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Abstract

We study a model where rational agents act sequentially in a predetermined order,

observing the actions chosen by their predecessors and then selecting an action. Agents

engage in costly search to learn about the quality of various actions. Search costs of

agents are private to them, and are independently and identically distributed across

agents. We show that asymptotic learning, i.e, that late moving agents always select

the optimal action, occurs if and only if search costs are not bounded away from zero.

We explicitly characterize “common search order equilibria” in which agents choose to

search in the same order.
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1 Introduction

Social learning studies settings where agents make a choice while facing payoff relevant

uncertainty. In addition to private information about this state of the world, they may

gather information from choices made by others. The literature studies whether agents’

behavior effectively aggregates the information available to individual agents, or not. In

other words, will prior agents’ actions be informative enough that agents “learn,” or will

they “herd” on some suboptimal action. The results in the literature hinge on whether

agents may see signals that can overturn a herd, i.e. induce the agent to take a different

action than a previous long herd. In an environment with costly information acquisition,

agents’ incentives to acquire sufficient information for asymptotic learning are unclear. In

a putative equilibrium where learning does occur, agents have weaker incentives to acquire

information, and may instead free-ride on others, intuitively causing herding. Conversely, if

learning may not occur in equilibrium, agents have stronger incentives to acquire information,

and thus learning will occur.1

This paper introduces an alternative framework for studying social learning. In our

model, agents have no private information a priori. Agents view the actions taken by their

predecessors, and may then conduct costly search among possible actions. We study the

possibility of asymptotic learning in our model, i.e., do late movers always take the best

action, or may “bad herds” form on suboptimal actions? Our main result is a characterization

of asymptotic learning: Asymptotic learning occurs if and only if the distribution of agents’

search costs includes zero in its support.

While our main focus in this paper is theoretical, we believe our model is amenable to

applications. Several choice situations of economic interest may be well modeled by our

choice of information acquisition technology (i.e., costly search), notably several durable

consumer goods (e.g. cell phones, cars, etc.). In these cases, a consumer observes choices

made by his predecessors—for example, he sees what brands of cars people drive, what kind

of phones they carry etc. He may then choose to acquire more information, e.g. take the cars

on a test drive, read reviews of specific phones online, and so on. Sampling an alternative

(test driving a car, reading a review of a phone) is costly due to the time and effort involved.

Further, while it reveals information about the quality of that alternative, it does not directly

reveal anything about the quality of other alternatives. After sampling some alternatives

(possibly none), the agent stops sampling (i.e., decides he has test-driven enough cars/ read

enough reviews), and makes a choice among these alternatives.2

1This is analogous to Grossman and Stiglitz (1976) who study similarly paradoxical incentives to acquire
information in a general equilibrium setting when prices may reveal information.

2In the taxonomy of search, this is therefore “search with recall.”
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1.1 Discussion of Model & Result

More precisely, this paper considers a countable set of fully rational agents. In a predeter-

mined sequence, agents take an irreversible action out of a finite set. These actions are a

priori identical, and their associated utilities unknown. There are no payoff externalities.

Agents observe the history of actions taken by their predecessors and update their beliefs

about the respective utilities of each action. Each agent engages in private, costly search

before taking his action, taking into account past history, i.e., the actions taken by prede-

cessors. Searching or “sampling” an action reveals the utility of that action perfectly to the

agent, but comes at a cost. Each agent has a constant cost per search. Search costs are

assumed to be independent and identically distributed across agents. Neither the sampling

decisions nor search cost of an agent are observed by subsequent agents.

Our focus lies on the learning properties of equilibria in this setting, that is, whether

asymptotic learning obtains in equilibrium. Asymptotic learning requires that the probability

of the nth agent selecting the highest utility action converges to one as n goes to infinity,

i.e., that late moving agents “learn” the best action or, alternately, do not “herd” on a

suboptimal action.3 We show that asymptotic learning occurs if and only if the distribution

of search costs includes zero in its support.4 That is, in any equilibrium, the optimal action

is chosen in the long run with probability one if and only if the support of the distribution

of search costs contains arbitrarily small search costs.

We would argue that this result is ‘surprising,’ in particular that a condition on the

support of the distribution of costs is both necessary and sufficient to guarantee learning in

equilibrium. In our model, an agent endogenously chooses how much to search given the

observed history. In equilibrium, even an agent with low search costs may choose to “free-

ride” on his predecessors, not search and therefore be uninformed, thereby propagating a

herd. In other words the relationship between an agent’s search costs and how well informed

he is an endogenous property of the equilibrium. Given this, one may have intuited that

sufficient conditions for learning depend more delicately on primitives e.g. the shape of

the distribution of search costs, and the actual probability of low search costs. We show

that this is not the case. Our result is therefore qualitatively different from the results in

the literature on optimal experimentation. There, whether experimentation concludes at the

efficient outcome may depend on the shape of the cost function—for example, see Kihlstrom,

Mirman, and Postlewaite (1984).5

3Probabilities here are with respect to draws of search costs of each agent, and the utility of each action.
4We exclude environments where the first agent always finds an optimal action.
5See Aghion, Bolton, Harris, and Jullien (1991) for a characterization of when experimentation converges

to the optimal action. Smith and Sorensen (2006) formally connect the social learning and experimentation
environments.
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It is analytically difficult to explicitly characterize all equilibria of our model. With a view

to possible applications, we provide a closed form characterization of a particular subset of

these equilibria, which we call common search order equilibria. In these equilibria, all agents

follow strategies which search actions in a commonly known order, i.e. if an agent sampled

action a3, he must have sampled actions a1 and a2. Note that all actions are still ex-ante

identical, this common search order is a convention all agents employ. In other words, this

is a refinement of the set of all equilibria of our model, not an exogenous constraint on the

order in which agents can search. Such equilibria may be of independent interest. There

are several settings of applied interests where agents select actions from an ordered list of

suggestions, for example listings in the Yellow Pages (alphabetically ordered), competing

products down a supermarket aisle, etc. In a recent paper, Athey and Ellison (2011) study

a model of Internet advertising where consumers search among a list of advertisements to

find a desired product. Additionally, search from lists has attracted attention in single agent

decision settings—see, e.g., Rubinstein and Salant (2006) and Meredith and Salant (2007).

