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Abstract

The Internet allows sellers to track “window shoppers,” consumers who look but do not buy,

and to lure them back later by targeting them with an advertised sale. This new technology thus

facilitates intertemporal price discrimination, but simultaneously makes it too easy for a seller to

undercut her regular price. Because buyers know they could be lured back, the seller is forced

to set a lower regular price. Advertising costs can, therefore, serve as a form of commitment: a

seller can actually benefit from higher costs of advertising. Based on this framework, the impact

of advertising costs on prices, profits, and welfare are analyzed using a dynamic pricing model.

Furthermore, it is demonstrated how buyers’ time preferences give rise to price fluctuation or an

everyday-low-price in equilibrium.
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1 Introduction

The advent of tracking via the use of “cookies” by online sellers allows those sellers to keep “window

shoppers,” consumers who look but do not buy, on a leash. Sellers can reel in window shoppers, who

are likely to be responsive to a discounted price, through a targeted email announcing a discounted

price. The consequences, however, of this kind of tracking and targeting on the dynamics of prices,

profits, and welfare are ambiguous. While it allows sellers to intertemporarily price discriminate, it

also hinders commitment to future prices because sellers are always tempted to offer a sale when they

learn about the interest of a shopper.

This paper proposes a dynamic pricing model in which a monopolist uses targeted sales in order to

recall window shoppers and in which the costs of such sales (advertising costs) endogenously provide

the monopolist with some ability to commit to high prices for an extended period of time. Specifically,

a seller can set prices aimed at high-valuation buyers today, knowing that she can collect low-valuation

buyers later via a targeted sale. The profitability of this strategy is partially undermined if the high-

valuation buyers, anticipating a future sale, decide to wait. Consequently, the seller faces a trade-

off between having frequent sales, allowing her to sell to low-valuation buyers with less delay, and

maintaining a high regular price. Finally, if the seller cannot commit to her frequency of sales, she is

exposed to the logic of the Coase conjecture (Coase (1972)).1 In particular, were advertising costless,

the seller would like to immediately offer a low price to a buyer after he has revealed his low valuation

by not buying. In that case, only a low price can be sustained in equilibrium.

How valuable advertising costs are as a commitment device to the seller and how profitable price

discrimination is compared to a constant low price depends critically on buyers’ time preferences.

While the cost of advertising determines the frequency of sales, buyers’ time preferences determine

the regular price that induces high-valuation buyers to buy. For example, if buyers are extremely

impatient, then the seller can extract the entire surplus from high-valuation buyers by charging a

high regular price regardless of the frequency of sales. In that case, commitment is of little value. In

contrast, with very patient buyers, the regular price can be set at a profitable level only if the seller

has very infrequent sales. Then, infinite advertising costs become profit-maximizing, but moderate

levels of advertising costs are of no value to the seller as a commitment device. For intermediately

patient buyers, moderate levels of advertising costs provide the seller with a level of commitment that

is optimal to the seller.

To formalize these ideas, I consider buyers to arrive randomly over time. Past buyers’ arrivals

and purchasing decisions are the seller’s private information. Although buyers are forward-looking

and rational, they are only actively in the market upon arrival and when the seller “reactivates”

them through costly advertising. Furthermore, buyers do not observe past price paths and sales, so

1See also Stokey (1979), Bulow (1982), Fudenberg et al. (1985), Gul et al. (1986)
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they assign the same probability to all possible equilibrium histories given the observed price. Put

differently, buyers know the frequency of sales but not the exact timing of the next sale.

I focus on stationary equilibria in which high-valuation buyers buy upon arrival: hence, the number

of low-valuation buyers who have not bought is the relevant state variable. I show that the seller

either chooses a constant low price (everyday-low-price or EDLP equilibrium) or a high regular price

with occasional sales (advertising equilibrium). In an advertising equilibrium, the seller accumulates a

fixed number of low-valuation buyers before having an advertised sale. I call this number the “cutoff-

demand”. The constant regular price must make high-valuation buyers indifferent between buying

and waiting. The regular price and cutoff-demand uniquely describe the equilibrium price path.

The equilibrium frequency of sales in an advertising equilibrium is determined by two conditions:

the seller cannot have an incentive to hold a sale before the cutoff-demand is reached, nor any incentive

to wait after it is reached. These conditions are independent of the arrival of high-valuation buyers

and the regular price. For any given advertising cost, a (generically) unique cutoff-demand satisfies

these conditions. In particular, sales are less frequent if advertising costs are high. Moreover, I show

that an advertising equilibrium exists if and only if the frequency of sales supported by the cost of

advertising results in a high enough regular price to support profits in excess of an EDLP strategy.

An EDLP equilibrium always exists.

After characterizing the equilibrium outcome, I elaborate on the role of buyers’ time preferences

and the value of advertising as a commitment device. To that end, I first consider the full commitment

benchmark, in which the seller can commit to a frequency of sales at time zero. In that case, the seller

only faces a trade-off between frequent sales and a high regular price. Buyers’ time preferences specify

how sensitive the regular price is to changes in the frequency of sales. The optimal frequency of sales

is first decreasing in the discount rate of buyers and then increasing. On the one hand, if buyers are

infinitely impatient, the seller can perfectly price discriminate and prefers very frequent sales. On the

other hand, if buyers have a finite discount rate, less frequent sales allow the seller to increase the

price significantly. If buyers are, however, very patient, the regular price is close to the low-valuation

of buyers even with a delay in trade, such that the seller prefers very frequent sales or no sales at all.

Without ex-ante commitment, the seller’s benefit from advertising costs as a commitment device is

thus critically affected by buyers’ time preferences. I distinguish between the following three cases:

1. If buyers are relatively patient, an equilibrium with periodic sales exists only for large enough

advertising costs. The profit-maximizing advertising cost is infinite.

2. For intermediate levels of buyer patience, low advertising costs can increase the seller’s profit

significantly because she can commit to a lower frequency of sales and, hence, raise the regular

price sufficiently to make price discrimination profitable. However, for intermediate advertising

costs, the cost of advertising outweighs the benefit from increasing the regular price, so the
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unique equilibrium is an EDLP equilibrium. For high advertising costs, an equilibrium with

sales exists and the sellers profits converge to the static monopoly profit. The seller prefers small

or infinite advertising costs.

3. For highly impatient buyers, a positive advertising cost that gives enough commitment power

to not have sales after each arrival suffices to sustain periodic sales in equilibrium. As buyers

become more impatient, the seller’s profit-maximizing advertising cost decreases.

Hence, profits are non-monotonic in advertising costs. In the region in which finite advertising costs

are optimal, the optimal advertising cost is first increasing and then decreasing in the impatience of

buyers.

Finally, I show how market size (i.e., the rate at which buyers arrive) influences the frequency of

sales. This is important from an empirical perspective. It also has normative implications because

social welfare is increasing in the frequency of sales. The average time between two sales is decreasing

in the market size, even though more buyers are being reactivated at each sale. Hence, the regular

price is lower in large markets and consumers capture more surplus. At the same time, in high-volume,

low-ticket markets such as music CDs, sales are less frequent than in low-volume, high-ticket markets

such as furniture, if both markets are about the same size in terms of revenues.

These results not only have implications for prices in online markets, but also for the budget firms

want to allocate to email advertising campaigns. While it is unrealistic for sellers to commit to infinite

or very large advertising costs, sellers have an incentive to commit to moderate amounts. Depending

on the time preferences of her customers, a seller can benefit from developing a reputation for fancy

or elaborate - thus expensive - email advertising. Related to this finding, I show that the seller always

prefers a fixed advertising cost to a variable advertising cost that depends on the number of people

contacted.2 The significance of email advertising in general is, in part, reflected by the 2 billion dollars

that US firms are forecast to spend on it in 2014. 3 Online retail sales in general accounted for 231

billion dollars in 2012 and is predicted to reach 370 billion dollars by 2017. 4

More broadly, this paper helps to understand the long-run equilibrium implications of the seller’s

ability to recall buyers. While targeting per se will always benefit consumers, if the static monopoly

price is high, it can hurt or benefit the seller. It is a well-known fact that the ability to track and

2This suggests that in connection with sales, firms are willing to pay more to an advertising platform that has fixed

rates rather than per-click or per-view rates as commonly used. But for the pricing of banner advertising, intermediary

agents are involved, such that asymmetric information and moral hazard can play an important role.
3Forrester Research, “US Email Marketing Forecast, 2009 To 2014” (accessed on October 18, 2013): http://www.

forrester.com/US+Email+Marketing+Forecast+2009+To+2014/fulltext/-/E-RES53620?docid=53620
4Forrester Research, “US Online Retail Forecast, 2012 To 2017” (accessed on December 30, 2013): http://www.

forrester.com/US+Online+Retail+Forecast+2012+To+2017/fulltext/-/E-RES93281?objectid=RES93281 and http:

//www.forrester.com/US+Online+Retail+Sales+To+Reach+370+Billion+By+2017/-/E-PRE4764
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target reduces advertising costs by resolving an old dilemma of advertising, first pinpointed by John

Wanamaker with his famous quote:

“Half the money I spend on advertising is wasted. The trouble is I dont know which half.”5

However, if buyers are relatively impatient, it is better for a firm not to collect customers’ contact

information. Nevertheless, if buyers are sufficiently patient, the seller earns more than static monopoly

profits with some intermediate advertising costs.

This paper is mostly related to the intertemporal price discrimination papers by Conlisk et al. (1984)

and Sobel (1991), in which sellers have limited commitment for exogenous reasons. In their models,

the frequency of sales is determined by the length of a period rather than the cost of advertising. Sobel

(1991) shows that as period length goes to zero, stationary equilibria satisfy the Coase conjecture.

This paper shows that advertising costs may permit sellers to escape the logic of the Coase conjecture

by endogenously creating limited commitment. Moreover, my model allows for a detailed analysis

of the interplay of the value for commitment and time preferences. Thus, this paper extends our

understanding of intertemporal price discrimination in general.

The idea that advertising can serve to activate buyers has been used in static models of advertising,

such as Iyer et al. (2005). They consider oligopolistic markets where several sellers compete for buyers

through advertising. In my setup, advertising instead creates competition between the seller and her

future self by making buyers long-lived, allowing her to intertemporarily price discriminate. A detailed

discussion of the related literature can be found in section 6.

The paper is organized as follows. In Section 2, I introduce the model and equilibrium notion.

Section 3 characterizes all stationary equilibria in which high-valuation buyers buy upon arrival. Using

these results, I present some comparative statics about the frequency of sales and advertising costs in

Section 4. In Section 5, I investigate the role of buyers’ time preferences on the equilibrium outcome

and the benefit of advertising costs as a commitment device to the seller. Finally, in Section 6, I discuss

some assumptions and results and relate the paper to the relevant literature. Section 7 concludes the

analysis.

2 Model

2.1 Basics

A monopolist (she) sells a homogeneous good over time. Time is continuous. For simplicity, and in

order to abstract away from inventory considerations, I assume that the seller’s marginal cost is equal

to zero.

5See for example Hoffman and Novak (2000).
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Buyers arrive according to a Poisson process with arrival rate λ. Each buyer (he) wants, at most,

one unit of the good in his lifetime and his valuation is his private information.6 Valuations of buyers

are independently distributed and independent of arrivals. They are high, vH , with probability π and

otherwise low, vL, where vH > vL > 0. Hence, low-valuation buyers arrive according to a Poisson

process with an arrival rate λ(1 − π) and high-valuation buyers arrive according to an independent

Poisson process with arrival rate λπ. The seller privately observes arrivals of the buyers and whether

a buyer has bought or not.

Buyers observe the price when they arrive, but they do not observe past or future prices.7 They

believe that all arrival times are equally likely.8 Hence, all buyers have the same belief about the

upcoming price path. Upon arrival, a buyer decides whether to buy or wait. A buyer who waits can

only buy if he comes back later at a search cost c > 0 or if “reactivated” by the seller. The seller

can inform window shoppers who have previously visited, but not bought, about a sale via a targeted

advertising at a cost CA > 0. For now, I assume that the advertising cost is a fixed cost no matter

how many buyers are being reactivated. I discuss the implications of advertising costs being variable

in Section 6. Call a point in time at which the seller chooses to advertise an advertised sales period.

