particular, it contains no introduction, only

an extended abstract prepared for the conference submission. However, the

draft contains all results I would present. Alternatively, I can present a closely

related and completed paper, entitled “Large Contests,” which can be found at

http://faculty.wcas.northwestern.edu/~wol737/Cons.pdf

1 Model

1.1 Heterogenous contests

The purpose of this paper is to study contest design in a setting in which players and

prizes are heterogenous. In our model of such a contest, a player is characterized by a type

x ∈ X = [0, 1], and a prize is characterized by a number y ∈ Y = [0, 1]. Prize 0 is “no prize.”

Prize 1 corresponds to the maximal possible prize, which is fixed exogenously. Section 3.6

discusses how changing the maximal possible prize affects our results.

The utility of a type x player from bidding t ≥ 0 and obtaining prize y is

U(x, y, t) = xh (y)− t, (1)

where h (0) = 0 and h is continuously differentiable and strictly increasing.1

In a contest, n players compete for n known prizes yn1 ≤ yn2 ≤ ... ≤ ynn (some of which

may be 0, i.e., no prize). Player i’s privately-known type xni is distributed according to a

cdf Fn
i , and these distributions are commonly known and independent across players.

2 In

the special case of complete information, each cdf corresponds to a Dirac measure. Since we

1In Section 4.5, we consider (1) with c (t) in place of t, where c (0) = 0 and c is continuously differentiable

and strictly increasing, as in M&S.

2All probability measures are defined on the σ-algebra of Borel sets.
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study some limits of sequences of contests when n diverges to infinity, we refer to a contest

with n players and n prizes as the “n-th contest.” In the contest, each player chooses a bid,

the player with the highest bid obtains the highest prize, the player with the second-highest

bid obtains the second-highest prize, and so on. Ties are resolved by a fair lottery. Every

contest has at least one mixed-strategy Bayesian Nash equilibrium.3

2 Mechanism-design approach to studying contests

The optimal design of heterogeneous contests of the kind described in Section 1.1 is difficult

or impossible, because no method currently exists to characterize their equilibria for most

type and prize distributions. And even in the few cases for which a characterization exists,

the equilibria have a complicated form, or can be derived only by means of algorithms.

Therefore, we will use the mechanism-design approach to studying the equilibria of large-

contest, developed in Olszewski and Siegel (2014). We now describe this approach.

2.1 Limit distributions

Let Fn = (
Pn

i=1 F
n
i ) /n, so Fn (x) approximates the expected percentile ranking of type x

in the n-th contest given the vector of players’ types. We denote by Gn the empirical prize

distribution, which assigns a mass of 1/n to each prize ynj (recall that there is no uncertainty

about the prizes). We assume that Fn converges in weak∗-topology to a distribution F

that has a continuous, strictly positive density f , and Gn converges to some (not necessarily

continuous) distribution G.4

The convergence of Fn and Gn to limit distributions F and G accommodates as special,

extreme cases complete-information contests with asymmetric players in which for some

distributions F and G, player i’s type is xni = F−1 (i/n) and prize j is ynj = G−1 (j/n), where

G−1(r) = inf{z : G (z) ≥ r}.

3This follows from a slight adaptation of the proof of Corollary 1 in Siegel (2009) when each player’s set

of possible types is finite, and from Corollary 5.2 in Reny (1999) for general distributions Fn
i .

4Convergence in weak∗-topology can be defined as convergence of cdf s at points at which the limit cdf is

continuous.
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One example is contests with identical prizes and players who differ in their valuations for a

prize. For this, consider h (y) = y, F uniform, and G that has G(y) = 1− p for all y ∈ [0, 1)

and G(1) = 1, where p ∈ (0, 1) is the limit ratio of the number of prizes to the number of

players. Then xni = i/n and ynj = 0 if j/n ≤ 1 − p and ynj = 1 if j/n > 1 − p. The n-th

contest is an all-pay auction with n players and m ≡ ppnq identical (non-zero) prizes, and
the value of a prize to player i is i/n. These contests were studied by C&R, who considered

competitions for promotions, rent seeking, and rationing by waiting in line.

Another example is contests with heterogeneous prizes and players who differ in their

constant marginal valuation for a prize. For this, consider h (y) = y and F and G uniform.

Then xni = i/n and ynj = j/n. The n-th contest is an all-pay auction with n players and n

prizes, and the value of prize j to player i is ij/n2. These contests were studied by B&L,

who considered hospitals that have a common ranking for residents and compete for them

by offering identity-independent wages. Hospitals are players, their posted wages are bids,

and residents are prizes.5

Many other complete-information contests with asymmetric players can be accommo-

dated, including contests for which no equilibrium characterization exists. One example is

contests with a combination of heterogeneous and identical prizes. Such contests are mod-

eled by a limit prize distribution G in which there is at least one atom at a positive prize

that does not include all of the mass allocated to positive prizes.

Another special, extreme case of the convergence of F n and Gn is incomplete-information

contests with ex-ante symmetric players that have the same iid type distributions Fn
i =

F . This case includes the setting of M&S with linear costs. Beyond these extreme cases,

our setting obviously accommodates numerous incomplete-information contests with ex-ante

asymmetric players. No equilibrium characterization exists for such contests.

