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Abstract

For an arbitrary dataset D = f(p; x)g � (Rm+nf0g)�Rm+ ; �nite or in�nite, it is shown that
the following three conditions are equivalent. (i) D satis�es GARP; (ii) D can be rationalized
by a utility function; (iii) D can be rationalized by a strictly increasing, quasiconcave utility
function. Examples of in�nite datasets satisfying GARP are provided for which every utility
rationalization fails to be lower semicontinuous, upper semicontinuous, or concave. Thus
condition (iii) cannot be substantively improved upon.

1. Introduction.

We revisit the classical problem of recovering, from a single consumer�s demand data, a utility
function rationalizing that data. When such a utility function exists, we say that the dataset is
rationalizable.
While the rationalizability question has been extensively studied, no condition is known to be

both necessary and su¢ cient for an arbitrary dataset, �nite or in�nite, to be rationalizable. We
provide such a condition here.
The requisite condition is the familiar generalized axiom of revealed preference (GARP) �rst

introduced by Afriat (1967). Afriat showed that any �nite dataset is rationalizable if and only if
it satis�es GARP.1 However, for the large literature in which datasets are in�nite (for example,
when summarized by a demand function), no such complete characterization of rationalizability
has been given.2

The absence of such a characterization has, for example, left the following basic question
unanswered. Suppose that a demand function describing a consumer�s behavior is unknown to
an observer. If the demand function is inconsistent with the utility maximization hypothesis, are

�Financial support from the National Science Foundation (SES-1227506 and SES-0617884) is gratefully acknowl-
edged. I thank Sergiu Hart, Andreu Mas-Colell, and Hal Varian for helpful comments.

yFirst version, September, 2013.
1See also Diewert (1973), Varian (1982), and Chiappori and Rochet (1987). The term �GARP�was coined by

Varian (1982).
2For su¢ cient conditions, see, e.g., Houthakker (1950), Uzawa (1971), Richter (1966), Hurwicz and Richter

(1971), Hurwicz and Uzawa (1971), Mas-Colell (1978), Sondermann (1982), Fuchs-Seliger (1983, 1996), and Jackson
(1986). In several of these papers it is assumed, as in Samuelson (1938), that the dataset is the entire graph of a
demand function.



there �nitely many choices that, if observed, would reveal the inconsistency? According to our
main result the answer is, �yes.�In fact, some �nite number of choices must violate GARP.3

In terms of the analysis, one might hope that Afriat�s (1967) techniques extend to in�nite
datasets, but they do not.4 In fact, Afriat�s conclusion that a �nite dataset satisfying GARP is
rationalized by a concave utility function is false for in�nite datasets, which can sometimes be
rationalized only by utility functions that are not concave.5

The approach taken here centers around a new and elementary method for constructing a
utility function to rationalize a given �nite dataset. The construction resembles Afriat�s (1967)
in that it de�nes utility in terms of sums of income di¤erences. Importantly however, we restrict
these income di¤erences to be nonpositive and we do not require any multipliers to act as weights.
Without the need to �nd appropriate multipliers, our direct and explicit construction is consid-
erably simpler than Afriat�s, and it has the additional advantage that it extends from �nite to
in�nite datasets through an appropriate limiting argument.6

The next section introduces notation and preliminary material. Section 3 contains the new
utility construction and presents a simple result on rationalizing �nite datasets satisfying GARP
as well as a result about maintaining GARP when adding points to a dataset. Section 4 contains
the main result and Section 5 contains examples suggesting that the result cannot be substantively
improved upon. Section 6 contains several additional remarks.

2. Preliminaries.

A dataset is any nonempty subset, �nite or in�nite, of (Rm+nf0g) � Rm+ ; with typical element
(p; x): Thus, a dataset is an arbitrary nonempty set of points, where each point (p; x) consists of
a nonzero and nonnegative price vector p and a nonnegative consumption bundle x.
The revealed preference interpretation is that points in D correspond to the choices of a single

consumer. We assume throughout that the consumer always spends her entire income. Hence,
(p; x) 2 D means that, with an income of px and facing prices p; the consumer chose the bundle
x:7

Note that we do not require the dataset to be complete; there may be prices and/or incomes
at which no choice has been observed.

3We do not wish to suggest that our main result has empirical signi�cance beyond what is already contained
in Afriat�s theorem. Empirical datasets are, after all, always �nite. The point of our main result is to settle
the rationalizability question in its most basic form and to unify the �nite and in�nite dataset approaches to the
problem. But see Remark 9 for a practical consequence of one of our auxiliary results.

4But see Remark 7 in Section 6. See also Theorem 1 in Mas-Colell (1978) for an application of Afriat�s theorem
to in�nite datasets generated by continuous demand functions. Continuity of demand, an important special case,
rules out many continuous preference relations (e.g., perfect substitutes and any continuous preference relation that
is not convex) that we do not wish to rule out, a priori, here.