All other times are regular periods. The seller chooses her price and advertising strategy at each point

in time.

The seller’s discount rate is rs and the buyers’ rb. If the seller sells to Nt buyers in period t at a

price pt, then her profit at time t is Πt = pt ·Nt if she does not advertise, and Πt = pt ·Nt −CA if she

advertises. Her expected discounted profits are hence,

Π = E


 ∑

t:Nt 6=0

e−rst ·Πt


 .

A buyer with valuation v who buys τ periods after arrived, receives an expected payoff

U = E
[
e−rbτ · (v − pτ )

]

relative to the time of arrival if he does not search and U = E [e−rbτ · (v − pτ − c)] otherwise. Note that

τ and Nt are random variables and the seller’s pricing strategy can be contingent on the information

at time t.

2.2 Equilibrium

I focus on stationary equilibria with the seller’s belief about the pool of inactive buyers in the market

being the state variable satisfying the following assumptions:

6I discuss in Section 6 how the assumption that each buyer demands only a single unit can be relaxed.
7If buyers can observe past price paths, the qualitative results of the paper will not change. In that case, the regular

price is not constant, but continuously decreasing over time until the seller has an advertised sale.
8I formalize this when I introduce the equilibrium notion.
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• If buyers are indifferent between buying and not buying, they buy. (A1)

• Buyers do not change their beliefs about the state variable after observing an unexpected price.

(A2)

• All equilibrium prices are greater than or equal to vL. (A3)

Assumption (A1) essentially restricts equilibria to pure-strategy equilibria. Assumption (A2) can be

rationalized by buyers that believe that the seller deviates from the equilibrium price path with very

small probability similar to “trembling hand perfect equilibria.” In other words, the seller cannot

signal to buyers the current state of the world through the current price. Assumption (A3) is satisfied

in all limiting equilibria of the corresponding discrete-time version of the game as the length of the

period goes to zero which follows from the argument used in discrete-time bargaining models with

incomplete information, such as in Fudenberg et al. (1985). 9

Because of assumptions (A1) and (A3), the unique advertised sales price is given by vL. Assumption

(A2) implies that, in any period in which only high-valuation buyers buy, the price must be equal to

the highest price acceptable to high-valuation buyers. Finally, in stationary equilibria, seller and

buyers cannot coordinate search and sales times in the following sense: they cannot agree to trade at

a discounted price t periods after a buyer’s arrival time, where t is independent of the state variable.

Consequently, on equilibrium path, buyers do not search. Thus, a seller’s ability to track makes search

of buyers moot.10 Nevertheless, search can play a critical role out of equilibrium.

On the equilibrium path, the only payoff-relevant state of the game is the number, n, of buyers who

have arrived but not yet bought. These are low-valuation buyers in equilibria satisfying assumptions

(A1)-(A3). It is sufficient to focus on strategies of the seller that depend only on the equilibrium state

variable n, because one can define out-of-equilibrium beliefs for the buyers such that the seller cannot

profitably deviate to a price that neither buyer type would accept. Suppose a high-valuation buyer

who observes a price he will not accept believes that he is the only buyer who has seen this deviation.

Then, in a continuation game, he only buys during an advertised sale at a price that is lower than

the highest price he would have accepted upon arrival. Because future buyers do not observe past

deviations by the seller, there is a continuation equilibrium in which the seller moves back to the

equilibrium path by treating the buyer like a low-valuation buyer or by advertising a price that is

acceptable to him if he had high valuation.

Thus, it is natural to focus on stationary equilibria in which the seller’s equilibrium strategy depends

only on n in all periods. Let the seller’s pricing strategy p : N → R+, and advertising strategy

9For non-stationary equilibria, this property does not hold and the set of equilibria is very rich: Sobel (1991) shows

a folk theorem for such equilibria in a discrete-time model for a durable goods monopolist with arriving buyers.
10This is in sharp contrast to the literature on obfuscation in online markets in order to increase search costs of buyers,

such as Ellison and Ellison (2009) and Ellison and Wolitzky (2012). Search models in oligopolistic setups such as Stahl

(1989) seem particularly applicable to brick-and-mortar markets.
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σ : N → {0, 1} be functions of the state variable n, where σ(n) = 1 means the seller holds a sale as

soon as n buyers have “accumulated.” Buyers of both types choose an acceptance rule of whether

to buy or wait upon arrival given each price p.11 Moreover, buyers’ beliefs about the state variable

n ∈ N0 = {0, 1, 2, . . . } are represented by a distribution µ on N. I refer to the number of buyers who

have arrived but not bought that triggers a sale

N = inf{n : σ(n) = 1}

as the cutoff-demand. Then, equilibrium strategies (p, σ) of the seller that result in a cutoff-demand

N , acceptance rule and beliefs µ of the buyers, constitute a stationary equilibrium if and only if the

following holds:

1. Seller’s profit maximization: given buyers’ acceptance rules, p(n) maximizes the seller’s

expected continuation payoff for any n.

2. Buyers’ utility maximization: given their belief µ, high-valuation buyers buy whenever their

utility from buying today v − p is larger than the expected utility of waiting

E[e−rb·τ ] · (vH − vL)

where τ is the waiting time until the next sale derived from µ and the sellers strategy using

Bayes’ rule. They wait whenever the utility of waiting is higher. Low-valuation buyers buy if

and only if p ≤ vL. Finally, each buyer prefers not to search.

3. Beliefs: upon arrival, buyers’ equilibrium beliefs µ must be consistent with the seller’s and other

buyers’ strategies in the following sense. Each strategy of the seller and equilibrium acceptance

rule of buyers induce a Markov process on N that increases by one after every arrival of a low-

valuation buyer as long as n < N and drops to zero after an arrival of a low-valuation buyer for

n > N . Then, a buyer’s belief about the state space must be the stationary distribution of this

Markov chain

µ(n) =

{
1
N for n ∈ {0, . . . , N − 1}
0 otherwise

whenever it exists (i.e., N < ∞) and arbitrary otherwise. If the buyer does not purchase, he

updates his beliefs according to Bayes’ rule; hence µ is the uniform distribution on {1, . . . , N}.

4. No out-of-equilibrium signaling: Whenever a buyer observes an out-of-equilibrium price,

his belief about the state of the world does not change.

Conditions 1 and 2 are standard. Condition 3 entails that, in equilibrium, buyers’ beliefs about the

state are consistent with the seller’s and other buyers’ strategies. Due to the Markovian structure of

11On equilibrium path, all buyers buy during a sale, so the issue is the purchase decision upon arrival.
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the equilibrium, these beliefs must coincide with the stationary equilibrium of the process describing

the evolution of states. Condition 4 guarantees that assumption (A2) is satisfied.

Because buyers do not observe the state variable, all regular periods appear the same to buyers

upon arrival. In every regular period, the seller either chooses the unique highest price pH(N) that

induces purchase by high-valuation buyers only or a price equal to vL. If she chooses a price of vL, the

state variable does not change. Hence, in equilibrium, she either prefers to choose vL in all periods or

a regular price pH(N) in all regular periods. All equilibria are fully characterized by the frequency of

sales given by the cutoff-demand N and the regular price pH(N).

3 Characterization of the Stationary Equilibrium

In this section, I characterize all stationary equilibria.

3.1 Preliminaries

First, note that given CA < ∞, N = ∞ can only be an equilibrium outcome if the price is vL as the

following lemma shows.

Lemma 1. In an equilibrium with N = ∞, the price must be constant and equal to vL. Hence, the

seller’s profit is given by

ΠL ≡
λ

rs
· vL.

Proof. Let tλn be the random variable describing the n-th arrival time of a Poisson process with arrival

rate λ. It can be shown that tλn is distributed according to a gamma distribution Γ
(
n, 1λ

)
. The

corresponding moment generating function is given by

E
[
es·t

λ
n

]
=
(

1− s

λ

)−n
. (1)

In any equilibrium in which the seller never advertises, all buyers must buy upon arrival. If not, so

if some low-valuation buyers do not buy with a positive probability, then the state variable n would

reach any arbitrarily high level with positive probability. As a result, the instantaneous profit that

the seller can make by advertising n · vL − CA can become arbitrarily high with positive probability.

Hence, having an advertised sale would be a profitable deviation for the seller for large enough n.

Finally, note that all buyers buy upon arrival if and only if the price is constant and equal to p = vL.

Hence, the seller’s profit is given by

ΠL =

∞∑

i=1

E
[
e−rs·t

λ
i

]
· vL =

(
1 + rs

λ

)−1

1−
(
1 + rs

λ

)−1 · vL =
λ

rs
vL.
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As a result, an equilibrium can be one of only two kinds:

Case 1 (everyday-low-price equilibrium): N =∞ and a constant price of vL.

Case 2 (advertising equilibrium): N <∞ with a regular price pH(N) ∈ (vL, vH).

The structure of an advertising equilibrium with cutoff-demand N = 3 is illustrated in Figure 1.

Black circles represent the random arrival times of low-valuation buyers and white circles arrival times

of high-valuation buyers. The state variable n increases by one after arrivals of low-valuation buyers.

When the cutoff-demand is reached (i.e., n = N) the state drops to n = 0 and a new cycle starts.

The price path is given by a regular price pH(3) that is accepted by all high-valuation buyers and

advertised sales at price vL at which all N low-valuation buyers buy.

time t
0

arrivals vL vH vH vL vL vL vH

n = 0 n = 1 n = 2 n = N = 3 n = 0 n = 1

buy buy buy

buy

regular periods advertised sale regular periods

price

pH(3)

vL

vH

Figure 1: Illustration of a price path with cutoff-demand N = 3.

In the following, I focus on properties of the cutoff-demand N and regular price pH(N) of advertising

equilibria.

Buyers’ beliefs. In equilibrium, buyers hold correct beliefs about N , but they do not know when

the last sale has happened. Consequently, they do not know the number of buyers, n, who have yet to

buy and they assign equal probability to the states n ∈ {0, . . . , N − 1}. As a result, their belief about

the waiting time until the next sale, is the same. The distribution of the equilibrium expected waiting

time τ can be characterized by the following lemma.

Lemma 2. Given the seller’s equilibrium cutoff-demand N <∞, a buyer believes in equilibrium that

the waiting time until the next sale, τ , conditional on not buying upon arrival is a uniform mixture of

gamma distributions Γ
(
N − (n+ 1), 1

λ(1−π)

)
with n ∈ {0, . . . , N − 1}.12

12A uniform mixture of distributions F1, F2, . . . , Fn is a distribution of a random variable that is distributed according

to F1, F2, . . . , Fn with equal probability.
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The intuition for this result is that given the current state is n, if a buyer does not accept the

regular price, he has to wait for N − (n + 1) low-valuation buyers to arrive because the seller thinks

that he has low-valuation. Hence, he has to wait for time t
λ(1−π)
N−(n+1) until the next sale. By equilibrium

condition 3, a buyer assigns equal probability to states n ∈ {0, . . . , N − 1}

Buyers’ indifference rule. Given the equilibrium cutoff-demand N , a high-valuation buyer is

willing to pay at most pH(N) satisfying

vH − pH(N)︸ ︷︷ ︸
surplus from buying today

= E[e−rbτ ] · (vH − vL)︸ ︷︷ ︸
expected surplus from waiting

. (2)

That is, at a price pH(N), high-valuation buyers are indifferent between buying today and waiting for

the next sale.

Using Lemma 2 and expression(1), for N <∞, I can calculate the expected discount to a sale:

E[e−rbτ ] =
1

N

N−1∑

n=0

E
[
e
−rbtλ(1−π)N−(n+1)

]
=

1

N
·

1−
(

1 + rb
λ(1−π)

)−N

1−
(

1 + rb
λ(1−π)

)−1

for N ≥ 1. For N ∈ {0, 1}, the expected waiting time is zero, so the buyers expected discount factor

is 1.

