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Abstract

Consider a T -period, bilateral matching economy without monetary transfers. Un-

der natural restrictions on agents’ preferences, which accommodate switching costs,

status-quo bias, and other forms of inter-temporal complementarity, dynamically-stable

matchings exist. Generally, “optimal” dynamically-stable matchings may not exist, but

under a suitable partial order the stable set forms a lattice. The welfare properties

of different stable outcomes is ascertained and the implications for normative market-

design are discussed. The robustness of dynamically-stable matchings with respect to

the market’s time horizon is examined.
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The passage of time is a key component of many social and economic interactions. Wed-

ding anniversaries are celebrated—or forgotten. Employees are recognized for years of service.

And students receive an education at a succession of institutions, from pre-school to high

school to, possibly, graduate school. Sometimes persistence is held in high regard. At other

times, change is eagerly anticipated.

Though time is an ingredient of many economic models, it is largely absent from typical

studies of bilateral matching markets, as originally formulated by Gale and Shapley (1962).

In such a market agents are partitioned into two groups—men and women, firms and work-

ers, schools and students—and seek to match together to realize benefits. Crucially, each

agent has preferences defined over potential partners and these preferences often display

conflicting assessments. In Gale and Shapley’s classic terminology, which we adopt solely

for its simplicity, men and women sometimes (dis)agree in their evaluations of each other.

Likewise, firms value a particular worker’s skills differently and he may hold an unconven-

tional ranking of employers. That “stable” matchings, where no agent or no pair can pursue

a mutually-preferable arrangement to a proposed aggregate assignment, are possible is both

surprising and profound.

Extending a matching market’s time horizon, forces one to confront several real-world

complications. First, with the passage of time agents frequently change their partners.1 The

possibility of change introduces a degree of complexity not encountered in the single-period,

one-shot case. The order of interactions matters and inter-temporal trade-offs assume a

prominent role. Second, practical decision making over a time horizon is difficult. Complex-

ity and psychology mix to promote habit formation and path-dependence into significant

behavioral features. Unlike theory, practice often conflicts with Samuelson’s (1937) influen-

tial discounted-utility framework. Finally, when time horizons are long, agents’ commitment

ability is imperfect and dynamic incentives matter.

Kadam and Kotowski (2014) study a two-period generalization of Gale and Shapley’s

(1962) bilateral matching market. Their analysis lets agents change partners between peri-

ods and accommodates inter-temporal preference complementarities. Kadam and Kotowski

(2014) employ their model to examine the role of financial transfers and uncertainty in multi-

1Change occurs in all celebrated applications of matching theory. Only 54.4 percent of couples married
between 1975 and 1979 celebrated their 25th anniversary (Kreider and Ellis, 2011). Similarly, the U.S. Bureau
of Labor Statistics (2012) notes that the average person born between 1957 and 1964 held 11.3 jobs between
the ages of 18 and 46. Non-employment accounted for 22 percent of weeks during this period. Finally, the
U.S. public high school adjusted cohort graduation rate for school year 2011–12 was 80 percent (Stetser and
Stillwell, 2014). Thus, twenty percent of students “re-match” with some alternative(s) to a public high school
education. This may range from dropping out entirely to pursuing an alternative credential.
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period markets. While a two-period market offers insights into those questions, it may be

restrictive in some normative applications. For example, the assignment of students to high

schools has emerged as a celebrated application of matching theory (Abdulkadiroğlu and

Sönmez, 2003). Traditional models of this problem have been static, one-period affairs. Of

course, students attend high school for (typically) four years and, therefore, this is a multi-

period assignment problem. A very coarse conflation of the successive school years yields the

typical one-shot model; however, an unbundling of successive years, semesters, or quarters

yields a rich family of multi-period alternatives. In fact, assignment length and re-matching

frequency are in principle design variables open to refinement.2 Clearly, going beyond two pe-

riods is necessary, first, to understand and, second, to leverage these dimensions of matching

problems.

Though we are mindful of applications, the primary purpose of our study is to examine the

positive theory of T -period, bilateral matching economies where agents’ preferences exhibit

non-trivial, inter-temporal complementarities. We focus on dynamically-stable matchings,

where agents are limited in their commitment ability and must be continually incentivized

to continue with a proposed assignment plan. Importantly, our study differs from those

of Damiano and Lam (2005), Kurino (2009), or Pereyra (2013) where agents’ preferences

are “time separable.” In a multi-period matching market, such a condition is a substantive

restriction since status-quo bias, switching costs, preference reversals, and other forms of

preference inertia are common. To accommodate these features, we first generalize a class

of preferences studied by Kadam and Kotowski (2014). Such preferences merge a ranking

of potential partners with a bias toward more persistent assignments. In the two-period

case, they satisfy the “rankability” condition of Kennes et al. (2014a), which is among the

few other studies incorporating inter-temporal preference complementarities.3 Contrary to

nomenclatural connotation, inertia need not reinforce a matching’s stability. Interim prefer-

ence reversals render the matching problem more nuanced than a sequence of independent,

single-period markets.

Despite a bias toward persistent matchings, dynamic stability and volatility in assign-

ments are not only compatible, but surprisingly common. Stable matchings may involve

change at the agent level at every opportunity. At times, stability may necessitate periods of

2For example, educational programs may be able to alleviate capacity concerns by building-in re-matchings
or rotations into initial assignments.

3Kennes et al. (2014a) define rankability only for the two-period case. Therefore, our analysis may be
interpreted as a (possible) generalization of their condition to a T -period setting. However, our construction
and motivation for such preferences is closer to the exposition of Kadam and Kotowski (2014).
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sacrifice where agents pair temporarily with (extremely) low-quality partners in anticipation

of a better pairing later on. Similarly, agents may experience isolated periods of being un-

matched. In a labor market application, we often call such cases job-hopping,4 internships,

and unemployment, respectively. Our model accommodates all of them and can form a basis

for further study of labor market dynamics and career planning. We show how many of these

outcomes require a long time horizon to be stable market arrangements. Importantly, they

need not follow from an intrinsic “preference for variety” and may emerge as a compromise

among otherwise conflicting interests.

Though our analysis in Section 2 identifies sufficient conditions for the existence of

dynamically-stable matchings, existence alone is not our primary focus. Instead, we ad-

dress two questions hitherto unexplored in multi-period bilateral matching economies. Both

are salient for normative applications as they address welfare and robustness. First, in Sec-

tion 3, we investigate the lattice structure of the set of dynamically-stable matchings.5 Such

a structure provides economic insight concerning the way markets mediate conflicting in-

terests, facilitates welfare comparisons, and frequently simplifies formal arguments. Though

characterized in static applications,6 the nature of the lattice of stable matchings in dynamic

markets has not been explored. Our analysis yields subtle conclusions and qualifications.

First, we identify cases where dynamically-stable matchings are not Pareto optimal. More-

over, we show that man- or woman-optimal stable matchings do not always exist.7 Man- and

woman-optimal matchings exist in a wide range of one-period models (Gale and Shapley,

1962; Roth, 1984, 1985b). Therefore, our environment is a substantive departure from a

one-period setting and our assumptions do not “reduce” matters to a static market. As a

counterpoint to these intriguing though negative observations, we propose a refinement on

agents’ preferences and a new ordering of the set of dynamically-stable matchings ensuring

that this set is a lattice. The new ordering maintains a link to agents’ preferences, thereby

accommodating comparative welfare analysis.

While the set of stable matchings offers a rich collection of welfare implications, this

set’s robustness with respect to slight changes in the environment remains unexplored. As

our analysis emphasizes the multi-period nature of agents’ interactions, it is important to

4“Job hopping” refers to the rapid movement of workers between firms. Fallick et al. (2006) document
this phenomenon among technology-sector workers in Silicon Valley.

5A lattice is a partially-ordered set where each subset has a supremum and an infimum.
6Knuth (1976), Blair (1984, 1988), Roth (1984, 1985b), and Alkan (2001, 2002), study the lattice structure

of the stable set in an array of matching models. See also Sotomayor (1999).
7A stable matching is man-optimal if each man prefers his assignment in that matching to his assignment

in all other stable matchings. A woman-optimal stable matching is defined analogously.
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understand how the set of stable matchings may change with the market’s time horizon, the

parameter T in our notation. This is the second focus of our analysis and it is significant

for two reasons. First, in many positive analyses the selection and interpretation of “T ” is

at the analyst’s discretion. Thus, a hint of robustness along this dimension is desirable. In

Section 4 we show that many conclusions are robust to changes in T . Namely, intuitive

projections and embeddings of stable outcomes are possible as T changes. Such conclusions

are not immediate since, for instance, adjusting a market’s time horizon increases/decreases

the number of blocking opportunities. Second, in normative analyses, the market’s time

horizon provides a new design variable open to refinement and fine-tuning. Understanding

the consequences of more or fewer re-matching opportunities, for instance, can help guide

design.

We view our focus on the above questions as complementary and providing a preliminary

tool-kit for future applications. Both are relevant for analyses of markets where the time

horizon is long but agents’ commitment ability is limited. As we discuss before the conclusion,

specific applications can include studies of student-school or job-worker assignments.

Immediately below we briefly survey the related literature. For brevity of exposition, we

relegate many proofs to Appendix A. Appendix B is available as an online supplement.

Related Literature Dynamic models occupy a nook within the expansive literature fol-

lowing Gale and Shapley (1962). Some papers, of which Kurino (2014) is a recent example,

consider one-sided problems. In contrast, we consider a two-sided market where agents on

both sides of the market, men and women in our nomenclature, have preferences over their

partner’s identity. Specific applications have motivated previous studies in this vein. For

example, Kennes et al. (2014a) study the assignment of children to Danish daycares while

Dur (2012) and Pereyra (2013) consider school-choice applications. Though these models

incorporate features that are absent from our analysis, our model is not a special case of any

of them.8

As our model generalizes Gale and Shapley’s (1962) original analysis, we maintain their

pairwise focus in our preferred stability concept, which we term dynamic stability. Admit-

tedly there are multiple plausible definitions of stability for dynamic matching economies.

Some authors, such as Damiano and Lam (2005) and Kurino (2009), favor coalition-based

8The two-period case our model satisfies the rankability condition of Kennes et al. (2014a). However,
the asymmetry in the model of Kennes et al. (2014a) imposes a more restrictive condition on some agents’
preferences. Hence, our model is not subsumed by their analysis. Furthermore, Kadam and Kotowski (2014)
show that a stable matching in the sense of Kennes et al. (2014a) may not satisfy our preferred stability
notions. Thus, the stability concepts studied are also distinct.
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definitions of stability with additional credibility qualifications. Independently, Doval (2014)

also examines “dynamically-stable” matchings in her model, which differs from our usage

of the term. As elaborated upon by Kadam and Kotowski (2014), the pairwise notions of

stability used below are intuitive generalizations of well-known concepts and they provide

an accessible benchmark for further analysis.

A link exists between a dynamic, one-to-one matching market and a static, many-to-

many matching market. Every agent is matched to many partners, though in succession.

Our analysis is not a special case of the most general treatments of many-to-many match-

ing markets lodged in matching with contracts framework (Hatfield and Milgrom, 2005).