To understand the intuition behind our result consider the simplest case where there are

only two possible actions, a1 and a2. Note that asymptotic learning occurs if and only if at

least one agent samples each action. Suppose agent 1 takes action a1. For agent 2, this is

“good news” for action a1 and “bad news” for action a2. Agent 2 will now sample action a1

first, and only sample action a2 if his cost of search is less than a threshold c2. This threshold

depends on:

i. The observed quality of action a1: If action 1 has a high quality, then there is little value

to searching.

ii. The probability that agent 2 assigns to agent 1 having sampled action 2: If agent 1

sampled action 2 with high probability, then agent 1’s choice of action 1 suggests that

action 2 is of lower quality.

Note that this threshold of searching further c2 is less than the corresponding search threshold

for agent 1, c1— agent 2’s beliefs are more pessimistic about action 2. Suppose that the first

n − 1 agents have all selected action 1, and consider the problem faced by the nth agent.

We show that there is a cutoff cost cn such that the nth agents samples action 2 if and

only if his cost is below this cutoff. Unsurprisingly this cutoff is decreasing in n. Denote

the ex-ante probability (with respect to his search costs) of no search by pn. Note that

for asymptotic learning to occur, with probability one, some agent must sample action a2.

Therefore asymptotic learning occurs if and only if the infinite product of pn’s vanishes, i.e.

it hinges on the speed of convergence of pn to one. Surprisingly we show that this occurs as

long as zero is in the support of distribution of search costs.

At a high level the idea is this—as long some agents arrive with an arbitrary small
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marginal cost for information acquisition, the marginal benefit of information acquisition

must converge to zero in the long run. This idea implies long run optimality and is “detail-

free.”

1.2 Comparison to the SSLM

In the standard sequential social learning model (henceforth SSLM), rational agents make a

choice in a predetermined sequence. Each agent receives a private signal about the unknown

state of the world and observes the choices of his predecessors before making his choice. The

seminal papers of Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992) intro-

duced the SSLM. They showed that agents may “herd” on a suboptimal option, i.e., choose

to ignore their signal and follow their predecessors. This is useful in modeling phenomena

such as fads, fashions, booms and crashes. The SSLM has thus been widely applied.6

In our model, information is endogenously acquired rather than exogenously given to

agents. Additionally, information in our model is qualitatively different than that in the

SSLM. In our model, sampling an action only reveals the quality of that action, while

private information in the SSLM concerns the relative value of all actions.7 At a technical

level, the version of the SSLM that is tractable for applications is a binary-state model,

and hence ordinal in nature: either action a is better than action b or vice-versa. However,

the better action may be tremendously superior or only marginally so. The SSLM cannot

distinguish these two scenarios due to the ordinal nature of the state space. In contrast, our

model imposes no restrictions on the cardinality of the state space, and therefore can model

situations where both the ordinal ranking of and the cardinal difference between various

actions are uncertain. This is potentially useful for understanding the welfare loss from

suboptimal herds.

Despite substantial differences in the underlying information structure, our model shares

several similarities with the SSLM. First, the characterization of asymptotic learning is

conceptually similar to the one in the standard framework. Smith and Sørensen (2000) show

that in the SSLM asymptotic learning occurs if and only if private signals induce unbounded

beliefs. That is, if the support of the private probability of one of the two states generated

by the signals contains 0 and 1. Therefore, the private signals need to be able to lead to

posterior beliefs arbitrarily close to zero and one. In our framework the arbitrarily low search

costs take the role of unbounded private signals. Second, the most interesting features of

6For example, to trading in financial markets (Avery and Zemsky, 1998; Park and Sabourian, 2011),
pricing (Bose, Orosel, Ottaviani, and Vesterlund, 2006, 2008; Mueller-Frank, 2012), and voting (Dekel and
Piccione, 2000; Ali and Kartik, 2011).

7To continue the analogy to ‘real’ world, the information structure of the SSLM can be thought of as
agents learning from, e.g., comparison websites.
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equilibrium behavior in the SSLM, i.e., local conformity, fragility of mass behavior and the

occurrence of incorrect informational cascades, carry forward to our setting. As should be

clear from the intuition of our result, fragility of mass behavior takes the following form in

our model: Once an agent deviates from the action of his predecessor, no later agent will

select, or even sample the predecessor’s action. Intuitively, if agent 1 selects action a1, and

agent 2 selects a2, then action a2 has been “revealed preferred” to a1 from the point of view

of future agents.

From the point of view of applications, assumptions on search costs might be easier to

test from observed data than assumptions on precision of private signals. A large applied

literature on search has discussed the estimation of search models, and identifying population

search costs from macro-level and micro-level data.8 In principle therefore, an applied social

search model could use search costs estimated from the data. By contrast, an application of

the standard model would require an assumption on the distribution of signal qualities that

is difficult to verify empirically. We discuss applied work on the subject in further detail in

Section 4.

1.3 Related Literature

There are few papers we are aware of that consider information acquisition by agents rather

than given private signals.

The paper closest to ours in terms of the model is Hendricks, Sorensen, and Wiseman

(2012). They consider the case of two actions and two states, where one action has a known

payoff (normalized to 0), while the other can have either a high or a low payoff. They study

a setting where agents can choose to pay a cost to learn the value of the unknown action.

Unlike the present work, agents there have heterogeneous preferences, but identical search

costs. These assumptions prevent direct comparisons with our results, or with the SSLM.

Another paper that is similar to ours is the more recent Ali (2013). He studies the SSLM

where agents can endogenously choose more precise signals at a cost. For the case of discrete

actions, he finds a result similar to ours, i.e., asymptotic learning occurs if and only if agents

may be able to procure arbitrarily informative signals for an arbitrarily low cost.

An earlier paper by Burguet and Vives (2000) considers a setting where homogeneous

agents take an action to match the (unknown) state of nature, with quadratic loss. Agents

observe a noisy signal about the state, and can choose the level of precision of their signal—

higher precision is more costly. In this setting, they derive results similar to ours. However,

their paper involves a distinct continuum of agents acting at each time period. Further, the

specific assumptions they make about information structure imply that the level of precision

8The literature is too large to comprehensively cite here. For a classic example, see Wolpin (1987).
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chosen by agents at any step k depends only on the primitives of the model and k, i.e. it is

independent of the choice history they observe. As a result, there is no natural analog to a

“herd” in this setting.