Seller’s profits. First, the seller’s expected discount factor between the arrival of two buyers is

given by

E
[
e−rs·t

λ(1−π)
1

]
= (1 +Rs)

−1

where

Rs =
rs

λ(1− π)

is the seller’s arrival-adjusted discount rate. This is the average discount rate between the arrival of

two low-valuation buyers. Furthermore, given n inactive buyers in the market, denote by Π(n;N) the

expected continuation profit if the seller can adhere to a plan to have a sale after unrealized demand

N . Then, with n inactive low-valuation buyers, the seller’s expected continuation profit is given by

Π(n;N) =
λπ

rs
· pH(N)

︸ ︷︷ ︸
revenue from vH -buyers

+ (1 +Rs)
−1 ·

(
Π(n+ 1;N)− λπ

rs
· pr
)

︸ ︷︷ ︸
expected revenue from advertised sales
after (n+ 1)-th arrival of vL-buyer

for n < N and Π(N ;N) = N · vL + Π(0;N)− CA.
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3.2 Equilibrium Characterization

In this subsection, I characterize all stationary equilibria and derive conditions under which an adver-

tising equilibrium exists. Whenever it exists, it is generically unique.

First, I derive necessary conditions for the cutoff-demand N in an advertising equilibrium. Profit

maximization by the seller guarantees that N < ∞ constitutes an equilibrium if and only if, for all

n < N ,

Π(n;N) > max {n · vL + Π(0;N)− CA, ΠL}

and, for n > N and all m ≥ 1,

n · vL + Π(0;N)− CA >

max

{(
1− (1 +Rs)

−m) · λπ
rs
· pH(N) + (1 +Rs)

−m ((n+m) · vL + Π(0;N)− CA) ,ΠL

}
.

In particular, the seller never wishes to have an advertised sale before the N -th low-valuation buyer

has arrived and she cannot wish to wait for more low-valuation buyers to arrive. These conditions

place upper and lower bounds on the advertising cost CA consistent with cutoff-demand being N :

Lemma 3. (i) Given a cutoff-demand N , a seller does not want to drop the price before period N if

and only if

CA ≥
(
N −

(
1− (1 +Rs)

−N
)
·
(
1 +R−1s

))
· vL ≡ C(N). (3)

(ii) Given a cutoff-demand N , a seller does not want to postpone an advertised sale in period N if

and only if

CA ≤
(
N −

(
1− (1 +Rs)

−N
)
·R−1s

)
· vL ≡ C(N). (4)

(iii) Generically, there is a unique integer N∗(CA) that satisfies (3) and (4).

Intuitively, if advertising costs are low, the seller is tempted to have a sale when only a few inactive

buyers have accumulated, while if advertising costs are high, she wants to have a sale only when

many inactive buyers have accumulated. The bounds on the advertising cost are independent of the

value of the regular price and depend only on the seller’s arrival-adjusted discount rate Rs and the

cutoff-demand N . In particular, buyers’ time preferences are irrelevant.

The functions C,C are both increasing in N and C(N) < C(N) for all N . Let the largest number

that satisfies (3) be N and the smallest number that satisfies (4) be N . In other words,

C(N) = CA = C(N).

The uniqueness of an integer N∗(CA) ∈ [N,N ] follows from the observation that N −N = 1. When

N,N are integers, there are two N∗(CA) that satisfy this condition. Note also that N −N = 1 implies

12



Figure 2: Illustration of Lemma 3 for CA = 10, vL = 50, π = 0.5,

rs = 0.5, λ = 2000

that C(N) = C(N+1) for all N . Figure 3.2 illustrates C, C, N , N . In that case, only N = 28 satisfies

both (3) and (4).

These conditions are the key to characterizing the stationary equilibria when the seller cannot

commit to prices nor the frequency of her sales. From now on, let the search cost be small enough

relative to CA to satisfy

λπ

rs
c

︸︷︷︸
total search cost

≤ λ(1− π)

rs
vL −max

N

(1 +Rs)
−(N−1)

1− (1 +Rs)
−(N−1) · (NvL − CA)

︸ ︷︷ ︸
cost of delay and advertising

. (5)

This condition guarantees the existence of EDLP equilibria. After observing an out-of-equilibrium

price, buyers believe that the state is unchanged n = 0. The following continuation equilibrium can

be supported after a deviation: high-valuation buyers only accept prices p ≤ vL + c and the seller

returns to an EDLP after the first deviation. First, it is immediate that given an EDLP strategy of the

seller, the buyers strategy is optimal. Moreover, given the high-valuation buyers’ strategy, the seller

cannot make higher profits than with EDLP by condition (5). Given this continuation equilibrium, a

deviation is not profitable for the seller because (5) implies that π(vL + c) < vL. In online markets,

search costs are likely to be small compared to advertising costs.13

The following proposition characterizes the (generically) unique equilibrium.

Proposition 1. Let (5) be satisfied. Then, there is always an EDLP equilibrium. There exists a

generically unique advertising equilibrium with cutoff-demand N∗(CA) satisfying (3) and (4) if and

only if

Π(0;N∗(CA)) >
vL · λ
rs
≡ ΠL. (6)

13If condition (5) is not satisfied, an EDLP equilibrium cannot be sustained.
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In that case, the regular price must be equal to pH(N∗(CA)).

From now on, I refer to Π(0;N∗(CA)) as the profit from price discrimination, given cutoff-demand

N∗(CA). If (6) is satisfied, the advertising equilibrium is the more natural equilibrium to consider

because the seller makes greater profits than in an EDLP equilibrium. An advertising equilibrium is

constructed in two steps:

1. First, the cutoff-demand N∗(CA) that satisfies (3) and (4) need to be found.

2. Then, Π(0;N∗(CA)) and ΠL must be compared.

I discuss implications of the first step in Section 4 in form of corollaries. In Section 5, I show how

equilibria depend on advertising costs CA and buyers’ time preferences taking into account the second

step. The second step captures, in particular, how valuable the cost of advertising is for the seller as

a commitment device.

Remark 1. Instead of imposing assumptions on the search cost of buyers, I can also impose different

out-of-equilibrium beliefs in order to sustain EDLP equilibria if Π(0;N∗(CA)) < vL·λ
rs
≡ ΠL. For

example, this is true if buyers who face a price pH(N∗(CA)) > p > vL believe that the states are

distributed uniformly on {0, . . . N∗(CA)− 1} and the seller is setting this high price p, unacceptable to

low-valuation buyers, in every period with periodic sales according to cutoff-demand N∗(CA). For all

other deviations, buyers do not change beliefs about the state space.

Remark 2. In a model with a continuous inflow of buyers conditions (3) and (4) can be summarized

in one equation, where the upper and lower bound of CA coincide.

4 Comparative Statics: Advertising Cost and Market Size

Using the equilibrium characterization of Proposition 1, I now relate my model to two well-known

benchmark models: the model by Sobel (1991), in which sellers lack any commitment power, that

results in the Coasean outcome and a model in which the seller can fully commit to a constant price.

Then, I analyze the effect of the arrival rate λ on the frequency of sales. I will refer to λ as the market

size from now on.

An immediate implication of conditions (3) and (4) is that if advertising is costless (CA = 0), then

the unique equilibrium is an EDLP equilibrium. The reason is that the seller wants to drop the price

as soon as a buyer does not buy. For CA > C(1), however, advertising costs serve as a commitment

device for the seller. In particular, the higher that cost, the higher N∗(CA), hence the less frequent are

sales in an advertising equilibrium. By (3) and (4), every advertising cost in (C(N∗(CA)), C(N∗(CA)))

is mapped to a unique cutoff-demand N∗(CA). As CA becomes infinitely large, the static monopoly

14



profit can be sustained. More precisely, Π(0;N∗(CA)) converges to

ΠH ≡
λπ

rs
· vH ,

which is the profit the seller makes if she charges vH in every period without ever advertising. These

results are summarized in the following corollary.

Corollary 1. (i) (Coase conjecture) For CA < C(1), the only equilibrium is an EDLP equilibrium.

(ii) The cutoff-demand N∗(CA) is increasing in advertising costs CA.

(iii) For CA =∞, the static monopoly profit can be sustained at any point in time.

Hence, my model encompasses two well-known benchmark cases: (i) specifies the Coasean equilib-

rium outcome for monopolist without any commitment power; and (iii) captures a monopolist who

can fully commit to a constant price. In the following, the goal is to obtain a better understanding of

the intermediate case, when C(1) < CA <∞.

As previously noted, the equilibrium cutoff-demand N∗(CA) is independent of the buyers’ dis-

count rates rb and vH that only affect the profit from price discrimination through the regular price

pH(N∗(CA)) given by (2). N∗(CA) is a decreasing function of the arrival-adjusted discount rate

Rs = rs
λ(1−π) and vL. Hence, an increase in the market size λ is similar in effect to having a more

patient seller.

These observations imply that, everything else the same, in larger markets (i.e., with high λ) the

cutoff-demand N∗(CA) is large, that is the good is sold to more buyers per sale. However, buyers are

also accumulated faster. I show that the average time between sales is decreasing in the market size λ.

Hence, popular products should be on sale more frequently than less popular products. More frequent

sales decrease the delay in trade with low-valuation buyers, but they also force the seller to lower the

regular price.

In two markets of the same size in terms of revenues (i.e., with same vLλ), the market with frequent

arrivals and smaller valuations has less frequent sales than the one with less frequent arrivals, but

higher valuations . In other words, the model predicts that high-volume, low-ticket goods, such as a

popular music CD or groceries, should be on sale less frequently than low-volume, high-ticket goods,

such sofas from a specific brand, if the average revenues are approximately the same. The following

corollary summarizes these insights.

Corollary 2. (i) The advertising equilibrium cutoff-demand N∗(CA) is decreasing in the arrival-

adjusted discount rate Rs and in vL. Furthermore, limRs→∞N
∗(CA) = CA

vL
and limRs→0N

∗(CA) =∞.

(ii) A higher arrival rate decreases the average time between two sales.

(iii) If the arrival rate increases proportionally to a decrease in vL (i.e., λvL is constant), then the

average time between two sales increases.
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The intuition for the second part of (i) is that if the arrival-adjusted discount rate Rs is extremely

large, the average cost per customer CA
N∗(CA)

is approximately equal to the sale price vL. For small

Rs, average costs per customer converge to zero, such that the seller can make high profits during

an advertised sale. While an increase in the arrival rate increases the revenues from a sale, delaying

this revenue is more costly. Hence, sales are more frequent. (iii) follows from the observation that for

high-volume, low-ticket goods, waiting for more low-valuation buyers to arrive is less costly than in

low-volume, high-ticket markets.

Finally, for higher advertising costs, the average advertising cost per reactivated buyer CA
N∗(CA)

is higher. In other words, as the cost of advertising increases, the number of buyers that can be

reactivated in equilibrium increases less than proportionally. Hence, a dollar of advertising cost is

more valuable as a commitment device if total advertising costs are low than if they are high. The

intuition is that, for high N∗(CA), the revenue during an advertised sales period is higher, so further

delay of trade is more costly than if N∗(CA) is small.

Corollary 3. The average advertising cost per buyer CA
N∗(CA)

is increasing in CA.

Graphically, this follows from the convexity of C and C in Figure 3.2.

Proof. This lemma follows by rewriting inequalities (3) and (4) as

N−1∑

i=0

(
1− (1 +Rs)

−i
)
· vL

︸ ︷︷ ︸
cost of waiting for N − 1 arrivals

≥ CA ≥
N∑

i=1

(
1− (1 +Rs)

−i
)
· vL

︸ ︷︷ ︸
cost of waiting for N arrivals

.

Hence, in equilibrium, the advertising cost must equal the cost of waiting for N low-valuation buyers

to arrive. The cost of waiting for the N -th arrival is always higher than the cost of waiting for the

(N − 1)-th arrival.