5See Remark 5.3.
6Fostel et. al. (2004) provide two simple proofs of Afriat�s theorem. Both proofs simplify the argument for the

existence of a solution to the �nite system of inequalities that is central to Afriat�s proof. Consequently, neither
proof extends to in�nite datasets.

7Other interpretations are possible. For example, a researcher might wonder whether a particular demand
function (possibly even restricted to a subset of prices) can be generated by utility maximizing behavior. The
�dataset�D would then consist of the graph of the demand function (over the restricted set of prices), even though
no consumer choices are actually observed.
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A dataset, D; satis�es GARP if for every �nite sequence (p1; x1); :::; (pn; xn) of points in D,

p1(x2 � x1) � 0; p2(x3 � x2) � 0; :::; pn�1(xn � xn�1) � 0) pn(x1 � xn) � 0:8 (2.1)

A (utility) function u : Rm+ ! R rationalizes the dataset D if for every (p; x) 2 D and every
y 2 Rm+ ;

p(y � x) � 0) u(y) � u(x)

and if the second inequality is strict whenever the �rst is strict.9

A function u : Rm+ ! R is strictly increasing if x � y implies u(x) � u(y) and x >> y implies
u(x) > u(y).10

It is straightforward to show that if u rationalizes D; then D satis�es GARP. Our objective is
the converse, where, in light of Afriat�s (1967) theorem, the interesting cases are those in which
D is in�nite, though we permit D to be �nite as well as in�nite.

3. A Utility Construction

Fix, throughout the paper, � : Rm+ ! R to be any continuous, strictly increasing, quasiconcave
function taking values in [0; 1].11

For any x 2 Rm+ ; say that an arbitrarily long but �nite sequence (p1; x1); :::; (pn; xn) of points
in (Rm+nf0g)� Rm+ is x-feasible if each of the quantities p1(x� x1); p2(x1 � x2); :::; pn(xn�1 � xn)
is nonpositive.
For any �nite dataset, F; and any x 2 Rm+ de�ne uF (x) as follows:

� If p0(x� x0) � 0 for some (p0; x0) 2 F; then

uF (x) := inf p1(x� x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn); (3.1)

where the in�mum is taken over all x-feasible sequences of points in F; i.e., over all �nite
sequences (p1; x1); :::; (pn; xn) of points in F such that each term p1(x � x1); p2(x1 � x2);
:::; pn(xn�1 � xn) appearing in the sum (3.1) is nonpositive.

� If p0(x� x0) > 0 for every (p0; x0) 2 F; then uF (x) := �(x):

The quantity uF (x) is well-de�ned because the set of x-feasible sequences of points in F is
nonempty if and only if some (p0; x0) 2 F satis�es p0(x � x0) � 0: Indeed, any such (p0; x0) is

8If the �rst n�1 weak inequalities always imply that that the n-th inequality is strict, then the dataset satis�es
SARP.

9Requiring strictly a¤ordable bundles to yield strictly less utility rules out trivial rationalizations such as utility
functions that are everywhere constant, or that are equal to 1 for all chosen bundles and equal to zero for all
other bundles, etc. The literature often imposes instead the slightly more restrictive requirement of locally non-
satiated utility. Given our eventual conclusion that rationalizing utility functions can always be chosen to be strictly
increasing, our less restrictive requirement serves to strengthen our result.
10The notation x � y (x >> y) means that, for every i; the i-th coordinate of x is no smaller than (is greater

than) the i-th coordinate of y.
11For example, �(x) = 1� e�1�x; where 1 � x is the sum of the coordinates of x:
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an x-feasible sequence of length 1, and the �rst term (p1; x1) in any x-feasible sequence satis�es
p1(x� x1) � 0.

Remark 1.
(a) Since there is no bound in (3.1) on the sequence length n; it can happen that uF (x) = �1:

On the other hand, because uF (x) either is the sum of nonpositive terms or is equal to �(x) 2 [0; 1],
uF (x) � �(x) � 1 for every x:
(b) Note that uF is not the pointwise in�mum of a �xed collection of functions, because the

collection of functions over which the in�mum in (3.1) is taken depends upon x:

Our �rst result shows that if F is a �nite dataset satisfying GARP, then uF is a utility function
that rationalizes F , a conclusion that will be particularly useful in the sequel.12

Proposition 3.1. If a �nite dataset, F; satis�es GARP, then uF (x) > �1 for every x 2 Rm+ :
Moreover, uF : Rm+ ! (�1; 1] rationalizes F and is strictly increasing, quasiconcave, and lower
semicontinuous.

Proof. We �rst establish the following.