5Xiao (2013) presents another model with complete information and heterogenous prizes, in which players

have increasing marginal utility for a prize. He considers quadratic and exponential specifications, which are

obtained in our model by setting h (y) = y2 and h (y) = ey and F and G uniform.
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2.2 Assortative allocation and transfers

The assortative allocation assigns to each type x prize yA (x) = G−1 (F (x)). It is well-known

that the unique, incentive-compatible mechanism that implements the assortative allocation

and gives type x = 0 a utility of 0 specifies for every type x bid

tA (x) = xh
¡
yA (x)

¢
−
Z x

0

h
¡
yA (z)

¢
dz. (2)

For example, in the setting corresponding to C&R the assortative allocation assigns a prize

to each type higher than 1 − p, and the associated bids are tA (x) = 0 for x ≤ 1 − p and

tA (x) = 1− p for x > 1− p. In the setting corresponding to B&L, the assortative allocation

assigns prize x to type x, and the associated bids are tA (x) = x2/2.6

By integrating by parts, we obtain the following expression for the aggregate bids in the

mechanism that implements the assortative allocation:Z 1

0

tA (x) f (x) dx =

Z 1

0

h
¡
yA (x)

¢µ
x− 1− F (x)

f (x)

¶
f (x) dx. (3)

For the remainder of our analysis, we make the following assumption, which is standard

in the mechanism design literature:7

Assumption x− (1− F (x)) /f (x) strictly increases in x.

For many of our results it is convenient to rewrite (3) using the change of variable

z = F (x) to obtainZ 1

0

h
¡
G−1 (z)

¢µ
F−1 (z)− 1− z

f (F−1 (z))

¶
dz =

Z 1

0

h
¡
G−1 (z)

¢
k (z) dz, (4)

where k (z) = F−1 (z) − (1− z) /f (F−1 (z)).8 Thus, by our assumption, k (z) strictly in-

creases in z.

6In the setting corresponding to Xiao (2013), the assortative allocation assigns prize x to type x, and the

associated bids are t (x) = xh (x)−
R x
0
h (y) dy for h (y) = y2 or h (y) = ey.

7The assumption is implied, for example, by a monotone hazard rate.

8Even though G−1 may be discontinuous, it is monotonic, so the change of variable applies.
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2.3 The approximation result

Corollary 2 in Olszewski and Siegel (2014), which we state as Theorem ?? below, shows that

the equilibria of a contest with many players and prizes can be approximated by the unique

mechanism that implements the assortative allocation.

Theorem 1 For any ε > 0 there is an N such that for all n ≥ N , in any equilibrium of the

n-th contest each of a fraction of at least 1 − ε of the players i obtains with probability at

least 1 − ε a prize that differs by at most ε from yA (xni ), and bids with probability at least

1− ε within ε of tA (xni ).

Theorem 1 implies that the aggregate bids in large contests can be approximated by (3).

More precisely, we refer to the aggregate bids in an equilibrium of the n-th contest divided

by n as the average bid. We then have the following corollary of Theorem 1.

Corollary 1 For any ε > 0 there is an N such that for all n ≥ N , in any equilibrium of

the n-th contest the average bid is within ε of (3).

To gain some intuition for why (3) approximates the aggregate bids in large contests,

observe that (3) coincides with the expected revenue from a bidder in a single-object inde-

pendent private-value auction if we replace h
¡
yA (x)

¢
with the probability that the bidder

wins the object when his type is x (Myerson (1981)). In the auction setting, increasing the

probability that type x obtains the object along with the price the type is charged allows

the auctioneer to capture the entire increase in surplus for this type, but requires a decrease

in the price that higher types are charged to maintain incentive compatibility. In a large

contest, increasing the prize that type x obtains also allows the auctioneer to capture the

entire increase in surplus for this type, because the higher prize increases the competition

with slightly lower types until the gain from the higher prize is exhausted, but decreases the

competition and bids of higher types for their prizes, since the prize of type x becomes more

attractive to them.
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3 Optimal Contest Design

We now turn to analyzing the prize structures in large contests that maximizes the aggregate

bids. Proposition 1 below shows that we can focus on identifying the prize distributions that

maximize (3). To formulate this result, consider a sequence of contests in which distributions

Fn
i of players’ types are given exogenously and their averages F

n converge to a distribution

F with a continuous, strictly positive density f .

The corresponding empirical prize distributions Gn
max are not exogenously given, but

maximize the aggregate bids. That is, Gn
max describes a set of n prizes that lead to some

equilibrium with maximal aggregate bids (possibly subject to the budget constraint that the

average prize does not exceed a certain value C).9

In addition, denote by M the set of prize distributions that maximize (3) (possibly

subject to the budget constraint that the expected prize does not exceed C). An upper

hemi-continuity argument, given in the Appendix, shows that M is not empty. Denote

by M the corresponding maximal value of (3). Finally, consider any metrization of the

weak∗-topology on the space of prize distributions.

Proposition 1 1. For any ε > 0, there is an N such that for every n ≥ N , Gn
max is within

ε of some distribution inM. In particular, if there is a unique prize distribution Gmax that

maximizes (3), then Gn
max converges to Gmax in weak∗-topology. 2. Mn

max/n converges to M .

3. For any ε > 0 and any G inM, there are an N and a δ > 0 such that for any n ≥ N and

any empirical prize distribution Gn of n prizes that is within δ of G, the average bid in any

equilibrium of the n-th contest with empirical prize distribution Gn is within ε of Mn
max/n.

Part 1 of Proposition 1 shows that the optimal empirical prize distributions in large

contests are approximated by the prize distributions that maximize (3). Part 2 shows that

9That a maximizing set of prizes exists can be shown by a straightforward upper hemi-continuity argument

of the kind used, for example, to prove Corollary 2 in Siegel (2009). We note, however, that our results do

not depend on the existence of such a maximizing set of prizes. For example, none of the analysis changes

if Gn
max is instead chosen to corresponds to a set of n prizes that lead to some equilibrium with aggregate

equilibrium bids that are within 1/n of the supremum of the aggregate equilibrium bids over all sets of n

prizes (possibly subject to the budget constraint that the average prize does not exceed a certain value C)

and all equilibria for any given set of prizes.
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the maximal aggregate equilibrium bids are approximated by the maximal value of (3).

