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Abstract

The theoretical literature on (non-random) choice largely follows the route of Richter

(1966) by working in abstract environments and by stipulating that we see all choices of

an agent from a given feasible set. On the other hand, empirical work on consumption

choice using revealed preference analysis is done following the approach of Afriat (1967),

which assumes that we observe only one (and not necessarily all) of the potential choices

of an agent. These two approaches are structurally different and they are treated in the

literature in isolation from each other. This paper introduces a framework in which both

approaches can be formulated in tandem. We prove a rationalizability theorem in this

framework that simultaneously generalizes the fundamental results of Afriat and Richter,

along with many of their variants.
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1 INTRODUCTION

As pioneered by Hendrik Houthakker and Paul Samuelson, the classical theory of re-

vealed preference was conducted for consumption choice problems within the class of all

budget sets in a given consumption space. In time, this work has been extended, and
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refined, in mainly two ways. The seminal contributions of Arrow (1959) and Richter

(1966, 1971) have shifted the focus of decision theorists to studying the consequences

of rational decision-making in richer, and more abstract, settings. The vast majority of

modern choice theory, be it modeling rational or boundedly rational decision making,

is now couched within this framework. On the other hand, another seminal approach

was pursued by Afriat (1967) in the context of standard consumption problems, but

under the unexceptionably reasonable premise that a researcher will have choice data

only for finitely many budget sets in a given consumption space. This approach has

proved useful for econometric tests of rationality, and for the construction of utility and

demand functions from consumption choice data.1

It is striking that the entire literature on (non-random) choice can be viewed either

as following the abstract route of Richter (1966) or the empirically-oriented route of

Afriat (1967), with little contact between each other. This is mainly because these two

approaches are structurally different. To be precise about this, let us have a look at the

fundamental rationalizability theorems of these papers:

Richter’s Theorem. Let X be a nonempty set and A a nonempty collection of

nonempty subsets of X. A map (choice correspondence) c from A into 2X\{∅} with

c(A) ⊆ A for each A ∈ A satisfies the congruence axiom if, and only if, there is a com-

plete preference relation (preorder) % on X such that c(A) = {x ∈ A : x % y for each

y ∈ A}.2

Afriat’s Theorem. Let k and n be positive integers, and take any (p1,x1), ..., (pk,xk)

in Rn
++ × Rn

+. Then there is a continuous and strictly increasing (utility) function u :

Rn
+ → R such that u(xi) ≥ u(x) for each x ∈ Rn

+ and i = 1, ..., k with pix ≤ pixi if,

and only if, (p1,x1), ..., (pk,xk) obeys cyclical consistency, which means that, for any

{t1, t2, ..., tl} ⊆ {1, 2, ..., k},

pt2xt1 ≤ pt2xt2 , ...,ptlxtl−1 ≤ ptlxtl and pt1xtl ≤ pt1xt1

imply

pt2xt1 = pt2xt2 , ...,ptlxtl−1 = ptlxtl and pt1xtl = pt1xt1 .

Even a casual look at these results witnesses a number of important differences.

Richter’s Theorem is very abstract. It has the advantage of allowing for any kind of

1See Vermeulen (2012) for a nice survey on the theory of revealed preference.
2Here we wish to examine only the “structure” of this theorem, so for the present discussion, it is

not important what the congruence axiom is. This axiom is defined formally in Section 4.1.
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choice domain. It presumes that all choices of the agent are observed in the case of any

choice problem – that is, the entirety of the set c(A) is known for any A in A – and on

the basis of a single axiom on c, delivers a complete preference relation the maximization

of which yields all choices of the agent in every choice problem. By contrast, Afriat’s

Theorem is fairly concrete. It works only with k many budget problems for consumption

of bundles of n goods. It presumes that only one choice of the agent is observed in the

case of any budget set,3 – we see the bundle xi being chosen in the budget set with

prices pi and income pixi – and on the basis of a single axiom on the choices of the

agent, delivers a utility function with respect to which the (observed) choices are best

within their respective budget sets. Furthermore, this utility function is continuous and

strictly increasing, concepts which are not even meaningful in the general alternative

space considered in Richter’s Theorem. Comparing the central assumptions, we see that

the special structure of Rn is used in an essential manner in the definition of cyclical

consistency and it is not possible to state a generalization of this property in an envi-

ronment where the alternative space lacks an inherent order and/or algebraic structure.

By contrast, Richter’s Theorem does not need a special mathematical structure on the

alternative space X and the congruence axiom is a purely set-theoretic property.

All in all, the theorems above appear to have fairly different characters, even though,

conceptually, they are after the same thing, namely, identifying conditions on one’s choice

behavior that would allow us to view this individual “as if” she is maximizing a preference

relation (or a utility function).4 It thus seems desirable to develop a framework in which

the approaches of Afriat and Richter toward revealed preference theory can be formulated

simultaneously. On the one hand, such a framework would allow for a unified approach

to (non-random) revealed preference theory that admits the previous approaches as

special cases. On the other hand, it would provide an avenue for bringing together

the most desirable parts of these approaches together, thereby paving the way toward

more powerful revealed preference theories. In particular, such a framework would let

us work with choice environments in which one recognizes the fact that often we observe

3This is not entirely correct. While this is how the theorem is utilized in practice, Afriat’s Theorem

allows for pixi = pjxj for distinct i and j, so the data may in principle yield two (or more) choices

from a given budget set. It is, however, in the very nature of this theorem that only some choices of

the agent is observed in the case of any budget set.
4While we single out Richter’s and Afriat’s Theorems in this discussion, we note that these theorems

serve as prototypes here. In particular, everything we said so far about the distinction between these

theorems remain valid in the case of any of the extensions of Afriat’s Theorem provided in the literature.
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only one (or a few) choice(s) of an agent in a given choice situation (a major advantage

of Afriat’s theory) without limiting attention only to consumption choice problems (a

major advantage of Richter’s theory). The primary objective of the present paper is to

provide such a framework.

The framework we propose departs from the previous literature on abstract revealed

preference theory in two ways. First, it models the choice behavior of an agent by a set

of choice correspondences, instead of a single one. The idea is quite intuitive. Suppose

we observe the choice behavior of an agent across a collection, say, A, of feasible sets.

For simplicity, suppose we see exactly one choice of the agent, say xA, from each feasible

set A in A. The model identifies this behavior with the set of all choice correspondences

(on A) that declares xA as a potential choice from A, that is, it says that the agent’s

“true” choice correspondence c is one with xA ∈ c(A) for each A in A. Notice that this

is precisely Afriat’s approach generalized to an arbitrary choice domain. By contrast,

Richter’s approach presumes that we are privy to “all” choices of the agent in the case

of any feasible set. For instance, it may be the case that we are somehow certain that xA

is the only choice of the agent from A for each A in A. In that case, the set of all choice

correspondences that is consistent with the data becomes a singleton that contains the

“true” choice correspondence c of the agent, where {xA} = c(A) for each A in A. As this

example easily generalizes to the case where the agent may have been observed to make

multiple choices from a given feasible set, we thus see that modeling an agent as a set of

choice correspondences captures both approaches as special cases. In Richter’s case this

set is necessarily a singleton, and in Afriat’s case it is not (except in trivial instances).5

This framework is, however, not yet enough to formulate Afriat’s Theorem within,

because that theorem relies crucially on an exogenously given order structure. Indeed,

without some monotonicity requirement on u, the notion of consistency in Afriat’s The-

orem will impose no restrictions on observations since we can allow the agent to be

indifferent across all alternatives. This leads to the second novel aspect of the frame-

work we propose here: we assume that the alternative space is a partially ordered set,

as opposed to an arbitrary set. This way we keep the standard environment of Richter

as a special case (where the partial order is the equality ordering) and include domains,

such as Rn, which have intrinsic order structures.