For any x 2 Rm+ ; whenever p0(x� x0) � 0 for some (p0; x0) 2 F , the in�mum
in (3.1) can be achieved with an x-feasible sequence of distinct points in F:

(3.2)

Indeed, if in any x-feasible sequence some point appears more than once, GARP implies that
the consecutive terms involved in the resulting cycle together contribute a sum of zero to the
right-hand side of (3.1). Hence, these terms can be eliminated without a¤ecting the overall sum
or x-feasibility.
For example, consider an x-feasible sequence (p1; x1); (p2; x2); (p3; x3); (p4; x4); (p2; x2); (p5; x5)

in which the point (p2; x2) appears twice. The resulting sum in (3.1) is,

p1(x� x1) + p2(x1 � x2) + p3(x2 � x3) + p4(x3 � x4) + p2(x4 � x2) + p5(x2 � x5); (3.3)

By x-feasibility, all six terms in the sum are nonpositive. This is true, in particular, for the three
consecutive terms involved in the cycle: p3(x2 � x3) � 0; p4(x3 � x4) � 0; and p2(x4 � x2) � 0:

Hence, by GARP, each one of these three terms is zero, and so the sum in (3.3) is equal to

p1(x� x1) + p2(x1 � x2) + p5(x2 � x5);

where the corresponding subsequence (p1; x1); (p2; x2); (p5; x5); is x-feasible. By applying this
technique �nitely often, any x-feasible sequence can be reduced to an x-feasible subsequence of
distinct points without changing the resulting sum on the right-hand side of (3.1).
An obvious implication of (3.2) is that uF (x) is �nite and nonpositive if p0(x�x0) � 0 for some

(p0; x0) 2 F , and otherwise uF (x) = �(x) 2 [0; 1]. Hence, uF : Rm+ ! (�1; 1].
To see that uF is lower semicontinuous, suppose that xk !k x and that uF (xk) converges

(possibly to �1): We must show that limk uF (x
k) � uF (x): Without loss of generality (i.e., by

12A version of this result was �rst reported as Exercise 2.12 in Jehle and Reny (2011).
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considering a subsequence), either (i) there exists (p0; x0) 2 F such that p0(xk � x0) � 0 for all
k; or (ii) p0(xk � x0) > 0 for every (p0; x0) 2 F and every k: If (i) holds, then, because there are
only �nitely many sequences of distinct points in F; (3.2) implies that, without loss of generality
(i.e., by considering a further subsequence), there is a �xed �nite sequence of distinct points
(p1; x1); :::; (pn; xn) in F that is xk-feasible for every k and such that uF (xk) = p1(x

k � x1) +
p2(x1 � x2) + ::: + pn(xn�1 � xn) for every k: In particular, p1(x � x1) = limk p1(x

k � x1) � 0:

Consequently, this �xed sequence of distinct points is x-feasible and,

uF (x) � p1(x� x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn)
= lim

k
p1(x

k � x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn)

= lim
k
uF (x

k):

On the other hand, if (ii) holds, then uF (xk) = �(xk) for every k and so limk uF (x
k) = �(x) � uF (x)

(see Remark 1(b)). Hence, uF is lower semicontinuous.
To see that uF is strictly increasing, suppose that x � y. There are two cases. Either uF (x) =

�(x); in which case uF (x) = �(x) � �(y) � uF (y); with �(x) > �(y) if x >> y; or uF (x) =
p1(x� x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn) for some x-feasible sequence (p1; x1); :::; (pn; xn); in
which case

uF (x) = p1(x� x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn)
� p1(y � x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn); a strict inequality if x >> y
� uF (y);

where the last inequality follows because x � y implies that (p1; x1); :::; (pn; xn) is also y-feasible.
In either case, uF (x) � uF (y); with the inequality strict if x >> y; and so uF is strictly increasing.
To see that uF is quasiconcave, let z = �x + (1 � �)y: If uF (z) = �(z); then uF (z) = �(z) �

min(�(x); �(y)) � min(uF (x); uF (y)):Otherwise, uF (z) = p1(z�x1)+p2(x1�x2)+:::+pn(xn�1�xn)
for some z-feasible sequence (p1; x1); :::; (pn; xn); where we may suppose without loss of generality
that p1x � p1y and so p1x � p1z: But then,

uF (z) = p1(z � x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn)
� p1(x� x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn)
� uF (x);

where the last inequality follows because p1x � p1z implies that (p1; x1); :::; (pn; xn); being z-
feasible, is also x-feasible. In either case, uF (z) � min(uF (x); uF (y)), and so uF is quasiconcave.
Finally, to see that uF rationalizes F; suppose that (p; x) 2 F and p(y � x) � 0: Since the

singleton sequence (p; x) 2 F satis�es p(x� x) � 0, (3.2) implies that

uF (x) = p1(x� x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn)

for some x-feasible sequence (p1; x1); :::; (pn; xn): But then, because p(y � x) � 0; the sequence
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(p; x); (p1; x1); :::; (pn; xn) is y-feasible and therefore,

uF (y) � p(y � x) + p1(x� x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn)
= p(y � x) + uF (x):

Therefore, uF (y) � uF (x); with the inequality strict if p(y � x) < 0: Q.E.D.