Kultti and Miettinen (2006) study a variant of the standard model where agents choose

which past agents’ actions to observe, and must pay a commonly known cost to observe

the action taken by a past agent. They show that if this cost is small, herding may arise

deterministically, while a cost of exactly zero recovers the standard model.

Additionally, there have been some attempts to relax the binary state space assumption in

the SSLM. Smith and Sørensen (2000) discuss an extension to arbitrary finite state spaces,

but at a significant analytical cost. Park and Sabourian (2011) consider a model with 3

states. Arieli and Mueller-Frank (2013) consider the general case of compact metric state

and action spaces. They show that if the action set is sufficiently “dense” then information

is perfectly aggregated along the equilibrium path for generic continuous utility functions.

2 The Model

In this section we present the formal model analyzed in this paper. A discussion of some of

the major assumptions is deferred to Section 4, after we present our main result.

2.1 Agents and Actions

A countably infinite set of agents {1, 2, . . .} sequentially select an action, with agent i acting

in period i. The set of actions X available to each agent i is finite and identical across

agents. Let k denote the cardinality of the set of actions. A typical element of the action

set X will be denoted by x, while the action selected by agent i is denoted by ai. We denote

hi = (a1, ..., ai−1) as the history of actions of agents preceding agent i. History hi is common

knowledge among all agents i′ ≥ i.

Actions are differentiated in their qualities, but are ex-ante homogeneous.9 We will denote

qx as the ‘quality’ associated with action x. These are i.i.d. draws according to probability

measure PQ over Q ⊆ R+.

The state of the world is the realized quality of each of the k actions ω = (q1, q2, ..., qk).

The state space is then given by Ω ≡ Qk with product measure PΩ = (PQ)k. Note that this

formulation captures finite, countably infinite and uncountable state spaces.

9If the qualities of actions are statistically independent but not identically distributed, our asymptotic
learning result still obtains.
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2.2 Search

Each agent’s action choice is based on costly sequential search. After observing the history

hi, agent i decides which action s1
i ∈ X to sample first . Sampling an action perfectly reveals

its quality to the agent. We will denote the observed utility of the sampled action as qs1i .

After observing the quality qs1i of the sampled action s1
i , agent i decides whether to continue

to search, s2
i ∈ X, or discontinue, s2

i = n,

s2
i ∈ X ∪ {n}.

After sampling m actions, agent i selects sm+1
i where

sm+1
i ∈ X ∪ {n}.

Let Si denote the set of actions agent i samples, Si ⊆ X.

After finishing sampling, the agent chooses an action ai. We assume that agents can only

select an action they sampled, i.e. ai ∈ Si. We believe this assumption is a good fit for the

settings we model. See Section 4 for further discussion of this assumption.

For simplicity, the first action is sampled at no cost while sampling each other action

involves a cost of ci ∈ R+.10 The search costs ci are i.i.d. draws from a commonly known

probability measure PC . While search costs are identically distributed across agents, agent

i’s search cost ci is privately known to agent i.

The net utility of agent i is therefore the quality of the action he selects minus his search

costs,

Ui(Si, ai, ci, ω) = qai − ci (|Si| − 1) .

For every agent i we distinguish k + 1 different information sets. The first stage infor-

mation set I0
i corresponds to i’s information set based on the observed history of choices

prior to sampling any action. The set Imi is the information set agent i has after sampling m

actions. The information set Iai corresponds to the information set of agent i once his search

ends. We have

I1
i = (ci, hi),

Imi = (ci, hi, qs1i , ..., qs
m
i

), m = 2, . . . , k,

Iai = (ci, hi, (qx : x ∈ Si)) .

10It is equivalent if all searches cost the same amount ci, but each agent has to take an action, i.e., he
cannot abstain, and therefore must conduct at least one search.
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The set of all possible search stage information sets of agent i are denoted as Imi , for m =

0, 1, ..., k, and the set of action stage information sets as Iai . A strategy σi of agent i is

therefore

σ0
i : I0

i → ∆ (X) ,

σmi : Imi → ∆ (X ∪ {n}) ,

σai : Iai → ∆ (Si) .

Once an agent i stops his search at stage m, then he does not sample further. Strategies σm
′

i

for m′ > m are irrelevant, and he then chooses an action according to σai . We do not state

this constraint formally to avoid burdensome notation.

A strategy profile σ is a sequence of strategies {σi}i∈N. Given a strategy profile σ and

probability measures PΩ and PC , the sequence of actions {ai}i∈N is a stochastic process. We

denote the resulting probability measure on sequences of actions by Pσ.

3 Asymptotic Learning under Social Search

The main objective of the paper is to characterize conditions under which agents asymptot-

ically select the correct action. Formally:

Definition 1. Let σ be a strategy profile with resulting probability measure over actions Pσ.

We say asymptotic learning occurs if

lim
i→∞

Pσ(ai ∈ arg max
x∈X

qx) = 1.

In words, asymptotic learning occurs if the probability of agent i selecting the best action

converges to one as i goes to infinity. Our characterization of learning will hinge on whether

the distribution of search costs among agents has 0 in its support.

Definition 2. We say that search costs are bounded away from zero if 0 does not lie in the

support of PC, i.e. there exists ε > 0 such that PC([0, ε]) = 0.

Conversely, search costs are not bounded away from zero if for every ε > 0, PC([0, ε]) > 0.

In words, search costs are not bounded away from zero if there is a positive probability of

arbitrarily low search costs. Finally we assume away “trivial” search environments.

Assumption 1 (Non-trivial Search Environment). There exists q̂ in the support of

PQ such that:
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1. 1− FQ(q̂) > 0.

2. The distribution of search costs is such that with positive probability agent 1 does not

sample another action when the first action sampled has quality q̂ or higher.

In an environment where this fails, the first agent samples actions until he learns the

optimal action. The subsequent agents just follow him. This will trivially yield asymptotic

learning. Since such environments are uninteresting, Assumption 1 rules them out.

We now characterize asymptotic learning in terms of the support of the distribution of

search costs.

