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1. Introduction

This paper studies a novel mechanism design problem without transfers and with ex-
post verification. The headquarters of a company would like to allocate a new office
space to one of its departments. The demand for the office space and its fit to the needs
of a department is the department’s private information. The headquarters can learn
the true value of allocating the space to a department only ex-post, after the decision
has been made, and only for the department that gets the space. The headquarters can
ask the departments to submit the proposals outlining the benefit for the company of
allocation the space to them, and penalize the department ex-post if their proposal is
revealed to be insincere. The departments, however, have limited liability that restricts
the severity of punishment.

Another application of the model is labor markets in which applicants submit their
CVs, but the true qualification of the hired applicant becomes revealed over time. Also,
the model can be applied to organic search in which websites provide descriptions of their
content for a search engine algorithm and the search engine can penalize the websites
for unfair search engine optimization practices by dropping their future search rankings.

In our model, there is a principal who has to choose one agent from a pool of ex-ante
identical agents. The agents’ value for the principal is their private information and all
agents would like to be selected. The utility is not transferrable, but the principal can
learn the value of the selected agent ex-post and there are (limited) penalties that can
be imposed on this agent.

Since the penalty is limited, the low value agents will lie and exaggerate their value for
the principal if competition is fierce and their chances of winning by truthful reporting are
slim. Consequently, the optimal rules must maximize the probability of selecting high-
value agents subject to the constraint that the low-value agents are chosen frequently
enough so that they do not want to misreport their information.

If the number of agents is sufficiently large, an optimal allocation rule is a shortlisting

procedure: each agent is shortlisted with probability that is increasing in her report
about her value and is equal to one if the report is above some bar, and the principal
chooses an agent at random from the shortlist.1 Surprisingly, there is a neutrality result:
the maximal attainable payoff for the government is constant after the number of agents
reaches some threshold, which depends on the penalty size that can be imposed on the
agents.

If the number of agents is small, an optimal allocation rule is a combination of a
restricted-bid auction and a shortlisting procedure. There are two thresholds: low bar
and high bar. The principal puts all agents whose reports are below the low bar onto the
waiting list and classifies as superstars all agents whose reports are above the high bar.
The winner is selected among the superstars if there are any. Otherwise, the principal
selects an agent with the highest report among those who pass the low bar. Finally, if
all the agents are below the low bar, the principal shortlists an agent with a probability
which depends on her report and randomly selects an agent from the shortlist.

1Naturally, after the government observes the true value of the selected agent, it imposes the maximum
feasible penalty whenever the agent’s report is inconsistent with the realized value.



MECHANISM DESIGN WITH EX-POST VERIFICATION 3

Methodologically, the principal’s problem in our model is a maximization problem sub-
ject to incentive compatibility constraints which are expressed in interim probabilities of
being selected. These interim probabilities are subject to generalized Matthews-Border
feasibility condition. We solve the principal’s problem by separating the incentive com-
patibility and the feasibility constraints into sub-constraints and solving two auxiliary
maximization problems subject to different subsets of incentive compatibility and feasi-
bility sub-constraints. We hope that this approach might prove useful in other mecha-
nism design environments where the interaction of incentive compatibility and feasibility
constraints poses challenges.

The rest of the paper is organized as follows. We discuss the related literature in
Section 2. The model is presented in Section 3. Section 4 characterizes optimal allocation
in reduced forms. We derive an upper bound on the principal’s payoff in our environment
in Section 5 and show that it can achieved if the number of agents is sufficiently large.
In Section 6, we consider the case of small number of agents. Some of the proofs are in
the Appendix.

2. Literature

Ben-Porath, Dekel and Lipman (2013) (henceforth, BDL) study a related model, with
the key difference in modeling verification of agents’ types by the principal. In BDL the
principal can pay a cost and acquire information about agents’ types before making an
allocation decision, that is, types can be verified ex ante.2 Our paper takes a different
approach: after having selected an agent, the principal learns the type and can impose
a penalty on that agent, that is, types are verified ex post.3

There is a recent literature on mechanism design with partial transfers; in this lit-
erature the agents’ information is non-verifiable.4 In Chakravarty and Kaplan (2013)
and Condorelli (2012b), a benevolent principal would like to allocate an object to the
agent with the highest valuation, and the agents signal their private types by exerting
socially wasteful effort. Condorelli (2012b) studies a general model with heterogeneous
objects and agents and characterizes optimal allocation rules where a socially wasteful
cost is a part of mechanism design. Chakravarty and Kaplan (2013) restrict attention to
homogeneous objects and agents, and consider environments in which socially wasteful
cost has two components: an exogenously given type and a component controlled by

2A growing literature studies environments in which evidence that can be presented before an allocation
decision is made, e.g., Townsend (1979), Grossman and Hart (1980), Grossman (1981), Milgrom (1981),
Green and Laffont (1986), Postlewaite and Wettstein (1989), Lipman and Seppi (1995), Seidmann and
Winter (1997), Glazer and Rubinstein (2004, 2006, 2012, 2013), Forges and Koessler (2005), Bull and
Watson (2007), Severinov and Deneckere (2006), Deneckere and Severinov (2008), Kartik, Ottaviani
and Squintani (2007), Kartik (2009), Sher (2011), Sher and Vohra (2011), Ben-Porath and Lipman
(2012), Dziuda (2012), and Kartik and Tercieux (2012).
3In our model, the utility is not transferable. Optimal mechanism design with transfers that can depend
on ex-post information has been studied in, e.g., Mezzetti (2004), DeMarzo, Kremer and Skrzypacz
(2005), Eraslan and Yimaz (2007), Dang, Gorton and Holmström (2013), Deb and Mishra (2013), and
Ekmekci, Kos and Vohra (2013). This literature is surveyed in Skrzypacz (2013).
4An exception is Bar and Gordon (forthcoming), discussed below, who consider an extension with
ex-post verifiable types.
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the principal. In particular, they demonstrate conditions under which, surprisingly, the
uniform lottery is optimal.5

Bar and Gordon (forthcoming) consider a problem of project selection. For each
project, the principal’s and the project manager’s values of the potential match are
privately known to the manager. Transfers are permitted in one direction: the principal
can subsidize but cannot tax projects.