Remark 2. The proof above establishes that if F is �nite and satis�es GARP, then either uF (x) =
�(x) � 0 or uF (x) = p1(x � x1) + p2(x1 � x2) + ::: + pn(xn�1 � xn) for some x-feasible sequence
(p1; x1); :::; (pn; xn) of distinct points in F; in which case uF (x) � �(p1x1 + ::: + pnxn): In either
case, uF (x) � �IF ; where IF :=

P
(p;x)2F px is de�ned to be the total income of all the data points

in F: That is, uF is bounded below by �IF :

The next lemma states that if a �nite dataset satis�es GARP, then to any consumption bundle
x >> 0 we may associate a price vector p so that when (p; x) is added to the dataset, the new
dataset also satis�es GARP.13

Lemma 3.2. Let F be a �nite dataset satisfying GARP and let x0 be any point in Rm++: Then
there is a price vector p0 2 Rm+ such that p0x0 = 1 and F [ f(p0; x0)g satis�es GARP.

Proof. By Proposition 3.1, uF is quasiconcave and strictly increasing. Hence, the set C = fx :
uF (x) � uF (x0)g is convex with x0 on its boundary. By the separating hyperplane theorem, and
since x0 >> 0; there exists p0 2 Rm such that p0x0 = 1 and such that p0x0 � p0x for every x 2 C;
implying also that p0 � 0 since (because uF is strictly increasing) x0 + �ei 2 C for every � > 0
and every i; where ei is the i-th unit vector. In particular, if p0y < p0x0; then y =2 C and so
uF (y) < uF (x0): It su¢ ces now to show that p0y = p0x0 implies uF (y) � uF (x0) since then uF
rationalizes F [ f(p0; x0)g which must then satisfy GARP.
So suppose that p0y = p0x0: Then, for every � 2 (0; 1); p0(�y) < p0x0 (since p0x0 > 0); and so

uF (�y) < uF (x0): Because, by Proposition 3.1, uF is strictly increasing and lower semicontinuous,
lim�"1 uF (�y) = uF (y) and so uF (y) � uF (x0): Q.E.D.

Remark 3. Lemma 3.2 can, of course, also be proven with the aid of Afriat�s (1967) theorem
instead of Proposition 3.1. But not having to rely on Afriat�s more involved proof, in addition to
remaining self-contained is, we believe, advantageous.

4. The Main Result

Theorem 4.1. For an arbitrary dataset D = f(p; x)g � (Rm+nf0g) � Rm+ ; �nite or in�nite, the
following three conditions are equivalent. (i) D satis�es GARP; (ii) D can be rationalized by
a utility function; (iii) D can be rationalized by a strictly increasing and quasiconcave utility
function.
13There need be no such p when the given dataset is in�nite.
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Proof. Since (iii))(ii))(i) is clear, it su¢ ces to show (i))(iii).
Let U denote the set of strictly increasing and quasiconcave functions from Rm+ into [�1; 1];

and let y1; y2; ::: be a dense sequence of points in Rm++:
For every positive integer k; and every �nite subset F of (Rm+nf0g) � Rm+ ; de�ne the subset

UF;k of U as follows, where for any vector x; x(j) denotes its j-th coordinate.

UF;k :=

(
u 2 U :

(i) u rationalizes F; and

(ii) u(x) � 1
2k0
maxj

�
x(j)
yk0 (j)

� 1
�
+ u(yk0); 8k0 � k;8x 2 Rm+ s.t. x << yk0

)
:

Clearly, the set UF;k becomes smaller as F and k become larger. That is, if F � F 0 and k � k0;
we have UF;k � UF 0;k0 : Consequently;

inf
u2UF;k

u(x) � inf
u2UF 0;k0

u(x) for every x 2 Rm+ . (4.1)

Before taking advantage of this useful property, let us show that UF;k is nonempty whenever F is
a �nite subset of D:
Let F = f(p01; x01); :::; (p0n; x0n)g be any �nite subset of D and let k be any positive integer.

Since D satis�es GARP, F satis�es GARP. Therefore, since each y1; :::; yk is in Rm++; k successive
applications of Lemma 3.2 yields k nonnegative and nonzero price vectors, q1; :::; qk; such that each
qiyi = 1 and the �nite set f(q1; y1); :::; (qk; yk); (p01; x01); :::; (p0n; x0n)g satis�es GARP. Since GARP
is not a¤ected when prices are multiplied by positive constants, the �nite set

F 0 :=

��
1

2
q1; y1

�
; :::;

�
1

2k
qk; yk

�
;
� �1
2k+1

p01; x
0
1

�
; :::;

� �n
2k+n

p0n; x
0
n

��
;

satis�es GARP, where the �i > 0 are chosen so that �ip0ix
0
i � 1 for every i:14 (Note that F 0 need

not be a subset of D:) Moreover, IF 0, the total income of the data points in F 0 (see Remark 2),
is no greater than 1 because each qiyi = 1 and each �ip0ix

0
i � 1. Consequently, by Proposition 3.1

and Remark 2, uF 0 : Rm+ ! [�1; 1] is quasiconcave, strictly increasing and rationalizes the dataset
F 0: In particular, uF 0 2 U and uF 0 rationalizes F since every datapoint in F can be obtained by
multiplying the price of some datapoint in F 0 by a positive scalar. Consequently, uF 0 satis�es
(i) of the de�nition of UF;k: We next show that uF 0 also satis�es (ii), which implies that UF;k is
nonempty since uF 0 is then a member.
Suppose that k0 � k and that x 2 Rm+ is such that x << yk0 : To show that uF 0 satis�es (ii) of

the de�nition of UF;k; we must show that uF 0(x) � 1
2k0
maxj

�
x(j)
yk0 (j)

� 1
�
+ uF 0(yk0).