All in all, my model allows to make testable qualitative predictions about markets with in which

intertemporal price discrimination plays a major role. In particular, it shows how in different markets

the frequency of sales, which is a crucial for the entire price level, differs.

5 Comparative Statics: Commitment and Buyers’ Time Preferences

In this section, I further elaborate the role of advertising costs as a commitment device and how it

is related to buyers’ time preferences. I first highlight the trade-off coming from intertemporal price

discrimination (similar to Sobel (1991)) by assuming that the seller can commit to a fixed cutoff-

demand N . Then, I examine the actual model in which advertising costs endogenously generate

limited commitment.
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5.1 Full Commitment Benchmark

As a benchmark, it is useful to analyze the situation in which the seller can commit to a cutoff-

demand N in period zero, that is I assume the seller can attain any profit ΠFC(N) ≡ Π(0;N). Then,

the highest profit the seller can attain maximizes

ΠFC(N) ≡ Π(0;N) =
λπ

rs
· pH(N)

︸ ︷︷ ︸
revenue from vH -buyers

+
(1 +Rs)

−N

1− (1 +Rs)
−N · (NvL − CA)

︸ ︷︷ ︸
revenue from vL-buyers

(7)

with respect to N .14 The revenue from high-valuation buyers can be calculated analogously to ΠL,

while the revenue from low-valuation buyers πL(N) is recursively given by

πL(N) = E
[
e−rs·t

λ(1−π)
N

]

︸ ︷︷ ︸
(1+Rs)

−N

· (NvL − CA + πL(N)) ,

such that πL(N) = (1+Rs)
−N

1−(1+Rs)−N
· (NvL − CA) . The following lemma summarizes the trade-off faced by

the seller.

Lemma 4. (i) Cost of frequent sales: the regular price pH(N) and the expected discounted costs

from advertising (1+Rs)
−N

1−(1+Rs)−N
· CA are increasing and concave in the cutoff-demand N .

(ii) Benefit of frequent sales: expected discounted revenues from low-valuation buyers (1+Rs)
−N

1−(1+Rs)−N
·

N · vL are decreasing and convex in the cutoff-demand N .

With frequent sales, i.e. if the cutoff-demand N is low, the seller can pick up low-valuation buyers

with less delay which increases her expected profits. This is, however, anticipated by high-valuation

buyers. Consequently, the seller has to set a lower regular price pH(N) in order to satisfy (2). Further-

more, the cost of advertising makes intertemporal price discrimination costly. These effects are smaller

for large cutoff-demands N , because the marginal change is further in future and thus discounted more.

Which of the two effects dominates depends on buyers’ time preferences. A natural and common

benchmark is to assume rs = rb. In that case, a well-known result is that it is optimal for the seller

to set the price equal to the static monopoly price.15

Lemma 5. If the seller and buyer share the same discount rates (rs = rb), then it is always optimal for

the seller to choose the static monopoly price in every period (i.e., vH if vHπ ≥ vL and vL otherwise).

14Note that the optimal advertising strategy of the seller if she can fully commit to a history-dependent pricing and

advertising strategy, is not necessary a function of the state variable n. The seller might want to have deterministic

times between two sales. The reason is that if the advertising strategy depends on n, buyers can bring forward sales by

rejecting an offers and therefore have a higher incentive to do so.
15E.g. Conlisk et al. (1984), Sobel (1991)
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Figure 3: Profit as a function of cutoff-demand ΠFC(N) with rs = rb = 0.5,

vL = 50, π = 0.5, vH = 110, CA = 100, λ = 2000 rb = rs = 0.5

Intuitively, if buyers and the seller have the same time preferences given by discount rate r, then

they have approximately the same expected discount to sale δ.16 Let us compare the profit that the

seller can make if she has sales with a frequency that results in an expected discount to sale δ with

the profit that she can make with a constant monopoly price. First, consider the case vHπ ≥ vL.

Then the seller gains less than δvL
(1−π)λ

r because she can sell to low-valuation buyers. However, she

has to drop the regular price by δ(vH − vL), that is, she loses δ λ(vH−vL)πr in profits. Hence, in total,

the seller loses more than δλvHπ−vLr > 0. If vL > πvH , then the seller gains by the increased price

she can charge to high-valuation buyers (1− δ)(vH − vL), which increases profits by (1− δ)πλ(vH−vL)r .

On the contrary, she loses profits by more than (1 − δ)vL (1−π)λ
r because she has to delay trade with

low-valuation buyers. Hence, the total loss in profits from having sales is greater than (1− δ)λvL−πvHr .

The formal proof can be found in the appendix. Figure 3 illustrates profits from price discrimination

ΠFC(N) as a function of cutoff-demand N for πvH > vL. The blue dashed line represents ΠH and the

red dotted line represents ΠL. ΠFC(N) is always lower than ΠH , but it converges to ΠH from below,

because with infrequent sales, the profit advertised sales converges to the static monopoly profit.

A more interesting and, arguably, more plausible situation is that the seller is more patient than

the buyers, that is, rb > rs.
17 If buyers are sufficiently impatient relative to the seller, then profits

can be increased above static monopoly profits.18 In that case, the optimal cutoff-demand is finite,

16In my model, the buyer’s expected discount to sale is slightly different because buyers do not know the price history.
17Assuming different discount rates of buyers and the seller seems to be a natural assumption. On the one hand, firms

usually face lower market interest rates than individuals. On the other hand, it has been shown by many experimental

and field studies that individuals’ time preferences are represented by relatively high discount rates. See for example,

Coller and Williams (1999) or Andreoni and Sprenger (2012).
18Landsberger and Meilijson (1985) shows this in a model with finite horizon and without an influx of buyers after

period 0 but he does not quantify it. Similarly, Sobel (1984) briefly note that if buyers are more impatient than the
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which has interesting implications for the profit-maximizing outcome. These insights will be useful for

the analysis of the profit from price discrimination Π(0;N∗(CA)) that will be discussed in the next

section.

Lemma 6. (i) As the cutoff-demand approaches infinity, profits ΠFC(N) approach ΠH from below.

(ii) The regular price pH(N) and seller’s profit ΠFC(N) are increasing in buyers’ discount rate rb.

(iii) The seller’s profit is decreasing in advertising cost CA.

(vi) Given parameters vH , vL, π, λ, CA, rs there exists a rb > 0, such that for all rb ≥ rb, there exists

a cutoff-demand N for which the seller makes higher profits than if she chooses the static monopoly

price forever (maxN ΠFC(N) > ΠH) if and only if

λ

rs
· (vL − πvH) <

[
max
N≥0

(1 +Rs)
−N

1− (1 +Rs)
−N · (NvL − CA)

]
. (8)

For CA = 0, this condition becomes πvH > 0 and as CA →∞, it converges to vL ≤ πvH .

It is straightforward that as sales become very infrequent (i.e., N →∞), pH(N) approaches vH and

the profits from low-valuation buyers vanish, as already shown in Lemma 4. More interestingly, this

limit is always approached from below, that is, for large N , the profit loss due to a lower regular price

outweighs the gain from frequent sales.

Intertemporal price discrimination is more profitable in markets with impatient buyers. As the

buyers’ discount rate increases, the seller can increase the regular price pH(N) because buyers care

less about future sales. Hence, consumer surplus drops and firm’s profits increase. In fact, price

discrimination can increase profits far above the static monopoly profits as illustrated in Figure 3. (iii)

is straightforward because advertising costs do not benefit the seller in any way.

Finally, (iv) specifies a condition on parameters that guarantees that price discrimination is prof-

itable for some discount rates rb of buyers. With sufficiently large rb, the seller can always charge a

regular price that is arbitrarily close to vH . Hence, as long as πvH ≥ vL, it is always profitable for

her to price discriminate for large enough rb. Remarkably, price discrimination can also be profitable

if πvH < vL. In fact, if advertising is free, price discrimination is always profitable for sufficiently

impatient buyers. This is demonstrated in Figure 4. The inequality in (iv) implies that, in this case,

the monopoly profit from high-valuation types λπvH
rs

must make up for the cost of delay in trade with

low-valuation buyers and advertising

λvL
rs
−max

N≥0
1

(1 +Rs)
N − 1

· (NvL − CA) .

In contrast, as high CA → ∞, the price discrimination can be profitable only if vL < πvH . Next,

I consider some properties of the locally profit-maximizing cutoff-demand ΠFC(N). Graphically, one

seller, the seller can take advantage of the difference in time preferences.
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Figure 4: Profit as a function of cutoff-demand N with rs = 0.5, rb = 5,

vL = 50, π = 0.5, vH = 90, CA = 100, λ = 2000, i.e. vL > πvH .

can see that ΠFC(N) is either always increasing everywhere or it has has a single local maximum (and

minimum) as illustrated in Figures 3, 4, and 5. I do not prove that there is always a unique local

maximum is, however, because the fact that the derivatives of Π are intractable analytically.

Lemma 7. (i) Any locally profit-maximizing cutoff-demand is increasing in rb for small levels of rb

and decreasing everywhere else.

(ii) Any locally profit-maximizing cutoff-demand is increasing in advertising costs CA.

The intuition for Lemma 7 (i) can be understood as follows. For simplicity, let us assume CA = 0.

Buyers’ time preferences only affect profits through the regular price pH(N). In particular, buyers’

time preferences determine the sensitivity of pH(N) to changes in N , that is, they affect the marginal

benefit (MB) of increasing N . The marginal cost (MC) of increasing N is given by the cost of delay

and is independent of buyers’ time preferences. The MB of increasing N by one is small if buyers

are extremely patient or extremely impatient, but larger in between. Moreover, this marginal effect is

smaller for an increase in N further in the future (i.e., for large N) than early on (i.e., for small N). The

seller can benefit from waiting for an additional low-valuation buyer as long as the MB is larger than

the MC of delay. For very patient and very impatient buyers, the marginal benefit of delay exceeds

the marginal cost of delay only for small cutoff-demands, such that the locally profit-maximizing

cutoff-demand is small. In contrast, for intermediately patient buyers, higher cutoff-demands become

optimal. Hence, the locally profit-maximizing cutoff-demand is first increasing and then decreasing in

rb and is largest in between.

The limiting cases when buyers are extremely impatient (rb →∞) and when buyers are extremely

patient (rb → 0) are particularly interesting. If buyers are extremely impatient, then the seller can

charge a regular price close to vH (as long as N > 1). Hence, the benefit of frequent sales completely

dominates, so an increase in N decreases profits. It is, thus, optimal for the seller to choose the
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Figure 5: Profit as a function of cutoff-demand N for vL = 50, π = 0.5,

vH = 100, CA = 10, λ = 2000, rs = 0.5

smallest cutoff-demand. In the other extreme, for very patient buyers, the regular price pH(N) is close

to vL, so the seller can only benefit from extremely large N . Small delays are not beneficial for the

seller at all, so the local maximum of ΠFC(N) is zero.

These results are useful to prove similar properties for Π(0;N∗(CA)) as a function of CA in the

next subsection. In order to illustrate these results, Figure 5 shows that the profit-maximizing cutoff-

demand is increasing from rb = 0.55 to rb = 1, but decreasing from rb = 1.3 to rb = 5.

rb

CA

advertising cost

buyers’ discount rate

CA = 0, rb = ∞:

Perfect price-discrimination

CA = ∞: static monopoly outcome

Profitability of

price-discrimination

Consumer Surplus

ΠH > maxN ΠFC(N) for all rb

Price discrimination
not profitable

(ΠH > maxN ΠFC(N))
Price discrimination profitable

(ΠH < maxN ΠFC(N))

rs

Figure 6: Implication of interaction of CA and rb on profit from price discrim-

ination
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Finally, the frequency of sales is decreasing in advertising cost CA, because it is more costly to have

advertised sales with higher CA. Figure 6 summarizes all results. It depicts the region in which the

seller prefers a constant monopoly price vH for different consumer impatience and advertising cost. If

it is infinitely costly to recall buyers, then the repeated static monopoly outcome is profit-maximizing.