Notably, our model does not satisfy the substitutability condition stressed by Hatfield and

Kominers (2012).9

While dynamics have been underemphasized in the literature on two-sided matching

following Gale and Shapley (1962), they are a central pillar of alternative examinations

of bilateral markets. For example, the fact that workers shuffle between jobs has been

formalized in the literature on matching within the search-theoretic paradigm. In the work of

Mortensen and Pissarides (1994), to cite but one well-known example, workers move between

employment and unemployment; job opportunities are created and destroyed. Micro-level

change and churn are features of an economy’s steady state. We identify comparably volatile

stable outcomes in our setting and we hope our analysis serves as a useful step toward

integrating insights from both “matching” literatures.10

1 Model

Let M and W be finite, disjoint sets of agents—men and women, respectively—who interact

over T periods. In every period, each man (woman) can be matched with one woman (man)

or remain single. Following convention, a single agent is said to be “matched to themselves.”

Thus, the set of potential partners for m ∈ M is Wm ≡ W ∪ {m}. Mw ≡ M ∪ {w} is the

set of potential partners for w ∈ W . We use m’s and w’s to denote specific men and women

when this distinction is helpful. Otherwise, i, j, k, l are generic agents.

Remark 1. For brevity, we define some concepts only from the perspective of a typical man.

9Hatfield and Kominers (2012, p. 3–4) illustrate the failure of (contract) substitutability in multi-period
matching problems. When substitutability fails, they propose bundling complementary periods together
into longer-term contracts. In our nomenclature, this entails focusing on ex ante stable outcomes. Ex ante
stability is not our preferred solution concept as we emphasize limited commitment.

10The links between these literatures was recognized by Crawford and Knoer (1981, p. 437–8).
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Our model is symmetric and all definitions apply to women with obvious notational changes.

Over a lifetime each agent encounters a sequence of partners, called a partnership plan.

We denote a plan by x = (x1, x2, . . . , xT ) where xt is the assigned partner in period t. When

confusion is unlikely, we write x = x1x2 · · ·xT with truncations or subsets of x denoted as

follows:

x≤t = x1x2 · · ·xt

x<t = x1x2 · · ·xt−1

x≥t = xtxt+1 · · ·xT

x>t = xt+1xt+2 · · ·xT

x[t,t′] = xt · · ·xt′

x(t,t′) = xt+1 · · ·xt′−1

Often we combine and remix the above notations, i.e. x = (x<t, x[t,t′], x>t′).
11 A constant

plan is written as ī ≡ (i, i, . . . , i).

Each agent i has a strict, rational preference ≻i defined over feasible partnership plans. If

i prefers plan x to plan y, we write x ≻i y. If x ≻i y or x = y, then x %i y. We occasionally

summarize ≻i by listing plans in preferred order, i.e. ≻i : x, y, z, . . ..

A matching µ : M ∪ W → (M ∪W )T assigns a partnership plan to each agent. It is a

function comprising of T one-period matchings.

Definition 1. µt : M ∪ W → M ∪ W is a one-period matching (for period t) if (i) for all

m ∈ M , µt(m) ∈ Wm; (ii) for all w ∈ W , µt(w) ∈ Mw; and, (iii) for all i, µt(i) = j =⇒

µt(j) = i.

Thus, µ(i) = (µ1(i), . . . , µT (i)) is i’s plan under the matching µ.

A matching is stable if it cannot be blocked by any agent or pair. We first define

admissible blocking actions. Thereafter we propose two definitions of stability.

Definition 2. Agent i can period-t block the matching µ if (µ<t(i), ī≥t) ≻i µ(i).

At period t, (µ<t(i), ī≥t) is the best outcome that agent i can guarantee himself independent

of others’ behavior or of the market’s future development. The matching µ is ex ante

individually rational if it cannot be period-1 blocked by i. If i cannot period-t block µ for

all t, then it is dynamically individually rational.

A pair can block a matching in period t if they can form a (continuation) partnership

plan only among themselves for periods t, t + 1, t + 2, . . . that they both prefer given the

elapsed history. Such a plan involves a sequence of arrangements only among the blocking

pair.

11By convention, x<1 = ∅ and x>T = ∅.
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Definition 3. µ
{m,w}
t : {m,w} → {m,w} is a one-period matching (for period t) among

{m,w} if (i) µ
{m,w}
t (m) = w and µ

{m,w}
t (w) = m; or, (ii) µ

{m,w}
t (m) = m and µ

{m,w}
t (w) = w.

Definition 4. {m,w} can period-t block the matching µ if there exists a matching among

{m,w}, µ{m,w} = (µ
{m,w}
1 , . . . , µ

{m,w}
T ), such that (µ<t(i), µ

{m,w}
≥t (i)) ≻i µ(i) for all i ∈ {m,w}.

All else equal, when agents have more blocking opportunities supporting a stable outcome

becomes more difficult. Thus, we introduce two definitions of stability that bracket all others.

Definition 5. The matching µ is ex ante stable if it cannot be period-1 blocked by any

agent or by any pair. The matching µ is dynamically stable if it cannot be period-t blocked

by any agent or by any pair for all t.

Kadam and Kotowski (2014) analyze ex ante and dynamically-stable matchings in a two-

period model and they provide additional context and motivation for these definitions. Ex

ante stability is appropriate when agents can credibly commit to a proposed partnership plan.

Ex ante stable matchings always exist (see Appendix B) and they provide a preliminary, if

weak, benchmark for any multi-period matching market. With a longer time horizon, as

assumed here, we would like to refine the set of ex ante stable matchings by deemphasizing

the role of commitment to long-term plans. Thus, dynamic stability is our preferred solution

concept. It allows for a richer, more realistic set of dynamic blocking opportunities.

Before examining dynamically-stable matchings, we briefly comment on stability no-

tions in multi-period bilateral matching markets. Above we noted that other studies favor

coalition-based definitions of stability. Ours are pair-wise notions though their coalition-

based extensions are straightforward.12 Another class of definitions admits additional block-

ing actions. For instance, dynamic stability does not allow m and w to form a one-period

partnership and then to return to the original matching, µ, as if nothing ever happened. A

moment of reflection suggests that this may be a fanciful outcome. A priori there is no reason

to presume that m’s and w’s partners under µ will welcome their return after an unexpected,

temporary deviation or departure. Preferences need not be time separable and a deviation

may trigger a cascade of further deviations and a market realignment.13 Dynamic stabil-

ity posits that agents evaluate a blocking opportunity conjecturing a worst-case outcome in

12Replacing {m,w} in Definitions 4 and 5 with a coalition C ⊂ M ∪W leads to definitions of the ex ante
and dynamic cores (Kadam and Kotowski, 2014). Conditions ensuring the non-emptiness of the core are
more restrictive than those proposed in this study.

13Matters hinge on what non-deviating agents can do in the interim and how their preferences evolve
conditional on the deviation. Damiano and Lam (2005) propose the concept of strict self-sustaining stability
(“S4”) which allows agents to return to an original plan following a temporary deviation. However, they
acknowledge that this presumes a non-deviating agent accepts a deviator’s return.
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which they cannot reliably return to the market as a whole and may only arrange a con-

tinuation plan among themselves. Thus, agents do not need to rely on the accommodative

behavior of others to determine whether a blocking plan is worthwhile. As several negative

results hinge on our definition, they continue to apply if more blocking opportunities are

allowed.

2 Characteristics of Dynamically-Stable Matchings

When T = 1, our model reduces to Gale and Shapley’s (1962) analysis. Hence, their deferred

acceptance algorithm identifies a stable matching. As we call upon this algorithm below, we

summarize it here.

Definition 6 (DA). The (one-period, man-proposing14) deferred acceptance algorithm iden-

tifies a matching µ∗ as follows:

1. For each m ∈ M , let X0
m = W . Initially, no partners in X0

m have been rejected.

2. In round t ≥ 1:

(a) Let X t
m ⊂ X0

m be the subset of women who have not rejected m in some round

t′ < t. If X t
m = ∅ or m ≻m w for all w ∈ X t

m, then m does not make any proposals.

Otherwise, m proposes to his most-preferred potential partner in X t
m.

(b) Let X t
w be the set of proposals received by w. If w ≻w m for all m ∈ X t

w, w

rejects all proposals. Otherwise, w (tentatively) accepts her most preferred suitor

and rejects the others.

3. The above process continues until no rejections occur. If w accepts m’s proposal in

the final round, define µ∗(m) = w and µ∗(w) = m. If i does not make/receive any

proposals in the final round, set µ∗(i) = i.

Once T ≥ 2, the existence of a dynamically-stable matching is not guaranteed.15 To

ensure existence, Kadam and Kotowski (2014) restrict agents’ preferences by introducing a

condition called weak sequential complementarity. In the two-period case, a tractable and

behaviorally-relevant class of preferences satisfy this requirement. This class satisfies the

14The woman-proposing deferred acceptance algorithm is defined analogously.
15Kadam and Kotowski (2014) propose the following example. The man’s preferences are

≻m : wm,ww,mm, . . . and the woman’s preferences are ≻w : mm,ww, . . ..
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rankability condition of Kennes et al. (2014a) and Kadam and Kotowski (2014) show that

it merges a ranking of potential partners and a slight bias for more-persistent plans, which

we term preference inertia.16 Below we develop the T -period generalization of this class of

preferences. As we explain below, this class affords sufficient tractability to investigate our

questions of interest while remaining sufficiently rich for applications.

2.1 Spot Rankings

Imagine an agent holds a strict ranking of potential partners abstracting from all dynamic

considerations. We call such a ranking a spot ranking and we denote it by Pi. If j ranks

above k, we write jPik. If jPik or j = k, then jRik. The following definition proposes a link

between Pi and the preference ≻i.

Definition 7. The preference ≻i reflects Pi if for all x and t,

jPik ⇐⇒ (x1, . . . , xt−1, j, xt+1, . . . , xT ) ≻i (x1, . . . , xt−1, k, xt+1, . . . , xT ).

Let Si be the set of preferences for agent i that reflect a spot ranking.

When ≻i∈ Si, i prefers the plan with the higher-ranked partner if two plans differ only

in their assignment for one period. Of course, many distinct preferences may reflect the

same spot ranking. Definition 7 is similar to the commonly-encountered assumption that

preferences are “responsive” introduced by Roth (1985a); however, it is additionally sensitive

to the order of encountered partners.

2.2 Preference Inertia

Though Si is an appealing class of preferences, it precludes many plausible situations. For

example, if kPij and ≻i∈ Si, then agent i must believe that jkj ≻i jjj. However, status-quo

bias due to explicit or implicit switching costs may tilt i’s preference toward the jjj plan

in lieu of plans incorporating many changes (Samuelson and Zeckhauser, 1988). In practice,

plans economizing on switching may be held in relative favor even if the assignments are

intrinsically less desirable in some time-independent sense.

To address the associated nuances, we first introduce a vocabulary describing partnership

plan variability. The plan x = x1 · · ·xT is maximally persistent if xt = xt′ for all t and t′.

16Kennes et al. (2014a) define rankability only for two periods.
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Otherwise it is volatile. It is maximally volatile if xt 6= xt+1 for all t. Finally, the following

comparison of plans’ relative persistence will prove crucial.

Definition 8. The plan x is more persistent than plan y, denoted as xD y, if for all t ≤ t′,

yt = · · · = yt′ =⇒ xt = · · · = xt′ .

Definition 8 defines a preorder of partnership plans. It is reflexive (x D x) and transitive

(x D y, y D z =⇒ x D z), but not anti-symmetric. If x D y, y D x, but x 6= y, then x is

equally persistent to y and we write x ⊲⊳ y. x ⊲ y when xD y and y 4 x. Finally, we write

x ‖ y if x and y are not D-comparable. To illustrate, iij ⊲ ijk, iij ⊲⊳ jjk, and iij ‖ ijj.

To model a bias toward more persistent plans, we allow such plans to rise in an agent’s

preference ranking relative to a benchmark preference relation.