After going through a few mathematical preliminaries in Section 2, we introduce the

5While this is a side point for the current paper, it is worth noting here that this framework allows

for modeling certain types of interesting choice situations that cannot be captured by either the Afriat

or the Richter approaches. An example to this effect is provided in Section 3.4 (see Example 4).
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framework we propose formally in Section 3. In that section we also show by examples

how this abstract framework admits numerous choice environments that are studied in

the previous literature, ranging from Richter-type choice frameworks to Nash bargaining

problems and Afriat-type environments, as well as new ones. It is important to note

that our framework is an abstract setup that is primed to capture any sort of choice

data that one can encounter in theory and practice. As such, it is not geared necessarily

toward rational choice theory and it can be used to study any type of boundedly rational

choice theory as well. In this paper, however, we focus on developing rational choice

theory in the context of this framework with the aim of demonstrating that Richter’s

and Afriat’s approaches are in fact branches of the same tree. Indeed, there is a natural

way of extending Richter’s congruence axiom to our framework in a way that this axiom

recognizes the inherent order structure of the alternative space. We call this exten-

sion the monotone congruence axiom (Section 4.3). Similarly, the cyclical consistency

condition is extended to our setting in a natural manner; we refer to this extension as

the generalized cyclical consistency (Section 4.4). Our main theorem shows that these

(extended) properties have a close formal connection. Furthermore, the monotone con-

gruence axiom yields a representation very much in the spirit of Richter (but now with

monotone preference relations) while generalized cyclical consistency yields precisely an

Afriat-type representation (but now over an arbitrary choice domain). Therefore, our

main theorem (in Section 4.5) generalizes Richter’s Theorem and the choice-theoretic

content of Afriat’s Theorem simultaneously (see Sections 4.7 and 4.9), even though the

structure of rationalization we obtain in the latter case is different than Afriat’s classical

construction (Section 4.7).

Our main theorem is, however, of “rationalization by a preference relation” form, and

unlike Afriat’s Theorem, it is not of “rationalization by a utility function” form. The

latter form obtains in Afriat’s Theorem due to the special structure of the alternative

space Rn and the assumption that the collection of feasible sets under consideration is

finite. In Section 5, we show that if we make this finiteness assumption in our framework

and posit that the alternative space satisfies fairly general (topological) conditions, then

our main theorem can be stated in terms of continuous and monotonic utility functions.

Consequently, we admit Afriat’s Theorem (as stated above) as a special case and also

provide a continuous version of Richter’s Theorem.

These results attest to the unifying structure of the revealed preference framework

we propose here. We hope that this framework will also facilitate the development of
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the recent literature on boundedly rational choice theory, especially in extensions that

explicitly account for issues of data availability.

2 PRELIMINARIES

The primary tool of analysis in this paper is order theory. The present section catalogues

the definitions of all the order-theortic notions that we utilize throughout the present

work. As these notions are largely standard, this section is mainly for the reader who

may need a clarification about them in the main body of the paper.

2.1 Order-Theoretic Nomenclature. Let X be a nonempty set, and denote the

diagonal of X ×X by 4X , that is, 4X := {(x, x) : x ∈ X}. By a binary relation on X,

we mean any nonempty subset of X ×X. For any binary relation R on X, we adopt the

usual convention of writing x R y instead of (x, y) ∈ R. (Thus, x 4X y iff x = y for any

x, y ∈ X.) Similarly, for any x ∈ X and subset A of X, by x R A we mean x R y for

every y ∈ A, and interpret the expression A R x analogously. Moreover, for any binary

relations R and S on X, we simply write x R y S z to mean x R y and y S z, and so

on. For any subset A of X, the decreasing closure of A with respect to R is defined as

A↓,R := {x ∈ X : y R x for some y ∈ A}, but when R is apparent from the context,

we may denote this set simply as A↓. The increasing closure of A is defined dually. By

convention, x↓ := {x}↓ and x↑ := {x}↑ for any x in X.

The inverse of a binary relation R on X is itself such a binary relation defined as

R−1 := {(y, x) : x R y}. The composition of two binary relations R and R′ on X is

defined as R ◦ R′ := {(x, y) ∈ X × X : x R z R′ y for some z ∈ X}. In turn, we let

R1 := R and Rn := R ◦Rn−1 for any integer n > 1; here Rn is said to be the nth iterate

of R.

The asymmetric part of a binary relation R on X is defined as PR := R\R−1 and the

symmetric part of R is IR := R ∩ R−1. We say that a binary relation R on X extends

another such binary relation S if S ⊆ R and PS ⊆ PR. For any nonempty subset A of

X, the set of all maximal elements with respect to R is denoted as MAX(A,R), that is,

MAX(A,R) := {x ∈ A : y PR x for no y ∈ A}. Similarly, the set of all maximum elements

with respect to R is denoted as max(A,R), that is, max(A,R) := {x ∈ A : x R y for all

y ∈ A}. We also define MIN(A,R) := MAX(A,R−1) and min(A,R) := max(A,R−1).

A binary relation R on X is said to be reflexive if4X ⊆ R, antisymmetric if R∩R−1 ⊆
4X , transitive if R◦R ⊆ R, and complete if R∪R−1 = X×X. The transitive closure of

R, denoted by tran(R), is the smallest transitive relation on X that contains R, and is
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given by tran(R) := R ∪R2 ∪ · · ·. In other words, x tran(R) y iff we can find a positive

integer k and x0, ..., xk ∈ X such that x = x0 R x1 R · · ·R xk = y.

If R is reflexive and transitive, we refer to it as a preorder on X. (In particular,

tran(R) is a preorder on X for any reflexive binary relation R on X.) If R is an anti-

symmetric preorder, we call it a partial order on X. The ordered pair (X,R) is called a

preordered set if R is a preorder on X, and a poset if R is a partial order on X. (Through-

out the paper, a generic preorder is denoted as %, with � acting as the asymmetric part

of %.) Finally, we say that R is acyclic if 4X ∩ P n
R = ∅ for every positive integer n.

It is readily verified that transitivity of a binary relation implies its acyclicity, but not

conversely.

For any preorder % on X, a complete preorder on X that extends % is said to be

a completion of %. It is a set-theoretical fact that every preorder on a nonempty set

admits a completion. This result, which is based on the Axiom of Choice, is known as

Szpilrajn’s Theorem.6

Given any preordered set (X,%), a function f : X → R is said to be increasing

with respect to % if f(x) ≥ f(y) holds for every x, y ∈ X with x % y. If, in addition,

f(x) > f(y) holds for every x, y ∈ X with x � y, we say that f is strictly increasing

with respect to %.

Finally, given a poset (X,<) and a subset A of X, we denote by
∨
A the unique

element of min({x ∈ X : x < A},<), provided that this set is nonempty (and hence

a singleton). Analogously,
∧

A is the unique element of max({x ∈ X : A < x},<),

provided that this set is nonempty. If
∨
A exists for every nonempty finite A ⊆ X, then

(X,<) is said to be a ∨-semilattice, and if
∨
A exists for every A ⊆ X, then (X,<) is

said to be a complete ∨-semilattice. If (X,<−1) is a ∨-semilattice, we say that (X,<)

is a ∧-semilattice.

2.2 Topological Nomenclature. Let (X,%) be a preordered set such that X is a

topological space. We say that % is a continuous preorder on X if it is a closed subset

of X × X (relative to the product topology).7 We note that the closure of a preorder

on X (in X ×X) need not be transitive, nor is the transitive closure of a closed binary

6Szpilrajn (1938) has proved this result for partial orders, but the result easily generalizes to the

case of preorders; see Corollary 1 in Chapter 1 of Ok (2007).
7While there are other notions of continuity for a preorder (for instance, openness of its strict part

on X), this terminology is adopted quite widely in the literature. See, for instance, Evren and Ok

(2011) and references cited therein.
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relation on X in general continuous. One needs additional conditions to ensure such

inheritance properties to hold (Ok and Riella (2013)).