Theorem 1. In any Perfect Bayesian equilibrium of a non-trivial search environment,

asymptotic learning occurs if and only if search costs are not bounded away from zero.

The theorem states two results. First, the probability of agent i selecting the correct

action converges to one if the search costs can be arbitrarily small. Second, if search costs are

bounded away from zero, then agents herd on a suboptimal action with positive probability.

The theorem closely relates to Smith and Sorensen’s (2000) characterization of asymptotic

learning in the standard sequential social learning setting. They show that asymptotic

learning occurs if private signals are unbounded and fails if private signals are bounded. Our

theorem can be interpreted in several ways. First, it exhibits the possibility of inefficient

herding with a different underlying informational structure. Second, the theorem implies

that the exogenous private signals of the standard framework can be micro-founded. Due to

the conceptual similarity of the characterization of asymptotic learning across frameworks,

by endogenizing private information, we are providing a micro-foundation of private signals

in a sequential social learning environment.

In what follows, we work our way through the proof of the main theorem. Here, we

provide a short high level overview to orient the reader. In Observation 1 we describe the

search behavior of Agent 1. This is well known from the literature on search with recall.

Lemma 1 then shows that every subsequent agent first searches the action taken by his direct

predecessor. We then restrict attention to the common search order equilibria described

earlier. Lemma 2 fully characterizes these equilibria by describing the search decisions of

agents as a function of observed history. We then use this characterization to prove the

asymptotic learning result for common search order equilibria. We conclude by providing

the intuition for how the asymptotic learning result extends to all equilibria of this model—

the formal proof is in the appendix.
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3.1 Characterizing Equilibria

Agent 1 Let us begin by considering the first agent. As the utilities of all actions are

identically distributed, he is indifferent in regards to which action to sample first. Suppose

the action he samples first has utility q. He decides to sample a second action, only if his

search cost c0 is smaller than the expected value of sampling a second good,

c0(q) =

∫
q̃≥q

(q̃ − q)dPQ(q̃).

We can proceed inductively to define his search decisions.

Observation 1. Suppose the agent has sampled m < k actions, and let q? denote the

highest utility among the sampled actions. Agent 1 decides to sample an m + 1th action if

and only if his search cost c1 is smaller or equal to a cutoff search cost c0 (q?), where c0(·) is

given by:

c0(q) =

∫
q̃≥q

(q̃ − q)dPQ(q̃). (Cutoff)

It is important to note that the search decision of the agent is “stationary,” i.e. it does

not depend on the number of unsampled actions remaining.

Subsequent Agents Observation 1 describes the optimal strategy for agent 1. Let us

now consider agent 2’s problem, given that agent 1 has picked some action x. From his

perspective, there are two possibilities:

1. Agent 1 did not sample any other actions than x— in this case agent 1’s decision is

uninformative as to the utilities of the other actions.

2. Agent 1 did sample other actions— in this case agent 1 selected the best action (x)

among the ones he sampled.

Therefore, agent 2’s posterior beliefs must be that the action chosen by agent 1, x, is

superior to (first order stochastically dominates) all other actions, and therefore agent 2

should sample action x first.

A simple inductive argument establishes that each agent i should sample action x first

as long as all his predecessors selected that same action. Suppose now that everyone from 1

through i− 2 select action x, while agent i− 1 selected x′ 6= x. By our previous argument,

agent i− 1 must have sampled action x first, and therefore would only select action x′ if it

has a higher utility. Agent i onwards infer this, and therefore should sample good x′ first,

and no longer sample action x at all. Formally,
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Definition 3. We say an action x is discarded on history hi if:

1. aj = x for some j < i and,

2. aj′ 6= x for some j < j′ < i.

Lemma 1 states that each agent i first samples the action chosen by his predecessor i− 1

as long as it is not a discarded action. This is intuitive since this action is the ‘best’ action

among all those agent i− 1 searched (see also Weitzman, 1979).

Lemma 1. Let σ be a Perfect Bayesian equilibrium of the game. Then for every agent i > 1

with cost ci and history hi = (a1, a2, . . . , ai−1),

σ1
i (ci, hi) = ai−1

unless ai−1 is a discarded action. In that case the agent first samples the most recent non-

discarded action ai−l, i.e.,

σ1
i (ci, hi) = ai−l,

where all actions ai−l+1 to ai−1 are discarded.

Before presenting the next lemma, note that for asymptotic learning it is necessary and

sufficient that either each action is sampled by at least one agent with probability 1, or

an action with the highest possible utility in the support of PQ, if one exists, is sampled.

Lemma 2 characterizes the stopping decision, i.e., whether or not to sample another action,

for agents i > 1. We will then use this characterization to argue that every action is sampled.

Similar to agent 1’s cost cutoff c0(q∗) being a function of the highest realized utility

among the already sampled actions, each agent i > 1 faces a cost-cutoff, which determines

his stopping condition. Implicitly, this depends on the history hi that agent i observes.

Equilibria with a Common Search Order We first focus on a specific subset of

equilibria. We assume that whenever any agent’s posterior beliefs are such that the expected

utilities of a set of actions are the same, then she samples among those actions based on

a common order over actions. In other words, numbering the actions from x1 to xk, if the

expected utility of actions xg and xl, g, l ∈ {1, ..., k}, are identical then an agent samples xg

before xl if and only if g < l.

There are many other equilibria in this model, which differ in the order in which agents

choose to sample actions over which they are indifferent. We restrict attention here to

common search order equilibria for analytical tractability in terms of agents’ beliefs. In

particular, if agent i selects action xl, then:
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1. It is commonly understood that actions x1 to xl−1 are of lower quality than xl, and

therefore are not sampled or selected by any subsequent agent.

2. Subsequent agents i′ > i have symmetric posterior beliefs on all goods xl+1 to xk.

This makes the argument more transparent. We will now characterize the stopping decision

for agents i ≥ 2 in equilibria with a common search order, and argue that Theorem 1 holds

for equilibria with a common search order.

Stopping Decision The following definition will be helpful. Given c0(·) as defined in

(Cutoff), inductively define cn(·) for n > 1 as:

cn(q) ≡ c0(q)
n−1∏
η=0

PC(c̃ > cη(q)), (Cutoff-n)

We are now in a position to describe the subsequent search decision of agents i > 1.