Definition 9. The preference ≻i exhibits inertia relative to ≻′
i if

1. x ≻′
i y and xD y =⇒ x ≻i y; and,

2. for all x and y such that x ‖ y, x ≻′
i y ⇐⇒ x ≻i y.

Let Υ(≻′
i) be the set of preferences that exhibit inertia relative to ≻′

i.

Condition 2 in Definition 9 says that the relative rankings of non-comparable plans does not

change vis-à-vis to the ≻′
i baseline. A similar conclusion to equally-persistent plans. The

proof of the following lemma is in Appendix A.

Lemma 1. If ≻i∈ Υ(≻′
i) and x ⊲⊳ y, then x ≻′

i y ⇐⇒ x ≻i y.

The following example illustrates the preceding definition and lemma.

Example 1. Suppose W = {w1, w2} and consider the following preferences for m ∈ M :

≻m : w1w1w1w2, w1w1w2w2, w2w2w1w1 , w1w2mw1, w1mmw1, . . .

≻′
m : w1w1w2w2, w1w2mw1, w1w1w1w2, w2w2w1w1 , w1mmw1, . . .

≻m exhibits inertia relative to ≻′
m. The plans w1w1w1w2 and w2w2w1w1 advanced in the

preference list. Since w2w2w1w1 ⊲⊳ w1w1w2w2, these plans’ relative ranking under ≻m and

≻′
m is the same.
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2.3 Dynamically Stable Matchings

Formally, the ideas of a spot ranking and preference inertia are independent. However,

together they combine to define a tractable family of preferences. Specifically, given Si we

can define the set

S̄i =
⋃

≻′
i
∈Si

Υ(≻′
i).

As shown by Theorem 1 below, when ≻i∈ S̄i for all i, a dynamically stable matching exists.

Theorem 1’s proof draws on a technical lemma that we prove in Appendix A.

Lemma 2. Suppose the matching µ is dynamically individually rational for m ∈ M and w ∈

W . Suppose this couple can period-t block µ. If ≻m∈ S̄m and ≻w∈ S̄w, then (µ<t(m), w̄≥t) ≻m

µ(m) and (µ<t(w), m̄≥t) ≻w µ(w).

Theorem 1. If ≻i∈ S̄i for all i, there exists a dynamically-stable matching.

Proof. We construct a dynamically-stable matching using the (man-proposing) ex ante de-

ferred acceptance (E-DA) procedure. Kadam and Kotowski (2014) study the same procedure

in their two-period model. To specify this procedure, define the ex ante spot ranking induced

by ≻i,
17 denoted P≻i

, as jP≻i
k ⇐⇒ j̄ ≻i k̄. If ≻i∈ Υ(≻′

i), then P≻i
= P≻′

i
. The E-DA

procedure defines the matching µ∗ as follows: For each t, µ∗
t is the one-period matching

identified by the (man-proposing) DA algorithm when each agent i makes/accepts proposals

according to his/her ex ante spot ranking induced by ≻i, P≻i
. Below, we show that µ∗ is

dynamically stable.

First, we verify that µ∗ cannot be period-t blocked by i alone. Suppose the contrary. By

Lemma A.2 agent i can period-1 block µ∗, i.e. ī ≻i µ
∗(i). But this implies iP≻i

µ∗
t (i). Thus,

the one-period deferred acceptance algorithm assigned i to a partner whom he like less than

being single—a contradiction.

It remains to verify that no pair of agents can period-t block µ∗. Again we argue by

contradiction. Suppose m and w can period-t block µ∗. By Lemma 2, this implies µ̃(m) =

(µ∗
<t(m), w̄≥t) ≻m µ∗(m) and µ̃(w) = (µ∗

<t(w), m̄≥t) ≻w µ∗(w). Since ≻m∈ S̄m, ≻m∈ Υ(≻′
m)

for some ≻′
m∈ Sm. As µ∗(m)D µ̃(m) and µ̃(m) ≻m µ∗(m), it follows that µ̃(m) ≻′

m µ∗(m).

This implies wP≻′
m
µ∗
t (m) and thus, wP≻m

µ∗
t (m). Likewise, mP≻w

µ∗
t (w). However, this

implies m and w can block the one-period matching identified by the deferred acceptance

17Kennes et al. (2014a) introduce a similar concept that they call the isolated preference relation. They use
it to define their DA-IP mechanism. The DA-IP mechanism may generate dynamically-unstable outcomes
when ≻i∈ S̄i for all i (Kadam and Kotowski, 2014).
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algorithm when agents’ preferences are given by P≻i
. This is a contradiction as the deferred

acceptance algorithm identifies a stable one-period matching. As µ∗ cannot be period-t

blocked by any agent or by any pair, it is dynamically stable.

As noted above, the E-DA procedure was initially studied in a two-period setting. The

procedure’s continued effectiveness at identifying a dynamically-stable matching suggests

that our T -period preference generalization retains the relevant stability-assuring charac-

teristics. Furthermore, it is reassuring that a simple procedure leads to at least one stable

matching in an otherwise complex setting. (As apparent from many examples to follow,

communicating non-time separable preferences over very long partnership plans may be dif-

ficult.)

Technical similarities notwithstanding, there are notable economic differences between

the T = 2 and T > 2 cases as illustrated by the following example.

Example 2. Suppose M = {m1, m2}, W = {w1, w2}, and T = 3. Table 1 summarizes

agents’ preferences, which satisfy the ≻i∈ S̄i restriction. Table 2 lists all dynamically-stable

matchings in this economy. To read this table, µ1(m1) = w1w1w1. The man- and woman-

proposing variants of the E-DA procedure identify the µ1 matching.

Table 1: Agent’s preferences in Example 2.

≻m1 ≻m2 ≻w1 ≻w2

w1w1w1 w2w2w2 m2m2m2 m1m1m1

w1m1w1 w2m2w2 m1m2m2 m2m1m1

w1w2w1 w2w1w2 m2m2m1 m1m1m2

m1m1w1 m2m2w2 m1m2m1 m2m1m2

w1m1m1 w2m2m2 w1m2m2 w2m1m1

m1w2w1 m2w1w2 m2m2w1 m1m1w2

m1m1m1 m2m2m2 w1m2m1 w2m1m2

m1m1m1 m2m2m2

w1w1w1 w2w2w2

To conclude this section, we make four observations motivated by Example 2. First,

maximally-volatile plans can be dynamically-stable, even when agents’ preferences exhibit

inertia. In fact, agents may prefer volatile outcomes among all dynamically-stable matchings.

For instance, w1 and w2 prefer µ2 among the stable set. This observation may be surprising

as preference inertia seemingly nudges agents to prefer more persistent plans.

13



Table 2: All dynamically-stable matchings in Example 2.

Matching m1 m2 w1 w2

µ1 w1w1w1 w2w2w2 m1m1m1 m2m2m2

µ2 w1w2w1 w2w1w2 m1m2m1 m2m1m2

µ3 m1w2w1 m2w1w2 w1m2m1 w2m1m2

Second, a stable matching may incorporate a period of sacrifice. In Example 2, µ2 and

µ3 assign both men to a partner whom they rank below single-hood in an ex ante sense:

m1P≻m1
w2 and m2P≻m2

w1. Both men are rewarded with a highly-ranked partner in the

final period. Thus, with a long enough time horizon costly actions can be adequately incen-

tivized as part of a stable outcome. Importantly, “per-period” characterizations of individual

rationality may fail to capture the importance of inter-temporal linkages.

Third, stable outcomes may include periods of temporary single-hood. The matching µ3

in Example 2 has the surprising property that all agents are unmatched in period 1 but

matched in later periods. This outcome is not possible when T = 2.

Theorem 2. Suppose ≻i∈ S̄i for all i. Let µ be a dynamically-stable matching when T = 2.

Then agent i either has a partner in each period or remains unmatched in both periods.

Proof. See Appendix A.

Example 2 and Theorem 2 qualify Roth’s (1986) rural hospital theorem. When the

time horizon is short (T ≤ 2), Roth’s (1986) conclusion applies, but the relationship breaks

down when T ≥ 3.18 Example 2 shows that if an agent is unmatched in some period

in one dynamically-stable matching, s/he may be matched in that period in some other

dynamically-stable matching.

It is also instructive to relate the preceding observations to contemporary labor markets.

With this interpretation, the µ3 matching exhibits a simultaneous bout of temporary unem-

ployment when all agents are unmatched. One interpretation for this outcome is that of a

business cycle due to market mis-coordination. Furthermore, institutional features implicit

in our definition of blocking serve to reinforce this outcome. For example, m1 and w1 would

prefer to be partnered in period 1, but they cannot period-1 block µ3. w1 is not keen on the

long-term relationship with m1 that period-1 blocking implies (Lemma 2). Though stylized,

18Of course, this qualification applies to the case where ≻i∈ S̄i for all i.
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the implicit persistence of blocking actions captures some common labor-market rigidities,

such as those presently found in many European counties.

Finally, dynamically-stable matchings may not be Pareto optimal.19 When T = 1, stable

matchings are Pareto optimal (Gale and Shapley, 1962). Example 2 shows that this conclu-

sion is not true at a longer time horizon.20 For all i, µ2(i) ≻i µ
3(i). Several peculiarities of

this example—such as the temporary single-hood in µ3—suggest that non-Pareto optimal

dynamically-stable matchings occur under unusual circumstances. Such outcomes can occur

in more ordinary cases as well.

Theorem 3. If T ≥ 2 and ≻i∈ S̄i for all i, a dynamically-stable matching may be Pareto-

dominated by another dynamically-stable matching.

Proof. See Example 5.

3 Welfare and Conflicting Interests

Conventional wisdom suggests that agents on different sides of a market have opposing

interests. A seller prefers a price hike while a buyer desires a discount. Similarly, agents

on the same side of the market compete for lucrative trading opportunities. A competitor’s

success is often interpreted as one’s own failure. As markets mediate such conflicts, these

intuitions have been thoroughly investigated in an array of matching models (Roth, 1984,

1985b). Their extent and intensity in dynamic matching markets remains an open question.

To describe agents’ collective interests, we let %M be the men’s common preference.

Given the matchings µ and µ′, µ ≻M µ′ if and only if µ(m) %m µ′(m) for all m ∈ M and

µ(m) ≻m µ′(m) for some m ∈ M . If µ ≻M µ′ or µ = µ′, then µ %M µ′. Women’s common

preference, %W , is defined analogously.

When T = 1, a surprisingly rich set of conclusions has been identified.21

1. There exists a conflict of interest among agents on opposing sides of the market. If

men collectively prefer one stable matching over another, the market’s women hold the

opposite opinion, i.e. if µ and µ′ are stable, then µ %M µ′ ⇐⇒ µ′ %W µ (Knuth,

1976; Roth, 1985b).

19As usual, we call a matching µ (strongly) Pareto optimal if there does not exist a matching µ′ such that
µ′(i) %i µ(i) for all i and µ′(i) ≻i µ(i) for some i.

20In one-period many-to-many matching markets, stable matchings may not be Pareto optimal (Roth and
Sotomayor, 1990, Proposition 5.23).

21Roth and Sotomayor (1990) provide an overview of these properties.
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2. Agents on the same side of the market express consensus concerning which stable

outcomes are preferable. If µ is a stable matching, it is M-optimal if for every other

stable matching µ′, µ %M µ′. When T = 1, the matching identified by the man-

proposing deferred acceptance algorithm is M-optimal (Gale and Shapley, 1962).

3. Observations 1 and 2 stem from the stable set’s lattice structure when ordered by %M

(attributed to John Conway by Knuth, 1976). A lattice is a partially-ordered set where

any two elements have a greatest lower bound and a least upper bound (Birkhoff, 1940).