On the other extreme, if it is costless to recall buyers and if they are myopic (i.e., rb = ∞), then

the seller can perfectly price discriminate. For intermediate values, it is harder to price-discriminate

profitably the higher CA and the smaller rb. However, consumers receive more surplus if rb is low.

Hence, as shown in Proposition 7, the effect on welfare is generally not monotone in rb, because the

delay in trade with low-valuation buyers can increase or decrease in rb. Finally, the greater the gap

vL − πvH , the harder it becomes to profitably price discriminate. In particular, if vL − πvH > 0 and

advertising costs CA are above the threshold given by (8), price discrimination is not profitable for any

rb. If vHπ > vL, for any finite advertising cost CA, price discrimination is profitable for sufficiently

impatient buyers.

5.2 Endogenous Commitment

In this subsection, I show how the trade-off discussed in the previous subsection affects how much

the seller benefits from advertising costs as a commitment device. To this end, I consider the profit

from price discrimination, Π(0;N∗(CA)), as a function of CA. By Proposition 1, each CA pins down a

(generically) unique N∗(CA) and also affects the function Π(0;N) directly. Then, I show how buyers’

discount rates rb affect the equilibrium outcome. In particular, I show under which conditions there

exists an advertising equilibrium.

Denote the seller’s profit if the advertising cost is CA = C(N), i.e., just high enough to sustain

cutoff-demand N , by

Π(N) ≡ Π(0;N∗(C(N))) =
λπ

rs
pH(N) +

(
1 +R−1s

)
(1 +Rs)

−N vL (9)

and the seller’s profit if the advertising cost is CA = C(N) and cutoff-demand N is sustained by

Π(N) ≡ Π(0;N∗(C(N))) =
λπ

rs
pH(N) +R−1s (1 +Rs)

−N vL. (10)

A change in advertising cost CA can have two different effects:

1. If the cost CA is in (C(N), C(N)) for an integer N , then a small increase in the advertising cost

does not help to sustain longer cutoff-demands. Hence, profits decrease linearly.

2. If the cost CA is C(N) = C(N + 1) for an integer N , then a small increase in the advertising

cost results in a longer cutoff-demand N + 1. Hence, profits jump from Π(N) to Π(N + 1). This

effect can be positive or negative depending on the shape of Π and Π.
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More precisely, the correspondence that maps to each advertising cost the equilibrium profits in an

advertising equilibrium Π(CA) is given by

Π(CA) =





{
Π(N),Π(N − 1)

}
if CA = C(N) = C(N − 1)

Π(N)− (1+Rs)
−N

1−(1+Rs)−N
(CA − C(N)) if CA ∈ (C(N), C(N))

By Proposition 1, an advertising equilibrium exists if and only if Π(CA) ≥ ΠL.

Figure 7: Π(CA) (solid) and Π(C−1(CA)),Π(C
−1

(CA)) (dotted) for parameter

values rs = 0.5, vH = 110, vL = 50, π = 0.5, λ = 2000, rb = 1.5

Figure 7 illustrates Π(CA). Moreover, it shows that Π and Π define upper and lower bounds of

Π(CA) given by

Π(C
−1

(CA)) ≤ Π(CA) ≤ Π(C−1(CA)).

The inverse of the functions C and C are well-defined because they are increasing as shown in Section

3.2. Furthermore, on the grid

C = {CA|CA = C(N) with N ∈ {1, 2, 3, . . . }},

the bounds are binding, that is

Π(C
−1

(CA)) = Π(CA) = Π(C−1(CA)).

Hence, I focus the analysis of Π(CA) on the grid C where CA acts as an endogenous commitment

device. To this end, it is sufficient to analyze the functions Π and Π since their properties carry on to

Π on the grid {C(N) : N ∈ {1, 2, 3, . . . }}.

The following lemma summarizes some properties of Π. Since Π(N) = Π(N)− (1 +Rs)
−N vL, I do

not to analyze Π separately.

23



Lemma 8. (i) Π(1) = ΠL and limN→∞Π(N) = ΠH .

(ii) Π has at most one local maximum and at most one local minimum.

(iii) Π(N) and Π
′
(N)|N=1 are increasing in rb. Π

′
(N)|N=1 is negative for small rb.

First in the limit, the monopolist makes profits ΠL and ΠH that correspond to constant prices.

For intermediate cutoff-demands, there is at most one local maximum and if the seller is sufficiently

patient compared to buyers (in particular if rs < rb), then there is also at most one local minimum.

This specifies the shape of Π and how the seller’s trade-offs are resolved. Figure 8 illustrates Π for

different levels of discount rates of buyers.

Figure 8: Highest equilibrium profits with cutoff-demand N∗(CA) for param-

eter values rs = 0.5, vH = 110, vL = 50, π = 0.5, λ = 1000 and different

discount rates

The discount rate plays an important role for the existence of advertising equilibria. With relatively

patient buyers, small CA means that it is not possible sustain long enough cycle lengths to make price

discrimination profitable for the seller because the seller has to leave too much surplus to high-valuation

buyers (i.e., Π
′
(N)|N=1 < 0). In that case, Π is first decreasing and then increasing. Hence, for small

advertising costs CA, the unique equilibrium is an EDLP equilibrium because Π(N∗(CA)) < ΠL.

However, as CA increases, profits converge to ΠH . Thus, an advertising equilibrium exists, as long as

πvH ≥ vL. In contrast, with impatient buyers, even small CA can sustain cutoff-demands that make

price discrimination profitable (Π
′
(N)|N=1 > 0).

If πvH > vL and for some intermediate values of rb, the non-monotonicity of the profit function

creates interesting comparative statics: for low CA, the seller wishes to price discriminate because she

can increase the regular price sufficiently to make it profitable. However, in an intermediate region

of advertising costs, the cost of delaying trade with low-valuation buyers dominates the benefit of

sustaining longer cutoff-demands. Hence, the seller prefers to set a constant price of vL and not to

have sales. For sufficiently high CA, profits converge to the static monopoly profit, so temporary sales
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are retained from time to time again. Figure 9 illustrates Π(CA) for the same parameters as used for

figure 8. It illustrates how properties of Π carry over to Π.

Figure 9: Highest equilibrium profits with cutoff-demand N∗(CA) for param-

eter values rs = 0.5, vH = 110, vL = 50, π = 0.5, λ = 1000 and different

discount rates

Figure 9 also offers a calibration for equilibria given different advertising costs and buyers’ time

preferences. The seller’s discount rate is set to be equal to rs = 0.5 which corresponds to a discount

factor of 0.61 per period (e.g. a year). If advertising costs are for example 6000, then if buyers have

the same discount rate as the seller, the unique equilibrium is an EDLP equilibrium. In contrast, if

the buyers’ discount rate is rb = 0.87 (discount factor of 0.42), there is an advertising equilibrium and

the seller makes profits close to ΠL. If the buyers’ discount rate is rb = 1.6 (discount factor of 0.2), the

makes even higher profits than ΠH . This illustrates that with modest advertising costs, the seller’s

profits are very sensitive to differences in buyers’ time preferences.

I define two thresholds

T0(rb) = inf{CA : Π(C−1(CA)) < ΠL}

and

T1(rb) = sup{CA : Π(C−1(CA)) < ΠL}

where sup ∅ = inf ∅ = 0. The following proposition follows from Lemma 8.

Proposition 2. (i) An advertising equilibrium exists given an advertising cost CA ∈ C if and only if

CA 6∈ (T0(rb), T1(rb)).

(ii) T1(rb) is decreasing in rb and limrb→0 T1(rb) =∞.

(iii) T0(rb) is increasing in rb as long as 0 < T0(rb) < T1(rb). T0(rb) = 0 for small rb.
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(iv) The length of the interval (T0(rb), T1(rb)) is decreasing in rb. If vHπ > vL, T0(rb) = T1(rb) = 0

for large enough rb. If vHπ ≤ vL, T1(rb) =∞ for all rb.

This proposition characterizes the set parameters rb and CA for which advertising equilibria do not

exist. If the static monopoly price is high (i.e., vHπ > vL), then there are essentially three different

cases:

1. For small discount rates rb, T0(rb) = 0 < T1(rb), that is advertising equilibria exist only for large

enough advertising costs CA.

2. For intermediate discount rates rb, 0 < T0(rb) < T1(rb) < ∞, that is advertising equilibria do

not exist only for some intermediate advertising costs CA. The intuition is that for intermediate

advertising costs, the induced frequency of sales does not increase the regular price enough to

outweigh the cost of delay and advertising.

3. For large enough discount rates rb, T0(rb) = T1(rb) = 0, that is advertising equilibria always

exist as long as CA ≥ C(1).

In Figure 8 these three different cases for πvH > vL are illustrated. Indeed, for rb = 0.5, Π(N) is first

smaller than ΠL and then greater. For rb = 0.86, Π(N) is first greater, then smaller and then again

greater than ΠL. For rb = 1.7, Π(N) > ΠL always holds.

If the static monopoly price is low (i.e., vHπ ≤ vL), then all equilibria are EDLP equilibria for small

rb. For large enough rb, advertising equilibria exist only for small enough advertising costs CA. For

large advertising cost, the induced profit is always close to, but smaller than ΠH ≤ ΠL.

Next, I characterize the optimal advertising cost for the seller if she cannot commit. If the seller can

choose CA, she faces a trade-off between decreasing profits if CA is high and increasing commitment

possibilities. Hence, a seller potentially wants to have an intermediate advertising cost. For example,

in Figure 9, the seller would mostly prefer an advertising cost of approximately 8000. As can be seen

in Figure 8, this would result in an average frequency of sales of one to two times per period.

Proposition 3. (i) If vHπ > vL, the profit-maximizing advertising cost is C∗A = ∞ for sufficiently

patient buyers. For sufficiently impatient buyers, C∗A <∞ is quasi-concave in rb.

(ii) If vHπ ≤ vL, then if there are advertising equilibria for rb, C
∗
A <∞ is quasi-concave in rb.

(iii) As rb →∞, the profit-maximizing advertising cost C∗A converges to C(1).

The optimal advertising cost C∗A shows to what advertising costs the sellers would optimally want

to commit. For example, a firm can benefit significantly, if it follows a policy that ensures relatively

high advertising costs. This can be done by hiring expensive designers and computer specialists who

among other tasks design and manage an advertising campaign.
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The intuition and proof of Proposition 3 follows from Lemma 7. Recall, that buyers’ time prefer-

ences determine the sensitivity of the regular price pH(N) to changes in cutoff-demand N . Hence, it

determines, how valuable different levels of commitment are to the seller and what the marginal benefit

(MB) of additional commitment (i.e., of less frequent sales) to the seller is. It is crucial that for very

impatient or very patient buyers, the MB of additional commitment is small, while for intermediately

patient buyers it is relatively large. The marginal cost (MC) of additional commitment comes from

the cost of advertising and the cost of delay, which are both independent of buyers’ time preferences.

Hence, for very patient or very impatient buyers, the MB can exceed the MC of commitment only for

small levels of commitment. In contrast, if buyers are intermediately patient, the seller can benefit

from increasing advertising costs CA further. For extremely patient buyers, the seller can be best-off

with infinite advertising costs. The locally-optimal advertising cost is, however, very small.

Hence, moderate advertising costs are only valuable for the seller as a commitment device if buyers

are intermediately patient. This is seems to be a plausible assumption in many markets. The literature

on inter-temporal price discrimination has, however, mostly focused on either myopic buyers (rb →∞)

or the case in which buyers and seller have the same time preferences. In these cases, for moderate

advertising costs, the seller can perfectly price discriminate or price discrimination is not profitable

and an EDLP is sustained, respectively.

Figure 10 summarizes the properties of equilibria if vHπ > vL. The boundaries of the regions are

dashed because the boundaries are “thick” and belong in parts to both of the regions.19

The yellow region represents the parameters for which the unique equilibrium is an EDLP equi-

librium, while for all other parameters, advertising can be sustained in equilibrium. The red region

illustrates advertising equilibria for which the seller can make higher profits than with a constant

static monopoly price. The solid blue line represents the profit-maximizing advertising cost. The

dotted extension of this line represents the local maximum of the profit function Π(CA).