Part 3 shows that any empirical prize distribution that is close to a prize distribution that

maximize (3) generates aggregate equilibrium bids (in any equilibrium) that are close to

maximal. For example, given a prize distribution G that maximizes (3), the set of n prizes

defined by ynj = G−1 (j/n) for j = 1, ..., n generates, for large contests, aggregate equilibrium

bids that are close to maximal.

Therefore, to determine the optimal prize structures in large contests and the correspond-

ing maximal aggregate equilibrium bids, it suffices to characterize the set of distributions

that maximize (3) and the corresponding maximal value of (3).

3.1 Unrestricted budget

Suppose first that the prize budget is unrestricted. Denote by x∗ ∈ (0, 1) the unique type

that satisfies

x∗ − (1− F (x∗))

f (x∗)
= 0;

such a type exists because x− (1− F (x)) /f (x) strictly increases in x and f is continuous

and strictly positive on [0, 1]. For types x < x∗, the value of the integrand in (3) is negative,

and for x > x∗, the value is positive. Let z∗ = F (x∗) ∈ (0, 1), so k (z∗) = 0. Then, optimizing

the integrand in (4) leads to G−1 (z) = 0 if z ≤ z∗ and G−1 (z) = 1 if z > z∗. This G−1

is left-continuous and monotonic, so G is a prize distribution and is therefore optimal. We

thus obtain the following result.

Proposition 2 If the prize budget is unrestricted, then for any function h the optimal prize

distribution assigns mass 1−F (x∗) ∈ (0, 1) to the highest possible prize and mass F (x∗) to

prize 0.

Proposition 2 shows that an all-pay auction with identical prizes, as studied by C&R, is

optimal when the budget is unrestricted.
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3.2 Restricted budget

In many applications the prize budget is limited. We model this by introducing the budget

constraint Z 1

0

ydG (y) ≤ C.

The parameter C > 0 should be interpreted as the budget per competitor, denominated in

units of the highest possible prize. Similarly, prizes are denominated in units of the highest

possible prize, that is, prize y costs y. Thus, the expected prize cannot exceed C.

The following result is an immediate implication of Proposition 2.

Proposition 3 If C ≥ 1−F (x∗), then the optimal prize distribution coincides with the one

in the unrestricted budget case.

Proposition 3 shows that when the prize budget is large some of it is optimally left

unused. This is analogous to a monopolist limiting the quantity sold.

Now, consider perhaps the most interesting case, a budget C < 1 − F (x∗). To analyze

this case, we first transform the budget constraint to a more convenient form. Because G

is a probability measure on [0, 1], we have
R 1
0
ydG (y) =

R 1
0
(1−G (y)) dy (by integrating by

parts) and
R 1
0
G (y) dy +

R 1
0
G−1 (z) dz = 1 (by looking at the areas below the graphs of G

and G−1 in the square [0, 1]2). Thus, the budget constraint can be rewritten asZ 1

0

G−1 (z) dz ≤ C. (5)

This is a substantial simplification, because maximizing (4) subject to (5) is a calculus of

variations problem with respect to variable G−1.

Note that since we now consider the case C < 1−F (x∗), the budget constraint (5) holds

with equality.

3.3 Conditions describing the solution

Consider an optimal G−1. Because it is non-decreasing, left-continuous, and takes values in

[0, 1], there are zmin ≤ zmax in [0, 1] such that G−1 (z) = 0 for z ≤ zmin, G−1 (z) = 1 for

z > zmax, and G−1 (z) ∈ (0, 1) for z ∈ (zmin, zmax).
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There are two cases:

Case 1 (zmin < zmax): Then, there exists a λ ≥ 0 such that h0 (G−1 (z)) k (z) = λ for

z ∈ (zmin, zmax]; in addition, h0 (0) k (zmin) ≤ λ and h0(1)k (zmax) ≥ λ if zmax < 1.

Case 2 (zmin = zmax): Then, h0 (0) k (zmin) ≤ h0 (1) k (zmax).

A rigorous proof that G−1 satisfies the conditions described in the two cases is pro-

vided in the Appendix. To gain some intuition for Case 1, note that h0 (G−1 (z)) k (z) is

the derivative of the integrand of (4) with respect to G−1 (z) for a given z. Thus, if

h0 (G−1 (z)) k (z) < h0 (G−1 (z)) k (z) for some z, z ∈ (zmin, zmax), then an infinitesimal in-

crease in G−1 (z) accompanied by a simultaneous decrease in G−1 (z) of the same infinites-

imal size would raise the value of the objective function (4) without affecting the budget

constraint (5). At z = zmin or z > zmax, we have only inequalities, as the value of G−1is 0 or

1, respectively, and cannot be decreased or increased. Since k is increasing and continuous,

the inequality h0 (1) k (z) ≥ λ for z > zmax is equivalent to h0(1)k (zmax) ≥ λ.10 The intuition

for Case 2 is analogous.

3.4 Convex and concave functions h

From the conditions provided in the previous section, we can easily derive the form of the

optimal prize distribution for convex and concave functions h.

Proposition 4 If C < 1−F (x∗) and h is weakly convex, then the optimal prize distribution

assigns mass C to the highest possible prize and mass 1− C to prize 0.