Lemma 2. Let σ be a Perfect Bayesian equilibrium of the game that adheres to a common

search order. Consider agent i > 1, who observes history hi = (a1, . . . , ai−1). Let ai−1 = xl

be a non-discarded action, and let n(hi) be the number of predecessors of i who selected action

xl. The search decision of agent i is given by:

σ2
i (I

2
i ) =

xl+1 if ci ≤ cn(hi)(qxl),

n otherwise.
(1)

If the agent chooses to sample further, for m ≥ 2:

σm+1
i (Im+1

i ) =


xl+m if qxl = q? and ci ≤ cn(hi)(qxl),

xl+m if qxl 6= q? and ci ≤ c0(q?),

n otherwise.

(2)

Here cn is as defined in (Cutoff-n), and q? is the highest observed quality by an agent among

the products he has searched i.e. q? = max(xl, . . . , xl+m−1).

Let us discuss this in words. We already know from Lemma 1 that each agent i first

samples the action selected by his predecessor if it was non-discarded, which we denote

xl. Intuitively, the fact that agent i − 1 selected this action makes it “better” in terms of

the agent i’s posterior beliefs, and he is subsequently less likely to sample further. Lemma

2 shows that agent i’s cutoff cost to sample further is given by cn(hi)(qxl) (Cutoff-n), and

depends only on the number of previous agents n(hi) who have taken the action xl, and the
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quality of that action qxl . Intuitively, this is because the common search order implies that

these n(hi) agents are the only agents who could have searched beyond xl.

If the agent’s cost ci is less than cn(hi)(qxl) then he continues searching until he either

finds a better action or runs out actions. This is expressed formally by (1) and the first case

of (2). The latter two cases of (2) describe the continuing search decision after the agent

samples an action l′ > l with qxl′ > qxl . Because of our assumption of a common search

order, agent i′ infers that no agent before him has sampled any action with index at least

l′. Agent i’s posterior beliefs about the qualities of actions with index strictly larger than l′

are therefore identical to the prior PQ. Therefore his subsequent search decisions from this

point forward are the same as agent 1’s, and are as given in Observation 1.

Equilibrium Strategies Collecting everything we have argued so far, equilibrium strate-

gies with a common search order are:

1. Agent 1. He first samples good x1, and then continues sampling until the marginal

value of searching further is exceeded by his search cost

c1 > c0(max{qx1 , qx2 , . . . , qxl}),

where c0(·) is given in (Cutoff). He then takes an action with the highest utility among

those he searched.

2. Agent i. He observes history hi = (a1, a2, . . . , ai−1). He first samples good ai−1, which

is (say) xl. His cutoff cost to sample further depends on the number of preceding agents

who have taken the same action xl, n(hi). He will not sample further if

ci > cn(hi)(qxl),

where cn is defined in (Cutoff-n). If ci is smaller than this cutoff, he will continue to

sample xl′ > xl until he finds a better action or exhausts all possible actions. If he does

find a better action xl′ , his subsequent search decisions are identical to agent 1, i.e., he

continues searching as long as

ci ≤ c1(qxl′ ),

where xl′ is the best action he has seen so far.

The only observable deviation by a preceding agent is if he selects a discarded action. Off

the equilibrium path, all subsequent agents behave as if they only observed the sub-history

in which no agent took a discarded action.
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It should be clear that given the previous lemmas, these strategies constitute a perfect

Bayesian equilibrium of our social search setting, since agents’ payoffs depend only on their

own sampling decisions and actions taken.

3.2 Sketch of Proof of Theorem 1

We now give a short sketch of the proof of the main theorem for the case of common search

order equilibria. The formal proof is in the Appendix. Recall that in our setting, asymptotic

learning occurs if and only if with probability one, at least one agent samples each action,

or an action with the highest possible quality is sampled.

Let us reason through “what it takes” for an action not to be sampled. Consider some

action xl such that qxl < supQ,11 and the first agent i, selecting it. Suppose each agent

i′ ≥ i does not sample further. By Lemma 2 we know that this happens if for each agent

i′ = i + g, his search costs ci′ ≥ cg(qxl). Let us denote the probability of this occurring for

agent i′ = i+ g as pg, i.e. pg = PC(c ≥ cg(qxl)).

Therefore, independence of the individual search costs implies that failure of asymptotic

learning occurs if and only if

∞∏
g=0

pg > 0,

which in turn occurs only if limg↑∞ pg = 1.

To show sufficiency, suppose search costs are not bounded away from zero, but asymptotic

learning fails. By (Cutoff-n) the lowest cost that leads agent i′ = i+ g not to search is

cg(qxl) = c0(qxl)
i′−i∏
g=0

pg,

which has a limit larger than 0 by supposition. Therefore, since search costs are not bounded

away from zero, limg↑∞ pg < 1.

To see the intuition for necessity, recall equation (Cutoff-n) and note that the cost thresh-

old for person i′ to sample action xl+1 is strictly decreasing in i′. Suppose that search costs

are bounded away from zero, that is there exists a c > 0 such that PC(c ≤ c) = 0. The

proof shows that for any qxl within a finite number of agents g, the cutoff cost cg+1(qxl) < c.

This implies that if agents i to i + g costs are such that they do not sample further, then

all agents i′ > i+ g do not sample further either. Therefore if costs are bounded away from

zero, herding is possible with positive probability.

11If qxl
= supQ, the agent is done because he has found a best possible action.
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General Equilibria Finally, recall that the preceding argument restricted attention to

common search order equilibria. We now argue that in a given environment, asymptotic

learning occurs in any perfect Bayesian equilibrium σ if and only if the distribution of search

costs includes 0 in the support. Necessity and sufficiency of the condition are established

along similar lines as in the common search order case but require some more detail.

4 Discussion & Conclusion

This paper introduces an alternative framework for social learning in which agents endoge-

nously acquire private information. We assume that agents generate their private information

via a costly search process. We show that the probability of agents selecting the optimal ac-

tion in the long run is equal to one if and only if search costs are not bounded away from zero,

i.e., 0 is contained in the support of the distribution of search costs. Our characterization of

asymptotic learning is conceptually similar to Smith and Sorensen’s (2000) characterization

in the standard framework. We provide a micro-foundation for the exogenously given private

signals assumed in the SSLM via an information gathering technology motivated by search.

