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1 INTRODUCTION

A lexicographic probability system (LPS), as described by Blume et al. (1991a), is
a finite list of probability measures called “theories”. The decision maker starts by
evaluating her choices under the primary theory. If the evaluation results in more
than one optimal choice, she moves onto the next theory to break those ties. If these
theories are mutually exclusive—e.g., have disjoint supports—then the LPS can be
interpreted as a conditional probability system (CPS). An LPS comprised of mutually
exclusive theories is aptly called a lexicographic conditional probability system (LCPS).

Blume et al. (1991b) showed that Nash equilibrium refinements such as admissible
equilibrium, perfect equilibrium (Selten, 1975) and proper equilibrium (Myerson,
1978) could be simply characterized using LPS’s instead of convergent sequences of
probability measures. Kohlberg and Mertens (1986) showed that “given a game tree,
a proper equilibrium of its normal form will give a sequential equilibrium in any
variant of that tree obtained by applying any of the. . . inessential transformations.”
As one might expect, LPS’s have since been added to the game theorist’s toolkit for
normal-form analysis of extensive-form games (cf. Asheim, 2001; Brandenburger and
Friedenberg, 2007). In fact CPS’s, as used by Myerson (1986) and Battigalli and
Siniscalchi (1999) to describe beliefs in extensive-form games, can also be viewed
as LPS’s satisfying some restrictions on the set of events on which beliefs can be
conditioned (cf. Hammond, 1994; Halpern, 2010).

More recently, Brandenburger et al. (2008)—henceforth BFK—solved a long-
standing puzzle by giving an epistemic characterization of iterated admissibility.1

Their solution involves using LPS’s to resolve the sharp tension between caution
and common belief of rationality that was identified by Samuelson (1992). However,
some nontrivial conceptual questions have been raised by BFK’s use of LCPS type
structures—i.e., type structures in which types are mapped to LCPS beliefs about
other types.

In order to answer these questions, the foundations of LPS type structures and their
connection to belief hierarchies must be established in the same way that papers such
as Mertens and Zamir (1985) and Brandenburger and Dekel (1993) did for standard
probability type structures. The related issues are briefly enumerated and summarized
below.

Issue 1 BFK’s epistemic conditions are stated using LCPS type structures. However,
the finite-order beliefs implied by such type structures are LPS’s but not necessarily
LCPS’s. In fact, a “rational” player in such environments will necessarily have finite-
order beliefs that are not LCPS’s unless the underlying game is trivial. An immediate
implication of this is that we must first define spaces of finite-order LPS beliefs in
order to construct canonical LCPS type structures.

1i.e., iterated elimination of weakly dominated strategies.
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Issue 2 Infinitely many LPS’s can represent the same lexicographic expected utility
(LEU) preference relation.2 In the terminology of our paper, the space of LPS’s contains
redundant preference representations. Straightforwardly extending Brandenburger
and Dekel (1993)’s construction of hierarchies—as Catonini (2012) does—results in a
type space with many redundant types. To put it more precisely, for each LPS belief
hierarchy constructed in this manner, there will be infinitely many distinct LPS belief
hierarchies that represent the same preference hierarchy.

Issue 3 Such redundant types are problematic for three reasons. Firstly, the distinc-
tion between LCPS’s and LPS’s becomes purely cosmetic when the underlying space of
uncertainty contains duplicate elements that represent the same descriptions of reality.
Given that BFK’s epistemic characterization of strategies that survive finitely many
rounds of elimination of inadmissible strategies hold in any belief-complete LCPS type
structure—even those that contain preference-redundant types of the sort mentioned
above—it is unclear to what extent those results depend on the use of LCPS type
structures versus LPS type structures, if at all.

Issue 4 Secondly, it is known that redundant types can be used as implicit coor-
dination devices by the players. As demonstrated by Liu (2009), a redundant type
structure can also be viewed as a nonredundant type structure with an expanded
space of fundamental uncertainty—i.e., one with additional random variables that may
serve as explicit coordination devices. The presence of redundant types can therefore
change what is meant by players acting independently.

Issue 5 Thirdly, because spaces of finite-order LPS beliefs also contain redundant
representations of each finite-order preference relation, finite-order LPS beliefs are
more informative about higher-order preferences than they should be. Ann’s first-order
belief represents her first-order preference relation over some space of acts. It seems
unreasonable that we can deduce more about Ann’s higher-order preferences from
Ann’s first-order belief than we can from Ann’s first-order preference relation. However,
due to the aforementioned redundancies, marginal beliefs are more informative about
joint beliefs than they should be.

Issue 6 If the belief hierarchy approach leads to type spaces with redundant pref-
erence hierarchies, then it makes sense to construct preference hierarchies directly.3

Epstein and Wang (1996) provide a template for constructing such “beliefs about
beliefs without probabilities”. However, Epstein and Wang (1996) do not work with

2Redundant representations of LEU preferences in the space of LPS beliefs are given more detailed
treatment in Lee (2013).

3Di Tillio (2008) explicitly constructs hierarchies of preference relations. However, his techniques
resist straightforward generalization to our setting because they rely on the set of mth-order preferences
being finite for all m. I thank Pierpaolo Battigalli for this reference.
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preference relations directly, but rather use utility functions over acts as proxies for
preference relations. Ganguli and Heifetz (2013) take an analogous approach by,
roughly speaking, using LEU functions—which are families of linear functionals—as
proxies for LEU preferences.4 Unfortunately, even after normalizations, such an
approach cannot prevent the sort of preference-redundancies responsible for Issues 3–5.

To address these issues, we begin by constructing the set of all coherent hierarchies
of LEU preferences so that no two elements of the set represent the same preference
hierarchy. We then obtain a somewhat surprising result: There are LEU preference
hierarchies that cannot be LPS belief hierarchies. In particular, there are some LEU
preferences hierarchies that cannot be represented by types! Like Epstein and Wang
(1996), we do not model the preferences relations directly but instead use an abstract
space of objects that represent them.

We also construct two canonical type structures that may be called “universal”.
The first induces all preference hierarchies that can be described by LPS type struc-
tures. The second induces all preference hierarchies that can be described by all
nonredundant—i.e., meaningful—LCPS type structures.

The canonical LPS type structure is more powerful in the sense that it induces more
preference hierarchies than the canonical LCPS type structure. However, we also find
that both induce all finite-order preferences. It follows that the distinction between
LPS types and LCPS types is an infinite-order notion rather than a finite-order one.
This suggests that finite-order epistemic conditions that can be stated in LCPS type
structures have equivalent “translations” in LPS type structures. For example, Dekel
et al. (2013) show that BFK’s epistemic characterization of finitely many rounds
of weak dominance elimination in LCPS type structures carries over to LPS type
structures.

Furthermore, if redundant types are permitted, a hierarchy can be described by an
LPS type structure if and only if it can be described by an LCPS type structure. In
other words, the class of LPS type structures and the class of LCPS type structures
are equally expressive in some sense when redundant types are present.

One of the main findings of Keisler and Lee (2012) was that there exist belief-
complete LCPS type structures in which rationality and common assumption of
rationality (RCAR)—BFK’s analog of rationality and common belief of rationality
(RCBR)—characterizes iterated admissibility. This was surprising in light of BFK’s
Theorem 10.1, which says that, in a belief-complete LCPS type structure with contin-
uous type-belief maps, no state of the world can satisfy RCAR. The two contrasting
results raise the question of which “large” type structure is the most appropriate
model for the analysis of RCAR.

In this paper, we attempt to bypass the issue altogether by giving an epistemic
characterization of iterated admissibility within an explicit model of preference hier-

4To be more precise, the setup in Ganguli and Heifetz (2013) permits more general preferences
than just LEU preferences.
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archies as opposed to in an implicit model such as a type structure. Our condition,
which we also call RCAR, is a close analog of BFK’s RCAR in explicit hierarchy state
spaces. Our proof relies on the use of preference hierarchies that cannot be types,
which seems to be consistent with BFK’s earlier intuition about the nonexistence of
RCAR in complete and continuous type structures.

The remainder of this paper is organized as follows: Section 2 contains mathematical
preliminaries. Section 3 formally defines LPS’s, LCPS’s, and our nonredundant space of
LEU preference representations. Some of the key issues mentioned above are also given
slightly more detailed treatment. Finite-order LEU preferences and coherent LEU
preference hierarchies are constructed in Section 4. Section 5 follows up by constructing
our canonical LPS/LCPS type structures. Results about LCPS type structures and
their relation to LPS type structures can be found in Section 6. Section 7 gives
our epistemic characterization of iterated admissibility. Finally, Section 8 concludes.
Proofs that are either too long or add little to the essential content of the paper have
been postponed to the appendices.

2 MATHEMATICAL PRELIMINARIES

Definition 2.1. A topological space is an ordered pair 〈X,T 〉, where X is a set and
T is a topology on X.

Whenever there is no risk of confusion, we will refer to the topological space 〈X,T 〉
as X for the sake of brevity. Furthermore, we may also refer to a topological space X
without specifying the associated topology. In such cases, we will let T (X) denote
this unspecified topology on X.

Definition 2.2. Let 〈X,T 〉 be a topological space and let Y ⊆ X. The subspace
topology on Y (relative to X) is the collection T |Y ≡ {U ∩ Y : U ∈ T }. The
topological space 〈Y,T |Y 〉 is called a topological subspace of 〈X,T 〉.

Whenever there is no risk of confusion, we will refer to the topological space
〈Y,T |Y 〉 as the subspace Y of X for the sake of brevity.

Definition 2.3. A topological space 〈X,T 〉 is a Polish space if T is separable and
completely metrizable.

Definition 2.4. A standard Borel space is an ordered pair 〈X,B〉, where X is a
set and B is a σ-algebra on X such that there exists some Polish topology T that
generates B. Elements of B are called Borel subsets of X.

Whenever there is no risk of confusion, we will refer to the standard Borel space
〈X,B〉 as X for the sake of brevity. Furthermore, we may also refer to a standard
Borel space X without specifying the associated Borel σ-algebra. In such cases, we
will let B(X) denote this unspecified Borel σ-algebra.
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Definition 2.5. Let 〈X,B〉 be a standard Borel space and let Y ∈ B. The subspace
σ-algebra on Y (relative to X) is the collection B|Y ≡ {U ∩ Y : U ∈ B}. The Borel
subspace 〈Y,B|Y 〉 is itself a standard Borel space.