Proof : In this case, we have zmin = zmax. Indeed, since h0 is weakly increasing and k

is strictly increasing, we would have that h0 (G−1 (z0)) k (z0) < h0 (G−1 (z00)) k (z00) for any

z0 < z00 in (zmin, zmax).

Proposition 4 shows that an all-pay auction with identical prizes remains optimal when

the prize budget is small, provided that agents’ marginal prize utility is non-decreasing. An

10Finally, h0
¡
G−1 (z)

¢
k (z) = λ at z = zmax by left-continuity of G−1 and continuity of h0 and k.

10



immediate implication of Proposition 4 is that increasing the budget increases the optimal

quantity of prizes. This increases the resulting aggregate bids, since the optimal prize distri-

bution is unique and differs from the optimal prize distribution associated with the smaller

budget, which is also a feasible prize distribution with the larger budget.

The next result shows that with concave h the optimal prize distribution includes a range

of prizes.

Proposition 5 If C < 1−F (x∗) and h is weakly concave (but not linear), then the optimal

prize distribution assigns positive mass to intermediate prizes y ∈ (0, 1).

Proof : In this case, we have zmin < zmax. Indeed, since h0(0) > h0(1), we cannot have

that zmin = zmax and h0 (0) k (zmin) ≤ h0 (1) k (zmax), unless k (zmin) = k (zmax) ≤ 0. But

k (zmax) ≤ 0 implies that zmax ≤ z∗, so G−1 (z) = 1 for z > zmax violates the budget

constraint (5).

We now show that when h is strictly concave our constrained maximization problem has

an explicit, closed-form solution. Since h0 (G−1 (z)) k (z) = λ for all z ∈ (zmin, zmax] and h0 is

decreasing, h0 (0) k (z) ≥ λ, and since k is continuous, h0 (0) k (zmin) ≥ λ. Since we also have

h0 (0) k (zmin) ≤ λ (because we are in Case 1), we obtain h0 (0) k (zmin) = λ. Thus,

zmin = k−1(λ/h0 (0)). (6)

Since h0 (G−1 (zmax)) k (zmax) = λ and h0 is decreasing, h0 (1) k (zmax) ≤ λ. If zmax < 1,

then we also have h0(1)k (zmax) ≥ λ (because we are in Case 1), so we obtain h0 (1) k (zmax) =

λ. Thus,

zmax = 1 or k−1(λ/h0 (1)). (7)

Finally,

G−1 (z) = (h0)
−1
(λ/k (z)) for z ∈ (zmin, zmax], (8)

G−1 (z) = 0 for z ≤ zmin, and G−1 (z) = 1 for z > zmax.

Thus, G−1 is pinned down by λ. The value of λ is determined by the binding budget

constraint.
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3.5 Example

To illustrate this solution, let distribution F be the uniform and let h (y) =
√
y.11 Then,

k (z) = 2z − 1, x∗ = z∗ = 1/2, h0 (0) = ∞, h0 (1) = 1/2, and (h0)
−1
(r) = 1/(4r2). The

budget constraint is binding if C < 1−F (x∗) = 1/2. By (6), zmin = 1/2. Suppose first that

zmax = 1. By (8) and the binding version of (5),
R 1
1/2
(2z − 1)2 /(4λ2)dz = C. Solving for λ,

we obtain λ = 1/
√
24C. This yields G−1 (z) = 6C (2z − 1)2; in particular, C ≤ 1/6. Thus,

we have that

G (y) =

⎧⎨⎩ 1
2
+
p

y
24C

y ∈ [0, 6C]

1 y ∈ [6C, 1]
.

This is a continuous distribution over an interval of positive intermediate prizes (along with

a mass 1/2 of “no prize”). The resulting aggregate bids, given by (4), are
√
6C/6.

Suppose now that zmax < 1. By (7), zmax = λ+ 1/2. The binding version of (5) implies

that
R 1/2+λ
1/2

(2z − 1)2 /(4λ2)dz+
R 1
1/2+λ

1dz = C. Solving for λ, we obtain λ = 3/4− (3/2)C.

This implies that G−1 (z) = 0 for z ∈ [0, 1/2], G−1 (z) = 4 (2z − 1)2 /(9 (1− 2C)2) for

z ∈ (1/2, (5− 6C) /4], and G−1 (z) = 1 for z ∈ ((5− 6C) /4, 1]. Since zmax = 1/2 + λ < 1,

we have C > 1/6. Thus,

G (y) =

⎧⎨⎩ 1
2
+

3
√
y(1−2C)
4

y ∈ [0, 1)

1 y = 1
.

This is a continuous distribution over an interval of positive intermediate prizes, along with a

mass (6C − 1) /4 of the highest possible prize (and a mass 1/2 of “no prize”). The resulting

aggregate bids are (12C (1− C) + 1)/16.

11Although h0 (0) =∞, it is straightforward to show that a slight modification of our characterization of
the solution from the previous subsection still applies.
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The following figure depicts these results.

Figure 1: The optimal prize distribution as C increases from 0 to 1/2 (left), and the resulting aggregate bids (right)

To summarize the example, for any budget the optimal prize distribution has a mass 1/2

of zero prize. As C increases from 0 to 1/6, the maximal prize awarded increases from the

lowest possible (0) to the highest possible (1), and the prize distribution is continuous above

0. Once C reaches 1/6, the maximal prize awarded is the highest possible prize, and as C

increases from 1/6 to 1/2, the mass of the highest possible prize increases from 0 to 1/2, so

the prize distribution is discontinuous at 1.