In Manelli and Vincent (1995), a principal would like to procure a good from suppliers
whose quality is uncertain. In their environment, a trading mechanism that selects the
bidder with the lowest price might result in only low-quality goods being offered for
sale, so competitive mechanisms might price out high quality suppliers. Che, Gale and
Kim (2013) consider a problem of efficient allocation of resource to budget constrained
agents and show that a random allocation with resale can outperform competitive market
allocation. In an allocation problem in which the private and the social values of the
agents’ are private information, Condorelli (2012a) characterizes conditions under which
optimal mechanism is stochastic and does not employ payments.

The literature has identified multiple reasons for restricting participation in allocation
mechanisms. In auctions with entry costs, large number of bidders might be inefficient,
as low-value agents have low probability to win and thus lack incentives to participate
(Levin and Smith 1994, Gilbert and Klemperer 2000, Ye 2007). Compte and Jehiel
(2002) study auctions in affiliated value environments and show that the uncertainty
about the common value component might imply that more bidders need not lead to
higher welfare.

If the value of surplus is endogenous and is determined by the actions of the agents
prior to the allocation decision, excessive thickness of the market might weaken their
incentives to undertake costly actions that increase the total surplus. For example, in re-
search and development contests, it might be optimal to limit the number of participants
to improve their incentives to invest in developing new technology (Taylor 1995, Fuller-
ton and McAfee 1999, Che and Gale 2003). In financial settings, it may also be desirable
to limit the number of banks to keep their incentives to screen loan applicants (Cao and
Shi 2001).

3. Model

There is a principal who has to select one of n ≥ 2 agents. The principal’s payoff from
a match with agent i is xi ∈ X ≡ [a, b], where xi is private to agent i. The values of xi’s
are i.i.d. random draws, with continuously differentiable c.d.f. F on X, whose density f

is positive almost everywhere on X.
Each agent imakes a statement yi ∈ X about his type xi, then the principal chooses an

agent according to a specified rule. If an agent is not selected, his payoff is 0. Otherwise,
he obtains a payoff of v(xi) > 0. In addition, we assume that if the agent is selected, the

5See also McAfee and McMillan (1992), Hartline and Roughgarden (2008), Yoon (2011) for environments
without transfers and money burning. In addition, money burning is studied in Ambrus and Egorov
(2012) in the context of a delegation model.



MECHANISM DESIGN WITH EX-POST VERIFICATION 5

principal observes xi and can impose a penalty c(xi) ≥ 0 on the agent.6 Our primary
interpretation of c is the upper bound on the (expected) penalty that can be imposed on
the agent after his type has been verified.7 Functions v and c are bounded and almost
everywhere continuous on [a, b]. Note that v − c can be non-monotonic.

The principal has full commitment power and can choose any stochastic allocation
rule that determines a probability of selecting each agent conditional on the report
profile and the penalty conditional on the report profile and the type of the selected
agent after it is verified ex-post. An allocation rule (p, ξ) associates with every profile
of statements y = (y1, . . . , yn) a probability distribution p(y) over {1, 2, . . . , n} and a
family of functions ξi(xi, y) ∈ [0, 1], i = 1, . . . , n, which determine the probability that
agent i is penalized if he is selected given his type and the report profile. The allocation
rule is common knowledge among the agents. The solution concept is perfect Bayesian
equilibrium.

By the revelation principle, it is sufficient to consider allocation rules in which it is a
perfect Bayesian equilibrium for all agents to make truthful statements. Furthermore,
since type xi of the selected agent is verifiable, it is optimal to penalize the selected agent
whenever he lies, yi �= xi, and not to penalize him otherwise. Hence we set ξi(xi, y) = 0
if yi = xi and 1 otherwise and drop ξ in the description of the allocation rules. Thus,
the payoff of agent i whose type is xi and who reports yi is equal to

8

Vi(xi, yi) =

�

x−i∈Xn−1

pi(yi, x−i)(v(xi)− 1yi �=xic(xi))dF̄−i(x−i).

The principal wishes to maximize the expected payoff,

(P0) max
p

�

x∈Xn

n�

i=1

xipi(x)dF̄ (x)

subject to the incentive compatibility constraints

(IC0) Vi(xi, xi) ≥ Vi(xi, yi) for all xi, yi ∈ X and all i = 1, . . . , n.

Denote by h(x) the share of the surplus retained by a selected agent after deduction
of the penalty (truncated at zero):

h(x) =
max{v(x)− c(x), 0}

v(x)
.

Proposition 1. Allocation rule p satisfies (IC0) if and only if for every i = 1, . . . , n
there exists ri ∈ [0, 1] such that for all xi ∈ X

(1) rih(xi) ≤
�

x−i∈Xn−1

pi(xi, x−i)dF̄−i(x−i) ≤ ri.

6We could allow c to depend on the entire type profile, c(x1, x2, . . . , xn), where n is the number of
agents, without affecting any of the results. In that case, c(xi) should be thought of as the expected
value of c(x1, x2, . . . , xn) conditional on xi.
7The assumption that xi is verified with certainty can be relaxed; if α(xi) is the probability that xi is
verified and L(xi) is the limit on i’s liability, then set c(xi) = α(xi)L(xi).
8Denote by F̄ the joint c.d.f. of all n agents and by F̄−i the joint c.d.f. of all agents except i. For each
agent i, pi(yi, y−i) stands for the probability of choosing i as a function of the profile of reports.
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Proof. Each agent i’s best deviation is the one that maximizes the probability of i
being chosen, so (IC0) is equivalent to

(2) v(xi)

�

x−i

pi(xi, x−i)dF̄−i(x−i) ≥ (v(xi)− c(xi)) sup
yi∈X

�

x−i

pi(yi, x−i)dF̄−i(x−i).