3 BELIEFS AND PREFERENCES

3.1 BELIEFS

Definition 3.1. Let X be a standard Borel space. The set of all Borel probability
measures defined on X is denoted by P(X). P(X) is itself a standard Borel space
when it is endowed with the Borel σ-algebra generated sets of the form

{µ ∈ P(X) : µ(E) > p}, where E ∈ B(X) and p ∈ [0, 1](1)

Definition 3.2. Let X be a standard Borel space. The set of all lexicographic
probability systems (LPS’s) on X is denoted by LPS(X) and defined as follows.

LPSm(X) ≡
m∏
j=1

P(X) LPS(X) ≡
⋃
m≥1

LPSm(X)(2)

When they are endowed with the usual product/union σ-algebras, LPSm(X) and
LPS(X) are standard Borel spaces.

Definition 3.3. Let X be a standard Borel space. Probability measures µ, ν ∈ P(X)
are mutually singular if there exist disjoint Borel sets U, V in X such that µ(U) =
ν(V ) = 1. We write µ ⊥ ν to indicate that µ and ν are mutually singular.5

Definition 3.4. LetX be a standard Borel space and let σ = (µ1, . . . , µm) ∈ LPSm(X),
where m ≥ 1. The LPS σ is a lexicographic conditional probability system (LCPS) if
it is comprised of pairwise mutually singular probability measures. Equivalently, σ is
an LCPS if there exists pairwise-disjoint Borel sets U1, . . . , Um such that

µ1(U1) = · · · = µm(Um) = 1(3)

The set of all LCPS’s on X is denoted by LCPS(X). Because LCPS(X) is a subset
of LPS(X), it is itself a standard Borel space when viewed as a Borel subspace of
LPS(X). For all m ≥ 1, LCPSm(X) ≡ LPSm(X) ∩ LCPS(X).

3.2 PREFERENCES AND REDUNDANCY

For Definitions 3.5–3.8, let X be a standard Borel space.

5A probability measure can be viewed as an element of some linear space. A pair of mutually
singular probability measures can be viewed as a pair of orthogonal (⊥) elements in this space.
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Definition 3.5. An act defined on X is a Borel map f : X → [0, 1]. The set of all
acts defined on X is denoted by ACT(X).

Definition 3.6. Let f ∈ ACT(X) and let σ = (µ1, . . . , µm) ∈ LPS(X), where m ≥ 1.
The lexicographic expected utility (LEU) of f under σ is the following m-tuple of
expected utilities (EUs).

Eσ[f ] ≡
(∫

X

f dµ1, . . . ,

∫
X

f dµm

)
= (Eµ1 [f ], . . . ,Eµm [f ])(4)

Definition 3.7. Let σ = (µ1, . . . , µn) ∈ LPS(X) be an LPS. The preference relation
%σ on ACT(X) is defined as follows, where ≥L is the lexicographic order.6

∀f, g ∈ ACT(X) f %σ g ⇐⇒ Eσ[f ] ≥L Eσ[g](5)

The space P(X) = LPS1(X) of probability measures has the nice property that,
for all µ, ν ∈ P(X), %µ=%ν if and only if µ = ν. In other words, each EU preference
relation is represented by exactly one element of P(X). Unfortunately, the analogous
property does not hold for LPS’s. In order to carefully handle the hazards arising
from this fact, the following equivalence notion is needed.

Definition 3.8. Let ρ, σ ∈ LPS(X). We say that ρ and σ are preference-equivalent if
%ρ=%σ and write ρ ∼= σ.

Each LPS σ ∈ LPS(X) is preference-equivalent to an uncountable number of LPS’s
in LPS(X). This poses nontrivial conceptual challenges to meaningfully defining
beliefs about beliefs—i.e., LPS’s about LPS’s—that can be interpreted as conditional
probability systems—i.e., those that can be written as LCPS’s. This is because
the mutual singularity of probability measures loses its incisiveness if the space of
uncertainty contains redundant elements. The following simple example illustrates
this issue.

Consider a game environment with two players, who are called “Ann” and “Bob”.
Ann and Bob each have finite strategy sets, which are respectively denoted Sa = {U,D}
and Sb = {L,R}. Each player has a first-order LPS belief about what strategy his/her
opponent will use. Suppose we are interested in Ann’s second-order beliefs—i.e., her
beliefs about Bob’s strategy and first-order belief—that can be written as LCPS’s.
Such second-order beliefs belong to the set LCPS(Sb × LPS(Sa)).

Let ρ, ρ′ ∈ LPS(Sa) be preference-equivalent first-order beliefs of Bob such that
ρ 6= ρ′. We can construct a second-order belief σ = (µ1, µ2) for Ann, where

µ1({(L, ρ)}) = 1 = µ2({(L, ρ′)})
6The lexicographic order ≥L is the union of the relations >L and =L, which are defined as follows.

(a1, . . . , am) =L (b1, . . . , bm) if and only if (a1, . . . , am) = (b1, . . . , bm); (a1, . . . , am) >L (b1, . . . , bm) if
and only if there exists some k such that (a1, . . . , ak) = (b1, . . . , bk) and ak+1 > bk+1.
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The belief σ is clearly an LCPS because µ1 and µ2 are mutually singular. However,
are (L, ρ) and (L, ρ′) different descriptions of reality?

If the subjectivist interpretation of probability—and beliefs in general—is taken
seriously, it might be argued that the substantive content of an LPS is entirely captured
by the associated preference relation. As such, one might then argue that beliefs about
beliefs have content only to the extent that they describe beliefs about preferences.
The LPS σ′ = (µ1, µ1) has the same content as the LCPS σ in that regard, but σ′ is
not an LCPS.

It follows that the beliefs in LCPS(Sb × LPS(Sa)) and LPS(Sb × LPS(Sa)) are
descriptively equivalent under the Savage paradigm. As such, having a well-behaved
space of LPS beliefs that contains exactly one representation of each LEU preference
relation is a necessary prerequisite to defining meaningful LCPS second-order beliefs.
The following result from Lee (2013) delivers precisely such a space.

Proposition 1. There exists a Borel subspace LEU(X) ⊆ LPS(X) and a surjective
Borel map ςX : LPS(X)→ LEU(X) such that

∀σ, σ′ ∈ LPS(X) ςX(σ) ∼= ςX(σ′) ⇐⇒ σ ∼= σ′(6)

∀σ ∈ LPS(X) σ ∼= ςX(σ)(7)

Furthermore, LEU(X) only contains minimal-length7 representations of LEU prefer-
ences.

Definition 3.9. For each standard Borel space X, fix the ordered pair 〈LEU(X), ςX〉
that exists by Proposition 1. For all m ≥ 1, let LEUm(X) ≡ LEU(X) ∩ LPSm(X).

3.3 MARGINAL BELIEFS VERSUS MARGINAL PREFERENCES

For Definitions 3.10–3.11, let X, Y be nonempty standard Borel spaces. The following
is a naive but prima facie natural way to define a marginal operator on LPS’s.

Definition 3.10. Let σ = (µ1, . . . , µm) ∈ LPS(X × Y ), where m ≥ 1. The belief-
marginal of σ on X is written as margX σ and defined as follows.

margX σ ≡ (margX µ1, . . . ,margX µm)(8)

Unfortunately, margX σ reveals more information about σ than simply how %σ

ranks acts that are measurable with respect to X. More precisely speaking, the
belief-marginal operator violates the following property.

∀ρ, σ ∈ LPS(X × Y ) margX ρ
∼= margX σ ⇐⇒ margX ρ = margX σ(9)

Note that the analogous property holds for probability measures.

∀µ, ν ∈ P(X × Y ) margX µ
∼= margX ν ⇐⇒ margX µ = margX ν(10)

7An LPS σ has minimal length if there is no shorter LPS ρ such that σ ∼= ρ.
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The belief hierarchies constructed using this naive marginal operator exhibit
perverse irregularities. For example, knowing Ann’s first-order belief will permit us
rule out many second-order preferences that are consistent with it. To see this more
clearly, let us once again consider a game played by Ann and Bob. Ann and Bob each
have finite strategy sets, which are respectively denoted Sa = {U,D} and Sb = {L,R}.

L R
ρ 1 0
ρ′ 0 0

µ1

L R
ρ 0 0
ρ′ 1 0

µ2

Figure 1: Second-order beliefs σ = (µ1, µ2), σ′ = (µ1)

Each player has a first-order LPS belief about what strategy his/her opponent will
use. Let ρ, ρ′ ∈ LPS(Sa) be two possible first-order beliefs of Bob such that ρ 6∼= ρ′.
Ann’s second-order beliefs belong to LPS(Sb × LPS(Sa)). Consider the second-order
beliefs σ and σ′, which are defined in Figure 1.

The belief-marginals represent the same preference relation over ACT(Sb)—i.e.,
margSb

σ ∼= margSb
σ′—which is evident from the following chain of easily verified

equalities.

margSb
σ = (margSb

µ1,margSb
µ2)

= (margSb
µ1,margSb

µ1) ∼= (margSb
µ1) = margSb

σ′

However, if the analyst knows that Ann’s first-order belief is equal to margSb
σ′, then

she can immediately rule out the possibility that Ann’s second-order belief is σ despite
the fact that σ and σ′ induce the same first-order preferences—i.e., preferences over
ACT(Sb). It seems eminently unreasonable to argue that LPS’s (ν, ν) and (ν)—where
ν = margSb

µ1—could be viewed as representing different beliefs about Bob’s strategies.
Proposition 1 allows us to define a marginal operator that avoids these irregularities.

We will call this the preference-marginal operator to distinguish it from the belief-
marginal operator.

Definition 3.11. Let σ = (µ1, . . . , µm) ∈ LPS(X × Y ), where m ≥ 1. The preference-
marginal of σ on X is written as margpX σ and defined as follows.

margpX σ ≡ ςX(margX σ)(11)

The mapping σ 7→ margpX σ is Borel since it is a composition of Borel maps.
Furthermore, it is immediately seen that the following property holds.