3.6 Varying the maximal prize

We have assumed that the value of the maximal possible prize is exogenously given. The bids

and costs of prizes were normalized to be in units of this maximal prize, which corresponds

to y = 1. Now suppose that the maximal possible prize is increased to m > 1 (in units of

the original maximal prize) and suppose that the utility is still given by (1) for y ∈ [0,m].

We can renormalize the units in which the bids and costs are measured so that y ∈ [0, 1]

and y = 1 corresponds to the higher maximal possible prize. Denoting the resulting utility

function by Um, we obtain

Um(x, y, t) = U (x,my,mt) = xh (my)−mt.

Dividing by m, we obtain

Ûm(x, y, t) = xĥ (y)− t,

where ĥ (y) = h (my) /m.
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We can now apply the analysis to the utility function Ûm(x, y, t). With an unrestricted

budget, the solution is still to award the maximal prize to all types x > x∗. Thus, the same

mass of the highest possible prize is awarded as with the original maximal possible prize.

The resulting aggregate bids must be multiplied by m to be in the units of the original

maximal prize, and since m > 1, the aggregate bids increase by a factor of m.

When the budget is restricted, renormalizing the cost of prizes to be in units of the higher

maximal prize (without increasing the budget) changes the budget constraint toZ 1

0

ydG (y) ≤ C/m.

That is, the budget is decreased when denominated in units of the higher maximal prize. If

C/m ≥ 1− F (x∗), then the budget constraint does not bind, and the solution is as in the

case of unrestricted budget.

Suppose that C/m < 1 − F (x∗). If h is convex, then so is ĥ, so our analysis above

shows that the uniquely optimal prize distribution awards mass C/m of the higher maximal

possible prize. Thus, increasing the maximal possible prize decreases the optimal mass of

prizes and increases their value. As m grows large, the optimal mass of prizes shrinks to 0.

This corresponds, in the limit, to “awarding the entire budget as a single prize.” Increasing

the maximal possible prize also increases the maximal aggregate bids. This follows because

the optimal prize structure is uniquely optimal, and therefore leads to higher aggregate bids

than any other feasible prize structure; and one feasible prize structure is awarding a mass

of the original maximal prize.

If h is concave, then so is ĥ, so our earlier analysis can be used to characterize the

solution. If this solution differs from the one with the original maximal possible prize, then

the aggregate bids increase (because the prize structure that was optimal with the original

maximal possible prize is still feasible). In the example, the aggregate bids increase form > 1

if and only if C > 1/6. Indeed, repeating the analysis of the example with budget constraint

C/m and ĥ (y) =
√
my/m shows that if C/m ≤ 1/6, then the optimal prize distribution is

G (y) =

⎧⎨⎩ 1
2
+
p

my
24C

y ∈ [0, 6C/m]

1 y ∈ [6C/m, 1]
, (9)

where y is denominated in units of the higher maximal possible prize. This coincides with
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the optimal prize distribution with the original maximal possible prize if C ≤ 1/6. Thus, if

C ≤ 1/6, then C/m ≤ 1/6, so the optimal prize distribution does not change as a result of

an increase in the maximal possible prize. In contrast, if C > 1/6, then regardless of whether

C/m ≤ 1/6 or C/m > 1/6 the optimal prize distribution with the higher maximal possible

prize differs from the optimal prize distribution with the original maximal possible prize

(for example, in the former case, the optimal prize distribution with the higher maximal

possible prize does not have an atom at any positive prize). In addition, for any m such

that C/m < 1/6, further increasing m does not change the optimal prize distribution (when

denominated in some fixed units). Thus, the optimal prize distribution with an unrestricted

maximal prize coincides with the optimal prize distribution for any m > 6C, which is given

by (9).

4 Appendix

4.1 Proof of Corollary 1

Theorem 1 shows that for large n, in any equilibrium of the n-th contest the average bid is

within ε/2 of Pn
i=1

R 1
0
tA (x) dFn

i (x)

n
=

Z 1

0

tA (x) dFn (x) ,

where the equality follows from the definition of Fn. In addition,Z 1

0

tA (x) dF n (x)→n

Z 1

0

tA (x) dF (x) ,

which completes the proof. The convergence follows from the fact that tA is monotonic

and the assumption that F is continuous, because
Z
gdF n →n

Z
gdF for any bounded and

measurable function g for which distribution F assigns measure 0 to the set of points at

which function g is discontinuous. (This fact is established as the first claim of the proof of

Theorem 25.8 in Billingsley (1995).)
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4.2 Proof thatM 6= ∅

Let (Gn)∞n=1 be a sequence on which (4) converges to its supremum (and which satisfies, if

necessary, the budget constraint that the expected prize does not exceed C). By passing to

a convergent subsequence (in the weak∗-topology) if necessary, assume that Gn converges to

some G. We will show below that (Gn)−1 converges almost surely to G−1, and since function

h is continuous, the value of (4) with (Gn)−1 instead of G−1 converges to the value of (4).

Similarly, if every (Gn)−1 satisfies the budget constraint (5), so does G−1.

Thus, it suffices to show that (Gn)−1 converges to G−1, except perhaps on the (at most)

countable set R = {r ∈ [0, 1] : there exist y0 < y00 such that G(y) = r for y ∈ (y0, y00)}.

Suppose first that for some r ∈ [0, 1] and δ > 0 we have that (Gn)−1(r) ≤ G−1(r)− δ for

arbitrarily large n. Passing to a subsequence if necessary, assume that the inequality holds

for all n, and that (Gn)−1(r) converges to some y ≤ G−1(r)− δ. Then, there exists a prize

z such that y < z < G−1(r) and G is continuous at z. We cannot have that G(z) = r, since

this would imply that G−1(r) ≤ z. Thus, G(z) < r. Since Gn(z) converges to G(z), as G

is continuous at z, we have that Gn(z) < r for large enough n. This yields z ≤ (Gn)−1(r),

contradicting the assumption that (Gn)−1(r) converges to y < z.