Given a continuous preorder % on X, the topological conditions on X that would

ensure the existence of a continuous real map on X that is strictly increasing with respect

to % are well-studied in the mathematical literature. In particular, it is known that such

a function exists if X is a locally compact and separable metric space. This is Levin’s

Theorem.8

Notational Convention. Throughout this paper, we write [k] to denote the set {1, ..., k}
for any positive integer k.

3 CHOICE ENVIRONMENTS AND CHOICE DATA

3.1 Choice Environments. By a choice environment, we mean an ordered pair

((X,≥),A), where (X,≥) is a poset and A is a nonempty collection of nonempty subsets

of X. Here we interpret X as the grand set of all choice alternatives, that is, the con-

sumption set. We think of ≥ as an exogeneously given domination relation on X, and

view the statement x ≥ y as saying that x is an unambiguously better alternative than

y for any individual. (If the environment one wishes to study lacks such a dominance

relation, we may set ≥ as 4X so that x ≥ y holds iff x = y.9) Finally, A is interpreted

as the set of all feasible sets from which a decision maker is observed to make a choice.

For instance, if the data at hand is so limited that we have recorded the choice(s) of an

agent in the context of a single feasible set A ⊆ X, we would set A = {A}. At the other

extreme, if we have somehow managed to keep track of the choices of the agent from ev-

ery possible feasible set A ⊆ X (as sometimes is possible in the controlled environments

of laboratory experiments), we would set A = 2X\{∅}.

3.2 Choice Correspondences and Choice Data. Given a nonempty set X and a

nonempty subset A of 2X\{∅}, by a choice correspondence on A, we mean a map

c : A → 2X such that c(A) is a nonempty subset of A for each A ∈ A. We denote the

family of all choice correspondences on A by C(X,A).

8See Levin (1983), where this result is proved in the more general case where X is a locally compact,

σ-compact and second countable Hausdorff space.
9Every result we report in this paper remains valid, if ≥ is an arbitrary preorder (with no substantial

change in the proofs). We take (X,≥) as a poset, instead of a preordered set, only to simplify the

exposition, and because the natural dominance relations that arise in the applications we consider here

are all partial orders.
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There is a natural way of ordering the choice correspondences on A. Consider the

binary relation w on C(X,A) defined as

c w d iff c(A) ⊇ d(A) for every A ∈ A.

Clearly, (C(X,A),w) is a poset. It is also plain that this poset is a complete ∨-semilattice,

but it is not an ∧-semilattice unless all members of A are singleton subsets of X.

In the present paper, by a choice correspondence on a choice environment ((X,≥
),A), we simply mean an element of C(X,A). (Notice that this notion does not depend

on the preorder ≥.) In turn, we refer to any nonempty collection C of choice correspon-

dences on ((X,≥),A) as a choice data on ((X,≥),A). By way of interpretation, we

may think of C as a means of summarizing the choices of a given decision maker across

all feasible sets in A in the sense that C is precisely the set of all choice correspondences

on ((X,≥),A) that are compatible with the (observed) choices of that agent.

3.3 Revealed Preference Frameworks. By a revealed preference (RP) frame-

work, we mean an ordered triplet

((X,≥),A,C),

where ((X,≥),A) is a choice environment and C is a choice data on ((X,≥),A). We

note that this model is quite general, and it departs from how revealed preference theory

is usually formulated in the literature mainly in two ways. First, it features the notion

of an unambiguous ordering of the alternatives (in terms of some form of a domination

relation). Second, and more important, this model takes as a primitive not one choice

correspondence, but potentially a multiplicity of them. The following subsection aims

to demonstrate the advantages of this modeling strategy by means of several examples.

3.4 Examples. In a large class of models of revealed preference, one takes as primitives

a finite alternative set X and a choice correspondence c on 2X\{∅}. (This is, for instance,

precisely the model studied by Arrow (1959), and is one of the most commonly adopted

choice frameworks in the recent literature on boundedly rational choice.) Especially

when X is not finite, however, it is also commonplace to posit that we can observe one’s

choice behavior only in the context of certain types of feasible sets.

Example 1. (Richter-Type RP Frameworks) Let X be any nonempty set, A any

nonempty collection of nonempty subsets of X, and c a choice correspondence on A.
Then, ((X,4X),A, {c}) is an RP framework that corresponds to the choice model of
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Richter (1966). The interpretation of the model is that one is able to observe all elements

deemed choosable by the decision maker from any given element of A. No exogeneous

order (or otherwise) structure on the consumption set X is postulated. Most of the

revealed preference analyses conducted in the literature on choice theory work with

instances of this model.

Example 2. (Ordered Richter-Type RP Frameworks) A slight modification of the

previous model obtains if we endow X with a nontrivial partial order ≥, leading us to

the RP framework ((X,≥),A, {c}). Many classical choice models are obtained as special

cases of this framework. We give two illustrations:

a. (Classical Consumption Choice Problems) Let n be a positive integer. Take

X as Rn
+, ≥ as the standard (coordinatewise) ordering of n-vectors, and suppose that

A ⊆ {B(p, I) : (p, I) ∈ Rn
++ × R++}, where B(p, I) is the budget set at prices p and

income I, that is, B(p, I) := {x ∈ Rn
+ : px ≤ I} for every positive (n + 1)-vector (p, I).

The RP framework ((X,≥),A, {c}) then corresponds to the classical consumption choice

model.

b. (Nash Bargaining Problems) Where n is a positive integer, take X as Rn
+, ≥ as

the standard (coordinatewise) ordering of n-vectors, and put A as the set of all compact

and convex subsets of X that contain the origin 0 in their interior. The RP framework

((X,≥),A, {c}) then corresponds to classical n-person cooperative bargaining model.

(In this model, elements of X are interpreted as the utility profiles of the involved

individuals, and 0 is the (normalized) utility profile that corresponds to the disagreement

outcome.) When c is single-valued, for instance, this model reduces to the one considered

by Nash (1950) and a large fraction of the literature on axiomatic bargaining theory. If

we relax the convexity requirement, we obtain the model of non-convex collective choice

problems (cf. Ok and Zhou (1999)).

The choice models considered in the previous two examples presume that we can

observe all choices of an individual in the case of every one of the feasible sets. (Put

differently, these models posit that they are given the “true” choice correspondence of the

decision-maker in its entirety.) This comprehensiveness assumption is, however, often

not met in the empirical studies on revealed preference in which the researcher has one

data point (per individual) for each feasible set. This has led many authors to consider

models in which one is privy to only one choice of an individual in a given feasible set.

Example 3. (Afriat-Type RP Frameworks) Consider a choice environment of the
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form ((X,≥),A), where A is a nonempty finite subset of 2X\{∅}, and c is a choice

correspondence on A such that c(A) is finite for all A ∈ A.10 A particularly interesting

RP framework is then obtained as ((X,≥),A,C), where

C := {C ∈ C(X,A) : C w c}.

C thus equals c↑, the increasing closure of {c} with respect to w. The interpretation

is that (i) we observe the choice behavior of the agent for only finitely many choice

problems; and (ii) we see only some of the choices of the agent in each problem that

she faces. Part (i) is captured by the model through the finiteness of A. In turn, part

(ii) is captured by setting c to correspond to the observed choices of the agent (that is,

c(A) is what we see the decision maker choosing from A for each A ∈ A). In particular,

due to the limited nature of our observations, we do not know if the agent was perhaps

indifferent, or indecisive, between her choice from A and some other alternatives in

A ∈ A. Consequently, the framework uses the choice data C to model the choice

behavior of the agent, thereby formulating her choice behavior in a coarser way. Put

precisely, it presumes that the “true” choice correspondence of the agent may be any one

choice correspondence C on A which is consistent with c in the sense that the elements

of c(A) are contained in C(A) for each A ∈ A. Again, many classical choice models are

obtained as special cases of this framework.

a. (Afriat’s Model of Consumption Choice Problems) Let n be a positive integer.