Thus, (IC0) implies (1) by setting ri = supyi∈X
�
x−i

pi(yi, x−i)dF̄−i(x−i). Conversely, if

(1) holds with some ri ∈ [0, 1], then it also holds with r
�
i = supyi∈X

�
x−i

pi(yi, x−i)dF̄−i(x−i)

≤ ri, which implies (2).

Problem in reduced form. We will approach problem (P0) by formulating and solving
its reduced form. Denote by gi(y) the probability that agent i is selected conditional on
reporting y,

gi(y) =

�

x−i∈Xn−1

pi(y, x−i)dF̄−i(x−i), y ∈ X,

and define g : X → [0, n] by

g(y) =
n�

i=1

gi(y), y ∈ X.

We will now formulate the principal’s problem in terms of g:

(P) max
g

�

x∈X
xg(x)dF (x)

subject to the incentive compatibility constraint

(IC) v(x)g(x) ≥ (v(x)− c(x)) sup
y∈X

g(y) for all x ∈ X,

the feasibility condition due to
�

i pi(y) = 1 for all y ∈ X
n,

(F0)

�

X

g(x)dF (x) = 1,

and a generalization of Matthews-Border feasibility criterion (Matthews 1984, Border
1991, Hart and Reny 2013) that guarantees existence of an allocation rule p that induces
a given g (see Lemma 3 in the Appendix):

(F)

�

{x:g(x)≥t}
g(x)dF (x) ≤ 1−

�
F ({x : g(x) < t})

�n
for all t ∈ [0, n].

Proposition 2.
(i) If p is a solution of (P0), then the reduced form of p is a solution of (P).
(ii) If g is a solution of (P), then it is the reduced form of some solution of (P0).

Problem (P) is interesting because of its constraints. First, incentive compatibility
constraints (IC) are global rather than local as is often the case in mechanism design.
Second, feasibility constraint (F) is substantive and will bind at the optimum iff incentive
compatibility constraint (IC) slacks.
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If g is increasing, then (F) takes a simple form,
� b

t

g(x)dF (x) ≤ 1− F
n(t) for all t ∈ X.

Therefore, a possible way to verify (F) is by “reordering” types in X in the ascending
order in the image of g.

A measure-preserving monotonization of function g is a weakly increasing function
g̃ : X → [0, n] such that for every t ∈ [0, 1]

�

{x:g(x)≥t}
g(x)dF (x) =

�

{x:g̃(x)≥t}
g̃(x)dF (x).

Proposition 1�. Function g satisfies (IC) and (F) if and only if there exists r ∈ [0, 1]
such that

g(x) ≥ h(x)r, x ∈ X,(IC1)

g(x) ≤ r, x ∈ X,(IC2)
� b

x

g̃(t)dF (t) ≤ 1− F
n(x), x ∈ X,(F�)

where g̃ is a measure-preserving monotonization of g.

4. Optimal allocation rules in reduced form

By Proposition 1’, we can write the principal’s problem (P) as

(P∗) max
g,r

�

x∈X
xg(x)dF (x)

subject to (IC1), (IC2), (F0), and (F).
For each r ∈ [0, n] let us find the lowest trajectory of G(x) :=

� x

a g(t)dF (t) subject to
g satisfying (IC1) and (F):

min
g

�

X

G(x)dF (x)(Pmin)

s.t. g(x) ≥ rh(x) for almost all x ∈ X,(ICmin) �

{x:g(x)<t}
g(x)dF (x) ≥ (F ({x : g(x) < t}))n for all t ∈ [0, n].(Fmin)

We also find the highest trajectory of Ḡ(x) :=
� b

x g(t)dF (t) subject to g satisfying (IC2)
and (F):

max
g

�

X

Ḡ(x)dF (x)(Pmax)

s.t. g(x) ≤ r for almost all x ∈ X,(ICmax) �

{x:g(x)≥t}
g(x)dF (x) ≤ 1− (F ({x : g(x) < t}))n for all t ∈ [0, n].(Fmax)
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n

1

r

n

1

nF n−1

rh(x)

t1t0 x̄1

nF n−1

x̄r

r

Fig. 1. Examples of solutions of Pmax (left) and Pmin (right).

Let g
r
and gr be solutions of problems (Pmin) and (Pmax), respectively. For every

z ∈ X define g
∗
z : X → [0, n] as the concatenation of g

r
and gr at point z:

(3) g
∗
z(x) =

�
g
r
(x), x ≤ z,

gr(x), x > z,

where r ∈ [0, n] is the smallest solution of

(4)

� z

a

g
r
(x)dF (x) +

� b

z

gr(x)dF (x) = 1.

Theorem 1. Mechanism g
∗ is a solution of (P∗) if and only if g∗ = g

∗
z , where z solves

(5) max
z∈X

� b

a

xg
∗
z(x)dF (x).

The idea behind the result is as follows. Observe that for every g that satisfies (F0),
G(x) =

� x

a g(t)dF (t) is a c.d.f. In these notations, the objective of the principal is to
choose a c.d.f. G that maximizes

�
X xdG(x) subject to (IC) and (F). To prove the result,

we show that the set {g∗z}z∈X contains all functions that are maximal w.r.t. first order
stochastic dominance order (FOSD) among all feasible and incentive compatible ones,
in the sense that for every feasible and incentive compatible g there exists z ∈ X such
that G

∗
z(x) =

� x

a g
∗
z(t)dF (t) first order stochastically dominates G(x) =

� x

a g(t)dF (t).
Thus, optimizing on set {g∗z}z∈X yields a solution of (P∗).