Suppose now that for some r ∈ [0, 1]−R and δ > 0 we have that (Gn)−1(r) ≥ G−1(r)+ δ

for arbitrarily large n. Passing to a subsequence if necessary, assume that the inequality

holds for all n, and that (Gn)−1(r) converges to some y ≥ G−1(r) + δ. Then, there exists

a prize z such that G−1(r) < z < y and G is continuous at z. We have that r < G(z), as

r /∈ R. Since Gn(z) converges to G(z), as G is continuous at z, we have that r ≤ Gn(z)

for large enough n. This yields (Gn)−1(r) ≤ z, contradicting the assumption that (Gn)−1(r)

converges to y > z.

4.3 Proof of Proposition 1

Since every sequence of distributions has a converging subsequence in weak∗-topology, sup-

pose without loss of generality that Gn
max converges to some distribution G. Denote the value

of (3) under distribution G by V . If Part 1 is false, then G /∈M , so V < M .

Consider a distribution Gmax ∈M, and for every n consider an empirical distribution Gn
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of a set of n prizes, such that Gn converges to Gmax in weak∗-topology. For example, such a

set of n prizes is defined by ynj = G−1max (j/n) for j = 1, ..., n.

Corollary 1 shows that for large n the average bid in any equilibrium of the n-th contest

with empirical prize distribution Gn exceeds 2 (V +M) /3. On the other hand, Corollary

1 also shows that for large n the average bid in any equilibrium of the n-th contest with

empirical prize distribution Gn
max falls below (V +M) /3. This contradicts the definition of

Gn
max for large n.

For Part 2, Corollary 1 applied to the sequenceGn defined above implies that lim infMn
max/n ≥

M . If lim supMn
max/n > M , then there is a corresponding subsequence of Gn

max. A converg-

ing subsequence of this subsequence has a limit G. For this G, the value of (3) is by Corollary

1strictly larger than M , a contradiction.

Part 3 follows from part 2 and the fact that Corollary 1 shows that the average bid in

any equilibrium of the n-th contest with empirical prize distribution Gn converges to M .

4.4 A proof for the conditions in Cases 1 and 2

We will show that in Case 1 the condition h0 (G−1 (z)) k (z) = h0 (G−1 (z0)) k (z0) holds for all

z, z0 ∈ (zmin, zmax). For this, we first approximate G−1 by a sequence of inverse distribution

functions ((Gn)−1)∞n=1 that satisfy the budget constraint and whose value of (4) converges

to that for G−1. We then show that if the condition fails there exists a sequence of inverse

distribution functions ((Hn)−1)∞n=1 that satisfy the budget constraint such that for large n

the value of (4) for (Hn)−1 exceeds that for (Gn)−1 by a positive constant independent of

n, and therefore improves upon G−1. The second condition in Case 1 and the condition in

Case 2 are obtained by analogous arguments.

To define (Gn)−1, partition interval [0, 1] into intervals of size 1/2n, and set the value of

(Gn)−1 on interval (j/2n, (j + 1)/2n] to be constant and equal to the highest number in the

set {0, 1/2n, 2/2n, ..., (2n − 1)/2n, 1} that is no higher than G−1(j/2n). By left-continuity of

G−1, (Gn)−1 converges pointwise to G−1, so the value of (4) for (Gn)−1 converges to that for

G−1.

Suppose that h0 (G−1 (z)) k (z) < h0 (G−1 (z)) k (z) for some z, z ∈ (zmin, zmax). By

left-continuity of G−1, and continuity of h0 and k, the previous inequality also holds for
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points slightly smaller than z and z. Thus, there are δ > 0, N , and intervals (j/2N , (j +

1)/2N ] and (l/2N , (l + 1)/2N ], such that for every n ≥ N we have h0 ((Gn)−1 (z)) k (z) −

h0 ((Gn)−1(z0))k (z0) > δ for any z ∈ (j/2N , (l + 1)/2N ] and z0 ∈ (l/2N , (j + 1)/2N ].

Denote the infimum of the values h0 ((Gn)−1(z))k (z) for n ≥ N and z in the former

interval by I, and the supremum of the values h0 ((Gn)−1(z))k (z) for n ≥ N and z in the

latter interval by S. Now, define functions ( eHn)−1 by increasing the value of (Gn)−1 on

(j/2N , (j+1)/2N ] by ε, and decreasing the value of (Gn)−1 on (l/2N , (l+1)/2N ] by ε, so the

budget constraint is maintained. For sufficiently small ε > 0, the former change increases (4)

at least by
¡
ε/2N

¢
(I − δ/3), and the latter change decreases (4) at most by

¡
ε/2N

¢
(S + δ/3).

This increases the value of (4) by at least δε/2N (for all n ≥ N).

If functions ( eHn)−1 are monotonic, they are inverse distribution functions, so it suffices

to set (Hn)−1 = ( eHn)−1. Otherwise, define (Hn)−1 by setting its value on interval (0, 1/2n]

to the lowest value of ( eHn)−1 over intervals (0, 1/2n], (1/2n, 2/2n], ..., ((2n− 1)/2n, 1], setting

its value on interval (1/2n, 2/2n] to the second lowest value of ( eHn)−1, etc. The value of (4)

is higher for (Hn)−1 than for ( eHn)−1 because k is an increasing function.