Thus, welfare comparisons among stable matchings are relatively straightforward.22

Once T ≥ 2, the above observations do not apply without further qualifications. The-

orem 3 showed that a dynamically-stable matching may be Pareto-dominated by another

dynamically-stable matching. Therefore, interests are no longer necessarily opposed. More-

over, as illustrated by the following example, a multi-period market may lack an M-optimal

matching. Thus, the set of dynamically-stable matchings (when ordered by %M) cannot be

a lattice.

Example 3. There are three men and women. Their preferences are:

≻m1 : w2w2, w2w1, w2w3, w1w1, w3w3, m1m1, . . .

≻m2 : w3w3, w3w2, w3w1, w2w2, w1w1, m2m2, . . .

≻m3 : w1w1, w1w3, w3w3, w1w2, w2w2, m3m3, . . .

≻w1 : m2m2, m1m1, m2m1, m1m2, w1m2, m3m2, w1w1, m3m3, . . .

≻w2 : m3m3, m2m2, m3m2, m2m3, w2m3, m1m3, w2w2, m1m1, . . .

≻w3 : m1m1, m1m3, m3m1, w3m1, m2m1, m3m3, w3w3, m2m2, . . .

In this market there are three dynamically-stable matchings (Table 3). m1 and m2 like µ3

the most. m3 prefers µ1. Therefore, there does not exist an M-optimal stable matching.

Furthermore, in many matching models, derivatives of the DA algorithm consistently pin-

down an optimal matching (Roth, 1984). In this case, the E-DA procedure succeeds in

identifying a dynamically-stable outcome, but that outcome may not be universally preferred

by all men or women.

22Given the stable matchings µ and µ′, there exists a stable matching µ′′ such that µ′′ %M µ, µ′. Hence,
men gain when the market moves to µ′′ from µ or µ′. By observation 1, women lose from this transition.
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Table 3: All dynamically-stable matchings in Example 3.

Matching m1 m2 m3 w1 w2 w3

µ1 w1w1 w2w2 w3w3 m1m1 m2m2 m3m3

µ2 w3w3 w1w1 w2w2 m2m2 m3m3 m1m1

µ3 w2w3 w3w1 w1w2 m3m2 m1m3 m2m1

To transform the preceding negative conclusions into positive claims we can either restrict

attention to a subset of dynamically-stable matchings or further refine agents’ preferences.

In the analysis to follow, we do both beginning with the former.

3.1 Persistent Matchings and Lattice Structures

Fix an economy and let D be the set of dynamically-stable matchings. We sometimes write

(D,%M) to emphasize this set’s ordering by %M . The matching µ is maximally persistent

if µ(i) is maximally persistent for each i. Let P ⊂ D be the set of maximally-persistent,

dynamically-stable matchings. There is a close connection between P and stable matchings

in a one-period economy.

Lemma 3. Suppose ≻i∈ S̄i for all i. Let µ be a maximally-persistent matching. The

matching µ is dynamically-stable if and only if µt is a stable matching in a one-period market

where agent i’s preference coincides with P≻i
.

The applicability of observations 1–3 on this restricted domain follows as a corollary.

Corollary 1. Suppose ≻i∈ S̄i for all i. (i) (P,%M) is a lattice. (ii) The matching identified

by the man-proposing E-DA procedure is M-optimal among matchings in P. (iii) For all

µ, µ′ ∈ P, µ %M µ′ ⇐⇒ µ′ %W µ.

Proof. By Lemma 3, each maximally-persistent, dynamically-stable matching in a T -period

economy corresponds to a stable matching in a one-period economy and vice versa. The set

of stable matchings in a one-period economy is a lattice when ordered by men’s common

preference (Knuth, 1976). Thus, (P,%M) is a lattice as well. Points (ii) and (iii) follow from

Gale and Shapley (1962) and Knuth (1976), as noted in observations 1–3 above.
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Ai

S̄i

Si

Figure 1: Preference domains. Si – preferences that reflect a spot ranking; S̄i – preferences
that exhibit inertia relative to Si; Ai – sacrifice averse preferences.

3.2 Volatile Matchings and Lattice Structures

To extend the preceding conclusions beyond P it is necessary to restrict agents’ preferences.

In light of Example 3, we first resolve the non-existence of an M-optimal matching. The

restriction we propose is the following:

Definition 10. The preference ≻i is sacrifice averse if for all partnership plans x and j̄,

x ≻i j̄ =⇒ xt %i j̄. Let Ai be the set of preferences for i that are sacrifice averse.

Figure 1 sketches the relationships among Si, S̄i, and Ai. The following lemma rationalizes

the “sacrifice averse” nomenclature though the condition’s implications are broader.23 In a

stable matching, an agent never accepts a partner worse than being single. When ≻i /∈ Ai,

this may not be true (Example 2).

Lemma 4. If µ ∈ D and ≻i∈ S̄i ∩Ai, then µt(i)R≻i
i for all t.

When we restrict agents’ preferences to S̄i ∩Ai, the stable set gains added structure and

an M-optimal stable matching exists.

Theorem 4. Suppose ≻i∈ S̄i ∩ Ai for all i. The matching identified by the man-proposing

E-DA procedure is M-optimal.

We prove Theorem 4 as a corollary to Theorem 5 below, which characterizes the stable

set’s lattice structure.

23In words the condition can read as follows: If a programmer prefers successive, short-term contracts at
Google and then at Facebook in lieu of a stable long-term job at Microsoft, then he must prefer long-term
employment at Google and Facebook over long-term employment at Microsoft. Examples 4 and 5 show that
this condition does not preclude volatile dynamically stable matchings.
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Given Theorem 4, a tempting conjecture is that when ≻i∈ S̄i ∩Ai for all i, (D,%M) is a

lattice. Surprisingly, this is need not be the case.

Example 4. Suppose there are two men and two women. Their preferences are:

≻m1 : w1w1w1, w2w1w1, w1w1w2, w1w2w2, w2w2w1, w2w2w2, . . .

≻m2 : w2w2w2, w2w2w1, w1w2w2, w1w1w2, w2w1w1, w1w1w1, . . .

≻w1 : m2m2m2, m1m2m2, m2m2m1, m2m1m1, m1m1m2, m1m1m1, . . .

≻w2 : m1m1m1, m1m1m2, m2m1m1, m2m2m1, m1m2m2, m2m2m2, . . .

This market has six dynamically-stable matchings (Table 4). (D,%M) is not a lattice since

µ4 and µ5 do not have a least upper bound (Figure 2).

Table 4: All dynamically-stable matchings in Example 4.

Matching m1 m2 w1 w2

µ1 w1w1w1 w2w2w2 m1m1m1 m2m2m2

µ2 w2w1w1 w1w2w2 m2m1m1 m1m2m2

µ3 w1w1w2 w2w2w1 m1m1m2 m2m2m1

µ4 w1w2w2 w2w1w1 m1m2m2 m2m1m1

µ5 w2w2w1 w1w1w2 m2m2m1 m1m1m2

µ6 w2w2w2 w1w1w1 m2m2m2 m1m1m1

Though further restrictions precluding cases like Example 4 can be proposed, we will

instead pursue a different vein.24 Like Blair (1988), who identifies a lattice structure in a

many-to-many matching market, we will arrange D with a weaker partial order. importantly,

the new order has a behavioral foundation and it continues to facilitate meaningful welfare

analysis. We define it by first weakening each agent’s preference over partnership plans.

Definition 11. Agent i decisively prefers plan x to plan y, denoted x ≻∗
i y, if (i) x ≻i y and

(ii) xt %i yt′ for all t and t′. We write x %∗
i y when x = y or x ≻∗

i y.

Though we use %∗
i below to define a common preference for each side of the market, at least

two additional motivations support its introduction. Both are justifications for the usefulness

of incomplete preferences, like %∗
i , in decision analysis.

24Kadam and Kotowski (2014) propose a restriction called “strong inertia.” It implies that D = P.
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1

Figure 2: Hasse diagram of (D,%M) in Example 4.

First, and stepping back from the assumption that ≻i describes i’s true preferences,

we can interpret %∗
i to be i’s best ranking of available plans after some reflection, but he

retains some indecisiveness among similar options (Aumann, 1962). Notably, %∗
i provides a

complete ranking of maximally-persistent plans, which seems plausible. However, the agent’s

arbitration among volatile plans is more clouded. To illustrate, take m ∈ M and suppose

that

w1w1 ≻m w1w2 ≻m w2w1 ≻m w2w2 ≻m w1w3 ≻m w3w3 ≻m w2w3. (1)

Figure 3 illustrates %∗
m as derived from (1). In this case, m is certain that w1w1 dominates

w2w2, which dominates w3w3. However, w1w2, w2w1, and w1w3 are more difficult to compare.

Interestingly, %∗
m does not rank w2w3 “in between” w2w2 and w3w3. Thus, %∗

m accounts for

preference inertia—w2w3 incorporates an assignment to a better partner but w3w3 is more

persistent. In this case, m is unsure which is better. When an agent is only certain of %∗
i , we

may interpret ≻i to be a complete ranking of available outcomes reported by i when pressed

for such a response.25

While the first case places %∗
i ’s origin with the agent, an alternative interpretation casts

%∗
i as an outside observer’s best guess concerning i’s preferences (Ok, 2002). The observer

is unaware of i’s refined opinions given by ≻i but may be able to use %∗
i as a conservative

benchmark for market analysis.

Whether %∗
i is motivated by behavioral concerns or analytic limitations, it extends to

an ordering of matchings in the usual way: µ ≻∗
M µ′ if and only if µ(m) %∗

m µ′(m) for all

25In this case, stable outcomes would be stable with respect to reported preferences.
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Figure 3: The %∗
m order derived from (1).

m ∈ M and µ(m) ≻∗
m µ′(m) for some m ∈ M . The associated weak relation, %∗

M , and the

corresponding common preference for women, %∗
W , are defined as expected.

Below, Theorem 5 shows that (D,%∗
M) is a lattice. To shorten the exposition, we precede

the argument with six preliminary lemmas, which we prove in Appendix A. Lemmas 5–7

focus on agents’ true preferences, ≻i. Of these claims, Lemma 5 is of independent inter-

est. Coupled with Lemma 3, it says that when ≻i∈ S̄i, the final period assignment in a

dynamically-stable matching is a stable assignment in a corresponding one-period economy.

This conclusion is similar to the requirement that agents’ final-period actions in a Nash

equilibrium of a finitely repeated game are also equilibrium actions in the constituent stage

game. Lemmas 8–10 focus on decisive preferences and the %∗
M / %∗

W orderings. Lemma

8 shows that %M and %∗
M coincide on P. Lemma 9 shows that every dynamically-stable

matching is dominated by a dynamically-stable matching in P. Finally, Lemma 10 shows

that %∗
W is the inverse of %∗

M when restricted to D. Thus, %∗
M and %∗

W characterize the

conflict of interest between the market’s two sides.

Lemma 5. Suppose ≻i∈ S̄i for all i. If µ ∈ D, then µT = (µT , . . . , µT ) ∈ D.

Lemma 6. Suppose ≻i∈ S̄i ∩ Ai for all i. If µ ∈ D, then µt = (µt, . . . , µt) ∈ D.

Lemma 7. Suppose ≻i∈ S̄i ∩ Ai for all i. Let µ ∈ D. (i) If µ(i) is volatile, there exists a

period t(i) such that µ(i) ≻i µt(i)(i). (ii) If µ(i) ≻i µt(i), then for all t′ such that µt′(i) 6=

µt(i), µt′(i) ≻i µ(i).