Some assumptions we made to aid our analysis are worth highlighting and discussing.

The major one is that agents can only take actions that they have already sampled. A

possible justification for this is that taking an action involves learning about its quality. For

example if the “actions” in question are websites selling products, then ordering a product

involves visiting the website and learning about its quality. Another possible justification

is that the effort or cost expended is in actually discovering the existence of the action (for

example finding which restaurants are available at a desirable time) rather than learning

about its quality. In the absence of this assumption, Lemma 1 would no longer be true. An

agent who sees his predecessor take an action xl knows that this action is “good.” It may

be a better strategy in expectation to sample other actions, and then take action xl without

sampling if these actions are of low quality. At a more technical level, characterizing a single

person’s search decisions in the absence of this assumption is not well characterized. We

refer the reader to Weitzman (1979) for the classical result, and Doval (2013) for a recent

attempt to relax this assumption in the one person setting.

An assumption we make that is often not satisfied in practice is that agents observe

the full history of actions made by past agents. For example, the recent papers of Cai,

Chen, and Fang (2009) and Tucker and Zhang (2011) empirically separate sequential social

learning (observational learning in their terminology) from other channels of learning in a

setting where agents only observe aggregate histories, i.e., the number of past agents who

chose each action. Similarly the aforementioned work of Hendricks, Sorensen, and Wiseman
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(2012) revisits the experimental data of Salganik, Dodds, and Watts (2006) with a structural

model. In this setting, again, agents only observe aggregate data. It should be clear that

our results continue to hold exactly as written in a setting where agents observe only the

aggregate history of past agents and the action taken by their immediate predecessor.

As we demonstrated, social search model behaves similarly to the SSLM: The tendency

to local conformity, fragility of mass behavior and the occurrence of incorrect herds all carry

forward to our model. There are certain differences, however. For example, in our model

the society evolves from one action to another until eventually agents settle on one action.

Actions are always “improving,” i.e. a later moving agent always takes a weakly better

action. Herding occurs with probability one in finite time and learning occurs by discarding

actions which are revealed inferior. Those actions, once discarded, are never chosen again.

In the SSLM on the other hand agents might go back and forth between different actions,

and in case of unbounded signals the society does not settle on one action in finite time.

In terms of future work, a major driving assumption in this paper, standard to the obser-

vational learning literature, is that agents observe all predecessors’ actions. A more “natural”

assumption would be that agents’ information about predecessors’ actions is determined by a

social network— agents observe the actions of the predecessors who are also their neighbors

(“friends”) in this network. This was considered by Acemoglu, Dahleh, Lobel, and Ozdaglar

(2011), extending the SSLM. The counterpart in a search setting would be interesting, and

is left to future work.

A Proofs from the Text

Proof of Lemma 1. Consider agent 2 and his conditional distribution over the state space

Ω given agent 1’s action a1 and strategy σ1. Consider an action x′ 6= a1. There are two

possible cases:

1. Case 1: Agent 1 sampled x′. This implies that qx′ ≤ qa1 , since agent 1 picked action

a1. If agent 2 knew this to be the case, his conditional distribution on Ω is given by

PΩ (|qa1 ≥ qx′ ).

2. Case 2: Agent 1 did not sample x′. In this case, there is no new information about

action x′. If agent 2 knew this to be case the posterior on action x′ is the same as the

prior PQ.

As a result, regardless of the beliefs of agent 2 about agent 1’s search decisions, his

belief about the quality of any action other than a1 is first order stochastically dominated

by his beliefs about a1. Further, agent 1 must have sampled all other actions with positive

probability— even if he sampled a1 first, with positive probability his search costs are low
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enough that he searched further. Therefore agent 2 selects σ0
2 = a1.

We can now show the Lemma for any agent i+1 > 2 by induction. Suppose all agents up

to i follow this strategy, and that agent i selects action ai. It now follows that any discarded

action x on this history must have quality qx ≤ qai , and therefore these are not sampled.

Now consider action qai versus all other non-discarded actions. By the same logic as before,

agent i+ 1’s beliefs about the quality of action ai strictly first order stochastically dominate

his beliefs about the quality of other actions. Therefore σ0
i+1 = ai, i.e, he will sample ai

first.

A.1 Common Search Order Equilibria

Proof of Lemma 2. For agent 1, the lemma follows trivially given (Cutoff).

We will now show it for agents i > 1 by induction.

Base: First, let us consider i = 2. Suppose agent 1 took action xl. By Lemma 1 we

know that agent 2 samples action xl first and learns qxl . Actions x1 to xl−1 are discarded

and therefore irrelevant. To determine his subsequent search decisions, we need to reason

about his beliefs about actions xl+1 to xk. By stationarity of search decisions, either agent

1 sampled all actions xl+1 to xk or none.

Agent 2 understands therefore that agent 1 sampled all actions only if his cost c1 was less

than agent 1’s search cutoff c0(qxl) (recall Observation 1). Therefore, for any action l′ > l,

agent 2’s beliefs about qxl′ can be given by

PQ(qxl′ |h2, qxl) =PQ(qxl′ )× P[agent 1 did not search]

+ PQ(qxl′ |qxl′ < qxl)× P[agent 1 did search],

=PQ(qxl′ )PC(c1 > c0(qxl)) + PQ(qxl′ |qxl′ < qxl)PC(c1 ≤ c0(qxl)). (3)

Agent 2 will search if and only if his expected gain from searching exceeds his cost, which

gives us a cutoff cost of:

c1(qxl) =

∫
q̃≥qxl

(q̃ − qxl) dPQ(q̃|h2, qxl).

Substituting in PQ(q̃|h2, qxl) from (3), we have

c1(qxl) =PC(c1 > c0(qxl))

∫
q̃≥qxl

(q̃ − qxl) dPQ(q̃).

=PC(c1 > c0(qxl)) c0(qxl).

18



If agent 2’s search cost is below this threshold, he will search until he either finds a better

action or runs out of actions. If he does find a better action xl′ for l′ > l, he must conclude

that agent 1 did not search past l (otherwise he would have found and selected action xl′).

His posterior beliefs on actions xl′′ for l′′ > l′ return to his prior beliefs PQ, and therefore

further search decisions are given by the cutoff function c0(·).