∀ρ, σ ∈ LPS(X × Y ) margpX ρ
∼= margpX σ ⇐⇒ margpX ρ = margpX σ
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4 INTERACTIVE UNCERTAINTY

4.1 BASIC ENVIRONMENT

Consider a game setting where I = {a, b} denotes the set of all human players. Players a
and b are respectively called Ann and Bob. As usual, we let −a ≡ b and −b ≡ a. With
apologies to Bob, we also adopt the convention of using female pronouns when we
refer to generic players—e.g., Player i knows her own preferences. Player i’s strategy
set is denoted by Si and it is a nonempty standard Borel space. We assume that each
player has two or more strategies. The basic uncertainty in this environment is about
the strategies that are played.8

4.2 FINITE-ORDER PREFERENCES

We construct the spaces of finite-order preferences by induction. We begin by defining
the base cases.9

X0
i ≡ Si X1

i ≡ X0
i × LEU(X0

−i)

Let π0
i : X1

i → X0
i and %1

i : X1
i → LEU(X0

i ) be the natural projections.

π0
i ≡ x1

i 7→ projX0
i
x1
i %1

i ≡ x1
i 7→ projLEU(X0

−i)
x1
i

Ann’s space of nth-order uncertainty will be Xn−1
b and her nth-order preferences will

belong to LEU(Xn−1
b ). For n ≥ 1, the tuple (Xn+1

i , πni , %
n+1
i , π̂n−1

i ) of objects is defined
inductively. First, let π̂n−1

i : LEU(Xn
i ) → LEU(Xn−1

i ) be the preference-marginal
operation.

π̂n−1
i ≡ σ 7→ margpXn−1

i
σ

We define Xn+1
i as the set of ordered pairs in Xn

i × LEU(Xn
−i) that are coherent in a

specific sense.

Xn+1
i ≡ {(xni , hn+1

i ) ∈ Xn
i × LEU(Xn

−i) : %ni (xni ) = π̂n−1
i (hn+1

i )}

Once we define πni : Xn+1
i → Xn

i and %n+1
i : Xn+1

i → LEU(Xn
−i) to be the natural

projections, the diagram in Figure 2 commutes.

Lemma 4.1. For all n ≥ 0, Xn
i and LEU(Xn

i ) are nonempty standard Borel spaces.

Proof of Lemma 4.1. See Appendix A.

8Our definitions and results easily extend to environments with incomplete information and any
finite number of players. The simplification herein reduces notational clutter without sacrificing
essential content.

9The language and notation in some parts borrow liberally—sometimes verbatim—from the
elegant setup of Di Tillio (2008).
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Xn+1
i LEU(Xn

−i)

Xn
i LEU(Xn−1

−i )

%n+1
i

πn
i π̂n−1

i

%ni

Figure 2: Coherency

4.3 COHERENT HIERARCHIES

Finally, we can define coherent preference hierarchies (or simply hierarchies), which
are the objects of principal interest to us.

Definition 4.1. A coherent preference hierarchy of Player i is a sequence that belongs
to the set Hi, which is defined as follows.

Hi ≡

{
(h1

i , h
2
i , . . . ) ∈

∏
n≥0

LEU(Xn
−i) : ∀n ≥ 1 π̂n−1

i (hn+1
i ) = hni

}

Definition 4.2. A state of Player i is a sequence that belongs to the set Xi, which is
defined as follows.

Xi ≡ lim←−
n

Xn
i =

{
(x0

i , x
1
i , . . . ) ∈

∏
n≥0

Xn
i : ∀n ≥ 0 πni (xn+1

i ) = xni

}

Take any xi = (x0
i , x

1
i , . . . ) ∈ Xi. The first coordinate of

xn+1
i = (

=xni︷ ︸︸ ︷
πn(xn+1

i ), %n+1
i (xn+1

i ))

exactly duplicates the information described by xni . It follows that the descriptive
content of xi and

(
$0
i (xi), (%

n+1
i ◦$n+1

i (xi))n≥0

)
are equal. It follows that the map

xi 7→
(
$0
i (xi), (%

n+1
i ◦$n+1

i (xi))n≥0

)
is a natural Borel isomorphism from Xi into X0

i × Hi that exactly preserves all
information about Player i. As such, with apologies for the abuse of notation, we use
the expressions Xi and X0

i ×Hi interchangeably in this paper depending on which
form is more convenient for the task at hand.

Lemma 4.2. The following map is a Borel isomorphism.

Xi → X0
i ×Hi xi 7→

(
$0
i (xi), (%

n+1
i ◦$n+1

i (xi))n≥0

)
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Proof of Lemma 4.2. See Appendix A.

Definition 4.3. For every n ≥ 0, $n
i : Xi → Xn

i denotes the natural projection
xi 7→ projXn

i
xi.

Lemma 4.3. Xi and Hi are nonempty standard Borel spaces.

Proof of Lemma 4.3. See Appendix A.

Definition 4.4. For all n ≥ 1, the maps bhni and bhi are defined as follows.

bhni : LPS(X−i)→ LEU(Xn−1
i ) bhni (σ) ≡ margpXn−1

−i
σ(12)

bhi : LPS(X−i)→ Hi bhi(σ) ≡ (bhni (σ))n≥1(13)

The maps bhni and bhi respectively impute Ann’s finite-order preference and prefer-
ence hierarchy to her belief about Bob’s states. The notation is intended to remind
the reader that bhi is a belief-to-hierarchy map.

Lemma 4.4. Let n ≥ 1. The maps bhni and bhi are Borel. Furthermore, each LEU
preference relation over ACT(X−i) is uniquely identified by a hierarchy in Hi—i.e.,
the following statement holds.

∀ρ, σ ∈ LPS(X−i) ρ ∼= σ ⇐⇒ bhi(ρ) = bhi(σ)(14)

Proof of Lemma 4.4. See Appendix A.

Definition 4.5. Let X be a standard Borel space and E ⊆ LPS(X). The set E is
said to be preference-repetitive (or simply repetitive) if there exist distinct LPS’s
ρ, σ ∈ E that represent the same preference relation. Such ρ and σ are said to be
preference-redundant (or simply redundant) in E.

An immediate consequence of Lemma 4.4 is that the restriction of bhi to any non-
repetitive subspace of LPS(X−i) is necessarily one-to-one. For example, bhi|LEU(X−i)

and bhi|LCPS(X−i) are both one-to-one maps.

Corollary 4.1. Image of any non-repetitive Borel set E ⊆ LPS(X−i) under bhi is
Borel.

Proof of Corollary 4.1. The map bhi is one-to-one when its domain is restricted to E.
It follows that bhi|E is a Borel isomorphism from E into bhi(E).

Corollary 4.2. A hierarchy can be described by an LPS in LPS(X−i) if and only if it
can be described by an LPS in LEU(X−i). In other words, the following equality holds.

bhi(LPS(X−i)) = bhi(LEU(X−i))

Furthermore, the set of all such hierarchies—i.e., bhi(LPS(X−i))—is Borel in Hi.
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Proof of Corollary 4.2. By Lemma 4.4 and the definition of LEU(X−i), the following
is true.

∀ρ ∈ LPS(X−i) ∃σ ∈ LEU(X−i) ρ ∼= σ ∧ bhi(ρ) = bhi(σ)

From this, we can deduce the inclusion bhi(LPS(X−i)) ⊆ bhi(LEU(X−i)).

LPS(X−i) ⊇ LEU(X−i) ∴ bhi(LPS(X−i)) ⊇ bhi(LEU(X−i))

∴ bhi(LPS(X−i)) = bhi(LEU(X−i))

By Corollary 4.1, the set bhi(LPS(X−i)) = bhi(LEU(X−i)) is Borel.

From the fact that bha is well-defined, we can see that Ann’s belief about Bob’s
states can always be written as a hierarchy. However, the converse is not always true.
It is not necessarily true that Ann’s hierarchy can be written as a belief about Bob’s
states. This is the content of Theorem 4.1.

Theorem 4.1. bhi(LPS(X−i)) 6= Hi.

Proof of Theorem 4.1. The strategy of the proof is to construct a hierarchy

hi = (h1
i , h

2
i , . . . )

such that, for all n ≥ 1, hni has length n.
We start by fixing some y0 ∈ X−i. For each n ≥ 0, we choose10 and fix some

yn+1 ∈ X−i such that $n
−i(yn+1) = $n

−i(yn) and $n+1
−i (yn+1) 6= $n+1

−i (yn). Because yn
and yn+1 are coherent states of Player −i, the following can be concluded.

∀m ≤ n $m
−i(yn+1) = $m

−i(yn)

∀m > n $m
−i(yn+1) 6= $m

−i(yn)

The following statements therefore hold jointly for all m,n ≥ 0.

m ≤ n =⇒ ∀m̂ ≤ m $m̂
−i(ym) = $m̂

−i(yn)

m > n =⇒ ∀n̂ > n $n̂
−i(ym) 6= $n̂

−i(yn)

We now define a sequence (µn)n≥0 of probability measures in P(X−i) ⊆ LPS(X−i)
such that µn(yn) = 1 for all n ≥ 0. We use this sequence to define the hierarchy
(h1

i , h
2
i , . . . ) ∈ Hi as follows.

∀n ≥ 1 hni ≡ (bhni (µn−1), bhni (µn−2), . . . , bhni (µ0))

10We take advantage of the fact that, for each xj ∈ Xj and n ≥ 0, we can alway find some x′j ∈ Xj

such that $n
j (xj) = $n

j (x′j) and $n+1
j (xj) 6= $n+1

j (x′j).
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The measures that comprise hni are pairwise mutually singular. This is easily verified
from the following set of equalities, which arise from the definition of (µn)n≥0.

∀m < n supp bhni (µm) = $n−1
−i (ym)

It follows that hni is an LCPS and has minimal length. Furthermore, hi is a coherent
hierarchy because the following holds for all n ≥ 1.

π̂n(hn+1
i ) ∼=

n+ 1 measures︷ ︸︸ ︷
(margXn

−i
bhn+1
i (µn),margXn

−i
bhn+1
i (µn−1), . . . ,margXn

−i
bhn+1
i (µ0))

= (

equal︷ ︸︸ ︷
bhni (µn), bhni (µn−1), . . . , bhni (µ0))

∼=
n measures︷ ︸︸ ︷

(bhni (µn−1), . . . , bhni (µ0)) = hni

We know that bhni (µn) = bhni (µn−1) because

supp bhni (µn) = $n−1
−i (yn) = $n−1

−i (yn−1) = supp bhni (µn−1).

It follows that hi ∈ Hi since π̂n(hn+1
i ) = hni for all n ≥ 1.

Suppose by way of contradiction that there exists an LPS σ ∈ LPS(X−i) such that
bhi(σ) = hi. Its length must be some N ≥ 1. It follows that bhN+1

i (σ) is preference-
equivalent to an LPS of length N—namely, margXN+1

i
σ. However, hN+1

i , which has

length N + 1, cannot be represented by a shorter LPS. Since hN+1
i = bhN+1

i (σ) ∼=
margXN+1

i
σ, this yields a contradiction.