4.5 Connection to M&S

We now consider utility function U(x, y, t) = xy−c (t), where c (0) = 0 and c is continuously

differentiable and strictly increasing. The discrete contests of M&S correspond to this utility

function. To simplify the analysis, we assume that distribution F is uniform.12

The effort-maximizing prize structure is, in large contests, approximated by the prize

distribution that solves the following problem:

max
G−1

½Z 1

0

c−1
µ
zG−1 (z)−

Z z

0

G−1 (r) dr

¶
dz

¾
subject to

Z 1

0

G−1 (r) dr ≤ C.

Indeed, the cost of effort c(t(x)) exerted by type x is determined by equation (??), which

previously determined the bid tA(x).

12Our analysis can be extended to general F and h (instead of h(y) = y) without any conceptual difficulty,

but such an extension requires more involved notation and calculations.
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We first transform the objective function to a more convenient form. By looking at the

areas below the graphs of G and G−1 in the rectangle [0, G−1 (z)] × [0, z], we have thatR G−1(z)
0

G(y)dy+
R z
0
G−1 (r) dr = zG−1 (z). Thus, the objective function can be rewritten asZ 1

0

c−1

ÃZ G−1(z)

0

G(y)dy

!
dz. (10)

Consider an optimal G−1. There exist zmin ≤ zmax in [0, 1] such that G−1 (z) = 0 for

z ≤ zmin, G−1 (z) = 1 for z > zmax, and G−1 (z) ∈ (0, 1) for z ∈ (zmin, zmax).

There are two cases:

Case 1 (zmin < zmax): Then, there exists a λ ≥ 0 such that

(c−1)0(l(z))z −
Z 1

z

(c−1)0(l(r))dr = λ, (11)

where l(z) =
R G−1(z)
0

G(y)dy, for z ∈ (zmin, zmax]; in addition,

(c−1)0(0)zmin −
Z 1

zmin

(c−1)0(l(r))dr ≤ λ and (c−1)0 (l (1)) (2zmax − 1) ≥ λ.

Case 2 (zmin = zmax): Then,

(c−1)0(0) ≤ (c−1)0 (l (1)) . (12)

The proof that G−1 satisfies the conditions described in the two cases is analogous to

that for the conditions in Section 3.3. The argument is, however, more involved, because the

objective function (10) depends on G as well as on G−1. For the argument, it is convenient

to extend the functional l(z) to functions G−1 which are not monotonic. We define l(z) by

adding with the plus sign the area above the graph of G−1 between 0 and z and and below

the line y = G−1(z), and with the minus sign the area below the graph of G−1 between 0

and z and and above the line y = G−1(z). (This is illustrated in Figure 2, where l(z) is equal

to the sum of the shaded areas taken with the signs marked on them.)
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z = G(y)

+

+

-

y = G-1(z)

Figure 2: Definition of l(z)

To derive the first condition in Case 1, consider some inverse distribution function G−1

that takes values only in the set {0, 1/2n, 2/2n, ..., (2n − 1)/2n, 1}, and is constant on each

interval (0, 1/2n], (1/2n, 2/2n], ..., ((2n− 1)/2n, 1]. Suppose that we increase the value of G−1

on an interval (l/2n, (l + 1)/2n] by ε > 0. (That is, we move the graph of G−1 in Figure 3

to the right, by the shaded square.) This change does not affect the integrand in (10) on

intervals (k/2n, (k+1)/2n] for k < l. It increases
R G−1(z)
0

G(y)dy for z ∈ (l/2n, (l+1)/2n] by

ε(l/2n) (the darkened rectangle in Figure 3), so to a first-order approximation it increases

the integrand in (10) on (l/2n, (l + 1)/2n] by (c−1)0(l(z))ε(l/2n). For any k > l, it decreasesR G−1(z)
0

G(y)dy by ε(1/2n) (the shaded square in Figure 3) on (k/2n, (k+1)/2n], so to a first-

order approximation it decreases the integrand in (10) on (k/2n, (k + 1)/2n] (for all k > l)

by (c−1)0(l(z))ε(1/2n). Letting z = l/2n, we have that in total, (10) increases approximately

by

ε(1/2n)

∙
(c−1)0(l(z))z −

Z 1

z

(c−1)0(l(r))dr

¸
.

20



(l+1)/2n

G-1(l/2n)
before 
the 
increase

l/2n

G-1(l/2n)
after the 
increase

Figure 3: Increasing G−1

Thus, if the first condition in Case 1 is violated for an optimal G−1, we could construct

functions (Gn)−1 that converge to G−1 and functions ( eHn)−1, as in Section 4.4. If functions

( eHn)−1 are monotonic, we would obtain a contradiction to the optimality of G−1.

If a ( eHn)−1 is not monotonic, then there is a monotonic (Hn)−1 whose value of (10) is

higher than that for ( eHn)−1. Indeed, consider two adjacent intervals (k/2n, (k + 1)/2n] and

(l/2n, (l + 1)/2n] (that is, k + 1 = l) such that ( eHn)−1(z) = U on (k/2n, (k + 1)/2n] and

( eHn)−1 (z) = D on (l/2n, (l + 1)/2n], where D < U . By changing the value of ( eHn)−1 on

(k/2n, (k+1)/2n] to D, and changing the value of ( eHn)−1 on (l/2n, (l+1)/2n] to U , we raise

the value of (10). This is easy to see in Figure 4, in which the graph of (Hn)−1 is obtained

from the graph of ( eHn)−1 by moving it to the left by the shaded square, and moving it to the

right by the darkened square. This makes the value of l(z) on (k/2n, (k+1)/2n] higher than

its previous value on (l/2n, (l + 1)/2n] by the shaded area. Similarly, the value of l(z) on

(l/2n, (l+1)/2n] becomes higher than its previous value on (k/2n, (k+1)/2n] by the shaded

area. This increases the integrand of (10) on (k/2n, (l + 1)/2n]. Finally, the value of l(z)

and the integrand of (10) on other intervals of the partition stay the same.
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(k+1)/2n = l/2n

D

k/2n

U

(l+1)/2n

Figure 4: Changing ( eHn)−1

For the second condition in Case 1, notice that the inequality (c−1)0(l(z))z−
R 1
z
(c−1)0(l(r))dr ≥

λ for z > zmax reduces to (c−1)0(l (1))(2zmax − 1) ≥ λ by taking the limit as z tends to zmax.