Lemma 8. Let µ and µ′ be maximally-persistent matchings. For all i, µ(i) %i µ
′(i) ⇐⇒

µ(i) %∗
i µ

′(i) and µ %M µ′ ⇐⇒ µ %∗
M µ′. Therefore, (P,%M) = (P,%∗

M).
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Lemma 9. Suppose ≻i∈ S̄i ∩ Ai for all i. If µ ∈ D, ∃ µ′ ∈ P ⊂ D such that µ′ %∗
M µ.

Lemma 10. Suppose ≻i∈ S̄i ∩ Ai for all i. Let µ, µ′ ∈ D. µ ≻∗
M µ′ ⇐⇒ µ′ ≻∗

W µ.

The lattice structure of (D,%∗
M) follows from the preceding results.

Theorem 5. Suppose ≻i∈ S̄i ∩ Ai for all i. (D,%∗
M) is a lattice.

Proof. By Lemma 10, %∗
W is the inverse of %∗

M on D. Thus, to verify that (D,%∗
M) is a lattice

it is sufficient to show that there exists a least upper bound for any two dynamically-stable

matchings.

Let µ, µ′ ∈ D. If µ ≻∗
M µ′, then µ is the least upper bound for µ and µ′. Instead, suppose

µ and µ′ are not ordered by %∗
M . From Lemma 9 we know that µ and µ′ are bounded above

by some µ1, µ2 ∈ D, i.e.

µ1

µ2

}

≻∗
M

{

µ

µ′
.

It is sufficient to show that ∃ µ̃ ∈ D such that

µ1

µ2

}

%∗
M µ̃ ≻∗

M

{

µ

µ′
.

Let P(µk) = {µk
t : t = 1, . . . , T}. By Lemma 6, µk

t ∈ P. Since (P,%∗
M) is a lattice,

P(µ1) ∪ P(µ2) ⊂ P has a greatest lower bound in (P,%∗
M). Let λ ∈ P be this greatest lower

bound.

Next, we argue that for each m, µk %∗
m λ. There are two properties to check:

1. For each t and t′, µk
t (m) %m λt′(m).

µk
t ∈ P(µk). Hence, µk

t %∗
M λ. This implies µk

t (m) %∗
m λ(m) = λt′(m) for all t′ as

λ ∈ P.

2. µk(m) %m λ(m).

Assume the contrary. Then λ(m) ≻m µk(m). From part (1) above we know that for

all t, µk
t (m) %m µ̃(m) ≻m µk(m). There are two possibilities. If µk(m) ∈ P, then

µk(m) = µk
t (m) and we have a contradiction. If instead µk /∈ P, then by Lemma 7

µk(m) ≻m µk
t (m) for some t. This too is a contradiction. Hence, our assumption to

the contrary was incorrect.
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To complete the proof, we verify that λ(m) %∗
m µ(m) for all m. (The case of µ′ follows

identically.) As a preliminary point we note that since µk %∗
M µ, for all m, t, t′, and k,

µk
t (m) %m µt′(m). Suppose that for some m, λ(m) 6%∗

m µ(m). There are two possibilities:

1. For some t, µt(m) ≻m λ(m).

Given the observation made immediately above, µt ∈ P is a lower bound for P(µ1) ∪

P(µ2). But λ is the greatest such lower bound. Therefore, this case cannot be true.

2. µ(m) ≻m λ(m).

If µ(m) ∈ P, then case (1) above applies. If µ(m) /∈ P, then by Lemma 7 µt(m) ≻m

λ(m) for some t. But again, this implies case (1) applies.

As neither case (1) nor case (2) applies, we conclude that in fact λ(m) %∗
m µ(m) ∀m.

A corollary to Theorem 5 is that an M-optimal matching exists (Theorem 4). If µ ∈ D,

then there exists µ∗ ∈ P such that µ∗ %∗
M µ =⇒ µ∗(m) %∗

m µ(m) ∀m =⇒ µ∗(m) %m

µ(m) ∀m =⇒ µ∗(m) %M µ(m). Thus, the %M -maximal matching in P, which is identified

by the E-DA procedure, dominates all matchings in D and is M-optimal.

Example 5. Let T = 2. There are four men and women with the following preferences:

≻m1 : w1w1, w4w4, w1w4, w4w1, w2w1, w2w4, w1w2, w2w2, w3w3, . . .

≻m2 : w2w2, w3w3, w2w3, w3w2, w1w2, w1w3, w2w1, w1w1, w4w4, . . .

≻m3 : w3w3, w2w2, w3w2, w2w3, w4w3, w4w2, w3w4, w4w4, w1w1, . . .

≻m4 : w4w4, w1w1, w4w1, w1w4, w3w4, w3w1, w4w3, w3w3, w2w2, . . .

≻w1 : m2m2, m3m3, m2m3, m3m2, m2m1, m3m1, m1m2, m1m1, m4m4, . . .

≻w2 : m1m1, m4m4, m1m4, m4m1, m1m2, m4m2, m2m1, m2m2, m3m3, . . .

≻w3 : m4m4, m1m1, m4m1, m1m4, m4m3, m1m3, m3m4, m3m3, m2m2, . . .

≻w4 : m3m3, m2m2, m3m2, m2m3, m3m4, m2m4, m4m3, m4m4, m1m1, . . .

This market has 16 dynamically-stable matchings (Table 5). Figure 4 summarizes these

matchings when ordered by %M and by %W . %W is not the inverse of %M since a conflict of

interest is not maintained throughout the set of dynamically-stable outcomes. For instance,

µ6 strictly Pareto dominates µ11. (This proves Theorem 3.) When ordered by %∗
M or %∗

W ,

the set of dynamically-stable matchings is a lattice and %∗
W is the inverse of %∗

M (Figure 5).
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Table 5: All dynamically-stable matchings in Example 5.

Matching m1 m2 m3 m4 w1 w2 w3 w4

µ1 w1w1 w2w2 w3w3 w4w4 m1m1 m2m2 m3m3 m4m4

µ2 w1w1 w2w2 w4w3 w3w4 m1m1 m2m2 m4m3 m3m4

µ3 w1w1 w2w2 w3w4 w4w3 m1m1 m2m2 m3m4 m4m3

µ4 w1w1 w2w2 w4w4 w3w3 m1m1 m2m2 m4m4 m3m3

µ5 w2w1 w1w2 w3w3 w4w4 m2m1 m1m2 m3m3 m4m4

µ6 w2w1 w1w2 w4w3 w3w4 m2m1 m1m2 m4m3 m3m4

µ7 w2w1 w1w2 w3w4 w4w3 m2m1 m1m2 m3m4 m4m3

µ8 w2w1 w1w2 w4w4 w3w3 m2m1 m1m2 m4m4 m3m3

µ9 w1w2 w2w1 w3w3 w4w4 m1m2 m2m1 m3m3 m4m4

µ10 w1w2 w2w1 w4w3 w3w4 m1m2 m2m1 m4m3 m3m4

µ11 w1w2 w2w1 w3w4 w4w3 m1m2 m2m1 m3m4 m4m3

µ12 w1w2 w2w1 w4w4 w3w3 m1m2 m2m1 m4m4 m3m3

µ13 w2w2 w1w1 w3w3 w4w4 m2m2 m1m1 m3m3 m4m4

µ14 w2w2 w1w1 w4w3 w3w4 m2m2 m1m1 m4m3 m3m4

µ15 w2w2 w1w1 w3w4 w4w3 m2m2 m1m1 m3m4 m4m3

µ16 w2w2 w1w1 w4w4 w3w3 m2m2 m1m1 m4m4 m3m3
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Figure 4: The set of dynamically-stable matchings in Example 5 ordered by %M (solid) and
%W (dashed).
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Figure 5: The set of dynamically-stable matchings in Example 5 ordered by %∗
M (solid) and

%∗
W (dashed).

4 Temporal Robustness

We have thus far taken the market’s time horizon, the parameter T , as given. A natural

question, however, concerns the sensitivity of the set of dynamically stable matchings to

changes in T . While some applications of matching models have an “obvious” time horizon

and a well-specified set of rematching opportunities, many do not. Only a best assessment

guides analysis. Thus, it is important to know whether a particular dynamically-stable

matching has an easily-identifiable counterpart as the time horizon is slightly perturbed or

the frequency of revision opportunities is adjusted.26

4.1 Abridgment

Comparing markets with different time horizons involves mapping stable matchings from

one case to the other. Thus, the set of agents must be the same and agents’ preferences

need to be coherently related as the time horizon changes. In this regard, abridgments

are simple because matchings can be truncated and preferences can be projected onto a

restricted domain. Consider, for example, a T -period market where x = x1 · · ·xT is a typical

26By rescaling time, both cases are the same type of problem.
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partnership plan. Agent i’s preference conditional on x≤t, denoted ≻
x≤t

i , is a preference over

plans of length T − t such that

(y1, . . . , yT−t) ≻
x≤t

i (z1, . . . , zT−t) ⇐⇒ (x≤t, y1, . . . , yT−t) ≻i (x≤t, z1, . . . , zT−t).

By conditioning preferences on the market’s elapsed history, we can relate the final periods

of a stable outcome given a longer time horizon to a stable matching in a shorter market.

Theorem 6. Let µ∗ be a dynamically-stable matching in a T -period economy where each

agent’s preference is ≻i. Then µ∗
>t is a dynamically-stable matching in a T−t-period economy

where each agent’s preference is ≻
µ∗
≤t

(i)

i .

Proof. See Appendix A.

A natural follow-up question asks whether stable matchings can be truncated conditioning

on the future, rather than the past? As above, agent i’s preference anticipating x>t, denoted

≻x>t

i , is a preference over plans of length t such that

(y1, . . . , yt) ≻
x>t

i (z1, . . . , zt) ⇐⇒ (y1, . . . , yt, x>t) ≻i (z1, . . . , zt, x>t).

In this case, Theorem 6’s analogue does not hold. The t-period matching µ∗
≤t need not be

dynamically stable when preferences are ≻
µ∗
>t(i)

i . As a counterexample, m1 can block µ3
≤2 in

Example 2.

4.2 Extension

While every T -period economy can be shortened, introducing additional periods requires

greater finesse. An extension involves embedding the set of dynamically-stable matchings

into an economy with a longer time horizon. Thus, extensions serve as a robustness check

confirming that insights from small-T examples continue to apply when T is large.

Again consider a T -period economy that runs for one additional period. To study this

new situation, we first extend agents’ preferences to account for the extra period.

Definition 12. The preference ≻̂i is a one-period extension of ≻i if

x1 · · ·xT ≻i y1 · · · yT ⇐⇒ x1 · · ·xTxT ≻̂i y1 · · · yTyT .
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As a complementary motivation for Definition 12, consider an economy that last two

periods of calendar time. However, institutional or legal constraints do not accommodate

re-matching between periods. Of course, this restricted economy is equivalent to a one period

economy as the two periods are treated as one. To illustrate with a canonical application,

a student may express the preference that School A is better than School B if he must be

enrolled in one school for four years. Suppose, however, that the student is allowed to change

schools after two years. Given his opinion in the restricted market, it is reasonable to assume

the student will rank a plan where he spends the first two years and the last two years at

School A ahead of a plan where he spends all years at School B.

Definition 12 imposes relatively minor restrictions on admissible preference extensions,

some of which do not preserve a preference’s important analytical properties. Thankfully,

as noted in Lemma 11, some extensions do. In Theorem 7 below we use such preferences to

embed dynamically stable matchings from a T -period market into a market with a longer

time horizon.