5 TYPE STRUCTURES

5.1 FROM TYPES TO HIERARCHIES

Definition 5.1. An LPS-type structure is a tuple T = 〈Ti, βi〉i∈I such that the fol-
lowing holds for all i ∈ I:

1. Ti is a nonempty standard Borel space; and

2. βi : Ti → LPS(S−i × T−i) is a Borel map.

Ti is called Player i’s type space and its elements are called her types. The map βi is
called Player i’s type-belief map.

Definition 5.2. Let T = 〈Ti, βi〉i∈I be an LPS-type structure. T is

1. called an LCPS-type structure if βi(Ti) ⊆ LCPS(S−i × T−i) for all i ∈ I; and

2. called a P-type structure if βi(Ti) ⊆ P(S−i × T−i) for all i ∈ I.
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The familiar type structures of Mertens and Zamir (1985); Brandenburger and
Dekel (1993); Tan and Werlang (1988) are P-type structures. The lexicographic type
structures in BFK are LCPS-type structures.

It obvious that the higher-order preferences, and therefore the coherent hierarchy,
implied by a given type can be recovered using the type-belief maps. Before we do so,
it is useful to first extend the notion of pushforward measures to LPS’s.

Definition 5.3. Let X, Y be standard Borel spaces and f : X → Y a Borel map.

1. Given a µ ∈ P(X), the pushforward11 belief fµ ∈ P(Y ) is defined as follows.

∀E ∈ B(Y ) fµ(E) ≡ µ(f−1(E))(15)

2. Given a σ = (µ1, . . . , µn) ∈ LPS(X), the pushforward belief fσ ∈ LPS(Y ) is
defined as follows.

fσ ≡ (fµ1, . . . , fµn)(16)

3. Given a σ = (µ1, . . . , µn) ∈ LPS(X), the pushforward preference f ∗ σ ∈ LEU(Y )
is defined as follows.

f ∗ σ ≡ ςX(fσ)(17)

Definition 5.4. Let T = 〈Ti, βi〉i∈I be an LPS-type structure. Define the maps
txi[T], tx

0
i[T], tx

1
i[T], tx

2
i[T], . . . as follows.

tx0
i[T] : X

0
i × Ti → X0

i ≡ (x0
i , ti) 7→ (x0

i )(18)

txn+1
i[T] : X0

i × Ti → Xn+1
i ≡ (x0

i , ti) 7→ (txni[T](x
0
i , ti), tx

n
−i[T] ∗ βi(ti))(19)

txi[T] : X
0
i × Ti → Xi ≡ (x0

i , ti) 7→ (x0
i , (tx

n
−i[T] ∗ βi(ti))n≥0)(20)

Definition 5.5. Let T = 〈Ti, βi〉i∈I be an LPS-type structure. Define the map
thi[T]—called Player i’s type-hierarchy map associated with T—as follows.

thi[T] : Ti → Hi ≡ ti 7→ (txn−i[T] ∗ βi(ti))n≥0(21)

The (n+ 1)th-order preference induced by type ti ∈ Ti is given by the pushforward
preference txn−i[T] ∗ βi(ti). The preference hierarchy induced by ti is given by thi[T](ti).

Lemma 5.1. Let T = 〈Ti, βi〉i∈I be an LPS-type structure. Every map in the following
set is Borel.

{thi[T] : i ∈ I} ∪ {txi[T] : i ∈ I} ∪ {txni[T] : i ∈ I ∧ n ≥ 0}
11Etymology: A probability measure µ on X being “pushed forward” to a belief on Y by the map

f : X → Y .
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Harsanyi (1967)’s insight that hierarchies, which are cumbersome objects, can
be represented by types, which are comparatively simple objects, inspired numerous
papers establishing the foundations of various type structures. A recurring theme
in these investigations is whether there is a type structure that can describe “all
higher-order beliefs”—a notion that varies according to the context in which the
question is asked. Following several recent papers, we use terminality in this paper
as an umbrella term to describe such properties of type structures.12 The following
common variants of the terminality question are considered.

Definition 5.6. Let T = 〈Ti, βi〉i∈I be an LPS-type structure. T is said to be

1. strongly terminal if it describes every preference hierarchy, i.e.,

∀i ∈ I thi[T](Ti) = Hi

2. weakly terminal in a given family F of LPS-type structures if it describes
every preference hierarchy that can be described by type structures in F , i.e.,

∀i ∈ I ∀T̂ ∈ F th
i[T̂]

(Ti) ⊆ thi[T](Ti)

3. finitely terminal if it describes all finite-order preferences, i.e.,

∀i ∈ I ∀n ≥ 0 {txn−i[T] ∗ βi(ti) : ti ∈ Ti} = LEU(Xn
i )

Theorem 5.1. No strongly terminal LPS-type structure exists.

Proof of Theorem 5.1. Let T = 〈Ti, βi〉i∈I be an LPS-type structure. For each ti ∈ Ti,

bhi(tx−i[T]βi(ti)) = thi(ti),

where tx−i[T]βi(ti) and thi(ti) respectively correspond to the belief about X−i and
preference hierarchy induced by ti. The hierarchies that can be described by T can
also be described as beliefs about the other players’ states—i.e., beliefs about X−i.
Because Theorem 4.1 states that some hierarchies cannot be described in that form,
it follows that some hierarchies cannot be described by T.

5.2 CANONICAL TYPE STRUCTURES

We construct two canonical type structures by first defining the following sequences of
sets of coherent hierarchies.13

T LEU
i[0] ≡ Hi T LCPS

i[0] ≡ Hi

T LEU
i[n+1] ≡ bhi(LEU(X0

−i × T LEU
−i[n])) T LCPS

i[n+1] ≡ bhi(LCPS(X0
−i × T LEU

−i[n]))

12The word universality has also been used frequently.
13For each Borel subset E 6= ∅ of X−i, we slightly abuse notation by letting LPS(E) denote the

set {σ ∈ LPS(X) : σ(E) = ~1}. The sets P(E), LEU(E), LCPS(E) are defined mutatis mutandis.
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Definition 5.7. The canonical LPS type structure is the tuple TLEU ≡ 〈T LEU
i , βLEU

i 〉i∈I
such that T LEU

i ≡
⋂
n≥0 T

LEU
i[n] and βLEU

i : T LEU
i → LEU(S−i × T LEU

−i ) is defined as follows.

∀ti ∈ T LEU
i βLEU

i (ti) ≡ bh−1
i (ti)

Definition 5.8. The canonical CPS type structure is the tuple TLCPS ≡ 〈T LCPS
i , βLCPS

i 〉i∈I
such that T LCPS

i ≡
⋂
n≥0 T

LCPS
i[n] and βLCPS

i : T LCPS
i → LCPS(S−i × T LCPS

−i ) is defined as
follows.

∀ti ∈ T LCPS
i βLCPS

i (ti) ≡ bh−1
i (ti)

Lemma 5.2. TLEU and TLCPS are LPS-type structures and their type-belief maps are
Borel isomorphisms.

Proof of Lemma 5.2. By Corollary 4.1, images of non-repetitive Borel sets under bhi
are Borel sets. For any nonempty standard Borel space X, LCPS(X) and LEU(X) are
non-repetitive subsets of LPS(X). For all n ≥ 0, T LEU

i[n+1] and T LCPS
i[n+1] are Borel because

they are images of non-repetitive Borel sets under bhi. It follows that T LEU
i and T LCPS

i

are Borel sets in Hi.
For any nonempty standard Borel space X, P(X) ⊆ LCPS(X) ⊆ LPS(X). It

follows that both TLEU and TLCPS contain the P-type structure of Brandenburger and
Dekel (1993), which is nonempty.

LEU preferences satisfy the limit closure property—i.e., if a sequence of Borel sets
are 1-believed in the sense that their complements are Savage-null, then the intersection
of those sets is also 1-believed in the same sense.14 Therefore, the equalities below
hold.

T LEU
i = bhi(LEU(X0

−i × T LEU
−i )) T LCPS

i = bhi(LCPS(X0
−i × T LCPS

−i ))

The sets LEU(X0
−i × T LEU

−i ) and LCPS(X1
−i × T LCPS

−i ) are non-repetitive and Borel. It
follows from Lemma 4.4 that the restriction of bhi to those sets must be one-to-one
and Borel. The type-belief maps βLEU

i and βLCPS
i , being the functional inverses of

those restrictions, are Borel isomorphisms since they are one-to-one and surjective
Borel mappings.

Theorem 5.2. TLEU is weakly terminal in the class of LPS-type structures.

Proof of Theorem 5.2. Let T = 〈Ti, βi〉i be an LPS-type structure. We want to show
that

∀ti ∈ Ti thi[T](ti) ∈ T LEU
i .

14In the literature, 1-belief, or simply belief, of an event E corresponds to belief with probability 1.
Extending this notion to LPS’s, an event E is 1-believed under LPS (µ1, . . . , µn) if µ1(E) = · · · =
µn(E) = 1.
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For each ti ∈ Ti, the hierarchy thi[T](ti) can also be represented by the belief

ςX−i
(tx−i[T]βi(ti)) ∈ LEU(X−i) = LEU(X0

−i ×H−i).
∴ thi[T](ti) ∈ T LEU

i[1] = bhi(LEU(X0
−i ×H−i))

Furthermore, thi[T](ti) belongs to T LEU
i[2] —i.e., the set of hierarchies that can be rep-

resented as beliefs that 1-believe X0
−i × T LEU

−i[1]—because th−i[T](t−i) ∈ T LEU
−i[1] for all

t−i ∈ T−i. By applying this line of argument inductively, it is shown that

thi[T](ti) ∈
⋂
n≥0

T LEU
i[n] = T LEU

i

In the literature, the map thi[T] is often called Player i’s unique type morphism from

T to TLEU.

6 HIERARCHIES THAT ARE CONDITIONAL BELIEFS

6.1 REDUNDANT TYPES

Consider an LPS-type structure 〈Ti, βi〉i∈I . Each ti ∈ Ti represents a belief βi(ti)
about X0

−i × T−i. As briefly discussed in Section 3.2, the statement that βi(ti) is an
LCPS loses its meaning when the space of uncertainty—i.e., X0

−i × T−i—contains
elements that are redundant with respect to the uncertainty that we wish to model.
In the case of type structures, what we wish to model is uncertainty about preference
hierarchies. As such, the set T−i is descriptively useful only to the extent that it
describes hierarchies in H−i. We can define when a type structure is redundant in
that regard.