The solutions g
r
and gr of problems (Pmin) and (Pmax) are illustrated by Fig. 1. The

left diagram depicts gr (cf. Lemma 1 below). The blue curve is nF
n−1(x) and the red
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curve is r; the black curve depicts gr(x). Starting from the highest type x = b, the
black line follows r so long as constraint (Fmax) slacks. Down from point x̄r constraint
(Fmax) is binding, and the highest trajectory of Ḡ(x) that satisfies this constraint is

exactly 1 − F
n(x). Since Ḡ(x) =

� b

x gr(t)dF (t), the solution gr(t) is equal to nF
n−1(t)

for t < x̄r.
The right diagram on Fig. 1 depicts an example of g

r
. The blue curve is nF

n−1(x)
and the red curve is rh(x); the black curve depicts g

r
(x). Initially we have r0 = a, and

the black line follows rh(x) up to the point x̄1 where blue area is equal to red area, and
then jumps to nF

n−1(x). Then, the black line follows nF
n−1(x) so long as it is above

rh(x). After the crossing point, t1, the black line again follows rh(x), etc.

5. Upper bound

There are two qualitatively distinct cases: when feasibility constraint (F) is binding
at the optimum and when it is not. Recall that (F) is necessary (and, together with
(F0), sufficient) for existence of allocation rule p that induces a desired reduced-form
mechanism g. This constraint becomes weaker as n increases and, eventually, permits
all nondegenerate distributions as n → ∞. On the other hand, incentive compatibility
constraint (IC) does not depend on n. So when n is large enough, the shape of the
optimal distribution is determined entirely by (IC) and does not depend on n.

Let x∗ be the unique9 solution of

(6) z
∗
�� x∗

a

xh(x)dF (x) +

� b

x∗
xdF (x)

�
= x

∗

where z
∗ is the normalizing constant:

(7) z
∗ =

�� x∗

a

h(x)dF (x) +

� b

x∗
dF (x)

�−1

.

Theorem 2. For every number of agents, in any allocation rule the principal’s payoff

is at most x∗. Moreover, if a solution of (P) achieves the payoff of x∗, then its reduced

form must be (almost everywhere) equal to

(8) g
∗(x) =

�
z
∗
h(x), x ≤ x

∗
,

z
∗
, x ≥ x

∗
.

We obtain the bound on the principal’s payoff by solving (P) subject to (IC) and (F0),
while ignoring constraint (F). It is evident that the relaxed problem does not depend
on n.

Since the principal’s objective is linear, the solution is (almost everywhere) boundary.
The principal’s payoff is maximized by a cutoff rule that maximizes the probability of
selecting agents with types above x

∗ subject to the constraint that the types below x
∗

are selected with high enough probability to provide incentives for truthful reporting,

9To show uniqueness of x∗, rewrite (6) and (7) as
� x∗

a (x∗−x)h(x)dF (x) =
� b
x∗(x−x∗)dF (x) and observe

that the left-hand side is strictly increasing, while the right-hand side is strictly decreasing in x∗.
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g(x) ≥ h(x) sup g. So, the solution is given by (8), where z
∗ = sup g∗ is a constant

determined by (F0): � x∗

a

z
∗
h(x)dF (x) +

� b

x∗
z
∗dF (x) = 1,

that yields (7).
The incentive constraint thus pins down the distribution of selected types, G∗(x) =� x

a g(s)dF (s) and determines the best attainable expected payoff
� b

a xdG
∗(x) absent

feasibility constraint (F). Equation (6) is equivalent to equation x
∗ =

� b

a xdG
∗(x). The

left-hand side of (6) is the marginal incentive cost as a function of x∗ due to the rents
that have to be given to the agents below x

∗, while the right-hand side of (6) is the
marginal value of selecting agents with types above x

∗.

Attainment of the upper bound. Let Et = {x : z∗h(x) ≤ t} ∩ [a, x∗]. Denote by n̄

the smallest number that satisfies

(9)

�

Et

z
∗
h(x)dF (x) ≥

�
F (Et)

�n̄
for all t ∈ [0, z∗].

This is a condition on primitives: F and h determine x
∗ and z

∗ and, consequently, n̄.

Proposition 4. There exists an allocation rule that attains the payoff of x∗ if and only

if n ≥ n̄.

Condition (9) is not particularly elegant. Here is a sufficient condition that is simple
and independent of F and x

∗. Let ñ the smallest number such that10

(10)
c(x)

v(x)
≤ 1− 1

ñ
for all x ∈ X.

Corollary 1. There exists an allocation rule that attains the payoff of x∗ if n ≥ ñ.

Note that in some cases n̄ and ñ need not be very large. For example, ñ ≤ 2 if
c(x) ≤ 1

2v(x) for all x, i.e., agents can be penalized by at most half of their gross payoff.

Remark 1. Theorem 2 implies that the optimal rule with n̄ agents is weakly superior to
any rule with n > n̄ agents. That is, the value of competition is limited and expanding
the pool of agents beyond n̄ confers no benefit to the principal.

Implementation of the upper bound. Consider the following shortlisting procedure.
Let each agent i = 1, . . . , n be short-listed with some probability q(yi) given report yi.
The rule chooses an agent from the shortlist with equal probability. If the short list is
empty, then the choice is made at random, uniformly among all n agents.

Proposition 5. Let n ≥ n̄. Then the shortlisting procedure with

(11) q(x) =

�
Kh(x)−1

K−1 , x < x
∗
,

1, x ≥ x
∗
.

10Note that ñ exists if and only if supx∈X h(x) < 1.
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attains the upper bound x
∗, where K is the unique solution of

(12)
(K − 1)n−1

Kn
=

(z∗ − 1)n−1

(z∗)n
, K > z

∗
.

6. Small number of agents

If the number of agents is small, n < n̄, then feasibility constraint (F) is binding at
the optimum. The upper bound cannot be attained, and Theorem 2 is not applicable.
To find an optimal allocation rule as described by Theorem 1, we must solve problems
(Pmin) and (Pmax) subject to both incentive compatibility and feasibility constraints.

The solution of (Pmax) is easy.

Lemma 1. For every r ∈ [0, n], the solution of (Pmax) is equal to

gr(x) =

�
nF

n−1(x), x ∈ [a, x̄r),

r, x ∈ [x̄r, b],

where x̄r is implicitly defined by

(13)

� b

x̄r

rdF (x) = 1− F
n(x̄r) for each r ≥ 1,

and x̄r = a for r < 1.