For patient buyers (rb small), small advertising costs imply EDLP equilibria, while large advertising

costs result in an advertising equilibrium. In contrast, if buyers are intermediately patient, EDLP

equilibria are sustained for intermediate advertising costs, but for small and large advertising costs,

the unique equilibrium is always an advertising equilibrium. The seller prefers infinite advertising

costs, but a local maximum of Π(CA) is attained for small advertising costs. Hence, given that infinite

advertising costs are hard to sustain, in markets with intermediately patient buyers, sellers should

commit to relatively low advertising budgets that result in relatively frequent sales.

For patient enough buyers, all equilibria are advertising equilibria except if advertising costs are

too small to sustain a cutoff-demand greater than 1 (Coase conjecture). A seller has an incentive to

19This is because CA is not always on the grid {C(N) : N ∈ {1, 2, 3, . . . }}.
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Figure 10: Stylized equilibrium properties for vHπ > vL

commit to intermediate advertising costs and to have less frequent sales. However, as buyers become

very patient, commitment becomes less valuable and small advertising costs become optimal.

For welfare, lower advertising cost are always better in markets with sufficiently impatient and

sufficiently patient buyers. For intermediate impatient levels, intermediate levels of advertising can be

optimal because they lead to an EDLP equilibrium.

Figure 11 summarizes the equilibrium properties for vHπ ≤ vL. In that case, price discrimination

is never profitable for large advertising costs CA because, as CA →∞, profits are close to ΠH , which

is less than ΠL by assumption. However, if buyers are sufficiently impatient, small advertising costs

result in advertising equilibria.

All in all, for sufficiently impatient buyers, equilibria look very similar to the case with vHπ ≥
vl, while with relatively patient buyers, the equilibria differ dramatically. The reason is that with

sufficiently impatient buyers, the seller can benefit from price discrimination even if the static monopoly

price is low.

6 Discussion and Related Literature

In this section, I first discuss and relax two assumptions included in the model: fixed advertising

cost and unit demand of the seller. In addition, I explain how my model is robust to generalizations.

Subsequently, I relate the paper to the existing literature. To this end, I discuss existing dynamic
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Figure 11: Stylized equilibrium properties for vHπ ≤ vL

pricing models with full and no commitment and argue why in online markets full commitment is hard

to attain. Finally, I relate my paper to other pricing and marketing literature.

6.1 Extensions

6.1.1 Variable Costs

Usually, the fixed cost of advertising consists of the cost of designing the advertising email while the

variable cost of sending the email is close to zero. If the firm has to pay an advertising platform per

view or per click, then the cost of advertising can have a variable component.

If there is a variable component of advertising costs that depends on the number N of low-valuation

buyers reached, the analysis can be generalized easily. In particular, with a linear cost function

CA(N) = CA+ cA ·N , N and N can be equivalently derived from (3) and (4) with vL being reduced to

vL − cA. The seller always prefers to have fixed costs to variable costs. In order to see this, note that

the same N∗(CA) results from advertising costs of the form CA(N) = CA + cA ·N as long as CA
vL−cA is

constant. Hence, the profits of the seller are only affected in sales periods. The profit during a sale is

given by

N∗(CA) · (vL − cA)− CA = (vL − cA) ·
[
N∗(CA)− CA

vL − cA

]

︸ ︷︷ ︸
constant

.
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Thus, the firm prefers not to face variable costs but rather a fixed advertising cost because it is a

cheaper commitment device. In particular, if CA is zero, the Coase conjecture holds. This can have

implications for pricing of advertising platforms. Firms are willing to pay more to an advertising

platform that has fixed rates rather than per-click or per-view rates as commonly used.

6.2 Multi-Unit Demand

The assumption that buyers demand only a single unit of the good in their lifetime can be relaxed

without changing the results as long as buyers do not have an incentive to stockpile the good for future

use during a sale. This is the case if the good is not storable, such as groceries or if buyers do not

take calender time into account even if they have learned it during a previous sales period. The latter

is a plausible assumption if buyers demand a good very infrequently.

There is a recent theoretical and empirical literature on stockpiling of storable goods. Dudine et

al. (2006) show that for storable goods prices are higher and welfare lower with commitment than

without commitment. They consider a model with finite time and linear storage cost. Hendel and

Nevo (2013) show that buyers anticipate future needs for soft-drinks, and buy big quantities during

a sale for future consumption. Other recent empirical studies on storable goods markets have been

conducted by Hendel and Nevo (2006b) and Hendel and Nevo (2006a).

If buyers demand several units of the good at a time, but only once in their life time, results

remain qualitatively unchanged. However, given an advertising cost, the seller can commit to a higher

cutoff-demand as can be seen from the necessary conditions (3) and (4).

6.3 Related Literature

6.3.1 Dynamic Pricing and Commitment

Classic papers on dynamic pricing by Stokey (1979), Conlisk et al. (1984), and Sobel (1991) introduce

the idea of intertemporal price discrimination with limited commitment. In these papers, the level of

commitment is exogenously given and buyers and sellers are assumed to be equally patient.20 Hence,

the frequency of sales is determined by the period length and if the seller is assumed to be able to

change the price at any point in time, the unique equilibrium outcome results in the Coase conjecture.

This paper extends this classical theory in two ways: it investigates the trade-off between the value of

commitment and the cost of commitment, given by the advertising cost, and it highlights the impact

of buyers’ time preferences. Furthermore, in my model, buyers do not automatically see all prices, but

have to search or get informed by the seller.

20This assumption is usually motivated by perfect capital markets, but there are many reasons to assume that buyers

and sellers do not share the same time preferences as discussed before.
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Many recent papers from the dynamic mechanism design literature, such as Board (2008) and

Garrett (2012) in contrast assume full commitment power by the seller. Board (2008) focuses on

seasonal sales that are driven by demand fluctuations over time, rather than sales solely driven by

the incentive to intertemporarily price discriminate. Such sales are predicted by customers and in

his model, the seller has to drop the price slowly to abate the effect of buyers delaying purchase in

order to wait for a lower price, but increases the price quickly after a sale. This asymmetry between

increases and decreases induces a higher total price level and, hence, reduces consumer surplus and

social welfare. In contrast, in my model, buyers benefit from sales due to the inability of the seller

to commit. Garrett (2012) also assumes full commitment by the seller, but considers a stationary

setup as in this paper. In his model, cyclical price paths with slowly decreasing prices and upward

jumps after a sale are obtained because buyers’ preferences change over time. Besbes and Lobel

(2012) take a very different approach by investigating intertemporal price discrimination in a setup

without exponential discounting. Instead buyers have heterogeneous finite willingness to wait and the

monopolist maximizes the long-run average revenue. The optimal price path is more complicated and

incorporates nested sales with largest discount at the end of a cycle.

A common justification for commitment is that in many setups a best-price provision strategy can

serve as a commitment device for sellers and yield the same allocation as the best strategy under full

commitment as first noted by Butz (1990). This is a reasonable argument in traditional mortar-and-

brick stores. In online markets, however, this logic does not apply because the seller can send coupons

to buyers (or have instantaneous sales as in my model) which are not seen by buyers who have bought.

This possibility makes commitment through best-price provision harder. Nevertheless, some retailers,

such as airline companies, have automatized their pricing using complicated algorithms. This can help

sellers to commit. For many consumption goods, this automation is, however, not feasible because

price offers require an attractive design. This design cannot be easily standardized if one thinks of the

product not as a single good but as a product group (such as lamps for example) that is put on sales

periodically.

The literature that assumes no commitment power has focused on sellers with a finite inventory

and a sales deadline. In that case, the deadline and scarcity of products can provide the seller with

sufficient commitment power to guarantee high regular prices and fire sales from time to time. Hörner

and Samuelson (2011) study a variant of this setup in which the seller has only a single unit of the good

and Dilme and Li (2013) deal with the multi-unit case. If the seller has many units, she is choosing

prices and quantities to have on sale simultaneously. Similarly to my model, the equilibrium price

path contains sales of large quantities of the good similarly to my model. However, in their model,

this is done so as to guarantee higher prices later on by making the good scarcer. Instead, my model

considers a monopolist who can produce arbitrary many units, albeit at zero cost.
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6.3.2 Other Theories of Pricing

The literature on price flutuation that does not rely on intertemporal price discrimination focuses on

the seller’s incentive to discriminate between different types of buyers in a static oligopolistic setups

(e.g., Shilony (1977),Varian (1980), Salop and Stiglitz (1982), Sobel (1984)). They derive mixed pricing

strategies as an equilibrium outcome. In Varian (1980) and Salop and Stiglitz (1982), sellers price

discriminate between informed and uninformed customers, facing a decreasing average cost curves. In

equilibrium, firms mix among prices according to a smooth distribution. The firm with the lowest

price can sell to all types of consumers, while all other firms sell only to a fraction of uninformed

consumers. One drawback of these models is that they do not result in a regular price and sales prices.

With loss-averse customers, Heidhues and Köszegi (2012) and Rosato (2013) show that even in the

absence of competition, mixed-strategy equilibria can lead to a single regular price and sales prices.

I do not consider competitive markets, but I believe that the results remain qualitatively similar if

buyers switch between firms with some probability. Prices and frequencies of sales would be pushed

down, but the comparative statics should remain similar. If, however, buyers can find out about other

firms with a positive search cost, interesting new trade-offs can arise. This is beyond the scope of the

present paper and left for future research. Intuitively, with competition, the monopolist is not only

competing with its future self, but also with another firm.

This paper also relates to the literature on behavior-based price discrimination. These papers are

mainly concerned with products that are repeatedly purchased. In that case, sellers infer from buyers

purchasing decision that they have a high valuation. For example, Villas-Boas (2004) considers an

overlapping generation model in which buyers live for two periods and the seller can charge two different

prices, one for customers who have previously bought and one for new customers. In equilibrium, the

price path for new customers is alternating between a high and low price and previous customers

always face a high price. A detailed review of the literature on behavior-based price discrimination

can be found in Fudenberg and Villas-Boas (2012) and Fudenberg and Villas-Boas (2006). In contrast

to these models that focus on sellers learning only from customers who actually buy, in my model, the

monopolist learns from the fact that a customer has not bought, assuming she can identify “window

shoppers.”

6.3.3 Theories of Advertising

Advertising has been interpreted as a technology to signal the quality of the good (Nelson (1970)) or to

persuade consumers and change their taste for the good (Dixit and Norman (1978)). A comprehensive

review of this classical literature on advertising can be found in Bagwell (2007). In contrast, I focus

on informative advertising. Anderson and Renault (2013) and Anderson and Renault (2006) are

also concerned with informative advertising, but they consider a static setup in which the content
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of informative advertising depends on the search cost that buyers need to pay in order to visit the

monopolist. In my model, however, the only information that buyers can learn is the discounted price.

Recently, the focus of this field has shifted towards targeted advertising in online markets, but with

a focus on static models. Iyer et al. (2005) consider a model with competing firms who can target

advertising and pricing to different groups. In equilibrium, firms advertise more to consumers who have

a strong preference for their product. In contrast to my model, targeted advertising always increases

profits. Bergemann and Bonatti (2011) compare the role of targeted advertising in offline versus

that in online markets in a competitive environment with many sellers and many advertising markets

(media). They show that an increase in targeting ability leads to an improvement in consumer-product

matches, but also to a higher market-power of firms. Finally, in their model, the price of advertising

is determined endogenously in equilibrium and is first increasing and then decreasing in targeting

capacity. In my environment, however, it seems to be natural to assume that advertising costs are

given by the cost of creating the advertising because sellers do not buy advertising space from third

parties.

Levin and Milgrom (2010) argue that, even though targeting improves the matching between buyers

and advertisers, this benefit has to be traded off with the mutual adverse-selection problems it can

create between the advertisers and advertising platforms. In contrast, the present paper examines

dynamic effects of advertisings that targets low-valuation buyers in order to inform them about the

price and in order to activate them. To the best of my knowledge, this role of advertising is novel to

the literature.