Definition 6.1. Let T = 〈Ti, βi〉i∈I be an LPS-type structure. A type ti ∈ Ti is
redundant if there is some ti 6= t̂i such that thi[T](ti) = thi[T](t̂i). We say that T is
redundant if there is some i ∈ I such that redundant types exist in Ti.

Any preference hierarchy that can be described by an LPS-type structure can also
be described by a possibly redundant LCPS-type structure. This is an implication of
the following result.

Theorem 6.1. There exists an LCPS-type structure that is weakly terminal in the
class of LPS-type structures.

Proof of Theorem 6.1. We wish to construct an LCPS-type structure T = 〈Ti, βi〉i∈I
that generates the same set of hierarchies as TLEU does. Let Ti = N× T LEU

i . We will
define the map βi : Ti → LCPS(X0

−i × T−i) in a piecewise fashion.
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First, for each m ∈ N, the space {m}×Ti admits the following countable partition
into Borel sets.

Π(m) = {P(m,n) : n ≥ 1},
where P(m,n) = {(m, ti) ∈ Ti : βLEU

i (ti) ∈ LPSn(X0
−i × T−i)}.

For any (m,n), the function βi can be defined on the sub-domain P(m,n) ∈ Π(m) as
follows.

βi(m, ti) ≡ (f−i[1]µ1, . . . , f−i[n]µn) ∈ LCPS(X0
−i × T−i),

where βLEU
i (ti) = (µ1, . . . , µn) and

f−i[k] : X
0
−i × T LEU

−i → X0
−i × {k} × T LEU

−i ≡ (x0
−i, t−i) 7→ (x0

−i, k, t−i)

The map βi is clearly Borel on P(m,n) for all (m,n). It follows that βi is Borel on⋃
Π(m) =

⋃
n≥1 P(m,n) because Π(m) is countable. Therefore, βi is Borel on each

member of the countable partition {
⋃

Π(m) : m ∈ N} of Ti. It follows that βi is a
Borel map.

Finally, T generates the same hierarchies as TLEU because the following equality
holds for all (m, ti) ∈ Ti by construction.

margX0
−i×T LEU

−i
βi(m, ti) = βLEU

i (ti)

Since TLEU is weakly terminal, so is T.

In contrast, not every preference hierarchy that can be described by an LPS-type
structure can also be described by a nonredundant LCPS-type structure. Furthermore,
the canonical LCPS-type structure describes precisely the set of hierarchies that are
described by nonredundant LCPS-type structures.

Theorem 6.2. The canonical LCPS-type structure TLCPS is weakly terminal in the
class of nonredundant LCPS-type structures.

Proof of Theorem 6.2. Let T = 〈Ti, βi〉i∈I be a nonredundant LCPS-type structure.
We want to show that thi[T](ti) ∈ T LCPS

i for all ti ∈ Ti.
For each ti ∈ Ti, the hierarchy thi[T](ti) can also be represented by the belief

tx−i[T]βi(ti) ∈ LCPS(X−i) = LCPS(X0
−i ×H−i).

The pushforward tx−i[T]βi(ti) is an LCPS because βi(ti) is an LCPS and tx−i[T] is one-to-

one when T is nonredundant. It follows that thi[T](ti) ∈ T LCPS
i[1] = bhi(LCPS(X0

−i×H−i)).
Furthermore, thi[T](ti) belongs to T LCPS

i[2] —i.e., the set of hierarchies that can be

represented as beliefs that 1-believe X0
−i × T LCPS

−i[1] —because th−i[T](t−i) ∈ T LCPS
−i[1] for all

t−i ∈ T−i. By applying this line of argument inductively, it is shown that

thi[T](ti) ∈
⋂
n≥0

T LCPS
i[n] = T LCPS

i .
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Theorem 6.3. The canonical LCPS-type structure TLCPS is not weakly terminal in
the class of LCPS-type structures.15

Proof of Theorem 6.3. Due Theorem 5.2, we know that T LCPS
i ⊆ T LEU

i . Note that
there exists some σ ∈ LEU(X0

−i × T LCPS
−i ) such that σ is not preference-equivalent to

any belief in LCPS(X0
−i×T LCPS

−i ). By Lemma 4.4, we can then conclude that σ does not
induce a hierarchy in T LCPS

i . Such σ—being a belief about X0
−i×T LEU

−i ⊇ X0
−i×T LCPS

−i —
induces the hierarchy bhi(σ) ∈ T LEU

i , which can be represented in some LCPS-type
structure due to Theorem 6.1.

In light of the preceding results, it makes sense to restrict our attention to nonredun-
dant LCPS-type structures when we are interested in LCPS beliefs about hierarchies.

6.2 NONREDUNDANT LCPS TYPES ARE ALMOST LPS TYPES

Although nonredundant LCPS-type structures describe a strict subset of the hierarchies
that are described by LPS-type structures, the two nevertheless have equal descriptive
power in the following important way.

Theorem 6.4. The canonical LCPS-type structure TLCPS is finitely terminal.

Proof of Theorem 6.4. We want to show that the following holds for all n ≥ 0

{txn−i[TLCPS] ∗ β
LCPS
i (ti) : ti ∈ Ti} = LEU(Xn

−i)

Due the definition of TLCPS, tx−i[TLCPS]
is the identity mapping. Therefore, txn−i[TLCPS]

∗
βLCPS
i (·) = margpXn

−i
βLCPS
i (·) for all n ≥ 0. Furthermore, TLCPS is a belief-complete

LCPS-type structure in the sense that βLCPS
i (T LCPS

i ) = LCPS(X0
−i × T LCPS

−i ). From
these facts, we get the following for all i ∈ I.

$0
−i(X

0
−i × T LCPS

−i ) = projX0
−i
X0
−i × T LCPS

−i = X0
−i

tx0
−i[TLCPS] ∗ β

LCPS
i (ti) = {margpX0

−i
σ : σ ∈ LCPS(X0

−i × T LCPS
−i )}

= ςX0
−i

(
{margX0

−i
σ : σ ∈ LCPS(X0

−i × T LCPS
−i )}

)
For all nonempty standard Borel spacesX, Y, U such that U ⊆ X×Y and projX U = X,
{margX σ : σ ∈ LCPS(U)} = LPS(X). Therefore, we can simplify the expression above.

= ςX0
−i

(
LPS(X0

−i)
)

= LEU(X0
−i)

For the induction step, let the following hold for all m < n and i ∈ I, where n > 1.

$m
−i(X

0
−i × T LCPS

−i ) = projXm
−i
X0
−i × T LCPS

−i = Xm
−i

{txm−i[TLCPS] ∗ β
LCPS
i (ti) : ti ∈ Ti} = LEU(Xm

−i)

15It is also therefore not weakly terminal in the class of LPS-type structures.
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Recall Definition 5.5 and note that txn−1
−i[TLCPS]

∗βLCPS
i (ti) is equal to the LEU(Xn−1

−i )-

coordinate of the hierarchy ti. The following equalities then follow from the induction
hypothesis.

projXn−1
i

X0
i × T LCPS

i = Xn−1
i

projLEU(Xn−1
−i )X

0
−i × T LCPS

−i = LEU(Xn−1
−i )

Because X0
−i × T LCPS

−i ⊆ X−i, the consistency requirement built into the definition of
X−i allows us to deduce the first equality below from the two above.16

$n
−i(X

0
−i × T LCPS

−i ) = projXn
−i
X0
−i × T LCPS

−i = Xn
−i ⊆ Xn−1

i × LEU(Xn−1
−i )(22)

txn−i[TLCPS] ∗ β
LCPS
i (ti) = {margpXn

−i
σ : σ ∈ LCPS(X0

−i × T LCPS
−i )}(23)

= ςXn
−i

(
{margXn

−i
σ : σ ∈ LCPS(X0

−i × T LCPS
−i )}

)
(24)

Mutatis mutandis, the arguments used in the analogous step of the base case imply
the following simplification because (22) holds.

= ςXn
−i

(
LPS(Xn

−i)
)

= LEU(Xn
−i)(25)

An important implication of Theorem 6.4 is that, for the purposes of analyzing
epistemic conditions involving finite-order beliefs, there is effectively no difference
between LPS-type structures and nonredundant LCPS-type structures. To put it
another way, every coherent preference hierarchy can be approximated by a sequence
of types in nonredundant LCPS-type structures.17

7 COMMON ASSUMPTION OF RATIONALITY

7.1 ADMISSIBILITY

Let G = 〈Sa, Sb, ua, ub〉 be a finite game of complete information. The symbols Si and
ui respectively denote Player i’s strategy set and utility function.

Definition 7.1. A strategy si ∈ Si is admissible against S ′−i ⊆ S−i if it is optimal
with respect to some belief σ such that supp σ = S ′−i—i.e.,

∃σ ∈ LPS(S−i)
[
suppσ = S ′−i ∧ ∀s′i ∈ Si Eσui(si, ·) ≥L Eσui(s

′
i, ·)
]

(26)

16In other words, projXn
i
X0

i × T LCPS
i = Xn

i whenever projLEU(Xn−1
−i ) T

LCPS
i = LEU(Xn−1

−i ) because

T LEU
i is a set of coherent hierarchies.
17This is true provided that we endow Xi with a product topology as is usual in the literature.
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Definition 7.2. Let the sets S0
i , S

1
i , S

2
i , . . . , S

∞
i be defined as follows.

S0
i ≡ Si

Sm+1
i ≡ {si ∈ Smi : si is admissible against Sm−i} S∞i ≡

⋂
m≥0

S0
i

For all m ≥ 1, Smi is called Player i’s m-admissible strategy set and S∞i is called her
iteratively admissible (IA) strategy set.

7.2 EPISTEMIC CONDITION FOR ITERATED ADMISSIBILITY

Let 〈Sa, Sb, πa, πb〉 be a finite game as before. The fundamental uncertainty of each
player concerns the strategy played by her opponent—i.e., X0

i = Si. The preceding
sections have adopted a topology-free approach to higher-order beliefs to the extent
that Xn

i is discussed as a Borel space without reference to the topology that generates
its Borel sets. The choice of topology on Xn

i does not alter the results and definitions
of the previous sections as long as it generates a standard Borel σ-algebra.