The solution of (Pmin) is more complex, as it involves function h(x) in the constraints.
To obtain tractable results, we make the following assumption.

Assumption 1. h(F−1(t)) is weakly concave.

Examples that satisfy Assumption 1:

(a) Let the penalty be proportional to the value, c(x) = αv(x), 0 < α < 1. Then h

is constant,
h(x) = 1− α, x ∈ X.

(b) Suppose that the principal is benevolent and wishes to maximize the agents’
surplus, that is, v(x) = x. Let the penalty be constant, c(x) = c̄ < 1, and let
X = [c̄, 1] (so that v(x) ≥ c(x) for all x ∈ X). Then

h(F−1(t)) = 1− c̄

F−1(t)
, t ∈ [0, 1]

is concave, provided f(x)x2 is weakly increasing.
(b) Suppose that the principal and the chosen agent share a unit surplus: the prin-

cipal’s payoff is x and the agent’s payoff is v(x) = 1 − x. Let the penalty be
constant, c(x) = c̄ < 1 and let X = [0, 1− c̄] (so that v(x) ≥ c(x) for all x ∈ X).
Then

h(F−1(t)) = 1− c̄

1− F−1(t)
, t ∈ [0, 1]

is concave, provided f(x)(1− x)2 is weakly decreasing.
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Lemma 2. Let Assumption 1 hold. Then for every r ∈ [0, n] the solution of problem

(Pmin) is equal to

g
r
(x) =

�
rh(x), x ∈ [a, xr],

nF
n−1(x), x ∈ (xr, b],

where xr is implicitly defined by

(14)

� xr

a

rh(x)dF (x) = F
n(xr) for each r ≤ r̄,

and xr = b for r > r̄, where

r̄ =

�� b

a

h(x)dF (x)

�−1

.

Proposition 6. Let n < n̄ and suppose that Assumption 1 holds. Then g
∗ is a solution

of (P∗) if and only if

(15) g
∗(x) =






rh(x), x ≤ xr,

nF
n−1(x), xr < x ≤ x̄r,

r, x > x̄r,

where x̄r and xr are defined by (13) and (14), respectively, and r ∈ [1, r̄] is the solution

of

(16)

� xr

a

(xr − x)h(x)dF (x) =

� b

x̄r

(x− x̄r)dF (x).

Solution g
∗ can be implemented as a combination of a restricted-bid auction and a

shortlisting procedure. The principal asks each agent to report a number in [a, x̄r];
a report y by agent with type x is considered truthful if y = min{x, x̄r}. Then, the
agents are divided into two groups: regular candidates (with x > xr) and “waiting
list” candidates (with x ≤ xr). If there is at least one regular candidate available,
the principal chooses the one with the highest report. Otherwise, if only waiting list
candidates are available, the principal applies to them a shortlisting procedure similar
to the one describe in the previous section.

Interestingly, the interval [xr, x̄r] where agents’ types are fully separated shrinks as n
increases and disappears for n ≥ n̄.

Proposition 7. Suppose that Assumption 1 holds. Then, at the solution of (P∗), dif-
ference x̄r − xr is decreasing in n; moreover, xr ≥ x̄r for n ≥ n̄.

The proof is straightforward by definition of xr and xr.

Example (Proportional penalty). Consider the example with the penalty propor-
tional to the value, c(x) = αv(x).

A restricted bid auction is a rule that (i) allows the agents to report yi ∈ [y, y], where
a ≤ y < y ≤ b, (ii) selects an agent with the highest report, splitting ties randomly,
and (iii) penalizes the selected agent unless he makes a report closest to the truth
yi = max{min{xi, y}, y}.
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Proposition 8. If n < n̄ and
c(x)
v(x) is constant, then a restricted bid auction is optimal.

Proof. Let g∗ be the solution described in Proposition 6 and consider the restricted bid
auction with y = xr and y = xr. Since h(x) is constant, g∗ pools the types above xr and
below xr, and hence the restricted bid auction implements g∗.

As the number of agents increases, the range of allowed reports y − y → 0. If n
is sufficiently large, the optimal mechanism converges to the following degenerate two
bid auction with limited participation: it dismisses a fixed number of agents, asks the
remaining agents to report whether their type is above or below a threshold, and chooses
at random any agent whose reported type is above the threshold if there is at least one
such report, and any agent at random otherwise.

Appendix

Proof of Proposition 2. Observe that for every p and its reduced form g, objective
functions in (P0) and (P) are identical. We now verify that every solution of (P0) is
admissible for (P), and for every solution of (P) there is an admissible solution for (P0).

Feasibility condition (F) is the criterion for existence of p that implements g. This
condition is due to the following lemma, which is a generalization of Matthews-Border
feasibility criterion (e.g., Border 1991, Proposition 3.1) to asymmetric mechanisms.

Let Qn be the set of functions q : Xn → [0, 1]n such that
�

qi ≤ 1 and let λ be a
measure on X. We say that Q : X → [0, n] is a reduced form of q ∈ Qn if Q(z) =�

i

�
Xn−1 qi(z, x−i)dλn−1(x−i) for all z ∈ X.

Lemma 3. Q : X → [0, n] is the reduced form of some q ∈ Qn if and only if

(17)

�

{x:Q(x)≥z}
Q(x)dλ(x) ≤ 1−

�
λ({x : Q(x) < z})

�n
for all z ∈ [0, n].