In the classical framework of Afriat (1967), the consumption set is modeled as Rn
+ and

viewed as partially ordered by the coordinatewise ordering ≥. The primitive of the

model is a finite collection of price vectors and the choice(s) of the agent at those prices.

Formally, we are given a nonempty finite subset P of Rn
++, and a map x that assigns to

every p ∈ P a nonempty finite subset x(p) of Rn
+ such that py = pz for every y and

z in x(p). We interpret P as a set of price profiles, and for each p in P, think of x(p)

as the set of the bundles that the individual was observed to choose from the budget

set B(p,px(p)). (Here, by a slight abuse of notation, by px(p) we mean py for any

y ∈ x(p).11) This model is captured by the RP framework above by setting (X,≥)

10We assume that the choice correspondence c is finite-valued only for illustrative purposes. All of the

considerations remain intact if this assumption is dropped and, indeed, our characterization theorems

allow for this.
11The restriction that bundles in x(p) incur the same expenditure is without loss of generality.

Indeed, by modifying the domain P if necessary, we can assume that px(p) = 1 for all p ∈ P . This is

because B(p,py) = B(λp, λpy) for any λ > 0 and y ∈ Rn
+, so requiring income to equal 1 imposes no

restrictions on a budget set provided the price can be scaled up or down.
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as Rn
+ (with the usual ordering), A as {B(p,px(p)) : p ∈ P}, and c as mapping each

B(p,px(p)) to x(p). The choice data of the model is thus

C := {C ∈ C(X,A) : x(p) ∈ C(B(p,px(p))) for each p ∈ P},

that is, the collection of all choice correspondences on A that is consistent with x being

a part of the choice correspondence of the individual.

b. (The Forges-Minelli Model of Consumption Choice Problems) The applicability of

the Afriat model is strained by the fact that it is concerned only with linear budget sets.

To deal with nonlinearities that may arise from price floors/ceilings, price differentiation

that may depend on quantity thresholds, and other considerations, many authors have

considered Afriat type models with nonlinear budget sets (cf. Matzkin (1991) and Chavas

and Cox (1993)). Such cases too are readily modeled by means of the revealed preference

framework of the present example. For instance, given any two positive integers n and

k, Forges and Minelli (2009) take as a primitive a finite collection of ordered pairs, say,

(g1,x1), ..., (gk,xk), where gi is a strictly increasing and continuous real map on Rn
+

with gi(xi) = 0 for each i ∈ [k]. They interpret this data as the situation in which we

observe a given decision maker choosing the bundle xi from the generalized budget set

Bi(gi) := {x ∈ Rn
+ : gi(x) ≤ 0} for each i ∈ [k]. This setup is then captured by the

revealed preference framework ((Rn
+,≥),A,C) where A := {Bi(gi) : i ∈ [k]} and C is

the set of all choice correspondences C on A such that xi ∈ C(B(gi)) for each i ∈ [k].

The examples above accord with viewing the choice data of an agent as the collection

of all choice correspondences that are compatible with her observed choices. There are,

however, instances where we may get partial information about the potential choices

of an agent even though we do not observe them exactly. This situation too can be

modeled by using our RP framework technology. We illustrate this in our next example,

even though such models will not be investigated in this paper.

Example 4. Consider a choice environment of the form ((X,≥),A), and let us suppose

that the agent is supposed to finalize her choice in a second period, but today she is able

to commit to choosing something (tomorrow) from a subset of a given feasible set. To

formalize this scenario, let us fix a correspondence d : A → 2X\{∅} such that d(A) ⊆ A

for each A ∈ A. For each A, the interpretation of d(A) is that the agent commits,

today, to not choosing anything (tomorrow) from A\d(A). Given that we observe the

commitment decisions of the agent, that is, d, it is natural to model the final choices of
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the agent (which we do not observe) by means of the choice data

C := {C ∈ C(X,A) : d w C}.

(Notice that, mathematically, this choice data is the dual opposite of the one we have

considered in Example 3; it is the decreasing closure of {d} with respect to w.) For, in

the present scenario, all we know about the choice of the agent from a feasible set A is

that this choice being contained within d(A).

4 RATIONALIZABILITY OF CHOICE DATA (with arbitrary data sets)

4.1 Rationalizability of Choice Correspondences. Let X be a nonempty set

and A a nonempty subset of 2X\{∅}. A choice correspondence c on A is said to be

rationalizable if there is a complete preorder % on X such that

c(A) = max(A,%) for every A ∈ A. (1)

In his seminal paper, Richter (1966) has provided a characterization of such choice

correspondences by means of what he dubbed the “congruence axiom.” To state this

property, let us define the binary relation R(c) on X by

x R(c) y if and only if (x, y) ∈ c(A)× A for some A ∈ A.

This relation, introduced first by Samuelson (1938) in the special case of consumption

problems, is often called the direct revealed preference relation induced by c in the

literature, while the transitive closure of R(c) is referred to as the revealed preference

relation induced by c. Then, given X and A, a choice correspondence c on A is said to

satisfy the congruence axiom if

x tran(R(c)) y and y ∈ c(A) imply x ∈ c(A)

for every A ∈ A that contains x. As noted in the Introduction, Richter’s Theorem says

that a choice correspondence c on A is rationalizable iff it satisfies the congruence axiom.

4.2 Monotonic Rationalizability of Choice Data. The notion of rationalizability

readily extends to the more general context of RP frameworks. Where ((X,≥),A,C)

is an RP framework, we say that the choice data C is rationalizable if at least one

c in C is a rationalizable choice correspondence on A. However, this concept does not

at all depend on the partial order ≥. Given the interpretation of ≥ as a dominance
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relation, it is natural to require the “rationalizability” take place by means of preference

relations that are consistent with ≥. (For instance, in the context of commodity choice

where (X,≥) is Rn (with the coordinatewise ordering), it is natural to require one’s

preferences that are derived from choice data to be consistent with this ordering, thereby

reflecting the sentiment that “more is better.”) This leads us to the notion of monotonic

rationalizability: The choice data C is monotonically rationalizable if there is a c ∈ C
and a complete preorder % on X such that (1) holds and % extends≥.12 Obviously, in the

context of any Richter-type RP framework (Example 1), the notions of rationalizability

and monotonic rationalizability coincide.

4.3 The Monotone Congruence Axiom. Richter’s congruence axiom is readily

translated into the context of RP frameworks, but this axiom needs to be strengthened

to deliver a characterization of monotonic rationalizability. Where ((X,≥),A,C) is an

RP framework, we say that the choice data C satisfies the monotone congruence

axiom if there is a c ∈ C such that

x tran(R(c) ∪ ≥) y and y ∈ c(A) imply x ∈ c(A) (2)

for every A ∈ A that contains x, and

x tran(R(c) ∪ ≥) y implies not y > x. (3)

Clearly, in the context of any Richter-type RP framework, this axiom reduces to the

congruence axiom. Furthermore, given Richter’s theorem, a natural conjecture is that a

choice data C on A is monotonically rationalizable iff it satisfies the monotone congru-

ence axiom. That this conjecture is true will be proved in Section 4.6 as an immediate

consequence of the main theorem of this paper.

4.4 Generalized Cyclical Consistency. Consider the RP framework we have for-

malized in Example 3.a, where we are given a nonempty finite subset P of Rn
++, and

a map x that assigns to every p ∈ P a nonempty finite subset x(p) of Rn
+ such that

py = pz for every y and z in x(p). In this context, Afriat (1967) characterizes rational

decision making by means of his famous cyclical consistency axiom, which may be stated

as follows: For every positive integer k, p1, ...,pk ∈ P and x1 ∈ x(p1), ...,xk ∈ x(pk),

p2x1 ≤ p2x2, ...,pkxk−1 ≤ pkxk and p1xk ≤ p1x1

12Reminder. % extends ≥ iff > ⊆ �, where > and � are asymmetric parts of ≥ and %, respectively.
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imply

p2x1 = p2x2, ...,pkxk−1 = pkxk and p1xk = p1x1.