In this section, we assume that the finite set X0
i = Si is endowed with the discrete

topology. Furthermore, for all n ≥ 1, Xn
i is endowed with a separable and metrizable

topology T (Xn
i ) that generates the standard Borel algebra B(Xn

i ) and is consistent
with T (Xn−1

i ).18 The notions of assumption and full-support beliefs, which are central
to this section, cannot be defined without reference to topologies. Nevertheless, the
topology-free approach of the preceding sections is partially maintained—at least in
spirit—to the extent that the results of this section do not depend on other specific
details of these topologies.

Definition 7.3. Let Ω be a topological space. An LPS σ = (µ1, . . . , µn) ∈ LPS(Ω) is
a full-support LPS if, for every open set U ∈ T (Ω), there exists some j such that
µj(U) > 0.

Definition 7.4. Let Ω be a separable and metrizable topological space. Let LPS+(Ω)
denote the set of all full-support LPS’s in LPS(Ω). We also define the following sets of
full-support LPS’s for all m ≥ 1. These sets are Borel in LPS(Ω).

LPS+
m(Ω) ≡ LPSm(Ω) ∩ LPS+(Ω)

LCPS+(Ω) ≡ LCPS(Ω) ∩ LPS+(Ω) LEU+(Ω) ≡ LEU(Ω) ∩ LPS+(Ω)

LCPS+
m(Ω) ≡ LCPS(Ω) ∩ LPS+

m(Ω) LEU+
m(Ω) ≡ LEU(Ω) ∩ LPS+

m(Ω)

Definition 7.5. The sequence hi = (h1
i , h

2
i , . . . ) ∈ Hi is a full-support hierarchy if

each finite-order belief in the sequence has full-support—i.e., hn+1
i ∈ LPS+(Xn

−i) for
all n ≥ 0. We let H+

i denote the set of Player i’s full-support hierarchies.

18i.e., for any open U ∈ T (Xn−1
i ), the set {(xn−1i , hni ) ∈ Xn

i : xn−1i ∈ U} is open in Xn
i . This

guarantees that full-support beliefs on Xn
i will have full-support marginals on Xn−1

i .
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The following definition of assumption is from Lee (2013). It extends BFK’s
definition of assumption for LCPS’s to LPS’s.

Definition 7.6. Let Ω be a separable and metrizable topological space, σ ∈ L(Ω) an
LPS, and E ⊆ Ω a nonempty Borel set. We say that E is assumed under σ if there
exists some LPS ρ = (ν1, . . . , νn) ∼= σ and j ≥ 1 such that

1. for all i ≤ j, νi(E) = 1; and

2. for all i > j, νi(E) = 0; and

3. for all U ∈ T (Ω) such that U ∩ E 6= ∅, νk(UE) > 0 for some k.

Definition 7.7. The player state (si, hi) ∈ Si ×Hi is said to be rational if hi ∈ H+
i

and si is optimal—i.e., maximizes LEU—w.r.t. to the first-order belief %1
i ◦$1

i (si, hi).
Let R1

i denote the set of all rational player states in Si ×Hi.

Definition 7.8. Let m ≥ 1. A player state satisfies rationality and mth-order assump-
tion of rationality (RmAR) if it belongs to the following set.

Rm+1
i ≡ Rm

i ∩ {(si, (hni )n) ∈ Si ×Hi : $
m
−i(R

m
−i) is assumed under hm+1

i }

Definition 7.9. A player state satisfies rationality and common assumption of ratio-
nality (RCAR) if it belongs to the following set.

R∞i ≡
⋂
m≥0

Rm
i

RmAR and RCAR are analogs of the identically named epistemic conditions in
BFK. The key difference is that our definition is stated in the space of player states
rather than in type structures.

Theorem 7.1. For all m ≥ 1, projSi
Rm
i = Smi .

Proof of Theorem 7.1. See Appendix B.

Theorem 7.2. R∞i 6= ∅ and projSi
R∞i = S∞i .

Proof of Theorem 7.2. See Appendix B. Here, we offer a sketch of the main idea
behind the proof.

Because Si is a finite set, there exists some M such that S∞a = Sma = SMa and
S∞b = Smb = SMb for all m ≥M . A strategy belongs to S∞i if and only if it maximizes
LEU with respect to some LPS in the following set.

{(µ1, . . . , µM+1) ∈ LPS(S−i) : suppµk = SM+1−k
−i }
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The proof shows that each LPS belonging to this set represents the first-order prefer-
ences of some player state that satisfies RCAR. The player state we construct has a
hierarchy such that, for all m ≥ M , the mth-order preferences are represented by a
minimal-length LPS that is at least (m+ 1)-long. Note that such a hierarchy cannot
be represented in an LPS-type structure because it cannot be summarized by a single
LPS, which must necessarily have finite-length.

BFK show that their version of RCAR cannot be satisfied in any complete and
continuous LCPS-type structure. The basic idea is that a type in such type structures
that mth-order assumes of rationality must be mapped to an LCPS of length greater
than or equal to (m+ 1). Because every LCPS has finite length, no single type in
such epistemic models can mth-order assume rationality for all m. Our idea of using
hierarchies that cannot be types is inspired by this intuition from BFK.

Let m ≥ M and let hm+1
i = (µM+1

1 , . . . , µM+1
M+1) ∈ LEU+(Xm

−i) be an LPS that
satisfies the following properties.

µm+1
1 ∈ P+($m

−i(R
m
−i))

∀k > 1 µm+1
k ∈ P+($M

−i(R
m+1−k
−i \Rm+2−k

−i ))

Furthermore, suppose that, for any such hm+1
i , we can find some hm+2

i ∈ LEU+(Xm+1
−i )

such that hm+2
i = (µm+2

1 , . . . , µm+2
m+2) and

margpXm
−i
hm+2
i = hm+1

i

µm+2
1 ∈ P+($m+1

−i (Rm+1
−i ))

∀k > 1 µm+2
k ∈ P+($m+1

−i (Rm+2−k
−i \Rm+3−k

−i )).

Let (hM+k
i )k≥1 be a sequence that is inductively constructed in this way. If we let

hki = margpXk
−i
hM+1
i for all k ≤ M , then the sequence (hni )n≥1 is a full-support

hierarchy. It follows that there is some si such that xi ≡ (si, (h
n
i )n≥1) ∈ R1

i . It can
also be verified from definitions that xi ∈ Rm+1

i for all m ≥ M , which means that
xi ∈ R∞i . The main difficulty lies in showing the inductive step.

8 DISCUSSION

BFK formulated the notion of LCPS-type structures and applied it toward epistemic
analysis that had evaded iterated admissibility until that point. Like P-type structures,
LCPS-type structures were intended to capture beliefs hierarchies. The existence of
belief-complete LCPS-type structures is demonstrated in BFK, but determining the
precise content of this class of epistemic models was left as an open question.

Furthermore, BFK’s RCAR19 can be satisfied in some belief-complete LCPS-type
structures but not in others. Keisler and Lee (2012) showed that BFK’s epistemic

19Note that the RCAR defined in Section 7 is analogous to, but not equivalent to, BFK’s RCAR.
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analysis of iterated admissibility depends on type-structure-specific attributes unrelated
to belief hierarchies, which demonstrated the desirability of a canonical model in which
such attributes are determined by explicit construction of belief hierarchies.

These questions turned out to be nontrivial ones from both conceptual and technical
viewpoints. Just as probability measures are EU preference representations that take
the form of beliefs, LPS’s are LEU preference representations that take the form
of beliefs. In the case of EU preferences, the spaces of preference hierarchies and
belief hierarchies are isomorphic. One might expect the same to be the case for LEU
preferences, but this is not the case.

Epstein and Wang (1996) provide a method for generating preference hierarchies
from a broad class of well-behaved preferences that includes EU preferences but not
LEU preferences. A key motivation for preference-based epistemic analysis comes from
the difficulty of defining higher-order beliefs when beliefs do not take the convenient
form of probability measures. However, in the case of LEU preferences, defining
higher-order LPS beliefs is straightforward but leads to the kind of conceptually
perverse behavior discussed in Section 3—e.g., preference-redundancy and 4th-order
beliefs that are overly informative about 99th-order beliefs. Therefore, the preference
hierarchy approach in our setting is driven by conceptual issues.

Our results show that, as models of preference hierarchies, LCPS-type structures
and LPS-type structures have equal descriptive power unless we rule out preference-
redundant types. Given that BFK’s setting does not rule out preference-redundant
types, this suggests that there is no compelling reason to insist that the canonical
model for our epistemic analysis be a LCPS-type structure instead of an LPS-type
structure.

As a candidate for the canonical model that was sought earlier, we construct a
universal LPS-type structure. However, our answer is a partial one for two reasons.
First, we show that there are some preference hierarchies that cannot be described by
any LPS-type structure. Note that preference hierarchies are the primitive objects of
interest and type structures are inventions of game theorists designed to make the
analysis of the former more tractable. As we see in the proof of Theorem 7.2, these
missing hierarchies can be of interest to epistemic analysis.

Second, the canonical type spaces we construct are Borel subsets of the preference
hierarchy spaces. It is not obvious how the hierarchy spaces should be topologized
because we rely on a result from Lee (2013), which shows the existence of a well-
behaved and nonredundant LEU preference space but says little about the precise
shape of this space. However, we believe that this is a somewhat superficial view and
that the primary source of difficulty arises from a more fundamental problem. BFK
topologizes the space LPS(Ω) as follows when Ω is a Polish space.

1. First, let P(Ω) be endowed with the topology of weak convergence.

2. Second, let LPSm(Ω) =
∏m

k=1 P(Ω) be endowed with the product topology.

3. Finally, let LPS(Ω) =
⋃
m≥1 LPSm(Ω) be a topological union.
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At first glance, this topology is a natural and straightforward extension of the usual
topology on P(Ω). However, the convergence of LPS beliefs under this topology
exhibits strange behavior.

For example, let µ and ν be uniform measures on the intervals [0, 1] and [1, 2],
respectively. The sequence (σn)n≥1 =

(
(1− 1

n
)µ+ 1

n
ν
)
n≥1

of LPS’s converges to

µ ∈ LPS1(R) in BFK’s topology. An intuitively appealing argument can be made
that this the sequence should converge to an LPS that places an infinitesimal, but
nonzero, weight on the theory ν—namely, the LPS σ = (µ, ν) ∈ LPS2(R). In fact,
Blume et al. (1991b, See Propositions 1 and 2) show that %σ can be described in terms
of the sequence (σn)n≥1. That said, defining a well-behaved topology that captures
such notions of convergence is a nontrivial problem that may require techniques from
nonstandard analysis.