Proof. Sufficiency is due to Proposition 3.1 in Border (1991) implying that if Q satisfies
(17), then there exists a symmetric q whose reduced form is Q. To prove necessity,
consider q ∈ Qn and let Q be its reduced form. For every t ∈ [0, n] denote Et = {x ∈
X : Q(x) ≥ t}. Then
�

y∈Et

Q(y)dλ(y) =

�

y∈X

�
n�

i=1

�

x−i∈Xn−1

qi(y, x−i)dλ
n−1(x−i)

�
1{y∈Et}dλ(y)

=
n�

i=1

��

(xi,x−i)∈Xn

qi(xi, x−i)1{xi∈Et}dλ
n(xi, x−i)

�

≤
n�

i=1

��

(xi,x−i)∈Xn

qi(xi, x−i)1∪j{xj∈Et}dλ
n(xi, x−i)

�

=

�

x∈Xn

�
n�

i=1

qi(x)

�
1∪j{xj∈Et}dλ

n(x) ≤
�

x∈Xn

1∪j{xj∈Et}dλ
n(x)

= 1−
�

x∈Xn

1∩j{xj∈X\Et}dλ
n(x) = 1−

�
λ(X\Et)

�n
.
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Feasibility condition (F0) is due to
�

i pi(x) = 1:
�

y∈X
g(y)dF (y) =

�

y∈X

�
n�

i=1

�

x−i∈Xn−1

pi(y, x−i)dF̄−i(x−i)

�
dF (y)(18)

=

�

x∈Xn

�
n�

i=1

pi(x)

�
dF̄ (x) = 1.

Let p be a solution of (P0). Then it’s reduced form satisfies feasibility conditions (F)
by Lemma 3 and (F0) by (18). Incentive constraint (IC) is satisfied as well, since (IC0)
applies separately for each i and thus, in general, is stronger than (IC).

Conversely, let g be a solution of (P). Since g satisfies (F) and (F0), by Proposition
3.1 in Border (1991) there exists a symmetric p whose reduced form is g. This p will
satisfy incentive constraint (IC0), since for symmetric mechanisms (IC) and (IC0) are
equivalent.

Proof of Theorem 1. Denote G(x) =
� x

a g(t)dF (t), where g satisfies (F0). Note that
by (F0) G(x) is a c.d.f. In these notations, the objective of the principal is to choose
a c.d.f. G that maximizes

�
X xdG(x) subject to (IC) and (F). A necessary condition

for G to be a solution is that it is maximal w.r.t. first-order stochastic dominance order
(FOSD) subject to (IC) and (F).

Below we prove that the set of FOSD maximal functions is {g∗z}z∈X , where g∗z is defined
by (3) and (4). It is immediate that optimization on the set of these functions yields
the set of solutions of (P∗).

Lemma 4. For every z ∈ X, g∗z is well defined and satisfies (IC), (F0), and (F).

Proof. First, let us show that for every z ∈ X, g∗z is well defined, that is, there exists r
that satisfies (4). Fix z ∈ X and let

r̄ =
1− F

n(z)

1− F (z)
.

Observe that z = x̄r̄, where x̄r̄ is given by (13). Lemma 1 then implies that gr(x) = r

for all x ≥ z and all r ≤ r̄.
Consider r = 0. Then gr(x) = 0 for all x ≥ z, while (ICmin) is vacuous, thus g

r
fits

(Fmin) everywhere, gr(x) = nF
n−1(x) for all x. Hence for r = 0

� z

a

g
r
(x)dF (x) +

� b

z

gr(x)dF (x) = F
n(z) ≤ 1.

Next, consider r = r̄. In this case gr(x) = r̄ for all x ≥ z, and thus
� z

a

g
r
(x)dF (x) +

� b

z

gr(x)dF (x) ≥ F
n(z) +

� b

z

r̄dF (x) = F
n(z) + 1− F

n(z) = 1,

where we used (Fmin) and (13). Finally,
� z

a g
r
(x)dF (x) is weakly increasing in r, since

a greater r implies a stronger constraint (ICmin). Also
� b

z gr(x)dF (x) =
� b

z rdF (x) is
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strictly increasing in r. Consequently,
� z

a g
r
(x)dF (x)+

� b

z gr(x)dF (x) is strictly increas-
ing in r. Thus there exists a unique solution of (4) on [0, r̄], and this is also the smallest
solution on [0, n].

Now let us show that g
∗
z is feasible and incentive compatible. Note that g

∗
z satisfies

(F0) and (F) by construction, due to constraints (Fmin) and (Fmax). To prove that g
∗
z

satisfies (IC), we need to verify that g
r
(x) satisfies (IC2) for x < z (while (IC1) holds by

(ICmin)), and gr(x) satisfies (IC1) for x ≥ z (while (IC2) holds by (ICmax)). For x ≥ z,
we have shown that gr(x) = r > rh(x), hence (IC1) is satisfied. For x < z, it must be
that g

r
(x) ≤ r, as otherwise r is not a solution of (4). Assume by contradiction that

g
r
(x) > r for some x < z. Since rh(x) < r, and we are optimizing a linear objective

in (Pmin), constraint (Fmin) must be binding. Further, the optimal trajectory such that
(Fmin) binds is increasing. Thus g

r
(x�) > r for all for all x�

> x, and (Fmin) remains

binding on [x, b], implying that
� b

a gr
(t)dF (t) = 1. Hence,

� z

a

g
r
(t)dF (t) = 1−

� b

z

g
r
(t)dF (t) < 1− (1− F (z))r.

But then
� z

a

g
r
(t)dF (t) +

� b

z

gr(t)dF (t) < 1− (1− F (z))r +

� b

z

rdF (t) = 1,

contradicting that r is a solution of (4).

Lemma 5. C.d.f. G(x) =
� x

a g(t)dF (t) is FOSD maximal subject to (IC) and (F) if and
only if there exists z ∈ Z such that g = g

∗
z .

Proof. Consider an arbitrary g̃ that satisfies (IC), (F), and (F0), and let G̃ =
� x

a g̃(t)dF (t).
Let r = supX g̃(x). Then g̃ satisfies (IC1) and (IC2) with this r. Consider now
G

∗
z(x) =

� x

a g
∗
z
(t)dF (t), where g∗z is a concatenation of g

r
and gr at point z such that (4)

holds. By Lemma 4, G∗
z is a c.d.f. that satisfies (IC) and (F).

Since
� x

a g
r
(t)dF (t) describes the lowest trajectory G(x) that satisfies (IC2) and (F),

we have for all x ≤ z

G
∗
z(x) =

� x

a

g
r
(t)dF (t) ≤

� x

a

g̃(t)dF (t) = G̃(x).