This axiom is also commonly known in its equivalent formulation (due to Varian (1982))

as the generalized axiom of revealed preference (GARP).

Let ((X,≥),A) be any choice environment. We can easily extend this property

to the context of a choice correspondence c on ((X,≥),A). We say that c satisfies

generalized cyclical consistency if c(A) ⊆ MAX(A,≥) for each A ∈ A, and for every

k ∈ N, A1, ..., Ak ∈ A, and x1 ∈ c(A1), ..., xk ∈ c(Ak),

x1 ∈ A↓2, ..., xk−1 ∈ A↓k and xk ∈ A↓1

imply

x1 ∈ MAX(A↓2,≥), ..., xk−1 ∈ MAX(A↓k,≥) and xk ∈ MAX(A↓1,≥).13

The first requirement of this property, that is, c(A) ⊆ MAX(A,≥) for each A ∈ A, is

implicit in Afriat’s modeling where every choice problem is of the form B(p, I) where

p is a price vector and I = py with y being the consumption bundle that corresponds

to the choice of the agent at prices p. The second requirement is a straightforward

reflection of Afriat’s cyclical consistency axiom.

It is not obvious if the generalized cyclical consistency property can yield a general

rationalizability theorem along the lines of Afriat’s Theorem, especially since Afriat’s

analysis makes substantial use of the linear structure of Rn, which makes it inapplicable

in our general context. It is also not clear how, if at all, this property relates to the

monotone congruence axiom. These issues will be clarified next.

4.5 Characterizations of Rationalizability. The structures of the general cyclical

consistency property and the monotone congruence axiom are different at a basic level.

In particular, the first one applies to a single choice correspondence on A, while the

second to a collection C of choice correspondences on A. (The properties do not be-

come identical when the latter collection is singleton.) However, there is in fact a close

connection between these properties: In any RP framework, a choice correspondence

satisfies the general cyclical consistency iff the increasing closure of c with respect to w,

that is, c↑, satisfies the monotone congruence axiom. As the former property yields a

13All decreasing closures are taken here with respect to the partial order ≥. That is, A↓i := {x ∈ X :

y ≥ x for some y ∈ Ai} for each i ∈ [k].
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rational representation in the sense of Afriat and the latter in the sense of Richter, this

fact yields, in turn, a connection that ties these two notions of rationalizability together.

The following is, then, the main theorem of this paper.

The Rationalizability Theorem I. Let ((X,≥),A) be a choice environment and c a

choice correspondence on A. Then, the following are equivalent:

a. c↑ satisfies the monotone congruence axiom;

b. c↑ is monotonically rationalizable;

c. c satisfies generalized cyclical consistency;

d. There is a complete preorder % on X that extends both tran(R (c) ∪ ≥) and ≥,
and that satisfies

c(A) ⊆ max(A,%) for every A ∈ A; (4)

e. There is a complete preorder % on X that extends ≥ and that satisfies (4).

As we will make it precise in the following two sections, this theorem generalizes

the Richter- and Afriat-type approaches to revealed preference theory simultaneously.

As such, it unifies these two approaches, and demonstrates that, unlike their initial

appearance, and how they are treated in the literature, each of these approaches are in

fact special cases of a more general viewpoint.

4.6 The Monotone Version of Richter’s Theorem. As a corollary of the Ratio-

nalizability Theorem I, we next obtain a fairly substantial generalization of Richter’s

Theorem.

Proposition 1. Let ((X,≥),A,C) be an RP framework. Then, C is monotonically

rationalizable if, and only if, it satisfies the monotone congruence axiom.

Proof. We omit the straightforward proof of the “only if” part of this assertion.

To prove its “if” part, take any element c of C that satisfies (2) and (3). Then, c↑

satisfies the monotone congruence axiom, so, by the Rationalizability Theorem I, there

is a complete preorder % on X that extends both %′:= tran(R (c) ∪ ≥) and ≥, and

that satisfies (4). Fix an arbitrary A ∈ A, and take any y in max(A,%). Then, for an

arbitrarily picked x ∈ c(A), we have x %′ y. As y % x and % extends %′, however, we

cannot have x �′ y. It follows that we also have y %′ x, and using (2) yields y ∈ c(A).

Conclusion: c(A) = max(A,%).

In the context of the ordered Richter-type RP framework ((X,≥),A, {c}) that we

introduced in Example 3, Proposition 1 says that {c} obeys the monotone congruence
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axiom if and only if it is monotonically rationalizable. In particular, we recover Richter’s

Theorem as a special case by setting ≥ = 4X . Note also that if {c} obeys the monotone

congruence axiom then c obeys generalized cyclical consistency (but the converse is

not generally true). Indeed, if {c} satisfies the monotone congruence axiom, then it is

monotonically rationalizable. This in turn implies that (4) holds, and Rationalizability

Theorem I guarantees that c obeys generalized cyclical consistency.

Example 2.a. [Continued] Consider the RP-framework ((X,≥),A, {c}) we intro-

duced in Example 2.a, which corresponds to the classical consumption choice model. In

this framework, c is said to satisfy the budget identity if x ∈ c(B(p, I)) implies px = I

for every B(p, I) ∈ A. Now, note that x R(c) y means here that there is a budget set

B(p, I) in A such that x ∈ c(B(p, I)) and py ≤ I. Consequently, if x ∈ c(B(p, I)) for

some B(p, I) ∈ A, then xR(c) y for all y ∈ Rn
+ such that x ≥ y. Given this observa-

tion, it is easy to check that a choice correspondence c obeys the monotone congruence

axiom if, and only if, it obeys the congruence axiom and the budget identity. In view of

Proposition 1, therefore, we conclude: In the context of Example 2.a, a demand corre-

spondence c on A is monotonically rationalizable iff it obeys the congruence axiom and

the budget identity. By contrast, Richter’s Theorem says that c is rationalizable iff it

obeys the congruence axiom.

4.7 On the Structure of Rationalizability. With the exception of some trivial sit-

uations, there are a multitude of complete preference relations that (weakly) rationalize

a given choice correspondence as in (4). Part (d) of the Rationalizability Theorem I

points to a particular type of rationalization which, as we shall now demonstrate, is

linked to the revealed preference relation induced by the choice correspondence in a

tightest possible way.

Let ((X,≥),A) be a choice environment and c a choice correspondence on A. We

say that a complete preorder % on X is ≥-monotonic if x ≥ y implies x % y for

every x, y ∈ X. (Notice that this property is weaker than % being an extension of

≥.) In turn, we say that % is a rationalization for c if it is ≥-monotonic and (4)

holds. Clearly, a rationalization for c may be too coarse to be useful. For instance, if

% declares every alternative in X as indifferent (that is, % equals X × X), then it is,

trivially, a rationalization for c. Indeed, Afriat type theorems look for particular types

of rationalizations. In particular, we wish to choose a rationalization for c in a way that

is tightly linked to the dominance relation of the environment, as well as the observed

choices of the agent. Then, it seems desirable that when x > y, or when x is revealed to
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be strictly preferred to y by c, the rationalization for c should declare x strictly better

than y. Part (d) of the Rationalizability Theorem I says that this can be done, provided

that c satisfies generalized cyclical consistency. Our next result demonstrates the precise

way in which one can view the preference relation found in that part of the theorem as

”minimal” among all possible rationalizations for c.

Proposition 2. Let ((X,≥),A) be a choice environment and c a choice correspon-

dence on A. Let % be a complete preorder satisfying the properties in part (d) of the

Rationalizability Theorem I. Then,

max(A,%) = A ∩ c(A)↑,tran(R(c)∪≥) ⊆ max(A,D) (5)

for every A ∈ A and every rationalization D for c.