Because
�

1
2k0
qk0 ; yk0

�
is a member of F 0; uF 0(yk0) is de�ned by (3.1). Hence, as shown in the

proof of Proposition 3.1, uF 0(yk0) = p1(yk0�x1)+p2(x1�x2)+:::+pn(xn�1�xn) for some yk0-feasible
sequence (p1; x1); :::; (pn; xn) of points in F 0: But then x << yk0 implies that qk0(x� yk0) < 0 and
14The �i cannot necessarily be chosen so that each �ip0ix

0
i = 1 since we allow datapoints with zero income.
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that
�

1
2k0
qk0 ; yk0

�
; (p1; x1); :::; (pn; xn) is x-feasible. Consequently, uF 0(x) is de�ned by (3.1) and,

uF 0(x) � 1

2k0
qk0(x� yk0) + p1(yk0 � x1) + p2(x1 � x2) + :::+ pn(xn�1 � xn)

=
1

2k0
qk0(x� yk0) + uF 0(yk0)

� 1

2k0
max
j

�
x(j)

yk0(j)
� 1
�
+ uF 0(yk0):

15

Hence, uF 0 2 UF;k; which establishes that UF;k is nonempty.
We can now exhibit a utility function that we will show is strictly increasing, quasiconcave,

and rationalizes D:
De�ne u� : Rm+ ! [�1; 1] by

u�(x) := sup
F;k

inf
u2UF;k

u(x);

where the sup is taken over all positive integers k; and all �nite subsets F of D:
That u� is well-de�ned and takes values in [�1; 1] follow because all the UF;k are nonempty and

contain only functions taking values in [�1; 1]: It remains to show that u� is strictly increasing,
quasiconcave, and rationalizes D: We consider each in turn.
For the remainder of the proof, F; F 0; F 00 etc. will always denote �nite subsets ofD; and k; k0; k00

etc. will always denote positive integers.

I. u� is strictly increasing.
Suppose �rst that x � y: We must show that u�(x) � u�(y):
For any F and k; every u 2 UF;k is strictly increasing (recall that UF;k is a subset of U):

Therefore,
u(x) � u(y); for every u 2 UF;k:

Hence,
inf

u2UF;k
u(x) � inf

u2UF;k
u(y):

Since this holds for every F and k; it follows that

u�(x) = sup
F;k

inf
u2UF;k

u(x) � sup
F;k

inf
u2UF;k

u(y) = u�(y):

Thus, we have shown that x � y implies that u�(x) � u�(y):
Suppose next that x << y: We must show that u�(x) < u�(y): Since fy1; y2; :::g is a dense

subset of Rm++; there exists k0 such that x << yk0 << y: Fix this k0: By what we have just shown,
u�(yk0) � u�(y): Hence it su¢ ces to show that u�(x) < u�(yk0):
Consider any F and any k � k0: Since x << yk0 ; part (ii) of the de�nition of UF;k implies that,

u(x) � 1

2k0
max
j

�
x(j)

yk0(j)
� 1
�
+ u(yk0); for every u 2 UF;k:

15We have used the fact that, for any y >> 0 and any x; q � 0 such that qy = 1; qx =
P

j(q(j)y(j))
x(j)
y(j) �

maxj
x(j)
y(j) :
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Hence,

inf
u2UF;k

u(x) � 1

2k0
max
j

�
x(j)

yk0(j)
� 1
�
+ inf
u2UF;k

u(yk0):

Since this holds for every F and every k � k0; we have,

sup
F;k�k0

inf
u2UF;k

u(x) � 1

2k0
max
j

�
x(j)

yk0(j)
� 1
�
+ sup
F;k�k0

inf
u2UF;k

u(yk0): (4.2)

For any z 2 Rm+ ; (4.1) implies that

sup
F;k�k0

inf
u2UF;k

u(z) � sup
F;k

inf
u2UF;k

u(z):

Since the reverse inequality is obvious (the sup on the left is over a smaller set of k�s than that on
the right), we have,

sup
F;k�k0

inf
u2UF;k

u(z) = sup
F;k

inf
u2UF;k

u(z) = u�(z):

Applying this to (4.2) yields,

u�(x) � 1

2k0
max
j

�
x(j)

yk0(j)
� 1
�
+ u�(yk0):

Finally, because x << yk0 implies that maxj
�
x(j)
yk0 (j)

� 1
�
< 0; we conclude that u�(x) < u�(yk0);

as desired.