Also, since
� b

x gr(t)dF (t) describes the highest trajectory Ḡ(x) that satisfies (IC1) and
(F), we have for all x > z

1−G
∗
z(x) =

� b

x

gr(t)dF (t) ≥
� b

x

g̃(t)dF (t) = 1− G̃(x).

Hence, G∗
z FOSD G̃.

Proof of Theorem 2. To derive the upper bound on the principal’s payoff we solve
(P∗) subject to (IC1), (IC2) and (F0), while ignoring constraint (F).
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Solving (Pmin) subject to (ICmin), and solving (Pmax) subject to (ICmax) (we ignore
(Fmin) and (Fmax)) yields for every r ∈ [0, n]

g
r
(x) = rh(x) and gr(x) = r, x ∈ X.

By Lemma 5, each concatenation of g
r
and gr at z,

g
∗
z =

�
rh(x), x ≤ z,

r, x > z,

with r satisfying
� z

a rh(x)dF (x)+
� b

z rdF (x) = 1 is FOSD maximal. Solving for r yields

(19) r =

�� z

a

h(x)dF (x) +

� b

z

dF (x)

�−1

= (H(z) + 1− F (z))−1
,

where we denote

H(x) =

� x

a

h(t)dF (t).

Substituting g
∗
z and (19) into the principal’s objective function yields

max
z∈X

1

H(z) + 1− F (z)

�� z

a

xh(x)dF (x) +

� b

z

xdF (x)

�

The first-order condition is equivalent to

z(h(z)−1)f(z)(H(z)+1−F (z))− (h(z)−1)f(z)

�� z

a

xh(x)dF (x) +

� b

z

xdF (x)

�
= 0.

By assumption, f(x) > 0 and h(x) < 1, hence the above is equivalent to

(20)

� z

a

xh(x)dF (x) +

� b

z

xdF (x) = z(H(z) + 1− F (z)).

Observe that (19) and (20) are identical to (6) and (7) with x
∗ = z and r

∗ = r, and thus
g
∗
z is precisely (8). First-order condition (20) is also sufficient by the argument provided
in Footnote 9.

Proof of Proposition 4. By Theorem 2, x∗ can be achieved if and only if g∗ given
by (8) is feasible. Thus we need to verify that g∗ satisfies (F) if and only if (9) holds.

Denote Et = {x ∈ X : g∗(x) ≤ t}. Since the image of g∗ is {r∗h(x) : x ∈ [0, x∗]}∪{r∗},
we have Et = {x : r∗h(x) ≤ t} when t ∈ {r∗h(x) : x ∈ [0, x∗]} and Et = X when t = r

∗.
So, for g = g

∗, (F) is equivalent to:

(21)

�

x∈Et

r
∗
h(x)dF (x) ≥

�
F (Et)

�n̄
for all t ∈ {r∗h(x) : x ∈ [0, x∗]},

and

(22)

�

x∈X
g
∗(x)dF (x) ≥ 1.

Observe that (21) is equivalent to (9), while (22) is redundant by (F0).
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Proof of Corollary 1. We need to verify (9) under the assumption that n ≥ ñ, which
is equivalent to

(23) h(x) ≥ 1

n
, x ∈ X.

Let Et = {x ∈ X : z∗h(x) ≤ t}. Note that (9) is equivalent to
�

At

z
∗
h(x)dF (x) ≥

�
F (At)

�n̄
for all t ≤ z

∗ max
x∈[a,x∗]

h(x).

Denote Ft = F (Et) and Ht =
�
x∈Et

h(x)dF (x), and denote H
∗ = H([a, x∗]) and F

∗ =
F ([a, x∗]). In these notations we have z

∗ = (H∗ + 1 − F
∗)−1, and the above inequality

is equivalent to

Ht ≥ (H∗ + 1− F
∗)F n

t ,

or

Ht(1− F
n
t ) ≥

�
1− Ft + (H∗ −Ht)− (F ∗ − Ft)

�
F

n
t .

Since (H∗ − Ht) − (F ∗ − Ft) ≤ 0 by h(x) ≤ 1 and since Ht ≥ 1
nFt by (23), the above

inequality holds if

1

n
Ft(1− F

n
t ) ≥ (1− Ft)F

n
t .

This is true, since

1− F
n
t

F
n−1
t (1− Ft)

=
F

−n − 1

F−1 − 1
= 1 + F

−1 + F
−2 + . . .+ F

−(n−1) ≥ n.

Proof of Proposition 5. Consider q defined by (11). Let Q =
�
X q(x)dF (x) be the

ex-ante probability to be short-listed, and let A and B be the expected probabilities
to be chosen conditional on being shortlisted and conditional on not being short-listed,
respectively:

A =
n�

k=1

1

k

�
n− 1

k − 1

�
Q

k−1(1−Q)n−k and B =
1

n
(1−Q)n−1

.

Then an agent’s probability to be chosen conditional on reporting x is equal to gi(x) =
q(x)A+ (1− q(x))B. Set K = A/B and evaluate

g(x) ≡
�

i

gi(x) = n (q(x)A+ (1− q(x))B) =

�
nAh(x), x < x

∗
,

nA, x ≥ x
∗
.

By Theorem 2, the shortlisting procedure achieves x
∗ if g(x) = g

∗(x) for all x, where
g
∗ is given by (8). This holds if nA = z

∗. Thus we need to verify that condition (12)
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implies A = z
∗
/n. We have

Q =

�

X

q(x)dF (x) =
K

K − 1

�� x∗

a

h(x)dF (x) +

� b

x∗
dF (x)

�
− 1

K − 1
(24)

=
K

K − 1

1

z∗
− 1

K − 1
=

K − z
∗

z∗(K − 1)
, thus 1−Q =

K(z∗ − 1)

z∗(K − 1)
,

where we used (7). Also,

A =
n�

k=1

1

k

(n− 1)!

(k − 1)!(n− k)!
Q

k−1(1−Q)n−k =
1

nQ

n�

k=1

n!

k!(n− k)!
Q

k(1−Q)n−k

=
1

nQ
(1− (1−Q)n) .