Lemma 11. Let Si and Ŝi be the sets of preferences that reflect a spot ranking in a T -period

and a T̂ = T + 1 -period market, respectively.

1. If ≻i∈ Si, then there exists a one-period extension of ≻i such that ≻̂i ∈ Ŝi.

2. If ≻i∈ S̄i, then there exists a one-period extension of ≻i such that ≻̂i ∈
¯̂
Si.

Proof. See Appendix A. A lexicographic construction proves (1). A more elaborate con-

struction is required to verify (2) since the dual goals of maintaining a link to a spot ranking

while accommodating inertia need to be addressed.

Theorem 7. Let µ∗ = (µ∗
1, . . . , µ

∗
T ) be a dynamically-stable matching in a T -period market

where ≻i∈ S̄i for all i. Consider a T̂ = T + 1 -period market with the same set of agents

and where each agent’s preference ≻̂i ∈
¯̂
Si is a one-period extension of ≻i. The matching

µ̂∗ = (µ∗
1, . . . , µ

∗
T , µ

∗
T ) is dynamically stable in the T̂ -period market.

Proof. See Appendix A.

Theorem 7 embeds all dynamically-stable matchings from a T -period market into the set

of stable matchings from a T + 1-period market. The converse association is generally not

possible. Stable outcomes in longer markets may not have an obvious precursor at a shorter

time horizon. To illustrate we adapt an example proposed by Kadam and Kotowski (2014).
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Example 6. Let M = {m1, m2} and W = {w1, w2}. Consider a one-period market where

agents’ preferences are

≻m1 : w1, m1, w2

≻m2 : w2, m2, w1

≻w1 : m2, m1, w1

≻w2 : m1, m2, w2

This market has one stable matching where µ∗(m1) = w1 and µ∗(m2) = w2.

Consider a one-period extension where ≻̂i ∈
¯̂
Si for all i and

≻̂m1 : w1w1, w1m1, w1w2, m1w1, w2w1, m1m1, w2w2, . . .

≻̂m2 : w2w2, w2m2, w2w1, m2w2, w1w2, m2m2, w1w1, . . .

≻̂w1 : m2m2, m2m1, m1m2, m1m1, w1w1, . . .

≻̂w2 : m1m1, m1m2, m2m1, m2m2, w2w2, . . .

There are two dynamically-stable matchings in this two-period market (Table 6). The match-

ing µ̂1 extends µ∗ in the sense of Theorem 7. µ̂2 is not the extension of any stable matching

from the one-period market.

Table 6: All dynamically-stable matchings in Example 6.

Matching m1 m2 w1 w2

µ̂1 w1w1 w2w2 m1m1 m2m2

µ̂2 w2w1 w1w2 m2m1 m1m2

4.3 Discussion & Applications

Beyond settling questions of robustness, temporal manipulations also have normative appli-

cations worthy of emphasis. To illustrate, consider the problem faced by a school district

wishing to match students to schools. Recently, many districts have adopted centralized

matching procedures to navigate the conflict between schools’ physical capacity constraints

and students’ preferences (Abdulkadiroğlu and Sönmez, 2003). Such problems have a multi-

period nature because each student is assigned to a particular school for many years. Though

we often emphasize mechanisms that assign students to a school for a focal duration, such

as all four years of high school, it is possible to build-in planned revision opportunities at
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finer time scales. For instance, a student may like a particular school only because it of-

fers a specialized upper-year curriculum and may prefer or be willing to enroll elsewhere in

early years. Allowing him to do so in a pre-planned manner may ease a capacity constraint

and may better align with his preferences. Under the assumptions of Theorem 7, the in-

troduction of additional re-matching opportunities need not beget instability. The original

assignment has a natural analogue under the new regime. This conclusion runs counter to

the mechanical effect that more blocking opportunities hearten instability.

Welfare improvements stemming from the fine-tuning of rematching frequencies are pos-

sible too. For instance, in Example 6 the introduction of a second period allows for a novel

stable matching, µ̂2, that the market’s women prefer to the original outcome’s extension,

µ̂1. Though µ̂2 involves a welfare loss for the men relative to µ̂1, this tradeoff may be ac-

ceptable in applications. In many school-assignment problems the schools’ “preferences” are

administratively-defined student priorities, which do not have the usual welfare interpre-

tation. Though hypothetical, the preceding discussion emphasizes that the allowed or the

anticipated revision frequency and the duration of proposed assignments are manipulable

parameters in many market-design applications. Similar principles apply to job-assignment

problems or to other matchings accommodating a rotation among distinct positions.

5 Concluding Remarks

Dynamics are an integral feature of many bilateral markets. Though our model is stylized,

it accommodates many properties of real-world interactions that unfold over a nontrivial

time horizon. While we have maintained Gale and Shapley’s (1962) original terminology

by speaking of a matching between men and women, the theory developed above captures

key features of many labor markets and it can be extended and applied to tackle important

allocation problems, such as student-school assignment. We hope the preceding analysis

provides a stepping stone toward these applications.

Our analysis points to at least two directions for further research. First, there is consider-

able scope to refine and extend our analysis’ normative implications. The ability to fine-tune

relationship length and re-matching frequency may be useful tools in market-design applica-

tions. Second, we have focused on “small markets,” in the economic sense of the term. An

analysis of large markets with an eye toward dynamics is necessary to better link our conclu-

sions with those obtained in parallel matching literatures, such as those emphasizing agents’
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search behavior.27 In the latter, it is known that equilibria may not be Pareto optimal due to

coordination failures or externalities. We believe that the results presented above, including

the qualifications surrounding the lattice of stable outcomes, hint at these implications but

more research is required.

27In a recent working paper, Kennes et al. (2014b) examine a “large” dynamic matching market focusing
on agents’ strategic incentives.
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A Proofs

Proof of Lemma 1. (⇒) Suppose x ≻′
i y. Since ≻i∈ Υ(≻′

i) and xD y, Definition 9 implies

that x ≻i y. (⇐) Suppose x ≻i y. Therefore, x 6= y. If y ≻′
i x, then y D x and ≻i∈ Υ(≻′

i)

imply that y ≻i x—a contradiction. Therefore, x ≻′
i y.

Lemmas A.1 and A.2 are preliminary results used in some of the arguments to follow.

Lemma A.1. Suppose ≻i∈ S̄i and let x be a volatile partnership plan. xt ≻i x for some t.

Proof of Lemma A.1. Suppose the contrary. Since ≻i∈ S̄i, ≻i∈ Υ(≻′
i) for some ≻′

i∈ Si.

Because xt ⊲ x, x ≻i xt =⇒ x ≻′
i xt for all t. Let xt∗ be such that xt∗R≻′

i
xt ∀t. x ≻i xt∗

implies that xtP≻i
xt∗ for some t 6= t∗, which is a contradiction.

Lemma A.2. Suppose ≻i∈ S̄i. Suppose agent i can period-t block the matching µ for some

t ≥ 2. (i) If µ(i) is maximally persistent, then i can period-1 block µ. (ii) If µ(i) is volatile,

then i can also period-t′ block µ where µt′−1(i) 6= µt′(i).

Proof of Lemma A.2. (i) Suppose µ(i) = j̄ for some j 6= i. Suppose i can period-tblock

µ but cannot period-1 block µ. Then (j̄<t, ī≥t) ≻i j̄ ≻i ī. Since ī D (j̄<t, ī≥t), this implies

(j̄<t, ī≥t) ≻′
i ī for some ≻′

i∈ Si such that ≻i∈ Υ(≻′
i). But this implies jP≻i

i =⇒ j̄ ≻′
i

(j̄<t, ī≥t). As j̄ D (j̄<t, ī≥t), j̄ ≻i (j̄<t, ī≥t), which is a contradiction.

(ii) Suppose µt−1(i) = µt(i). (Otherwise t = t′ satisfies the lemma’s claim.) Without loss

of generality, we can write µ(i) as

µ(i) = (µ<s(i), j̄[s,t), j
↑

t

, j̄(t,s′], µ>s′(i)).

where µs−1(i) 6= j and µs′+1(i) 6= j. By assumption s < t. If we let

µ̃(i) = (µ<s(i), j̄[s,t), i
↑

t

, ī(t,s′], ī>s′)

then by assumption µ̃(i) ≻i µ(i). There are three cases.

1. If j = i, then t′ = s.

2. If jP≻i
i, then (µ<s(i), j̄[s,t), j, j̄(t,s′], ī>s′) ≻′

i µ̃(i). By inspection, µ̃(i) ‖ µ(i). Hence,

(µ<s(i), j̄[s,t), j, j̄(t,s′], ī>s′) ≻i µ̃(i), which implies (µ<s(i), j̄[s,t), j, j̄(t,s′], ī>s′) ≻i µ̃(i) ≻i

µ(i). Thus, t′ = s′ + 1.
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3. If iP≻i
j, then (µ<s(i), ī[s,t), i, ī(t,s′], ī>s′) ≻

′
i µ̃(i). Since (µ<s(i), ī[s,t), i, ī(t,s′], ī>s′)D µ̃(i),

(µ<s(i), ī[s,t), i, ī(t,s′], ī>s′) ≻i µ̃(i) ≻i µ(i). Thus, t′ = s.

Proof of Lemma 2. By assumption, µ̂(i) = (µ<t(i), µ
{m,w}
≥t (i)) ≻i µ(i) for i ∈ {m,w}. As µ

cannot be blocked by m or w alone, there exists t′ ≥ t such that µ̂t′(m) = w and µ̂t′(w) = m.

Let t′ be the smallest such index. Given t′ define µ̃(m) ≡ (µ<t(m), µ̂[t,t′)(m), w̄≥t′). By

construction, µ̃(m)D µ̂(m).

Since ≻i∈ Υ(≻′
i) for some ≻′

i∈ Si, (µ<t(m), m̄≥t) D µ̂(m) and µ̂(m) ≻m µ(m) ≻m

(µ<t(m), m̄≥t) imply that µ̂(m) ≻′
m (µ<t(m), m̄≥t). Hence, wP≻m

m. Thus, µ̃(m) %′
m µ̂(m)

and, therefore, µ̃(m) %m µ̂(m). Likewise, we conclude that µ̃(w) %w µ̂(w).

If t′ = t, then the proof is complete. Suppose t′ > t. In this case (µ<t(m), w̄≥t) ≻
′
m µ̃(m).

There are two cases:

1. If (µ<t(m), w̄≥t)D µ̃(m), then (µ<t(m), w̄≥t) ≻m µ̃(m).

2. If (µ<t(m), w̄≥t) 4 µ̃(m), then µ̃(m) 4 (µ<t(m), w̄≥t).
28 Hence, (µ<t(m), w̄≥t) ≻m

µ̃(m).

In both cases we see that (µ<t(m), w̄≥t) ≻m µ̃(m) %m µ̂(m) ≻m µ(m). An analogous argu-

ment applies to w.

Proof of Theorem 2. Let µ be a dynamically stable matching. Without loss of generality

suppose m1 ∈ M is single in period 1 and matched to w1 ∈ W in period 2. (The argument

when m1 is matched to w1 in period 1 and single in period 2 is identical and we omit it for

brevity.)

As µ is dynamically stable, µ(m1) = m1w1 ≻m1 m1m1. Since ≻m1∈ S̄m1 ,

w1w1 ≻m1 µ(m1) = m1w1 ≻m1 m1m1.

Furthermore, µ(w1) ≻w1 m1m1 as otherwise m1 and w1 could block µ. As µ(w1) ≻w1 w1w1

and ≻ w1 ∈ S̄w1, there exists m2 ∈ M , such that

m2m2 ≻w1 µ(w1) = m2m1 ≻w1 m1m1.