In the absence of a canonical topology on the space of preference hierarchies, we
can still engage in epistemic analysis by showing results that hold under all topologies
that satisfy some weak regularity conditions. For example, Theorem 7.2 gives an
epistemic characterization of IA that is valid for a large class of topologies on the
hierarchy space.20

APPENDIX A HIGHER-ORDER PREFERENCES

Proof of Lemma 4.1. The proof is by induction.

Base case (n = 0, 1) We begin with the fact that X0
i = Si is a standard Borel space

for all i ∈ I. If Ω is a standard Borel space, then LEU(Ω) is a standard Borel space
as well. It follows that LEU(X0

−i) is a standard Borel space. X1
i = X0

i × LEU(X0
−i)

is a product of standard Borel spaces and is therefore itself a standard Borel space.
LEU(X1

−i) is a standard Borel space because X1
−i is a standard Borel space.

Inductive hypothesis Let n ≥ 1. For all m ≤ n, let Xm
i and LEU(Xm−1

−i ) be
standard Borel spaces.

Inductive step LEU(Xn
−i) is a standard Borel space because Xn

−i is a standard
Borel space. We need to show that Xn+1

i is a Borel subset of Xn
i × LEU(Xn

−i). Let
the map κi be defined as follows.

κi : X
n
i × LEU(Xn

−i)→ LEU(Xn−1
−i )× LEU(Xn−1

−i )

(xni , h
n+1
i )

κi7→ (%ni (xni ), π̂n−1
i (hn+1

i ))

The map is Borel because each coordinate of its output is given by a Borel map. The
diagonal set Dn

i ≡ {(hni , hni ) : hni ∈ LEU(Xn−1
−i )} is Borel. It follows that κ−1

i (Dn
i ) =

Xn+1
i is Borel.

20For example, any countably generated metrizable product topology will do.
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Lemma A.1. Let xi = (x0
i , x

1
i , . . . ) ∈ Xi. Then

(x0
i , (%

n+1
i ◦$n+1

i (xi))n≥0) = (x0
i , (%

n+1
i (xn+1

i ))n≥0) ∈ X0
i ×Hi.

Proof of Lemma A.1. Because xi ∈ Xi, we have x0
i ∈ X0

i . By definition, %n+1
i ◦

$n+1
i (xi) belongs to LEU(Xn

−i) for all n ≥ 0. Let hn+1
i ≡ %n+1

i (xn+1
i ) for all n ≥ 0.

We only need to show that π̂n−1
i (hn+1

i ) = hni for all n ≥ 1. Because xi ∈ Xi, we
have πni (xn+1

i ) = xni for all n ≥ 0. Due to the consistency requirements built into the
definition of Xn+1

i , we therefore have π̂n−1
i ◦ %n+1

i (xn+1
i ) = %ni (xni ). Substituting with

hni where possible, we have π̂n−1
i (hn+1

i ) = hni for all n ≥ 1

Lemma A.2. Let (x0
i , hi) = (x0

i , h
1
i , h

2
i , . . . ) ∈ X0

i ×Hi. Then

(x0
i , x

1
i , . . . ) ∈ Xi, where xn+1

i = (xni , h
n+1) for all n ≥ 0.

Proof of Lemma A.2. Because hi ∈ Hi, we have π̂n−1
i (hn+1

i ) = hni for all n ≥ 1. We
want to show that (xni , h

n+1
i ) ∈ Xn+1

i .
It is trivial that (x0

i , h
1
i ) ∈ X0

i × LEU(X0
−i) = X1

i . Suppose that xmi ∈ Xm
i for all

m ≤ n. We can show that xn+1
i (xni , h

n+1
i ) satisfies the consistency requirement via the

sequence of substitutions below.

%ni ◦ πn(xn+1
i ) = %ni (xni ) = hni = π̂n−1

i (hn+1
i ) = π̂n−1

i ◦ %n+1(xn+1
i )

Lemma A.3. The map

Xi → X0
i ×

∏
n≥0

LEU(Xn
−i) (x0

i , x
1
i , . . . ) 7→ (x0

i , (%
n+1
i ◦$n+1

i (xi))n≥0)

is injective and Borel. Furthermore, image of Xi under this map is X0
i ×Hi.

Proof of Lemma A.3. The map is Borel because each coordinate of the output is given
by a Borel map. The rest follows immediately from Lemmas A.1 and A.2.

Proof of Lemma 4.3. By definition, Xi is the inverse limit of the inverse system
(Xn

i , π
n
i )n≥0, where Xn

i is Borel and the Borel map πni : Xn+1
i → Xn

i is surjective.21 It
follows that the inverse limit Xi is a nonempty standard Borel space when endowed
with the subspace Borel σ-algebra of the product

∏
n≥0X

n
i . See 17.16 in Kechris

(1995).
Fix some x0

i ∈ X0
i and let fi denote the map in Lemma A.3.

f−1
i ({x0

i } ×Hi) = {xi ∈ Xi : $
0
i (xi) = x0

i }

Since fi is an injective Borel map, images of Borel sets are Borel. The set

{xi ∈ Xi : $
0
i (xi) = x0

i }

is Borel in Xi. It follows that {x0
i } ×Hi is a Borel subset of X0

i ×
∏

n≥0 LEU(Xn
−i).

Hi is a standard Borel space because it is isomorphic to {x0
i } ×Hi.

21πn
i is defined in Section 4.2.
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Proof of Lemma 4.2. Lemmas A.3 and 4.3 collectively imply the desired result.

Proof of Lemma 4.4. The map bhni is Borel for all n ≥ 1 because the preference-
marginal operation is a Borel map on the relevant domain. The map bhi is then Borel
because each coordinate of the output is given by a Borel map.

Let ρ, σ ∈ LPS(X−i). That ρ ∼= σ =⇒ bhi(ρ) = bhi(σ) follows naturally from
the definitions of bhi and the margp operator—if two preferences are identical, then
so should the marginals of those preferences. We need to show the converse, i.e.,
bhi(ρ) = bhi(σ) =⇒ ρ ∼= σ.

Without loss of generality, let ρ and σ be minimal-length LPS’s, where m ≥ 1.

ρ = (µ1, . . . , µm) σ = (ν1, . . . , νm)

Because ρ and σ are both minimal-length LPS’s, they are made up of a linearly
independent components—i.e.,

∀j ≤ m [µj 6∈ span({µk : j 6= k}) ∧ νj 6∈ span({νk : j 6= k})] .

Denote the belief-marginals of ρ and σ as follows for all n ≥ 1.

ρn ≡ margXn−1
−i

ρ ≡ (µn1 , . . . , µ
n
m) σn ≡ margXn−1

−i
σ ≡ (νn1 , . . . , ν

n
m)

By definition, the following holds for all n ≥ 1 due to the transitivity of the preference-
equivalence relation.

ρn ∼= bhni (ρ) = bhni (σ) ∼= σn ∴ ρn ∼= σn

Because ρ and σ are minimal-length LPS’s, there must exist M ≥ 1 such that ρN and
σN are minimal-length LPS’s for all N ≥M . Fix some N ≥M . We then have

∀j ≤ m ∃〈αj1, . . . , α
j
j〉 ∈ Rj

[
αjj > 0 ∧ νNj =

j∑
k=1

αjkµ
N
k

]
The coherency of X−i implies the following for all n ≤ N .

∀j ≤ m µnj = margXn−1
−i

µj = margXn−1
−i

µNj

∀j ≤ m νnj = margXn−1
−i

νj = margXn−1
−i

νNj = margXn−1
−i

j∑
k=1

αjkµ
N
k

=

j∑
k=1

αjk margXn−1
−i

µNk =

j∑
k=1

αjkµ
n
k

Induction on N shows that

∀j ≤ m ∀n ≥ 1 νnj =

j∑
k=1

αjkµ
n
k .
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Finally, we want to show that νj =
∑j

k=1 α
j
kµk for all j ≤ m. By definition, νj and

µj are probability measures on the inverse limit space X−i = lim←−nX
n
−i that respectively

extend the sequences (ν1
j , ν

2
j , . . . ) and (µ1

j , µ
2
j , . . . )—i.e.,

νj = lim←−
n

νnj µj = lim←−
n

µnj .

The measure
∑j

k=1 α
j
kµk = lim←−n(

∑j
k=1 α

j
kµ

n
k) because

margXn−1
−i

j∑
k=1

αjkµk =

j∑
k=1

αjk margXn−1
−i

µk =

j∑
k=1

αjkµ
n
k

By the Kolmogorov Consistency Theorem (cf. 17.16. Kechris, 1995), such extensions
must be unique. Because (

∑j
k=1 α

j
kµ

n
k)n≥1 = (ν1

j , ν
2
j , . . . ), the extensions of the two

sequences to P(X−i) must be equal.

APPENDIX B ADMISSIBILITY

Proof of Theorem 7.1. The theorem is an immediate corollary of Lemma B.3.

Proof of Theorem 7.2. By Lemma B.5 there exists some (m0,m1, . . . ) such that

∀k ≥ 0 ∀M ≥ mk ∀i ∈ I $k
i (R

M
i ) = $k

i (R
M
i \RM+1

i ) = $k
i (R

M+1
i )(27)

We can therefore glue together the sequence ($k
i (R

mk
i ))k≥0 by taking the projec-

tive/inverse limit of those spaces. The inverse limit is a nonempty standard Borel
space because the projection maps—πki : Xk+1

i → Xk
i —are measurable and

∀k ≥ 0 πki ($k+1
i (R

mk+1

i )) = $k
i (R

mk
i ).(28)

due to Lemma B.5. The inverse limit lim←−k$
k
i (R

mk
i ) ⊆ R∞i . Furthermore, because of

(27) and (28), we have

S∞i = $0
i (R

m0
i ) = projX0

i

[
lim←−
k

$k
i (R

mk
i )

]
⊆ $0

i (R
∞
i ) ⊆

⋂
m≥0

$0
i (R

m
i ) = S∞i .

It follows immediately that $0
i (R

∞
i ) = S∞i .

Lemma B.1. Let G = 〈Sa, Sb, ua, ub〉 be a finite game, m ≥ 1, sa ∈ Sa. The following
set is Borel in LPS(Sb).