Substituting (24) into the above yields

A =
z
∗(K − 1)

n(K − z∗)

�
1−

�
K

z∗

�n �
z
∗ − 1

K − 1

�n�
.

By (12),

A =
z
∗(K − 1)

n(K − z∗)

�
1− z

∗ − 1

K − 1

�
=

z
∗(K − 1)

n(K − z∗)

K − z
∗

K − 1
=

z
∗

n
.

Proof of Lemma 1. Observe that, as the incentive constraint (ICmax) permits
monotonic solutions, the feasibility constraint (Fmax) reduces to Ḡ(x) ≤ 1 − F

n(x), or
equivalently

� b

x

g(t)dF (t) ≤
� b

x

nF
n−1(t)dF (t) for all x ∈ X.

It is then straightforward that incentive constraint (ICmax) is binding so long as x > x̄r,
and hence gr(x) = r for x > x̄r, while (Fmax) is binding when x < x̄r, and hence
gr(x) = nF

n−1(x) for x < x̄r. For r ∈ [1, n] equation (13) has a unique solution. For

r < 1 we have
� b

x� rdF (x) < 1 − F
n(x�) for all x�, that is, (Fmax) is nowhere binding.

Hence x̄r = a in this case.

Proof of Lemma 2. First, we show that g
r
given by (??) is well defined and unique.

In order to do that, we prove that xr is well defined for each r ∈ [0, n].
As h(F−1(t)) is concave by Assumption 1, it follows that for every n ≥ 2, h(F−1(t))−

nt
n−1 is concave (and strictly concave for n > 2). Hence, by monotonicity of F , for all

r ≥ 0

(25) rh(x)− nF
n−1(x) is quasiconcave.

Denote by x̃ the greatest solution of rh(x̃) = nF
n−1(x̃). Note that such a solution always

exists, since rh(0) ≥ nF
n−1(0) = 0 and rh(1) ≤ nF

n−1(1) = n by h(1) ≤ 1 and r ≤ n.
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Thus we have rh(t)−nF
n−1(t) nonnegative on [a, x̃] and negative on (x̃, b]. As a result,

� x

a

(rh(t)− nF
n−1(t))dF (t)

is positive and increasing for x < x̃ and strictly decreasing for x > x̃. Consequently,
either there exists an xr that satisfies

11 (14), or
� b

a (rh(t)− nF
n−1(t))dF (t) > 0, equiva-

lently,

r

� b

a

h(t)dF (t) >

� b

a

nF
n−1(t)dF (t) = 1.

This holds if and only if r >
�� b

a rh(t)dF (t)
�−1

≡ r̄.

Next, we argue that g
r
(x) is the solution of problem (Pmin) subject to (ICmin) and a

weakening of (Fmin):

(26)

� x

a

g(t)dF (t) ≥ F
n(x), x ∈ [xr, b].

This is indeed true, since g
r
defines the lowest trajectory of G(x) =

� x

a g(t)dF (t) that
satisfies both (ICmin) and (26), with (ICmin) binding on [a, xr] and (26) binding on (xr, b].

Thus it remains to show that g
r
satisfies (Fmin). Suppose that h is weakly increasing.

Then g
r
satisfies (Fmin) if and only if

� x

a

rh(t)dF (t) ≥ F
n(x) for all x ≤ xr, and

� xr

a

rh(t)dF (t) +

� x

xr

nF
n−1(t)dF (t) ≥ F

n(x) for all x > xr.

The second inequality holds as equality by (14). The first inequality can be rewritten as
� x

a

�
rh(t)− nF

n−1(t)
�
dF (t) ≥ 0,

which holds by (14) and (25).
To handle the case of nonmonotonic h, we apply the above argument to a transfor-

mation that monotonizes h ◦ F−1 without affecting (Fmin) as follows.
Fix r and define t̄ = F (xr). A measure-preserving monotonization of function h◦F−1

on domain [0, t̄] is a weakly increasing function φ : [0, t̄] → [0, 1] such that for every
s ∈ [0, 1] �

{t∈[0,t̄]:h(F−1(t))≥s}
h(F−1(t))dt =

�

{t∈[0,t̄]:φ(t)≥s}
φ(t)dt.

Since h ◦ F
−1 is concave by Assumption 1, the monotonization procedure is straight-

forward. Let s̄ = maxt∈[0,t̄] rh(F−1(t)). For every s ∈ [0, s̄] define Es = {t ∈ [0, t̄] :
h(F−1(t)) ≥ s}. Observe that supEs − inf Es is strictly decreasing and concave, due
to concavity of h ◦ F

−1. Let φ(t) be the inverse of t̄ − supEs + inf Es. Thus, φ(t) is

11Note for n = 2, rh(x)−2F (x) is weakly quasiconcave. So it is possible that there is an interval [x�, x��]
of solutions of (14), but in that case rh(x) = 2F (x) for all x ∈ [x�, x��], and hence every xr ∈ [x�, x��]
defines the same function in (14).
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strictly increasing and concave, and hence rh̃(x)−nF
n−1(x) is quasiconcave, where h̃ is

implicitly defined by φ(t) = h̃(F (t)), t ∈ [0, t̄].

Proof of Proposition 6. By Theorem 1, the solution g
∗ is chosen among concate-

nations of g
r
and gr. By Lemmata 1 and 2, g∗ is given by (15) for some r if xr < xr

and by (8) if xr ≥ xr. The latter case is ruled out by the assumption that n < n̄: (9)
is violated and the feasibility constrain must be binding for a positive measure of types.
Hence, g∗ is as in (15), and r is chosen to maximize the payoff of the principal:

� xr

a

xrh(x)dF (x) +

� xr

xr

xnF
n−1(x)dF (x) +

� b

xr

xrdF (x).

Taking the derivative w.r.t. r yields the first-order condition that is precisely (16). Since
xr is strictly increasing and xr is strictly decreasing in r, the solution of (16) is unique.
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