Finally, in the marketing literature, EDLP and promotional pricing are the two most important

marketing and pricing strategies. Most papers consider oligopolistic setups with differences in customer

types. Lal and Rao (1997) explain the coexistence of these two strategies by a game theoretic model

in an oligopolistic setup, where buyers with low search cost (cherry pickers) prefer to buy from firms

who engage in promotional pricing while buyers with high search cost (time constrained consumers)

prefer EDLP. Bell and Lattin (1998) argue that EDLP attracts large basket consumers who prefer

a low average price while small basket customers like promotional pricing. 21 I offer an alternative

rationale for EDLP.

7 Conclusion

This paper studies a dynamic monopolist who can engage in targeted advertising, but cannot commit

to future pricing strategies. The ability to track and target can be a two-edged sword because it allows

21Prominent retailers engaging in EDLP include Walmart, Home Depot, Lowe’s, Trader Joe’s. JC Penny switched back

to a promotional pricing strategy after revenues had dropped significantly. One common explanation for their failure is

that people make an inferences about the quality of a good through the regular price and that this plays a greater role

for apparel.
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the seller to intertemporally price discriminate, but it also exposes the seller to the consequences of the

Coase conjecture. Costly advertising can benefit the seller because advertising costs act as a deterrent

to having overly frequent sales in equilibrium. Depending on the time preferences of buyers and the

costs of advertising, there exists an equilibrium with regular high prices and occasional sales. An

everyday-low-price equilibrium can always be sustained but yields lower profits than the advertising

equilibrium, if the latter exists.

The benefit of the model is that the level of commitment is endogenously determined by the cost

of advertising. I derive implications for the frequency of sales, profits, demand for advertising and

welfare. The analysis shows that the frequency of sales and the resulting regular price level can

be crucially affected by the advertising costs. Sales are more frequent with low advertising costs if

price discrimination is profitable compared to EDLP. Because profits are non-monotonic in advertising

costs, the existence of an advertising equilibrium is not monotonic in advertising cost. Moreover, the

monopolist benefits from different intermediate levels of advertising costs, depending on the impatience

of the buyers because buyers’ impatience determines the sensitivity of the regular price to changes in

the frequency of sales.

This setup is relevant for various online markets and advertising platforms. First, firms and policy

makers should be aware of the Coasean force and its implications. My model (as all game-theoretic

models) hinges on the assumption that buyers correctly anticipate the frequency of sales. Hence, in

the short term, firms might benefit or suffer from wrong beliefs of buyers about the frequency of sales.

For example, some retailers offer sales on items in a wish list that have not been bought yet or others

have increasing frequencies of sales rather than constant average frequencies of sales. In such markets,

as buyers learn about the strategy of the firm, the outcome might converge to equilibria described in

this paper in the long-run.
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Appendix

A Proofs

Proof. (Lemma 3)

(i) Without commitment power, in an equilibrium with cycle length N , the seller must never have

an incentive to have a temporary sale before N -th low valuation buyer has arrived given the buyer’s

strategies and beliefs. Hence, it must hold for any n < N that

pH(N) · λπ
rs

+ (1 +Rs)
−(N−l) ·

(
vLN − CA + Π(0;N)− pH(N)

λπ

rs

)
≥ vNn− CA + Π(0;N).

This inequality can be simplified to

CA ≥
(
N − (N − n) · 1− (1 +Rs)

−N

1− (1 +Rs)
−(N−n)

)
vL.

Note that all expressions are independent of pH(N), because beliefs are fixed and hence, the only

trade-off for the seller is between clearing the market more frequently and paying the cost CA more

frequently. The function x 7→ x
1−(1+Rs)−x

is increasing and at 1 equal to λ(1−π)+rs
rs

. Hence, the first

inequality holds for all n ≤ N if it holds for n = N − 1, that is the seller has no incentive to deviate

from N by having an earlier sale if and only if

CA ≥
(
N − λ(1− π) + rs

rs
·
(

1− (1 +Rs)
−N
))
· vL.

(ii) A cutoff-demand N can be supported by an equilibrium only if after the arrival of the N -th low

valuation buyer, the seller prefers an advertised sale to waiting for more vL-buyer to arrive. Hence,

for any n ≥ N that is consistent with an equilibrium of a continuation game, it must hold that

vLN − CA + Π(0;N) ≥ pH(N)
λπ

rs
+ (1 +Rs)

−(n−N)

(
vLn− CA + Π(0;N)− pH(N)

λπ

rs

)
.

In particular it must hold for n = N + 1. The inequality can be simplified to
(
N − 1− (1 +Rs)

−N

1− (1 +Rs)
−(n−N)

(1 +Rs)
−(n−N) · (n−N)

)
vL ≥ CA

The function x 7→ (1+Rs)
−xx

1−(1+Rs)−x
is decreasing in x and at 1 equal to λ(1−π)

rs
. Hence, the seller does not

have an incentive to accumulate more than N buyers if and only if
(
N −

(
1− (1 +Rs)

−N
)
· λ(1− π)

rs

)
· vL ≥ CA.

(iii) I show that N −N = −1 for all parameter values. From the necessary conditions (3) and (4),

the following equality for N and N follows:

N −
(

1− (1 +Rs)
−N
)
·
(

1 +
λ(1− π)

rs

)
= N −

(
1− (1 +Rs)

−N
)
· λ(1− π)

rs
.
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This equality is equivalent to

(1 +Rs)
N−N+1 = 1 + (N −N + 1) · (1 +Rs)

N ·Rs.

One can immediately see that for N−N = −1 the equality is satisfied. Moreover, since C(N) > C(N)

everywhere and C,C are both increasing functions, for each N there should only be one solution of

this equality for N −N + 1. Hence, there is only a single integer number N∗(CA) ∈ [N,N ].

Proof. (Proposition 1)

Let (5) be satisfied. In order to show that an EDLP equilibrium can always be sustained, it is

sufficient to show that the seller does not have a profitable deviation. Note that by the definition of

equilibrium, buyers’ beliefs remain unchanged after observing a deviation. Hence, the seller can never

benefit from deviating to a price smaller than vL. Similarly, I have already discussed in Section 2.2

why a deviation to a price that is rejected by both buyer types is never profitable. As discussed in

the main text, the following continuation equilibrium can be supported: high-valuation buyers only

accept prices p ≤ vL + c and the seller returns to an EDLP after the first deviation. It is immediate

that buyers do not have a profitable deviation. Moreover, after a buyer has rejected a price p ≤ vL+ c

and hence, n = 1, the seller cannot make higher profits by accumulating N − 1 more low-valuation

buyers than with EDLP because by (5) for all N

(
1− (1 +Rs)

−(N−1)
) λπ
rs

(vL + c) + (1 +Rs)
−(N−1)(NvL − CA + ΠL) < ΠL.

Given this continuation equilibrium, a deviation is not profitable for the seller because (5) implies that

π(vL + c) < vL.

Next, I show that if Π(0, N∗) > ΠL, a cutoff-demand N∗(CA) and regular price pH(N ∗ (CA)) can

be supported in equilibrium. This is because a deviation to a price smaller than pH(N∗(CA)) but

greater than vL decreases profits by the no off-equilibrium signaling assumption and deviating to a

regular price of vL is not profitable because Π(0, N∗) > ΠL.

Proof. (Corollary 1) (i) If CA < C(1), then in an advertising equilibrium, the seller drops the

price immediately after she has observed a buyer not buying and N∗ = 1. Hence, Π(0; 1) = ΠL −
(1+Rs)−1

1−(1+Rs)−1CA and by Proposition 1 there is no advertising equilibrium.

(ii) Because C(N) = C(N + 1) is increasing in N and CA ∈ [C(N∗(CA)), C(N∗(CA))], an increase

in CA implies that N∗(CA) must be greater.

(iii) If CA →∞, then N∗ →∞ in an advertising equilibrium, Π(0;N∗)→ ΠH . Hence, if vHπ ≥ vL,

then there exists an advertising equilibrium that sustains the static monopoly profit ΠH . If vHπ < vL,

then there is no advertising equilibrium, but the static monopoly profit ΠL can be sustained in an

EDLP equilibrium.
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Proof. (Corollary 2)

By uniqueness of the equilibrium, it suffices to do comparative statics using one of C,C. It is easy

to check that C is increasing in Rs and increasing in N .

(i) Since C,C are decreasing in Rs, N
∗(CA) is decreasing in CA. As Rs → ∞, C(N) = C(N + 1)

converges to N · vL. Hence, N∗(CA)→ CA
vL

. As Rs → 0, C(N) = C(N + 1) converges to 0 because by

l’Hôpital

lim
Rs→0

(
1− (1 +Rs)

−N)R−1s = lim
Rs→0

(1 +Rs)
N − 1

(1 +Rs)NRs
= lim

Rs→0

N(1 +Rs)
N−1

N(1 +Rs)N−1Rs + (1 +Rs)N
= N.

Hence, N∗(CA)→∞ since C(N), C(N) are increasing in Rs.

(ii) Hence, an increase in λ implies an decrease in Rs, i.e. the equilibrium cutoff-demand N∗(CA)

increases by (i). In order to show that the increase is less than proportional, I analyze the effect of a

proportional increase in N and λ. In particular, one can calculate

∂

∂γ

(
N · γ −

(
1−

(
1 +

Rs
γ

)−Nγ)
· γ
Rs

)
· vL
∣∣
γ=1

=

N − 1

Rs

(
1− (1 +Rs)

−N
)

+N · (1 +Rs)
−N−1 +

1

Rs
· (1 +Rs)

−N · log (1 +Rs)
−N >

N − 1

Rs

(
1− (1 +Rs)

−N
)

+N · (1 +Rs)
−N−1 +

1

Rs
·
(

(1 +Rs)
−N − 1

)
=

N − 2

Rs

(
1− (1 +Rs)

−N
)

+N · (1 +Rs)
−N−1 > 0

for all N,Rs > 0. Since the average length of time between two sales if given by N
λ , an increase in λ

leads to shorter time intervals between two sales in equilibrium.

(iii) One can calculate

∂

∂γ

(
N · γ −

(
1−

(
1 +

Rs
γ

)−Nγ)
· γ
Rs

)
· vL
γ

∣∣
γ=1

=

(
N · (1 +Rs)

−N−1 +
1

Rs
· (1 +Rs)

−N · log (1 +Rs)
−N
)
vL < 0

for all N,Rs > 0. Since the average length of time between two sales if given by N
λ , an increase in λ

with a proportional decrease of vL leads to longer time intervals between two sales in equilibrium.

Proof. (Lemma 4)

(i) Note that for all x > 0,

x log(x) ≥ x− 1 (11)
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where it holds with equality if only if x = 1. It follows that

∂

∂N
pH(N) = −(vH − vL) ·

(
1 +

λ(1− π)

rb

)
·

(
1 + rb

λ(1−π)

)−N
− 1−

(
1 + rb

λ(1−π)

)−N
·
(

log
(

1 + rb
λ(1−π)

)−N)

N2
> 0

and

∂2

(∂N)2
pH(N) = −(vH − vL) ·

(
1 +

λ(1− π)

rb

)
· 1

N3
·



(

1 +
rb

λ(1− π)

)−N
·
(

log

(
1 +

rb
λ(1− π)

)−N)2

+

2

(
1 +

rb
λ(1− π)

)−N
· log

(
1 +

rb
λ(1− π)

)−N
+ 2

(
1−

(
1 +

rb
λ(1− π)

)−N)]
< 0.

It is immediate that

∂

∂N

− (1 +Rs)
−N

1− (1 +Rs)
−N =

(1 +Rs)
N · log (1 +Rs)(

(1 +Rs)
N − 1

)2 > 0

and

∂2

(∂N)2
− (1 +Rs)

−N

1− (1 +Rs)
−N = −(1 +Rs)

N (log (1 +Rs))
2

(
(1 +Rs)

N − 1
)3 < 0.