II. u� is quasiconcave.
For any F and k; every u 2 UF;k is in U and is therefore quasiconcave. Consequently, the

function uF;k de�ned by uF;k(x) = infu2UF;k u(x) is quasiconcave, being the pointwise in�mum of a
collection of quasiconcave functions. Also, by the de�nition of u�; we have u�(x) = supF;k uF;k(x)
for every x:
Fix any x; y 2 Rm+ and any � 2 [0; 1]; and let z = �x+(1��)y: For any F and k; the de�nition

of u� and the quasiconcavity of uF;k imply that

u�(z) � uF;k(z) � min(uF;k(x); uF;k(y)):

Hence, for all F; F 0; k; k0; if we let F 00 = F [ F 0 and k00 = max(k; k0); then

u�(z) � min(uF 00;k00(x); uF 00;k00(y))

� min(uF;k(x); uF 0;k0(y));

where the second inequality follows by (4.1). Since F; F 0; k; and k0 are arbitrary, this implies that

u�(z) � min(sup
F;k
uF;k(x); sup

F 0;k0
uF 0;k0(y))

= min(u�(x); u�(y));
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and we conclude that u� is quasiconcave.

III. u� rationalizes D:
Fix any (p; x) 2 D: For any y 2 Rm+ ; we must show that if p(y � x) � 0; then u�(y) � u�(x)

and that if p(y � x) < 0; then u�(y) < u�(x):
Suppose �rst that p(y � x) � 0: For any F and k; every u 2 UF;k rationalizes F: Therefore,

every u 2 UF;k will satisfy u(y) � u(x) so long as F contains (p; x): That is, for every k and every
F containing (p; x);

u(y) � u(x); for every u 2 UF;k:

Hence, for every k and every F containing (p; x);

inf
u2UF;k

u(y) � inf
u2UF;k

u(x):

It follows that
sup

F;k:(p;x)2F
inf

u2UF;k
u(y) � sup

F;k:(p;x)2F
inf

u2UF;k
u(x): (4.3)

For every z 2 Rm+ ; (4.1) implies that

sup
F;k:(p;x)2F

inf
u2UF;k

u(z) � sup
F;k

inf
u2UF;k

u(z):

But because the reverse inequality is obvious (the sup on the left is over a smaller set of F�s than
that on the right), we have,

sup
F;k:(p;x)2F

inf
u2UF;k

u(z) = sup
F;k

inf
u2UF;k

u(z) = u�(z):

Applying this to (4.3), we conclude that u�(y) � u�(x):
Thus, we have so far shown that u�(y) � u�(x) for every y 2 Rm+ such that p(y � x) � 0:
Suppose next that y 2 Rm+ is such that p(y � x) < 0: Then there exists y0 such that y << y0

and p(y0 � x) < 0: By what we have already shown, u�(y0) � u�(x): But because u� is strictly
increasing, u�(y) < u�(y0): Hence, u�(y) < u�(x); as desired. Q.E.D.

5. Examples.

We present four examples of in�nite datasets, each satisfying GARP. The �rst example admits
no lower semicontinuous rationalization, the second no upper semicontinuous rationalization, the
third no concave rationalization, and the fourth, whose dataset satis�es SARP, admits no strict
rationalization.16 In each example, there are two goods, i.e., m = 2; and a typical bundle will be
denoted by x = (a; b) 2 R2+:

Example 5.1. (No lower semicontinuous rationalization) Suppose that, for every n � 2;

the bundle x0 = (1; 0) is chosen at the price vector pn = (1� 1
n
; 1); and the bundle x1 = (0; 1) is

16A utility function, u; strictly rationalizes the data if for each data point (p; x); u(x) > u(y) holds for every
y 6= x such that py � px:
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chosen at the price vector p = (1; 2). Let D denote the resulting dataset. It is easily checked that
D satis�es GARP because only two bundles, x0 and x1; are ever chosen and x1 is never a¤ordable
when x0 is chosen. For each k � 1; let xk = (0; 1� 1

k
): If v is any utility function rationalizing D;

then we must have v(x0) < v(x1) because px0 < px1; and for each k we must have v(xk) < v(x0)
because pnxk < pnx0 for n > k: Consequently, limkv(x

k) � v(x0) < v(x1): Since xk converges to
x1; v is not l.s.c. at x1:

Example 5.2. (No upper semicontinuous rationalization) Suppose that bundles x0 = (1; 0)
and x1 = (0; 1) are each chosen at the price vector p0 = (1; 1); and for each n � 2 the bundle
xn = ( 3

n
; 1� 2

n
) is chosen at the price vector p = (1; 2). Let D denote the resulting dataset. It is

easily checked that D is rationalized by the increasing utility function u de�ned by u(a; b) = a+ b
if a + b � 1; and u(a; b) = a + 2b otherwise. Consequently, D satis�es GARP. If v is any
utility function rationalizing D; then we must have v(x0) < v(x2) < v(xn) for every n because
p0x0 < px2 < pxn; and we must have v(x1) = v(x0) because p0x0 = p0x1: Consequently, v(x1) =
v(x0) < v(x2) � limnv(x

n): Since xn converges to x1; v is not u.s.c. at x1:

Example 5.3. (No concave rationalization) Consider the strictly increasing and quasiconcave
utility function u(a; b) = b+

p
a+ b2: Its indi¤erence curves are straight lines connecting the axes,

though they are not parallel. Their slopes decrease as one moves outward from the origin. It is
well known (Fenchel, 1953; Arrow and Enthoven, 1961; Aumann, 1975) that this utility function
cannot be concavi�ed.17 That is, there is no strictly increasing function f de�ned on the range of
u such that f � u is concave. Consequently, if D consists of all (p; x) such that p is the gradient of
u at x; then u rationalizes D: Hence D satis�es GARP but has no concave rationalization.

Example 5.4. (SARP and no strict rationalization) Suppose that, for every � > 0 and every
n � 2; the bundle (�; 2�) is chosen at the price vector pn = (1 + 1

n
; 1) and the bundle (2�; �) is

chosen at the price vector p = (1; 1): Let D be the resulting dataset. To see that D satis�es SARP,
note that if (a; b) is a¤ordable when the distinct bundle (a0; b0) is chosen, then a0+ b0 > a+ b in all
cases but those in which (a; b) = (�; 2�) and (a0; b0) = (2�; �):18 This is su¢ cient to ensure that,
within the dataset, there can be no cycles in the �directly revealed preferred to�relation, proving
SARP.19 Let v rationalize D:We must show that v does not strictly rationalize D: If �0 > �; then
(2�; �) is strictly a¤ordable when (2�0; �0) is chosen and so we must have v(2�0; �0) > v(2�; �):

Hence, v(2�; �) is a strictly increasing function of � > 0 and so it is continuous except at perhaps
countably many points. Let �� > 0 be a continuity point. Since (2��; ��) is chosen at the price
vector (1; 1) when (��; 2��) could have been chosen, we must have v(2��; ��) > v(��; 2��) if v is
to strictly rationalize D: Thus, it su¢ ces to show that v(2��; ��) � v(��; 2��): For any � < ��;

pn(2�; �) < pn(��; 2��) for some n large enough. Consequently, (2�; �) is a¤ordable when (��; 2��)
is chosen at the price vector pn and so v(2�; �) � v(��; 2��): Since this inequality holds for any

17See Reny (2013) for a general nonconcavi�ability result that includes this function as a special case.
18The only nontrivial cases are those in which (a; b) = (2�; �) is a¤ordable when (a0; b0) = (�0; 2�0) is chosen at

some price p = (1 + 1
n ; 1). Then, (1 +

1
n )2� + � � (1 + 1

n )�
0 + 2�0; which, after factoring out � and �0 on each

side, implies that � < �0: Then, adding 1
n� to the lefthand side and the larger

1
n2�

0 to the righthand side gives
(1 + 1

n )(2�+ �) < (1 +
1
n )(�

0 + 2�0) and division by (1 + 1
n ) yields the desired conclusion.

19One bundle is directly revealed preferred to another if the one is a¤ordable at a price vector at which the other
is chosen.
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� < ��; we may take the limit as � converges to �� from below. The continuity of v(2�; �) at ��

then yields v(2��; ��) � v(��; 2��):

6. Additional Remarks

Remark 4. Suppose that D satis�es GARP and is income-continuous in the sense that for every
(p; x) 2 D there is a sequence (p; xn) 2 D with xn ! x such that pxn > px for every n: By our
main result, D is rationalized by a strictly increasing and quasiconcave u taking values in [�1; 1]:
For every x 2 Rm+ ; let u�(x) = limn u(x + 1=n); where 1 = (1; :::; 1) 2 Rm: It is straightforward
to show that u� is upper semicontinuous, strictly increasing and quasiconcave. To see that u�

rationalizes D; suppose that (p; x) 2 D and py � px: Then there is a sequence (p; xn) 2 D with
xn ! x such that py � px < pxn for every n: For any k; we may �rst choose n su¢ ciently large
so that xn << x + 1=k; and then choose m su¢ ciently large so that p(y + 1=m) < pxn: Hence,
u(y + 1=m) � u(xn) � u(x + 1=k): That is, for every k, u(y + 1=m) � u(x + 1=k) holds for all
m large enough. Consequently, u�(y) � u�(x); as desired. This di¤ers from Mas-Colell (1978)
Theorem 1 in two ways. First, our dataset needn�t be a complete dataset generated by a demand
function. Second, we do not require continuity in prices. A consequence of the latter is that our
upper semicontinuous rationalization, unlike that obtained in Mas-Colell (1978) is not necessarily
strict.20