Inductive Hypothesis Let us suppose agents’ 2 to i− 1 are as described in the Lemma

for i > 2.

Inductive Step Consider the case of agent i > 2. By Lemma 1 we know that agent

i samples action xl first and learns qxl . Actions x1 to xl−1 are discarded and therefore

irrelevant. To determine his subsequent search decisions, we need to reason about his beliefs

about actions xl+1 to xk.

Firstly, note that from the point of view of agent i, actions xl+1 to xk are identical— any

agent i′ < i that sampled one of these actions must have sampled all of them. To see this

consider any agent i′ < i. There are three cases:

1. ai′ 6= xl: In this case agent i′ clearly didn’t search up to xl, and therefore has not sampled

xl+1 to xk.

2. ai′ = xl, but agent i′ did not sample past xl.

3. ai′ = xl, but agent i′ did sample past xl: If this agent decided to search past xl, it must

have found that these actions were inferior to the xl, since it chose to take action xl.

But then, by stationarity of search decisions, it would have continued to search until it

exhausted all the actions.

Recall that n(hi) is the number of agents preceding agent i who selected action xl. Agent

i’s beliefs about ql′ for l′ > l can therefore be written as

PQ(qxl′ |hi, qxl) =PQ(qxl′ )× P[agents i− n(hi) to i− 1 did not search]

+ PQ(qxl′ |qxl′ < qxl)× P[some agent i− n(hi) to i− 1 did search].

By the inductive hypothesis, this can be written as

PQ(qxl′ |hi, qxl) =PQ(qxl′ )

n(hi)−1∏
η=0

PC(ci−n(hi)+η > cη(qxl))

+ PQ(qxl′ |qxl′ < qxl)

1−
n(hi)−1∏
η=0

PC(ci−n(hi)+η > cη(qxl))

 . (4)

19



As before, agent i will only search further if his expected value from search exceeds his costs.

This gives us a cutoff cost of:

cn(hi)(qxl) =

∫
q̃≥qxl

(q̃ − qxl) dPQ(q̃|hi, qxl).

Substituting in PQ(q̃|hi, qxl) from (4), we have

cn(hi)(qxl) =

n(hi)−1∏
η=0

PC(ci−n(hi)+η > cη(qxl))

∫
q̃≥qxl

(q̃ − qxl) dPQ(q̃),

=

n(hi)−1∏
η=0

PC(ci−n(hi)+η > cη(qxl))

 c0(qxl),

as desired.

If agent i’s search cost is below this threshold, he will search until he either finds a better

action or runs out of actions. If he does find a better action xl′ for l′ > l, he must conclude

that previous agents did not search past l (otherwise they would have found and selected

action xl′). His posterior beliefs on actions xl′′ for l′′ > l′ therefore return to his prior beliefs

PQ, and further search decisions are given by the cutoff function c0(·).

Proof of Theorem 1. Asymptotic learning occurs if and only if the probability that any

action is sampled by some buyer converges to 1. We need to show that asymptotic learning

occurs if and only if search costs are not bounded away from zero.

Sufficiency Suppose our condition holds, i.e. search costs are not bounded away from

zero, or to put it alternately, 0 is in the support of the distribution of search costs. We

will show that given any history such that there are some un-discarded actions (i.e. the

current selected action is xl for l < k), the probability that there is further search by some

subsequent agent converges to 1.

Given that action l has quality qxl , denote

pg = PC(c̃ > cg(ql)),
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i.e. pg is the probability that an agent does not search if the last g agents selected action

l. Given independence of agents’ search costs, search by a subsequent agent occurs with

probability 1 if and only if

∞∏
0

pg = 0.

Suppose that asymptotic learning fails, i.e. suppose that
∞∏
0

pg > 0.

Since we know that by (Cutoff-n),

cn(ql) = c0(v)
n−1∏

0

pg,

we have that

lim
g→∞

cg(qxl) ≡ Lc > 0.

Note that pg ≤ P(c ≥ Lc) for all g ∈ N. By our support assumption, we therefore have that,

P(c ≥ Lc) ≡ p? < 1. Therefore

n∏
g=0

pg ≤ (p?)n+1,

=⇒
∞∏
g=0

pg = 0,

which is a contradiction.

Necessity We now establish necessity, i.e. that asymptotic learning implies 0 ∈supp(PC).

So suppose not, i.e. suppose asymptotic learning occurs but 0 6∈ supp(PC). By our assump-

tion of a non-trivial search environment (Assumption 1) there exists a quality q̂ ∈supp(PQ)

such that

1. PQ(q > q̂) > 0, and

2. With positive probability, the first agent does not search further on observing qs11 = q̂,

i.e.,

PC(c1 > c0(q̂)) > 0.
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Recall that asymptotic learning occurs if and only if

∞∏
g=0

PC(c̃ > cg(q̂)) = 0. (5)

By (Cutoff-n)

cn(q) = c0(q)
n−1∏
g=0

PC(c̃ > cg(q)).

Further, by our assumption that 0 is not in the support of the distribution of search costs,

we know there exists c > 0 such that

PC(c ≥ c) = 1.

Note that by (5), cn(q) is decreasing in n for a given q, which implies that PC(c̃ > cn(q)) is

increasing in n. Further, since PC(c̃ > cn(q)) ∈ [0, 1],
∏n−1

g=0 PC(c̃ > cg(q)) is decreasing in n.

Therefore, (5) and (Cutoff-n) we can pick n large enough so that

n−1∏
g=0

PC(c̃ > cg(q)) <
c

c0(q)

=⇒ cn(q) < c

=⇒ PC(c ≥ cn(q)) = 1.

=⇒
∞∏
g=0

PC(c̃ > cg(q̂))

=
n−1∏
g=0

PC(c̃ > cg(q̂))

> 0,

which contradicts (5).

A.2 General Equilibria

A.2.1 Necessity

Proof of necessity follows on similar lines as the common search order case. Whenever the

distribution of search costs is bounded away from 0, with positive probability, early moving

agents have a high search cost, and select a suboptimal action x̂, possibly not sampling

a better action x. Once enough early moving agents have selected x̂, later moving agents
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have no incentive to search—the largest search cost who would find it profitable to search is

smaller than the lower bound of distribution of search costs.