(ii) By inequality (11) it follows that

∂

∂N

(1 +Rs)
−N

1− (1 +Rs)
−N ·N =

(1 +Rs)
N − 1− (1 +Rs)

N
(

log (1 +Rs)
N
)

(
(1 +Rs)

N − 1
)2 < 0

and

∂2

(∂N)2
(1 +Rs)

−N

1− (1 +Rs)
−N ·N =

(1 +Rs)
N · log (1 +Rs)(

(1 +Rs)
N − 1

)3

·
(
−2 · (1 +Rs)

N + (1 +Rs)
N · log (1 +Rs)

N + log (1 +Rs)
N + 2

)
> 0

as can be easily checked.22

22This can be seen by noting 1 · log 1 + log 1 + 2− 2 · 1 = 0 and d
dy

(
y · log y + log y + 2− 2 · y = log y − 1 + 1

y

)
≥ 0 by

inequality (11).
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Proof. (Lemma 5)

Let rs = rb = r. Then, I can write

Π(N) = vH
λπ

r
− λπ

r
·
(

1 +
λ(1− π)

r

)
·

1−
(

1 + r
λ(1−π)

)−N

N
· (vH − vL) +

(NvL − CA)
(

1 + r
λ(1−π)

)−N

1−
(

1 + r
λ(1−π)

)−N

which is less than λπ
r vH for all N if and only if

(
λπ

r

)
r + λ(1− π)

r
· (vH − vL) ≥

N2
(

1 + r
λ(1−π)

)−N

(
1−

(
1 + r

λ(1−π)

)−N)2

(
vL −

CA
N

)
(12)

holds for all N . Using that h : x 7→ x2·a−x
(1−a−x) is decreasing for all a > 0 and for all x ≥ 0 and

limN→1

N2
(
1+ r

λ(1−π)

)−N
(
1−

(
1+ r

λ(1−π)

)−N)2 =
λ(1−π)
λ(1−π)+r(

r
λ(1−π)+r

)2 = λ(1−π)
r · λ(1−π)+rr , the above inequality is satisfied if

π · (vH − vL) ≥ (1− π) · vL, (13)

that is if vHπ ≥ vL. Next I show that that if vHπ < vL, then Π(0;N) < λ
r vL for all N .

Π(N) <
λvL
r


1−

1−
(

1 + rb
λ(1−π)

)−N

N
·
(

1 +
λ(1− π)

rb

)



+
λπvL
r
·

1−
(

1 + rb
λ(1−π)

)−N

N
·
(

1 +
λ(1− π)

rb

)
+

N
(

1 + r
λ(1−π)

)−N

1−
(

1 + r
λ(1−π)

)−N vL

=
vLλ

r


1− (1− π)

1−
(

1 + rb
λ(1−π)

)−N

N
·
(

1 +
λ(1− π)

rb

)

+

N
(

1 + r
λ(1−π)

)−N

1−
(

1 + r
λ(1−π)

)−N vL

Since x 7→ x·a−x
1−a−x is decreasing for all a > 1, x ≥ 0 and limN→1

N
(
1+ r

λ(1−π)

)−N
1−

(
1+ r

λ(1−π)

)−N = λ(1−π)
r and x 7→ 1−a−x

x

is decreasing for all a > 1, x ≥ 0 and limN→1

1−
(
1+ r

λ(1−π)

)−N
N = r

r+λ(1−π) , I can further conclude

Π(N) < vL
λ

r
π +

λ(1− π)

r
vL = vL

λ

r
.

Proof. (Lemma 6)
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(i) follows by noting that limN→∞ΠFC(N) = ΠH and

ΠH −ΠFC(N) >
λπ(vH − vL)

rs
·
(

1 +
λ(1− π)

rb

)
·

1−
(

1 + rb
λ(1−π)

)−N

N︸ ︷︷ ︸
>0,→N→∞0

− N · (1 +Rs)
−N

1− (1 +Rs)
−N · vL

︸ ︷︷ ︸
>0,→N→∞0

and N ·(1+Rs)−N
1−(1+Rs)−N

= o

(
1−

(
1+

rb
λ(1−π)

)−N
N

)
, N →∞.

(ii) First, note that rb affects the seller’s profit only through pH(N) or the expected discount to a

sale E
[
e−rbτ(pH(N))

]
= 1

N

∑N−1
n=0

(
1 + rb

λ(1−π)

)−n
. This is decreasing in rb, that is from (2) and (7) it

follows that pH(N) and Π(N) are increasing in rb. Since Π(N) is increasing in N for all N , maxN Π(N)

is also increasing in rb.

(iii) is straight-forward, since profit are only affected negatively by CA.

(iv) First, note that by (2), given all parameters, for any N and all ε > 0, there exists a rb(N, ε)

such that for all rb ≥ rb(N, ε), pH(N) > vH − ε. Let Ñ = arg maxN
1(

1+ rs
λ(1−π)

)N
−1

(NvL−CA). Hence,

by (7),

ΠFC(Ñ) >
λπ

rs
(vH − ε) +

1
(

1 + rs
λ(1−π)

)Ñ
− 1

· (ÑvL − CA).

Hence, let us choose

ε =
rs
λπ
·


 1
(

1 + rs
λ(1−π)

)Ñ
− 1

· (ÑvL − CA)−max

{
λ(vL − vHπ)

rs
, 0

}

 .

Then, ΠFC(Ñ) > max
{
λπ
rs
vH ,

λ
rs

}
for all rb ≥ rb(Ñ , ε).

If vL−πvH ≥ rs
λ maxN

1(
1+ rs

λ(1−π)

)N
−1

(NvL−CA), then Π(0;N) < λπ
r vH+maxN

1(
1+ rs

λ(1−π)

)N
−1

(NvL−

CA) ≤ λ
r vL.

Proof. (Lemma 7)

(i) First, note that

∂
∂NΠFC(N) = λπ

rs
·
(
∂
∂N pH(N)

)
− vL ·

(
∂
∂N

(
1+ rs

λ(1−π)

)−N
1−

(
1+ rs

λ(1−π)

)−N
)

+CA

(
∂
∂N

−
(
1+ rs

λ(1−π)

)−N
1−

(
1+ rs

λ(1−π)

)−N
)
.

(14)
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Using the expression of ∂
∂N pH(N) from the proof of Lemma 4 (i), one can derive

∂2

∂N∂rb
ΠFC(N) =

λπ

rs
· (vH − vL) · 1

N2
· λ(1− π)

r2b
·

[(
1 +

rb
λ(1− π)

)−N

−1−
(

1 +
Nrb

λ(1− π)

)
·
(

1 +
rb

λ(1− π)

)−N
·
(

log

(
1 +

rb
λ(1− π)

)−N)]
.

N

rb

∂2

∂N∂rb
Π(N, rb) < 0

∂2

∂N∂rb
Π(N, rb) > 0

∂2

∂N∂rb
Π(N, rb) = 0

r̃b(N)

Ñ ](rb)

Ñ ]
′
(rb) > 0

Ñ ]
′
(rb) < 0

Figure 12: Illustration of the proof of Proposition 7

Step 1: For any fixed N there exists a r̃b(N), such that ∂2

∂N∂rb
ΠFC(N) > 0 if and only if rb < r̃b(N)

and ∂2

∂N∂rb
ΠFC(N) < 0 if and only if rb > r̃b(N)

d

dy

(
y−N − 1− (1 +N(y − 1)) · y−N ·

(
log y−N

))
= N · y−N−1 · (y − 1) ·

(
N log y−N − log y−N +N

)

has only one null for y > 1, namely y = e−
1

1−N and is positive at y + ε for small ε > 0. Moreover, the

following holds

• limy→1

(
y−N − 1− (1 +N(y − 1)) · y−N ·

(
log y−N

))
= 0,

• limy→∞
(
y−N − 1− (1 +N(y − 1)) · y−N ·

(
log y−N

))
= −1 < 0,

• limy↓1N · y−N−1 · (y − 1) ·
(
N log y−N − log y−N +N

)
= 0+.

All together with continuous differentiability of all functions this shows the existence of a unique

r̃b(N) > 0 for every N and r̃b(·) is a continuous function. The solid line in Figure 12 illustrates r̃b
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Step 2: Any local maximum cutoff-demand Ñ ](rb) is increasing for small rb and decreasing for other

rb

By the Implicit Function Theorem, any local maximum Ñ ](rb) of Π is locally differentiable in rb. Ñ ]

is illustrated by the dotted blue line in Figure 12. Moreover, it follows that ∂2

∂N∂r (Ñ ](rb), rb) and

Ñ ]
′
(rb) must have the same sign. Hence, I can show that Ñ ]

′
(rb) can only change from positive to

negative and not the other way around by contradiction. Assume that there exists an rb such that for

some ε1, ε2 > 0, Ñ ]
′
(r) < 0 for all r ∈ (rb − ε1, rb) and Ñ ]

′
(r) > 0 for all r ∈ (rb, r̃b + ε2) (and hence

Ñ ]
′
(rb) = 0). Then, there are r1 < r2 with Ñ ](r1) = Ñ ](r1) = N such that Ñ ]

′
(r1) < 0 < Ñ ]

′
(r2).

Hence, such that ∂2

∂N∂r (N, r1) < 0 < ∂2

∂N∂r (N, r2). This is, however, a contradiction to Step 1 which

concludes the proof.

(ii) follows immediately from Lemma 4.

Proof. (Lemma 8)

(i) follows immediately from (9).

(ii) Let δb =
(

1 + rb
λ(1−π)

)−1
, δs =

(
1 + rs

λ(1−π)

)−1
. Then, one can write

Π(N)− λ

rs
vL =

λ(1− π)vL
rs

·



πvH
vL
− π

1− π︸ ︷︷ ︸
≡C

·
(

1− 1− δNb
N · (1− δb)

)
−
(
1− δN−1s

)

 .

First, note that Π(N) is increasing in N for large enough N . Hence, Π(N) − λ
rs
vL has at most one

maximum and at most one minimum, if and only if it is either first increasing, then decreasing and

then increasing or first decreasing and then increasing. Therefore, consider the first derivative of

Π(N)− λ
rs
vL which is given by

∂

∂N

(
Π(N)− λ

rs
vL

)
=

λ(1− π)vL
rs ·N2

·


C ·

1− δNb
1− δb

+ C · Nδ
N
b log(δb)

1− δb
+N2δN−1s log(δs)

︸ ︷︷ ︸
≡H(N)


 .

I need to show that H(N) is either first positive, then negative and then positive or negative and then

positive. Therefore consider

d

dN
H(N) = N · (log(δs))

2 ·


C ·

δb
1− δb

·
(
δb
δs

)N−1( log(δb)

log(δs)

)2

+
2

log(δs)
+N

︸ ︷︷ ︸
≡J(N)


 .
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d
dNH(N) is changing signs at most twice because J(N) it is quasi-convex. If it changes signs twice,

it is first positive, then negative and then positive again. In that case, since H(0) = 0, H is first

positive, then negative and then positive again and the claim follows immediately. If J changes signs

at most once, then H changes signs at most twice and Π(N)−ΠL changes signs at most twice. Since

Π(1)−ΠL = 0, the claim follows immediately.

(iii) The derivative of Π at N = 1 is given by

Π
′
(N)|N=1 =

λ(1− π)

rs
vL

(
C + C · δb log δb

1− δb
+ log δs

)

is decreasing in δb, i.e. increasing in rb. For rb →∞, δb → 0 and lim Π
′
(N)|N=1 < 0.

Proof. (Proposition 2)

For advertising costs CA ∈ C, an advertising equilibrium exists if and only if

Π(C−1(CA)) ≥ ΠL.

Hence, the proof follows immediately from Lemma 8, since Π is either first decreasing and then

increasing or, if rb is large enough, first increasing, then decreasing and then increasing again. Since

Π is increasing in rb, T1 is decreasing and T0 increasing in rb.

Proof. (Proposition 3)

The proof follows from the fact that Π has a single maximum and from Proposition 7 (i).
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