28This case may occur if µt−1(m) = m.
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As above, µ(m2) ≻m2 w1w1 as otherwise m2 and w1 could block µ. As µ(m2) ≻m2 m2m2

and ≻m2∈ S̄m2 , there exists w2 ∈ W such that

w2w2 ≻m2 µ(m2) = w1w2 ≻m2 w1w1.

Continuing by induction, suppose that for k ≥ 2 there exists distinct men m2, . . . , mk

and distinct women w2, . . . , wk such that for each k′ ≤ k

mk′mk′ ≻wk′−1
µ(wk′−1) = mk′mk′−1 ≻wk′−1

mk′−1mk′−1. (A.1)

and

wk′wk′ ≻mk′
µ(mk′) = wk′−1wk′ ≻mk′

wk′−1wk′−1. (A.2)

We will show that we can find a new mk+1 and a new wk+1 satisfying (A.1) and (A.2).

Given (A.2) it follows that µ(wk) ≻wk
mkmk and µ2(wk) = mk. Thus, there exists

mk+1 ∈ M such that

mk+1mk+1 ≻wk
µ(wk) = mk+1mk ≻wk

mkmk.

As mk+1 and wk cannot block µ, µ(mk+1) ≻mk+1
wkwk. Clearly mk+1 6= m1, . . . , mk. Other-

wise µ(mk+1) = wki = µ(mk′) = wk′−1wk′, which implies wk′−1 = wk. But this contradicts

the assumption that w1, . . . , wk are distinct.

It follow, therefore, that there exists wk+1 ∈ W such that

wk+1wk+1 ≻mk+1
µ(mk+1) = wkwk+1 ≻mk+1

wkwk.

Clearly, wk+1 6= wk. If instead wk+1 = wk′ for k′ < k, then µ(wk+1) = µ(wk′) = mk′+1mk′

implying that mk+1 = mk′ , which contradicts the preceding analysis. Therefore wk+1 is

distinct from w1, . . . , wk.

Thus, continuing in this manner, we can construct a sequence of distinct men (m1, . . .),

and an sequence of distinct women (w1, . . .), satisfying (A.1) and (A.2). However, this is

impossible since there is a finite number of men and women in the market.

Proof of Lemma 3. By definition, iP≻i
µt(i) ⇐⇒ ī ≻i µ(i). Thus, µ can be blocked by

agent i if and only if µt can be blocked by i. If µ can be blocked by m and w, these agents

can block it in period 1 (Lemma 2). Thus, m and w can block µ if and only if they can block
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µt. Thus, µ is stable if and only if µt is stable.

Proof of Lemma 4. As µ ∈ D, µ(i) %i ī. ≻i∈ A ∩ S̄i implies µt(i) %i ī for every t. Thus,

µt(i)R≻i
i.

Proof of Lemma 5. By Lemma 3 it is sufficient to verify that µT ∈ D. Noting Lemmas

A.2 and 2 we need only check a few cases. Fix i and let t be the smallest index such that

µt(i) = · · · = µT (i). We may further assume that i 6= µt(i) as otherwise the conclusion is

trivial. Let µ̂(i) = (µ<t, ī≥t). By construction, µ̂(i) D µ(i) and µ(i) %i µ̂(i). As ≻i∈ S̄i,

∃ ≻′
i∈ Si such that ≻i∈ Υ(≻′

i). Hence, µ(i) %′
i µ̂(i). As µ(i) and µ̂(i) may differ only in

periods t, t+ 1, . . . , T , and µt(i) = · · · = µT (i), µT (i)R≻′
i
i, which implies µT (i)R≻i

i. Thus, i

cannot block µT .

Choose any pair m and w. Assume that µT (m) 6= w (otherwise, the argument is trivial).

As µ ∈ D, m and w cannot block it. Thus, without loss of generality, µ(m) ≻m (µ<t(m), w̄≥t)

where t is the smallest index such that µt(m) = · · · = µT (m). As above, ≻m∈ S̄m implies

that µT (m)P≻m
w. Hence, m is unwilling to block µT with w. Therefore, µT ∈ D.

Proof of Lemma 6. By Lemma 4, µt(i)R≻i
i for all i. Thus, µt(i) %i ī and i cannot block

µ′ alone. Instead, suppose that m and w can block µt. By Lemma 2, m and w can period-1

block µt. Thus, wP≻m
µt(m) and mP≻w

µt(w). As µ ∈ D, m and w cannot period-1 block µ.

Thus, µ(m) ≻m w̄ or µ(w) ≻w m̄. Without loss of generality, suppose µ(m) ≻m w̄. Since

≻m∈ Am, µt(m)R≻m
w. But then µt(m)R≻m

wP≻m
µt(m), which is a contradiction. Thus,

µt ∈ D.

Proof of Lemma 7. To prove part (i) we argue by contradiction. Without loss of generality,

suppose µ(m1) is volatile and µt(m1) ≻m1 µ(m1) for all t. As µ ∈ D, µ(m1) ≻m1 m1. Thus,

µt(m1) = w1 ∈ W for some t and w1 ≻m1 µ(m1). µ(w1) ≻w1 m1; else, w1 and m1 can block

µ.

As m1 is not matched to w1 for all t, µ(w1) is volatile. By Lemma A.1, ∃ m2 ∈ M such

that

m2 ≻w1 µ(w1) ≻w1 m1

and µt(w1)(w1) = m2 for some period t(w1). Clearly, m1 6= m2.

As µ ∈ D, µ(m2) ≻m2 w1; else, m2 and w1 could block µ. Since m2 is not matched to w1
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for all t, µ(m2) is volatile. By Lemma A.1, ∃ w2 ∈ W such that

w2 ≻m2 µ(m2) ≻m2 w1

and µt(m2)(m2) = w2 for some period t(m2). Clearly w2 6= w1.

We continue by induction. Suppose that for all 2 ≤ k′ ≤ k:

1. mk′ ≻wk′−1
µ(wk′−1) ≻wk′−1

mk′−1;

2. wk′ ≻mk′
µ(mk′) ≻mk′

wk′−1;

3. µt(wk′−1)
(wk′−1) = mk′;

4. µt(mk′ )
(mk′) = wk′; and,

5. m1, . . . , mk and w1, . . . , wk are all distinct.

We will show that we can find mk+1 and wk+1 distinct from those already identified satisfying

1–5.

First, consider wk. As µ ∈ D, µ(wk) ≻wk
mk; else, wk and mk can block µ. By Lemma

A.1, ∃ mk+1 ∈ M such that

mk+1 ≻wk
µ(wk) ≻wk

mk

and µt(wk)(wk) = mk+1 for some period t(wk).

Clearly mk+1 6= mk. If mk+1 = m1, then wk and m1 can block µ, which is a contradiction.

Finally, if mk+1 = mk′ for 1 < k′ < k, we know that

wk′ ≻mk′
µ(mk′) ≻mk′

wk′−1

and µt(wk′−1)
(wk′−1) = mk′ . As µ ∈ D, µ(mk′) ≻mk′

wk. Since ≻mk′
∈ Amk′

and wk′−1 and wk

are distinct members encountered during the plan µ(mk′),

µ(mk′) ≻mk′
wk′−1 =⇒ wk ≻mk′

wk′−1

and

µ(mk′) ≻mk′
wk =⇒ wk′−1 ≻mk′

wk.

Clearly, this is a contradiction. Therefore mk+1 6= mk′. Hence, mk+1 is distinct from each

m1, . . . , mk.
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Now consider mk+1. As µ ∈ D, µ(mk+1) ≻mk+1
wk; else mk+1 and wk can block µ. By

Lemma A.1, ∃ wk+1 ∈ W such that

wk+1 ≻mk+1
µ(mk+1) ≻mk+1

wk.

and wk+1 = µt(mk+1)(mk+1) for some period t(mk+1).

Clearly, wk+1 6= wk. Suppose wk+1 = wk′ for some k′ < k. We know that

mk′+1 ≻wk′
µ(wk′) ≻wk′

mk′ ,

µt(mk′ )
(wk′) = mk′ and µt(mk+1)(wk′) = mk+1. As µ ∈ D, µ(wk′) ≻wk′

mk+1; else, mk+1 and

wk′ = wk+1 can block µ. Since ≻wk′
∈ Awk′

and mk′ and mk+1 are distinct

µ(wk′) ≻wk′
mk′ =⇒ mk+1 ≻wk′

mk′

and

µ(wk′) ≻wk′
mk+1 =⇒ mk′ ≻wk′

mk+1

Clearly, this is a contradiction. Therefore, wk+1 6= wk′ for all k′ ≤ k.

Proceeding by induction we can construct an infinite sequence of men m2, m3, . . . and

women w2, w3, . . . satisfying conditions 1–5 above. However, this is not possible as there

is a finite number of agents. Thus, if µ(m1) is volatile, there exists a period t such that

µ(m1) ≻m1 µt(m1).

To verify point (ii) it is sufficient to observe that when µt(i) 6= µt′(i), µ(i) ≻i µt(i) =⇒

µt′(i) ≻i µt(i) and µ(i) ≻i µt′(i) =⇒ µt(i) ≻i µt′(i), which is a contradiction as ≻i∈ Ai.

Proof of Lemma 8. Consider agent i. If µ(i) = µ′(i), the lemma’s first part is clearly

true. Suppose µ(i) ≻i µ
′(i). As both matchings are maximally persistent, µ(i) = µt(i) and

µ′(i) = µ′
t′(i) for all t and t′. Thus, µt(i) ≻i µ

′
t′(i). Therefore, µ(i) ≻∗

i µ′(i). Conversely, if

µ(i) ≻∗
i µ

′(i), then µ(i) ≻i µ
′(i) follows immediately from the definition of %∗

i .

Now consider the collective preference. If µ = µ′, the lemma’s conclusion is again trivial.

If µ ≻M µ′, then µ(m) %m µ′(m) for all m and µ(m′) ≻m µ′(m′) for some m′. As µ and µ′

are maximally-persistent matchings, µ(m) %∗
m µ′(m) for all m and µ(m′) ≻∗

m µ′(m′) for some

m′. Hence, µ ≻∗
M µ′. Conversely, µ %∗

M µ′ =⇒ µ(m) %∗
m µ′(m) ∀m ∈ M =⇒ µ(m) %m

µ′(m) ∀m ∈ M =⇒ µ %M µ′.

39



Proof of Lemma 9. Let µ′ be the %M -maximal matching in P. Since (P,%M ) is a finite

lattice, this matching exits and is unique. Let µ ∈ D and suppose µ′ 6%∗
M µ. Hence, ∃m ∈ M

such that µ′(m) 6%∗
m µ(m). This implies µ(m) is volatile. Thus, there exists a period t′

such that µ(m) ≻m µt′(m) and for all t 6= t′, µt(m) ≻m µ(m). However, µt ∈ P for all t.

Thus, µ′(m) %m µt(m) ≻m µ(m) ≻m µt′(m). But this implies µ′(m) ≻∗
m µ(m), which is a

contradiction.

Proof of Lemma 10. Suppose µ ≻∗
M µ′. Thus, there exists at least one man and at least

one woman for whom µ(i) 6= µ′(i). If µ′ 6≻∗
W µ, then µ′(w) 6%∗

w µ(w) for some w ∈ W . Thus,

µ′(w) 6= µ(w) and µ′(w) 6≻∗
w µ(w). There are two cases.