Proof. Fix an arbitrary rationalization D for c and put R := R(c) ∪ ≥. Let us first

prove that

tran(R) ⊆D (6)

(but note that D need not be an extension of tran(R)). To this end, take any distinct

x, y ∈ X with x tran(R) y. Then, there is a positive integer k and x0, ..., xk ∈ X such

that x = x0 R x1 R ··· R xk = y. If xi−1 R(c) xi for any i ∈ [k], then (xi−1, xi) ∈ c(A)×A
for some A ∈ A, and hence xi−1 D xi because c(A) ⊆ max(A,D). If, on the other hand,

xi−1 ≥ xi for any i ∈ [k], then xi−1 D xi because D is ≥-monotonic. Therefore, x = x0

D x1 D · · · D xk = y, so, by transitivity of D, we find x D y, as we sought.

We now move to prove (5). Fix an arbitrary A in A, and take any x ∈ A with

x tran(R) y for some y ∈ c(A). Then, by (6), x D y while y ∈ max(A,D) because

c(A) ⊆ max(A,D). It follows that x ∈ max(A,D), establishing the second part of (5).

Next, notice that % is obviously a rationalization for c, so the second part of (5) entails

the ⊇ part of the asserted equality in (5). To complete our proof, then, take any x in

max(A,%). Now pick any y in c(A) and notice that, by (4), we must have x ∼ y. On

the other hand, as (y, x) ∈ c(A) × A, we have y R(c) x, and hence, y tran(R) x. As %

extends tran(R) by hypothesis, and x ∼ y, therefore, y tran(R) x cannot hold strictly,

that is, we have x tran(R) y, which means x ∈ c(A)↑,tran(R), as we sought.

In words, given any feasible set A in the choice environment, any element in c(A),

or any element in A that is revealed preferred to at least some chosen alternative in

A, has to be declared optimal with respect to every rationalization of c. Furthermore,

it is precisely the set of all such elements that the rationalization identified in part
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(d) of the Rationalizability Theorem I declares optimal. It is in this sense that this

preference relation is “minimal” among all possible rationalizations for c. The elements

that are declared optimal by this relation are the only ones that an observer can robustly

conclude to be optimal by the “true” preference relation of the decision maker (which

can, in general, only be partially identified). We will show in the next section that the

classical construction of the preference relations in Afriat’s Theorem are not robust in

this sense.

4.8 A Non-Finite Version of Afriat’s Theorem. Let ((X,≥),A) be a choice

environment, and c a choice correspondence on A. Consider the RP framework ((X,≥
),A,C), where

C := {C ∈ C(X,A) : C w c}.

This framework generalizes the Afriat-type RP frameworks as we have introduced them

in Example 3 by allowing A to be non-finite and also by allowing c(A) to be non-finite

for any A ∈ A. The equivalence of the statements (c) and (e) of the Rationalizability

Theorem I says that c satisfies the generalized cyclical consistency if, and only if, there

is a complete preorder % on X that extends ≥ and that satisfies

c(A) ⊆ max(A,%) for every A ∈ A.

To demonstrate the power of this observation, let us specialize it to the context

of Afriat (1967), but note that precisely the same argument can be made in, say, the

context of Forges and Minelli (2009).

Example 3.a. [Continued] Consider the RP-framework ((X,≥),A,C) we introduced

in Example 3.a, and define P and x as in that example, but allowing both P and any

x(p) to be infinite sets. By definition, x satisfies the generalized cyclical consistency iff,

for every k ∈ N, p1, ...,pk ∈ P , and x1, ...,xk ∈ x(p),

p2x1 ≤ p2x2, ...,pkxk−1 ≤ pkxk and p1xk ≤ p1x1

imply that every one of these inequalities hold as equalities. In turn, by the Ratio-

nalizability Theorem I, this property holds iff there is a strictly monotonic preference

relation % on Rn
+, that is, a complete preorder on Rn

+ that extends ≥, such that

x(p) ⊆ max(B(p,px(p)),%) for each p ∈ P. Clearly, this is very much the choice-

theoretic gist of Afriat’s Theorem.
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It is important to note, however, that the nature of rationalization obtained here

is markedly different from that obtained in Afriat’s analysis (even in the finite case).

Indeed, the rationalization obtained through the famous Afriat inequalities is convex (in-

deed, it has a concave utility representation, see Fostel et al. (2004)), so the preference

obtained through that procedure can have a set of optimal bundles in a given budget set

that is strictly larger than that according to the rationalization found in the Rational-

ization Theorem I. (Recall (5).) In fact, depending on the nature of the data, Afriat’s

rationalization may be unduly coarse. To wit, suppose we have choice data about an

individual at the same prices p at two different times, say, x1 and x2, with px1 = px2.

Suppose also that x1 6= x2, so, what we observe is precisely two distinct elements in

x(p). Afriat’s rationalization would then entail that every bundle on the line segment

between x1 and x2 is also optimal for the individual at prices p, even though there is

absolutely no choice data to support this contention. By contrast, the rationalization

found in the Rationalization Theorem I would declare only x1 and x2 as optimal at

prices p.

5 RATIONALIZABILITY OF CHOICE DATA (with finite data sets)

The classical statement of Afriat’s Theorem seems to deliver more information about

the structure of rationalization. Indeed, in that theorem, one not only finds a monotonic

preference relation that rationalizes the choice data, but also the fact that this relation

can be chosen to have a continuous utility representation. This fact owes, obviously, to

the particular choice domain that is adopted by Afriat which possesses a well-behaved

topological structure. However, even if we impose such a structure on X in the context of

Richter’s Theorem, we would not be able to guarantee the continuity of the rationalizing

preference relation. The real force behind Afriat’s Theorem is, in fact, the fact that this

result works in a choice environment with only finitely many choice problems. This

is actually quite pleasant because the “finiteness” hypothesis is unexceptionable from

an empirical point of view. The objective of this section is to prove that, given this

hypothesis, the additional structure that Afriat’s Theorem delivers would also obtain

in the context of any well-behaved RP framework. It turns out that the very special

structure of Afriat’s Theorem is not at all needed for this fact.

5.1 Rationalizability by a (Continuous) Utility Function. Where ((X,≥),A,C)

is an RP framework, we say that the choice data C is rationalizable by a utility
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function if there is at least one c in C and a (utility) function u : X → R such that

c(A) = arg max
x∈A

u(x) for each A ∈ A.

It is natural to ask for u to be strictly increasing in ≥ and, when X is a topological

space, we would also like u to be continuous.

5.2 Characterizations of Continuous Rationalizability. We now show that, in

finite environments, that is, when the set A of all choice problems to be observed is

finite, rather basic assumptions allows restating the Rationalizability Theorem I in terms

of continuous utility functions.

The Rationalizability Theorem II. Let ((X,≥),A) be a choice environment such

that X is a locally compact and separable metric space, ≥ a continuous partial order

on X, and A a finite collection of compact subsets of X. Let c be a closed-valued choice

correspondence on A. Then, the following are equivalent:

a. c↑ satisfies the monotone congruence axiom;

b. c↑ is rationalizable by a function u : X → R that is continuous and strictly

increasing in ≥;

c. c is satisfies generalized cyclical consistency;

d. There is a function u : X → R that is continuous, strictly increasing in

tran(R (c)∪ ≥) and ≥, and satisfies

c(A) ⊆ arg max
x∈A

u(x) for each A ∈ A; (7)

e. There is a function u : X → R that is continuous, strictly increasing in ≥, and

satisfies (7).

5.3 Continuous Versions of Richter’s Theorem. It is not a priori obvious how

one may obtain a utility representation in the context of Richter’s theorem, for the arbi-

trariness of A makes it difficult to ensure the continuity of the rationalizing preference

relations. However, at least when A is finite, this sort of a difficulty does not arise. Just

as Proposition 1 follows from Rationalizability Theorem I, so by an analogous argument

we know that the following characterization follows from Rationalizability Theorem II:

Let ((X,≥),A) be a choice environment obeying the conditions in Rationalizability The-

orem II and suppose that C is a collection of closed-valued choice correspondences on A.