A.2.2 Sufficiency

Consider any equilibrium strategy profile σ. We need to show that asymptotic learning

occurs when search costs are not bounded away from zero.

A little bit of additional notation will be useful. Fix equilibrium strategies for each

agent. The process of actions is determined by the realization in the probability space

Y = Ω×C∞× D∞. Here Ω is the set of possible realizations of qualities of each action, C∞

the set of realizations of search costs of each agent, and (D,FD, λ) is a probability space

determining the possible mixed strategy realizations of a given agent.

We define h(·) as a function which assigns to each extended state y ∈ Y the corresponding

infinite histories of actions taken by each agent, i.e. h : Y → A∞. Consider the following

events in Y ,

Ei
x = {y ∈ Y : agents 1, ..., i− 1 do not sample x},

E∞x = {y ∈ Y : no agent samples x},

Ehi = {y ∈ Y : h(y) = (hi, . . .)}.

In words, the first event is where the first i − 1 agents do not sample a given action x,

the second where no agent samples x, and the third where the ith agents sees history hi.

Countable set of Histories First, we establish that the set of infinite equilibrium

histories is countable. On the equilibrium path, any action x′ that was selected but then

discarded is not selected again as it has been revealed inferior to some other action. As the

set of actions is finite, each equilibrium history features a finite time period in which herding

starts, that is from that time onward all later agents select the same action. Therefore, any

infinite equilibrium history h is determined by an initial herding time t∗, a finite sequence

ht∗ and the corresponding action x which is selected in the herd starting in period t∗. The

set of possible equilibrium histories Hσ can therefore be written as

Hσ =
⋃
t∗∈N

⋃
ht∗∈At∗

⋃
x∈X

(ht∗ , x
∞)

where x∞ denotes an infinite sequence of action x. Note that H∞σ is a countable set as

it is derived as the countable union of finite sets. As there are only countable equilibrium

histories h we restrict attention to those histories which have positive probability, P [Eh] > 0.
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In what follows, we will establish that failure of asymptotic learning implies P[E∞x |Eh] >
0. We then show that this leads to a contradiction with search costs containing 0 in its

support, thereby establishing sufficiency. We can trivially discard histories where some agent

actually takes action x (because he must have sampled that action first), so consider only

histories on which action x is never taken.

Decreasing Conditional Probabilities Next, we establish that the conditional prob-

ability of no agent up to i having sampled action x, conditional on action x never having

been chosen up to i, is strictly decreasing with i, i.e.

P
[
Ei
x |Ehi

]
> P

[
Ei+1
x

∣∣Ehi+1

]
. (6)

To see this, note

P
[
Ei+1
x

∣∣Ehi+1

]
= P

[
Ei
x

∣∣Ehi+1

]
× P

[
Ei+1
x

∣∣Ehi+1
, Ei

x

]
= P

[
Ei
x |Ehi

]
× P

[
Ei+1
x

∣∣Ehi+1
, Ei

x

]
where the first equality follows from Bayes rule, the second equality from the fact that agent

i does not take action x. The inequality now follows since P [Ei+1
x |Ehi+1, E

i
x ] < 1.

Bounding Conditional probabilities We now show that if asymptotic learning fails

then there exists a positive probability event in Y such that for every agent i his condi-

tional probability of x not having been sampled, given that no predecessor selected x, is

strictly larger than some strictly positive ε. Consider the following conditional probability

P [E∞x |Eh ] . By (6), this is strictly smaller than P [Ei
x |Ehi ] for any i.

Suppose now that asymptotic learning fails. This implies that there exists an action x

and a positive probability event E∞xx such that action x is not sampled along the infinite

history while being the uniquely optimal action. Consider any infinite history h such that

P (E∞xx ∩ Eh) > 0 (note that such an event Eh exists as P (E∞xx) > 0 by assumption and there

are only countable histories). We therefore have

P [E∞xx |Eh ] =
P (E∞xx ∩ Eh)

P (Eh)
> 0.

Therefore,

P
[
Ei
x |Ehi

]
> P [E∞x |Eh ] ≥ P [E∞xx |Eh ] .

Here the first inequality follows by repeated application of (6), the second since E∞xx ⊆ E∞x .

Bounding Beliefs after Private Search Note that P [Ei
x |Ehi ] is agent i’s condi-

tional probability of action x not having been sampled by his predecessors given history hi,
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prior to agent i sampling any actions himself. His decision whether or not to sample x will

be based upon his posterior probability of Ei
x generated according to the quality realizations

of the actions he samples.

Let us fix a quality realization ω = (q1, ..., qk) such that (ω, c∞, d∞) ∈ Eh for some c∞, d∞.

For any such ω and any agent i there exists a subvector ~q ⊂ (q1, ..., qk) which represents the

realized qualities of actions agent i knows by the time he decides to stop searching and selects

an action.The posterior probability of such an agent i′ is given by P
[
Ei′
x |Ehi′ , ~q

]
. Analogous

arguments to those that established (6) show

P
[
Ei
x |Ehi , ~q

]
≥ P

[
Ei+1
x

∣∣Ehi+1
, ~q
]
≥ P [E∞x |Eh, ~q ] ,

for all i ∈ N.

Establishing Asymptotic Learning As there are only finitely many actions, there

exists a subset X ′ of X and a positive probability event Eh,X′ ⊂ Eh such that for an infinite

subsequence of agents searched exactly the actions in X ′ ⊆ X.

Our goal is to show that there exists a positive probability event in Eh,X′ such that the

posterior probability of no agent sampling action x, P [E∞x |Eh, ~q ] for quality realizations ~q

in this event is strictly positive. Suppose not—then∫
~q∈Q|X

′ |

P [E∞x |Eh, ~q ] dP [~q |Eh ] = 0,

contradicting P [E∞x |Eh ] > 0.

Therefore, there exists a positive probability event such that for an infinite subsequence

of agents the infimum of their posterior probability of action x not having been sampled by

their predecessors is bounded away from zero. This in turn implies that the infimum cost

cutoff (across all agents) which determines whether or not to search is bounded away from

zero. But since search costs are not bounded away from zero and independent across agents,

the probability that infinitely many agents have a cost realization above the threshold is

equal to zero establishing a contradiction.
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