For Case 2, notice that the left-hand side of (11) for z = zmin is equal to (c−1)0(0)zmin −R 1
zmin
(c−1)0(l(r))dr, and the limit of the left-hand side of (11) as z tends to zmax is (c−1)0l (1) zmax−R 1

zmax
(c−1)0(l(r))dr. This yields the condition in Case 2, as zmin = zmax.

We can now recover the results from M&S.

Proposition 6 If the budget constraint binds and c−1 is weakly convex, then the optimal

prize distribution assigns mass C to the highest possible prize and mass 1− C to prize 0.

Proof : In this case, we have zmin = zmax. Indeed, since (c−1)0 and l are weakly increasing,

(c−1)0(l(z))z strictly increases in z; in turn,
R 1
z
(c−1)0(l(r))dr weakly decreases in z. Therefore,

(11) strictly increases in z.

Proposition 4.5 mirrors Propositions 2 and 4 in M&S, which show that when the cost

function is linear or concave it is optimal to award the entire budget as a single prize. The

discrepancy between M&S’s single prize and the mass of identical highest prizes prescribed

by Proposition 4.5 arises because M&S do not consider a limit on the highest possible prize.
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Increasing the highest possible prize in our setting, as discussed in Section 3.6, optimally

leads to awarding a smaller mass of this prize. This corresponds, in the limit, to “awarding

the entire budget as a single prize.”

Proposition 7 If the budget constraint is binding and (c−1)0(0) > (c−1)0(r) for all r > 0,

then the optimal prize distribution assigns a positive mass to intermediate prizes y ∈ (0, 1).

Proof : In this case, it follows directly from (12) that zmin < zmax.

Proposition 7 corresponds to Proposition 5 of M&S, which shows that with a convex

cost function splitting the budget into two prizes is sometimes better than awarding the

entire budget as a single grand. But Proposition 4.5 applies whenever the cost function c

satisfies only the mild “convexity” condition that (c−1)0(0) > (c−1)0(r) for all r > 0, whereas

M&S require another condition, which involves the number of players and the degree of

convexity of the cost function. The seeming discrepancy may be resolved by noting that we

consider large contests and observing, as M&S did, that for a given convex cost function

their condition is easier to satisfy if there are more players.

While Propositions 4.5 and 7 mirror results in M&S, the set of contests to which they

apply are different from those studied by M&S. While M&S studied contests with any finite

number of players, the players were restricted to being ex-ante symmetric and having private

information about their cost. Our results apply to contests with a large, but finite, number

of players, and apply to both ex-ante symmetric and asymmetric players, who may or may

not have private information.

Our analysis also makes it possible to obtain results not found in M&S, and which would

be difficult (or perhaps even impossible) to obtain by analyzing discrete contests. The

following proposition describes one such result.

Proposition 8 If (c−1)0(r) > 0 for all r, then the optimal prize distribution may have atoms

only at 0 (no prize) and 1 (the highest possible prize).

Proof : An atom at some intermediate prize would mean that Case 1 must hold and

G−1 (z) = G−1 (z) for some zmin < z < z < zmax. Then, however, l(z) = l(z), so

(c−1)0(l(z))z < (c−1)0(l(z))z; in turn,
R 1
z
(c−1)0(l(r))dr ≥

R 1
z
(c−1)0(l(r))dr. Thus, (11) for

z exceeds (11) for z, which contradicts condition (11).
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5 Leftover: Comparative statics

The fact that the average bids in large contests can be approximated by (3) implies that

comparative statics relating to aggregate bids in large contest behave as the corresponding

comparative statics do with respect to (3). The following result compares the aggregate bids

in a contest across different sets of players, and does not require x− (1− F (x)) /f (x) to be

increasing.

Proposition 9 For any prize distribution G, a first-order stochastic dominance shift in the

type distribution F increases the limit aggregate bids (3).

Proof : Integration by parts shows that for all differentiable G−1, the limit aggregate

bids are equal to13
1Z
0

h0(G−1(z))(G−1)0(z)(1− z)F−1(z)dz.

A first-order stochastic dominance shift in the type distribution increases this expression,

as it increases F−1(z) for all z. For an arbitrary prize distribution G we obtain the result

by approximating G with prize distributions whose inverse distributions are differentiable.

Although this result seems intuitive, its validity for all discrete contests is unclear, because

of the problems with characterizing discrete-contest equilibria. Perhaps more surprising is

the comparative statics concerning function h, which can also be viewed as comparing the

aggregate bids in a contest across different sets of players. It turns out that some upward

pointwise shifts of function h may decrease the aggregate bids in certain contests. This

happens, for example, when h (y) is shifted up at prizes y > 0 such that y = G−1 (z) and

k (z) < 0 (by (4)).

13In the integration by parts, we use the formula

[(1− z)F−1(z)]0 = −F−1(z)− 1− z

f(F−1(z))
.
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