Then C is monotonically rationalizable by a continuous and strictly ≥-increasing utility
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function if, and only if, it satisfies the monotone congruence axiom. When C consists of

just a single correspondence, we obtain the following result.

Proposition 3. Let ((X,≥),A, {c}) be an RP framework such that X is a locally

compact and separable metric space, ≥ a continuous partial order on X, A a finite

collection of compact subsets of X, and c a closed-valued choice correspondence. Then,

c satisfies the (monotone) congruence axiom if, and only if, it is rationalizable by a utility

function on X that is continuous (and strictly increasing in ≥).

This result provides a continuous, and continuous and monotonic version, of Richter’s

Theorem, under the condition that we observe the agent’s choice only in finitely many

instances. Where ((X,≥),A, {c}) stands for the RP-framework of Example 2.a, with

A being a finite subset of {B(p, I) : (p, I) ∈ Rn
++ × R++} and c being closed-valued,

Proposition 3 says that c is rationalizable by a continuous (and strictly increasing) utility

function on Rn
+ iff it obeys the congruence axiom (and the budget identity).14

5.4 Afriat’s Theorem, Revisited. Consider the RP-framework ((X,≥),A,C) of

Example 3.a (with P being finite set). In this context, the equivalence of the statements

(c) and (d) in the Rationalizability Theorem II means that, x obeys generalized cyclical

consistency if, and only if, there is a continuous and strictly increasing utility function

u : Rn
+ → R such that

x(p) ⊆ arg max{u(y) : y ∈ B(p,px(p))} for every p ∈ P.

In other words, requiring P to be finite allows us to strengthen the conclusion we obtained

in Section 4.8: here we find a monotonic preference rationalizing the data that is also

representable by a continuous utility function. Note that this result is stronger than the

standard Afriat’s Theorem (as stated in the Introduction) since we do not require x(p)

to be finite. Moreover, for the reasons outlined in Section 4.8, the utility function we

find here is not the same as the concave utility function constructed from the classical

Afriat inequalities.

6 CONCLUSION

We have introduced in this paper a framework for revealed preference theory in which

the grand alternative space is modeled as a partially ordered set and the traditional role

14To the best of our knowledge, both parts of this finding are new. We note, however, that Chiappori

and Rochet (1987) have a related result where they characterize finite data sets that are rationalizable

by strictly quasi-concave, strictly increasing, and differentiable utility functions.
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of a “choice correspondence” is replaced with what we call “choice data” which is sim-

ply a set of choice correspondences. This framework allows us to formulate generalized

versions of the fundamental rationality postulates of Richter (1966) and Afriat (1967).

While this is not immediately transparent from the original formulations of these axioms,

it is shown here that they are in fact closely connected, thereby pointing to a way of

seeing the main rationalizability results of these two seminal papers, as well as numerous

other “rationalizability by a preference relation” type theorems obtained in the earlier

literature, as special cases of a single rationalizability result. Furthermore, introducing

some basic topological structure and presuming that we can observe an agent making

choice decisions only finitely many times allow us to formulate this result in the “ratio-

nalizability by a utility function” form, extending the work of Afriat (1967) to arbitrary

choice domains.

The rationalizability results we have reported in this paper demonstrate the unifying

nature of the choice framework we have introduced. This framework also has the im-

portant advantage of allowing us to model choice data availability constraints explicitly,

regardless of the nature of choice problems. We hope that this framework will prove

useful for modeling any type of choice situation, be it rational or boundedly rational.15

APPENDIX

Proof of the Rationalizability Theorem I.(a)⇒(b) Assume that (a) is valid. Then,

there is a choice correspondence d on A such that (i) d w c and (ii) d satisfies the two

requirements of the monotone congruence axiom. Put B := A ∪ {{x, y} ∈ 2X : x ≥ y},
and define e : B → 2X as:

e(B) :=

{
d(B), if B ∈ A,
max(B,≥), if B ∈ B\A.

Obviously, e is a choice correspondence on B. Moreover, e satisfies the congruence axiom.

(To see this, take any x, y ∈ X such that x tran(R(e)) y and y ∈ e(B) for some B ∈ B
with x ∈ B. But it is readily checked that R(e) = R(d) ∪ ≥. Consequently, if B ∈ A, the

monotone congruence axiom yields x ∈ d(B) = e(B), and if B ∈ B\A, then B = {x, y}
and y ≥ x (by definition of e), so again by the monotone congruence axiom, we find

x = y ∈ e(B).)

15For boundedly rational choice theories, however, there is the added difficulty of checking whether

or not one can extend a representation on a given (observable) collection of feasible sets to a larger

(potentially unobservable) collection of feasible sets. This important point, which is readily formalized

in terms of RP frameworks, has recently been made forcefully by de Clippel and Rozen (2013).
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We now use Szpilrajn’s Theorem to find a complete preorder % on X that extends

tran(R(e)). Given an arbitrarily fixed B in A, notice that if x ∈ e(B) and y ∈ B, then

x R(e) y, and hence x % y, which shows that e(B) ⊆ max(B,%). Conversely, suppose

there is an x in max(B,%)\e(B). Then, pick any y ∈ e(B) so that y R(e) x, and hence,

y tran(R(e)) x. The reverse of this relation cannot hold, because, otherwise, we would

get x ∈ e(B) by the congruence axiom (on e). Thus, y tran(R(e)) x holds strictly, that

is, y Ptran(R(e)) x. As % extends tran(R(e)), therefore, we find y � x, contradicting x

being a %-maximum in B. Conclusion:

e(B) = max(B,%) for every B ∈ B.

Obviously, this implies that d(A) = max(A,%) for each A ∈ A. It remains to show that

% extends ≥. To this end, take any x, y ∈ X with x > y. If {x, y} ∈ A, then y ∈ d{x, y}
cannot hold due to the monotone congruence axiom, and hence {x} = d{x, y}, while if

{x, y} /∈ A, we trivially have {x} = d{x, y}. Consequently, {x} = max({x, y},%), that

is, x � y, as we sought.

(b)⇒(c) Assume that (b) is valid. Then, there is a complete preorder % on X and a

d in c↑ such that % extends ≥ and d(A) = max(A,%) for each A ∈ A. It follows that

c(A) ⊆ max(A,%) ⊆ MAX(A,≥) for every A ∈ A. (8)

Now take any k ∈ N, A1, ..., Ak ∈ A, and (x1, ..., xk) ∈ c(A1) × · · · × c(Ak) such that

x1 ∈ A↓2, ..., xk−1 ∈ A↓k and xk ∈ A↓1. Then, there exists a (y1, ..., yk) ∈ A1×· · ·×Ak such

that x2 % y2 ≥ x1, ..., xk % yk ≥ xk−1 and x1 % y1 ≥ xk. As % extends ≥, therefore,

x1 % x2 % · · · % x1, so, by transitivity of %, we find xi−1 ∈ max(Ai,%) for each i ∈ [k]

and xk ∈ max(A0,%). In view of (8), then, xi−1 ∈ MAX(A↓i ,≥) for each i ∈ [k] and xk ∈
MAX(A↓1,≥), as sought.