Remark 5. Suppose that D satis�es SARP and, as in Sondermann (1982), is connected in the
sense of Richter (1966), i.e., if (p; x); (q; y) 2 D then (p0; tx+(1� t)y) 2 D for some price vector p0
and some t 2 (0; 1): By our main result, D is rationalized by a strictly increasing and quasiconcave
u taking values in [�1; 1]: Moreover, if for (p; x); (q; y) 2 D we have y 6= x and py = px; we claim
that u(y) < u(x): Indeed, by connectedness (p0; tx + (1 � t)y) 2 D for some price p0 and some
t 2 (0; 1): Letting �x = tx+(1� t)y; p�x = px implies that p0(tx+(1� t)y) < p0x by SARP and that
u(�x) � u(x): Hence, p0y < p0�x and so u(y) < u(�x) � u(x): So, rede�ning u to be �1 for bundles
that are never chosen, this rede�ned u strictly rationalizes D: This generalizes Sondermann (1982)
and, because we obtain a utility representation, Theorem 1 in Hurwicz and Richter (1971) under
our maintained hypothesis (which they do not impose) that all income is always spent since strict
rationalization implies that the rede�ned u is strongly increasing and strictly quasiconcave on the
set of chosen bundles.21 In particular, if the set of of chosen bundles is all of Rm+ ; u is everywhere
strongly increasing and strictly quasiconcave, and strictly rationalizes D:

Remark 6. If a dataset can be rationalized by a preference relation then the dataset must satisfy
GARP.22 Consequently, Theorem 4.1 implies that a dataset can be rationalized by a preference
relation if and only if it can be rationalized by a strictly increasing and quasiconcave utility
function.23

20The conditions in Hurwicz and Richter (1971) and in Sondermann (1982) su¢ ce to obtain a strict rationalization
that is upper semicontinuous on the set of chosen bundles, but are insu¢ cient to ensure upper semicontinuity on
the entire consumption set (which, in our case, is the nonnegative orthant).
21A utility funciton u is strongly increasing if u(x) > u(y) whenever x � y and x 6= y:
22By preference relation, we mean a complete, re�exive, and transitive binary relation. A preference relation, %;

rationalizes a dataset D if (p; x) 2 D implies x % y for every y such that py � px and also not y % x if py < px:
23So, for example, it is not a coincidence that the demand behavior induced by lexicographic preferences, as
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Remark 7. Afriat�s theorem can be used to prove rather easily that an arbitrary dataset D
satisfying GARP can be rationalized by a preference relation on Rm+ that is strictly increasing and
convex.24 The idea is to view a preference relation as an indicator function, i.e., as an element
� of f0; 1gRm+�Rm+ , where �(x; y) = 1 means \x is at least as good as y�and �(x; y) = 0 means
�y is strictly preferred to x:�For every �nite subset F of D; de�ne �F := f� 2 f0; 1gR

m
+�Rm+ : �

is strictly increasing, convex, and rationalizes Fg: Each �F is compact in the product topology.
By Afriat�s theorem, each �F is nonempty and so f�FgF�D has the �nite intersection property.
Then, by Tychono¤�s theorem, \F�D�F is nonempty and any member, ��; is increasing, convex,
and rationalizes D. However, the preference relation �� need not have a utility representation
and so this otherwise very simple proof technique is unhelpful in establishing the existence of a
utility function that rationalizes the dataset D.25 Indeed, there can be many strictly increasing
and convex preference relations that rationalize the given data and some may not have a utility
representation (consider, e.g., lexicographic preferences and the dataset they generate). Our main
result shows that at least one of these preference relations has a utility representation.

Remark 8. A similarly simple argument as in Remark 7 above, but using Matzkin and Richter
(1991) instead of Afriat�s theorem, establishes that if D satis�es SARP, then D can be rationalized
by a strictly increasing and strictly convex preference relation. But again, not all such rationaliza-
tions need have a utility representation. Indeed, as our fourth example above shows, it can happen
that no such strictly increasing and strictly convex preference relation has a utility representation.

Remark 9. Proposition 3.1 suggests yet another order-n3 method for testing whether a �nite
dataset, F = f(p1; x1); :::; (pn; xn)g; is rationalizable.26 De�ne aij := pj(xi � xj) and initialize
u0i := 0 for i = 1; :::; n: De�ne u

n
i inductively so that u

k
i := minj(aij + u

k�1
j ) holds for i; k = 1; :::; n

and where the minimum is over all j such that aij � 0: It is not di¢ cult to argue that the vector
un := (un1 ; :::; u

n
n) is computable in a number of steps that is of the order n

3: If F satis�es GARP,
then it is straightforward to show that uni = uF (xi) for every i and therefore that u

n
i � aij + unj

whenever aij � 0: Hence the dataset F is rationalizable if and (by Proposition 3.1) only if the
vector un rationalizes the data in the sense that uni � unj whenever aij � 0; with the �rst inequality
strict whenever the second is strict.27
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