1. There exist t and t′ such that µt(w) ≻w µ′
t′(w). Hence, there exists m ∈ M such that

m = µt(w) and m̄ = µt(w) ≻w µ′
t′(w). Since µ ≻∗

M µ′, it follows that for this agent m,

µ(m) %∗
m µ′(m) and for t and t′, w̄ = µt(m) %m µ′

t′(m). As µt(w) = m 6= µt′(w), it

must be the case that µt(m) ≻m µ′
t′(m).

By Lemma 6, µ′
t′ ∈ D. However, µ′

t′(w) = µ′
t′(w) and µ′

t′(m) = µ′
t′(m). Thus, m and w

can period-1 block µ′
t′, which is a contradiction.

2. Suppose µ(w) ≻w µ′(w). By Lemma A.1, there exist t and t′ such that µt(w) %w µ(w)

and µ′(w) %w µ′
t′(w). Thus, the same argument as case (1) applies.

As neither case applies, we arrive at a contradiction. Hence, µ′ ≻∗
W µ.

Proof of Theorem 6. Suppose i can block µ∗
>t, i.e.

(µ∗
(t,t′)(i), ī≥t′) ≻

µ∗
≤t

(i)

i µ∗
>t(i) ⇐⇒ (µ∗

≤t(i), µ
∗
(t,t′)(i), ī≥t′) ≻i (µ

∗
≤t(i), µ

∗
>t(i)).

Thus, i can block µ∗, which is a contradiction.

If {m,w} can block µ∗
>t, then

(µ∗
(t,t′)(i), µ

{m,w}
≥t′ (i)) ≻

µ∗
≤t

(i)

i µ∗
>t(i) ⇐⇒ (µ∗

≤t(i), µ
∗
(t,t′)(i), µ

{m,w}
≥t′ (i)) ≻i (µ

∗
≤t(i), µ

∗
>t(i))

for i ∈ {m,w}. Thus, {m,w} can block µ∗, which is a contradiction. Hence, µ∗
>t is dynami-

cally stable.

Proof of Lemma 11.
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1. We propose a lexicographic extension of ≻i∈ Si. For all x = x1 · · ·xT and y = y1 · · · yT ,

define ≻̂i as follows:

x1 · · ·xT j ≻̂i y1 · · · yTk ⇐⇒







x ≻i y

or

x = y & jP≻i
k

(A.3)

It is simple to verify that ≻̂i reflects P≻i
= P≻̂i

. Thus, ≻̂i ∈ Ŝi.

2. Given ≻i∈ S̄i, let ≻′
i∈ Si be such that ≻i∈ Υ(≻′

i). Let ≻̂
′
i ∈ Ŝi be the one-period

lexicographic extension, as in (A.3), of ≻′
i. ≻̂

′
i reflects P≻̂

′
i
= P≻′

i
. Define ≻̂i as follows:

(a) If x̂T 6= x̂T+1 or ŷT 6= ŷT+1, then x̂≻̂
′
iŷ ⇐⇒ x̂≻̂iŷ.

(b) If x̂T = x̂T+1 and ŷT = ŷT+1, then x̂≤T ≻i ŷ≤T ⇐⇒ x̂≻̂iŷ.

≻̂i is a one-period extension of ≻i. To confirm that ≻̂i ∈ Υ(≻̂
′
i), we verify two condi-

tions.

(a) Suppose x̂≻̂
′
iŷ and x̂ D ŷ. To work toward a contradiction, assume ŷ≻̂ix̂. Then

ŷT = ŷT+1. Since x̂ D ŷ then x̂T = x̂T+1. Therefore, ŷ≤T ≻i x̂≤T as well. But,

x̂ D ŷ also implies x̂≤T D ŷ≤T and, therefore, ŷ≤T ≻′
i x̂≤T . But then ŷ≻̂

′
ix̂, which

is a contradiction. Therefore, x̂≻̂iŷ.

(b) Suppose x̂ ‖ ŷ. This implies x̂≤T 6= ŷ≤T ; else, the two partnership plans could be

ordered by D.

First, suppose x̂≻̂
′
iŷ. As x̂≤T 6= ŷ≤T , it follows that x̂≤T ≻′

i ŷ≤T . Suppose ŷ≻̂ix̂.

This is possible only if ŷT = ŷT+1 and ŷ≤T ≻i x̂≤T . But if x̂≤T ≻′
i ŷ≤T , then it

must be that ŷ≤T D x̂≤T as ≻i∈ Υ(≻′
i). This implies (ŷ≤T , ŷT+1) D (x̂≤T , x̂T+1),

which contradicts ŷ 4 x̂. Thus, x̂≻̂iŷ.

Conversely, let x̂≻̂iŷ. To derive a contradiction, suppose ŷ≻̂
′
ix̂. Thus, x̂T = x̂T+1

and x̂≤T ≻i ŷ≤T . However, since x̂≤T 6= ŷ≤T , ŷ≤T ≻′
i x̂≤T . Thus, x̂≤T D ŷ≤T . As

x̂T = x̂T+1, then x̂D ŷ—a contradiction. Therefore, x̂≻̂
′
iŷ.

Proof of Theorem 7. Let ≻′
i∈ Si be such that ≻i∈ Υ(≻′

i). Define ≻̂
′
i analogously, i.e.
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≻̂i ∈ Υ(≻̂
′
i). Since µ∗ is dynamically stable, i cannot block it. As ≻̂i extends ≻i,

µ∗(i) %i (µ
∗
<t(i), ī[t,T ]) =⇒ (µ∗

1(i), . . . , µ
∗
T (i), µ

∗
T (i))

︸ ︷︷ ︸

µ̂∗(i)

%̂i (µ
∗
<t(i), ī[t,T ], i)

︸ ︷︷ ︸

(µ̂∗
<t(i),̄i[t,T̂ ])

.

Hence, i cannot block µ̂∗ in period t ≤ T .

Suppose i can block µ̂∗ in period T̂ , i.e. (µ̂∗
≤T (i), i)≻̂iµ̂

∗(i). Thus, µ̂∗
T (i) 6= i and, therefore,

µ̂∗(i)D (µ̂∗
≤T (i), i). This implies (µ̂∗

≤T (i), i)≻̂
′
iµ̂

∗(i) and, therefore, iP≻̂
′
i
µ̂∗
T̂
(i) =⇒ iP≻′

i
µ̂∗
T (i).

Let t′ ≤ T be the smallest value such that µ∗
t′(i) = · · · = µ∗

T (i). Thus,

µ̃(i) ≡ (µ∗
<t′(i), ī≥t′) ≻

′
i (µ

∗
<t′(i), µ

∗
t′(i), . . . , µ

∗
T (i)) = µ∗(i).

But, µ̃(i) D µ∗(i) and thus, µ̃(i) ≻i µ
∗(i). Hence, µ∗ can be period-t′ blocked by i in the

T -period economy. This is a contradiction. Therefore, i cannot block µ̂∗.

Consider the pair m and w. They cannot block µ∗ in period t ≤ T . From the definition

of stability, µ∗(m) %m (µ∗
<t(m), w̄[t,T ]) and µ∗(w) %w (µ∗

<t(w), m̄[t,T ]). Hence,

(µ∗
≤T (m), µ∗

T (m))
︸ ︷︷ ︸

µ̂∗(m)

%̂m(µ
∗
<t(m), w̄[t,T ], w) and (µ∗

≤T (w), m)
︸ ︷︷ ︸

µ̂∗(w)

%̂w(µ
∗
<t(w), m̄[t,T ], m).

Thus, m and w cannot block µ̂∗ in period-t.

Suppose m and w can period-T̂ block µ̂∗:

µ̃(m) ≡ (µ̂∗
≤T (m), w)≻̂mµ̂

∗(m) and µ̃(w) ≡ (µ̂∗
≤T (w), m)≻̂wµ̂

∗(w).

Of course, this implies µ̂∗
T+1(m) = µ∗

T (m) 6= w. By reasoning analogous to the single-agent

case above, µ̂∗(m)D µ̃(m) =⇒ µ̃(m)≻̂
′
mµ̂

∗(m) ⇐⇒ wP≻̂
′
m
µ̂∗
T̂
(m). Similarly, mP≻̂

′
w
µ∗
T (w).

Let t′i be the smallest index such that µ∗
t′i
(i) = · · · = µ∗

T (i) and let t′ = max{t′m, t
′
w}.

Then,

(µ∗
<t′(m), w̄[t′,T ], w)≻̂

′
m(µ

∗
<t′(m), µ∗

[t′,T ](m), w) = µ̃(m).

Given the definition of t′, (µ∗
<t′(m), µ∗

[t′,T ](m), w) ⋫ (µ∗
<t′(m), w̄[t′,T ], w). And so,

(µ∗
<t′(m), w̄[t′,T ], w)≻̂mµ̃(m).

But then (µ∗
<t′(m), w̄[t′,T ], w)≻̂mµ̂

∗(m) and likewise for w, (µ∗
<t′(m), w̄[t′,T ], w)≻̂wµ̂

∗(w). Thus,

m and w can block µ̂∗ in period t′ ≤ T . Above we have already established that this is not
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possible.
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The following appendix is intended for online publication only.

B Ex Ante Stability

To prove that an ex ante stable matching exists, we employ an argument proposed by Kadam

and Kotowski (2014) for the two-period case. The exposition below follows closely their

argument. Introduced modifications account for the T -period setting studied here.

For each m ∈ M and w ∈ W , let Xm(w) = {x1 · · ·xT : xt ∈ {m,w}} \ {m̄} be the set of

all partnership plans for m involving only w. Let Xm = ∪w∈WXm(w).

Definition B.1 (P-DA). The (man-proposing) plan deferred acceptance procedure identifies

a matching µ∗ as follows:

1. For each m, let X0
m = Xm. Initially, no plans in X0

m have been rejected.

2. In round t ≥ 1:

(a) Let X t
m ⊂ X0

m be the subset of plans that have not been rejected in some round

t′ < t. If X t
m = ∅ or m̄ ≻m x for all x ∈ X t

m, then m does not make any proposals.

Otherwise, m proposes to the (only) woman identified in his most preferred plan

x in X t
m. More precisely, let ω(x) be the set of periods in which m and w are to be

paired according to x. m proposes to w an arrangement where they are partners

for all t ∈ ω(x) and unmatched for all t /∈ ω(x).

(b) Let X t
w be the set of plans made available to w. If w̄ ≻w x for all x ∈ X t

w,

w rejects all proposals. Otherwise, w (tentatively) accepts her most preferred

proposed arrangement in X t
w and rejects the others.

3. The above process continues until no rejections occur. If w accepts m’s proposal in

the final round, define µ∗(m) and µ∗(w) accordingly. If i does not make or receive any

proposals in the final round, set µ∗(i) = ī.

Theorem B.1. There exists an ex ante stable matching.

Proof. Let µ∗ be the matching identified by the P-DA procedure. First, according to the

procedure, no agent will be assigned to a plan that is worse than being unmatched. Thus,
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ī 6≻i µ
∗(i). Suppose instead that µ∗ can be period-1 blocked by m and w. Thus, there exists a

matching among {m,w} such that µ{m,w}(m) ≻m µ∗(m) %m m̄ and µ{m,w}(w) ≻w µ∗(w) %w

w̄. As µ{m,w}(m) implicates at most one women, w, it belongs to Xm. Since µ{m,w}(m) is

preferred to µ∗(m), m must have proposed that arrangement in the P-DA procedure and w

must have rejected it. But this implies w must have accepted an alternative plan that she

preferred to µ{m,w}(w). Hence, for some m′, µ∗(w) %w µ{m′,w}(w) ≻w µ{m,w}(w) ≻w µ∗(w),

which is a contradiction.
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