(c)⇒(d) Assume that (c) is valid. Define

%′:= tran (R (c)∪ ≥) ,

where R is the direct revealed preference relation induced by c (Section 4.1). Clearly, %′

is a preorder on X. We use Szpilrajn’s Theorem to find a complete preorder % on X that

extends %′. As R (c) ⊆ %, we have x % y if there is an A ∈ A with (x, y) ∈ c(A)×A. It

follows that c(A) ⊆ max(A,%) for every A ∈ A. It remains to show that % extends ≥,
and for this, it is enough to show that > ⊆ �′. To this end, take any two elements x and

y of X such that x > y. By definition of %′, we have x %′ y. To derive a contradiction,
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suppose y %′ x holds as well. Then, there exist a positive integer k and x0, ..., xk in X

such that

y = x0 (R(c) ∪ ≥) · · · (R(c) ∪ ≥)xk = x. (9)

Put I := {i ∈ [k] : xi−1 R(c) xi}. If I = ∅, then transitivity of ≥ and (9) yield y ≥ x,

a contradiction. If I is a singleton, say, I = {i}, then again by transitivity of ≥, we

get xi ≥ x > y ≥ xi−1, while xi−1 R(c) xi. But then there is an A ∈ A such that

xi−1 ∈ c(A) and xi ∈ A, while xA /∈ MAX(A,≥), and this contradicts (c). Finally,

suppose l := |I| ≥ 2, and enumerate I as {i1, ..., il}, where il > · · · > i1. By definition of

I, for each j ∈ [l] there is an Aj ∈ A such that xij−1 ∈ c(Aj) and xij ∈ Aj. On the other

hand, again by definition of I, we have xij−1
≥ xij for each j = 2, ..., l, while

xil ≥ xk = x > y ≥ xi1 . (10)

Consequently, xi2 ∈ A↓1, ..., xil ∈ A↓l−1 and xi1 ∈ A↓l . It then follows from (c) that xi1 ∈
MAX(A↓l ,≥), but as xil ∈ Al, this contradicts (10).

(d)⇒(e) This is obvious.

(e)⇒(a) Assume that (e) is valid. Where % is as given in the statement of (e), define

d : A → 2X as d(A) := max(A,%). As max(A,%) contains c(A), it is nonempty for any

A in A, so d is a choice correspondence on A such that c w d, that is, d ∈ c↑. Take any

x and y in X with x tran(R(d) ∪ ≥) y. Then, there is a positive integer k, elements

A0, ..., Ak of A, and (x0, ..., xk) ∈ A0×···×Ak such that x = x0, (xi−1, xi) ∈ d(Ai)×Ai for

each i ∈ [k], and y = xk. It follows from the definition of d that x = x0 % · · · % xk = y,

so, by transitivity of %, we find x % y. As % extends ≥, therefore, we cannot have y > x.

Furthermore, if y ∈ d(A) for some A ∈ A with x ∈ A, then x % y % z for all z ∈ A, and

hence, x ∈ d(A). Thus: C satisfies the monotone congruence axiom.

Proof of the Rationalizability Theorem II. It is plain that (b) and (e) are equiv-

alent, and (d) implies (e). From Rationalizability Theorem I we know that (a) implies

(c) and that (e) implies (a). We will complete the proof of the theorem by showing that

(c) implies (d). Let us denote the direct revealed preference induced by c as R, that is,

we put R := R(c). We first show that %′:= tran(R ∪ ≥) is a closed preorder on X. We

couch the argument in a few easy steps.

[Step 1] If S and T are two compact binary relations on X, then S ◦ T is compact

as well. As X is a metric space, we may work with sequential compactness instead of

compactness. Let (xm) and (ym) be two sequences in X with xm S ◦ T ym for each
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m. Then, there is a sequence (zm) in X such that xm S zm T ym for each m. As S

is compact, there is a strictly increasing sequence (mk) of positive integers such that

(xmk
, zmk

) → (x, z) for some (x, z) ∈ S. As zmk
T ymk

for each k, and T is compact,

there is a subsequence (mkl) of (mk) such that (zmkl
, ymkl

)→ (z′, y) for some (z′, y) ∈ T.

As (zmkl
) is a subsequence of (zmk

), we must have z′ = z, and it follows that x S z T y,

that is, x S ◦ T y.

[Step 2] Rk is a compact subset of X ×X for each k = 1, 2, ... To prove this, observe

first that

R =
⋃
{c(A)× A : A ∈ A}.

As X is compact and c is closed-valued, c(A) is a compact subset of X for any A ∈ A.
Therefore, R is the union of finitely many compact sets in X × X (relative to the

product topology), so it is compact. Applying what we have found in Step 1 inductively,

therefore, yields our claim.

[Step 3] tran(R) is a compact subset of X ×X. The key observation here is:

tran(R) = R1 ∪ · · · ∪R|A|+1. (11)

To see this, take any integer k > |A|+1, and any x, y ∈ X with x Rk y. Then, there exist

x0, ..., xk+1 ∈ X such that x = x0 R x1 R · · · R xk R xk+1 = y. This means that there

exist A0, ..., Ak ∈ A such that (xi−1, xi) ∈ c(Ai−1)×Ai−1 for each i ∈ [k]. As k > |A|+1,

there must be an i ∈ [k] such that Ai = Aj for some j ∈ {i + 1, ..., k} here. Let i be the

smallest such index. Then, x = x0 R x1 R · · · R xi R xj+1 R · ·· R xk+1 = y, that is,

x Rk−(j−i) y. This proves that Rk ⊆ R1 ∪ · · · ∪ R|A|+1 for every k > |A|+ 1, and hence

follows (11). But then, in view of what we have found in Step 2, we see that tran(R) is

the union of finitely many compact subsets of X ×X, and hence, it is itself compact in

X ×X.

Now, for any x and y in X, we have x tran(tran(R) ∪ ≥) y iff there exist x0, ..., xk ∈ X

such that

x = x0 tran(R) ∪ ≥ · · · tran(R) ∪ ≥ xk = y.

As both tran(R) and ≥ are transitive, it is without loss of generality to take k = 2l + 1

for some positive integer l here to write

x = x0 ≥ x1 tran(R) x2 ≥ · · · tran(R) x2k ≥ x2k+1 = y. (12)
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For any positive integer l, we next define the binary relation Sl on X by x Sl y iff (12)

holds. Consequently:

tran(tran(R) ∪ ≥) = S1 ∪ S2 ∪ · · ·. (13)

[Step 4] tran(R) ∪ ≥ = S1∪···∪S|A|+1. Indeed, we can show that Sl ⊆ Sl∪···∪S|A|+1

for every l > |A| + 1, exactly as we have done this for R in Step 3. In view of (13),

therefore, we have tran(tran(R) ∪ ≥) = S1 ∪ · · · ∪ S|A|+1. Our claim thus follows from

the obvious observation that tran(R) ∪ ≥ = tran(tran(R) ∪ ≥).

[Step 5] Sl is a closed subset of X ×X for each l = 1, 2, ... Take any two sequences

(xm) and (ym) in X such that xm → x and ym → y for some (x, y) ∈ X ×X. Then, for

each m, there exist zm0 , ..., zm2l+1 ∈ X such that

xm = zm0 ≥ zm1 tran(R) zm2 ≥ · · · tran(R) zm2l ≥ zm2l+1 = y. (14)

As zmi tran(R) zmi+1 for each odd i ∈ [2l + 1], and tran(R) is compact in X × X (Step

3), there exists a strictly increasing sequence (mk) of positive integers such that (zmk
i )

and (zmk
i+1) converge for each i ∈ [2l+ 1]. Since both tran(R) and ≥ are closed in X ×X,

taking the subsequential limits in (14) yields

x ≥ lim zmk
1 tran(R) lim zmk

2 ≥ · · · tran(R) lim zmk
2l ≥ lim zmk

2l+1 = y.

Thus x Sl y, as we sought.

We are now ready to complete the proof that (c) implies (d). Combining what is

established in Steps 4 and 5, we see that %′:= tran(R ∪ ≥) is a continuous preorder on

X. We may thus apply Levin’s Theorem to find a continuous real map u on X such that

u is strictly increasing with respect to %′. From the proof of Rationalizability Theorem

I, we know that %′ is an extension of ≥. Therefore, u is also strictly increasing with

respect to ≥. Lastly, since R ⊆ %′, for any A ∈ A with x ∈ c(A) we have x %′ y, and

hence, u(x) ≥ u(y), for all y ∈ A. Our proof is complete.
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