{σ ∈ LPS(S−i) : si is optimal w.r.t. σ}
= {σ ∈ LPSm(Sb) : ∀s′a ∈ Sa Eσua(sa, ·) ≥L Eσub(s

′
a, ·)}
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Proof of Lemma B.1. This subset of Rm·|Sb| is a finite union of sets that satisfy a
finite number of linear inequalities. It is therefore Borel. This is essentially the same
argument found in the proof of Lemma C.4 in BFK.

Lemma B.2. For all m ≥ 1, Rm
i is Borel in Hi.

Proof of Lemma B.2. Define the following objects for all m ≥ 1 and si ∈ Si.

O1
i (si) ≡ {si} × {σ ∈ LEU+(S−i) : si is optimal w.r.t. σ} ⊆ X1

i

R̂m
i ≡

⋃
si∈Si

Om
i (si)

Om+1
i (si) ≡ (πmi )−1(Om

i (si)) ∩
(%m+1
i )−1({hm+1

i ∈ LEU+(S−i) : R̂m
−i is assumed under hm+1

i })

Base case By Lemma B.1, O1
i (si) is a Borel set for all si ∈ Si. It follows that R̂1

i ,
which is a finite union of Borel sets, is a Borel set as well.

Inductive hypothesis Let M ≥ 1. For all si ∈ Si and m ≤M , Om
i (si) and Rm

i are
Borel.

Inductive step The maps πMi and %M+1
i are Borel. The set of LPS’s that assume a

given Borel set—such as the set inside the parentheses of the expression (%m+1
i )−1(·)

from the definition of Om+1
i (si) above—is Borel (See Lee, 2013). By the inductive

hypothesis, OM+1
i (si) is Borel because it is an intersection of two preimages of Borel

sets under Borel maps. It follows that R̂M+1
i , which is a finite union of Borel sets, is a

Borel set as well.
Finally, we want to show that Rm

i is Borel for all m ≥ 1. We can rearrange the
definition of Rm+1

i as follows by simply substituting equivalent expressions.

Rm+1
i ≡ Rm

i ∩ {(si, (hni )n) ∈ Si ×Hi : $
m
−i(R

m
−i) is assumed under hm+1

i }

= R1
i ∩

m⋂
k=1

{(si, (hni )n) ∈ Si ×Hi : $
k
−i(R

k
−i) is assumed under hk+1

i }

= R1
i ∩

m⋂
k=1

{(si, (hni )n) ∈ Si ×Hi : R̂
k
−i is assumed under hk+1

i }

The set R1
i can be rewritten as the following finite intersection of Borel sets by simply

substituting equivalent expressions. H+
i is Borel because it is a countable intersection

of Borel sets.

R1
i = (Si ×H+

i ) ∩ ($1
i )
−1

( ⋃
si∈Si

O1
i (si)

)
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It follows that Rm
i can be rewritten as the following finite intersection of Borel sets by

simply substituting equivalent expressions.

Rm
i = (Si ×H+

i ) ∩
m⋂
k=1

($k
i )
−1

( ⋃
si∈Si

Ok
i (si)

)

= (Si ×H+
i ) ∩ ($m

i )−1

( ⋃
si∈Si

Om
i (si)

)

Lemma B.3. Let S0
i = Si and R0

i ≡ S0
i ×Hi. Then, the following holds for all m ≥ 0.

projSi
(Rm

i \Rm+1
i ) = Smi = projSi

Rm
i

Proof of Lemma B.3. Note that projSi
(Rm

i \Rm+1
i ) = $0

i (R
m
i \ Rm+1

i ). The proof is
by induction.

Base case: That $0
i (R

0
i \R1

i ) = S0
i is trivial and immediate. Because %1

i ◦$1
i (R

1
i ) =

LEU+(S−i) 6= LEU(S−i), there exists some hi ∈ Hi \H+
i and S0

i × {hi} ⊆ R0
i \R1

i .

Inductive hypothesis Let M > 0. Let the following hold for all m < M .

$0
i (R

m
i \Rm+1

i ) = Smi = $0
i (R

m
i )

Inductive step We want to show that $0
i (R

M
i \RM+1

i ) = SMi = $0
i (R

M
i ). Define

the set Ek
i as follows for all k.

Ek
i ≡ $M

i (Rk
i )

By the inductive hypothesis, projSi
Ek
i \ Ek+1

i = Ski for all k < M because the
definition of RmAR does not depend on beliefs of order higher than m+ 1.

There exist beliefs µ2, . . . , µM ∈ P(XM
−i) such that µM−k ∈ P+(Ek

−i \ Ek+1
−i ) for all

k < M . Let µ1 be a strictly convex combination of probability measures in P+(EM−1
−i )

and P+(EM
−i). It must be the case that µ1 ∈ P+(EM−1

−i ) because EM
−i ⊆ EM−1

−i . The
LPS σ = (µ1, . . . , µM) cannot assume EM

−i = $M
i (RM

i ). However, it does assume Ek
−i

for all k < M .
Because σ is an LCPS as it is defined, we can take advantage of existing results.22

For any (ν ′1, . . . , ν
′
M ) ∈ LPS(S−i) such that supp ν ′k = margS−i

µk for all k, there exists
an LCPS σ′ = (µ′1, . . . , µ

′
M) such that, for all k,

1. margS−i
µ′k = ν ′k; and

22Technical intermediate results about the existence of LCPS’s that assume the same events can
be found in the appendices of BFK and Keisler and Lee (2012).
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2. µ′k and µk have the same null sets.

LCPS’s of equal length such that µ′k and µk have the same null sets for all k assume
the same events.

It follows that $0
i (R

M
i \RM+1

i ) includes all si ∈ Si that are optimal with respect
to LPS’s belonging to the following set.

{(ν1, . . . , νM) ∈ LPS+(S−i) : ∀k supp νk = SM−ki }

Therefore, SMi ⊆ $0
i (R

M
i \RM+1

i ). By the induction hypothesis, $0
i (R

M
i \ RM+1

i ) ⊆
$0
i (R

M−1
i ) = SM−1

i . We know that any hMi that assumes $M−1
−i (RM−1

−i ) must have
an initial segment that belongs to LPS+($M−1

−i (RM−1
−i )). The belief-marginal on

S−i of this initial segment must have support equal to SM−1
−i . It follows that

SMi ⊇ $0
i (R

M
i \RM+1

i ). Finally, we have SMi = $0
i (R

M
i \RM+1

i ).

Lemma B.4. Let U ′ ⊆ U ⊆ Ω ⊆ Ω1×Ω2×Ω3, where Ωj = projΩj
Ω is endowed with

a separable and metrizable topology that generates the standard Borel σ-algebra. If U
and U ′ are nonempty Borel sets such that projΩ1

U = projΩ1
U ′ = projΩ1

U \ U ′ and
projΩ1

Ω12 \ U12 = Ω1 then

{margpΩ1
σ : σ ∈ A′ ∩ A} = {margpΩ1

σ : σ ∈ A \ A′} = {margpΩ1
σ : σ ∈ A},

where

A′ = {σ ∈ LPS(Ω) : σ assumes U ′} and

A = {σ ∈ LPS(Ω) : (margΩ1×Ω2
σ) assumes (projΩ1×Ω2

U)}
Ω12 = projΩ1×Ω2

Ω and U12 = projΩ1×Ω2
U.

Proof of Lemma B.4. Let U1 = projΩ1
U . First, σ ∈ A if and only if σ is preference-

equivalent to some LPS in the following set.

{σ′.σ′′ : σ′ ∈ LPS+(U12) ∧ σ′′ ∈ LPS(Ω12 \ U12)}

It follows that ν ∈ {margΩ1
σ : σ ∈ A} if and only if it is preference-equivalent to some

LPS in the following set.

{margΩ1
σ′.σ′′ : σ′ ∈ LPS+(U12) ∧ σ′′ ∈ LPS(Ω12 \ U12)}
= {(margΩ1

σ′).(margΩ1
σ′′) : σ′ ∈ LPS+(U12) ∧ σ′′ ∈ LPS(Ω12 \ U12)}

= {ν ′.ν ′′ : ν ′ ∈ LPS+(U1) ∧ ν ′′ ∈ LPS(Ω1)}

Given that

{margpΩ1
σ : σ ∈ A′ ∩ A} ⊆ {margpΩ1

σ : σ ∈ A} ⊇ {margpΩ1
σ : σ ∈ A \ A′},
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we will only need to show that

{margpΩ1
σ : σ ∈ A′ ∩ A} ⊇ {margpΩ1

σ : σ ∈ A} ⊆ {margpΩ1
σ : σ ∈ A \ A′}.

Take any ν ′.ν ′′ ∈ {ν ′.ν ′′ : ν ′ ∈ LPS+(U1) ∧ ν ′′ ∈ LPS(Ω1)}. We want to show
that there exists some LPS in σ ∈ A′ ∩ A such that margΩ1

σ ∼= ν ′.ν ′′. Because
U1 = projΩ1

U = projΩ1
U ′ = projΩ1

U \ U ′, there exist LPS’s ζ ∈ LPS+(U ′) and
ζ ′ ∈ LPS+(U \ U ′) such that ν = margΩ1

ζ = margΩ1
ζ ′. Furthermore, because

projΩ1
Ω \ U = Ω1 (this follows from projΩ1

Ω12 \ U12 = Ω1), there exists some
ζ ′′ ∈ LPS(Ω \ U) such that ν ′ = margΩ1

ζ ′′. Let σ = ζ.ζ ′.ζ ′′. Then σ ∈ A ∩ A′ and
margΩ1

σ = ν.ν.ν ′ ∼= ν.ν ′. Therefore, {margpΩ1
σ : σ ∈ A′∩A} ⊇ {margpΩ1

σ : σ ∈ A}.
Finally, we want to show that there exists some LPS in σ ∈ A \ A′ such that

margΩ1
σ ∼= ν ′.ν ′′. Fix ζ, ζ ′, ζ ′′ as in the previous paragraph. Let σ = ζ ′.ζ.ζ ′′. Then

σ ∈ A \ A′ and margΩ1
σ = ν.ν.ν ′ ∼= ν.ν ′. Therefore, {margpΩ1

σ : σ ∈ A} ⊆
{margpΩ1

σ : σ ∈ A \ A′}.

Lemma B.5. For all k ≥ 0, there exists some m ≥ 0 such that

∀M ≥ m ∀i ∈ I $k
i (R

M
i ) = $k

i (R
M
i \RM+1

i ) = $k
i (R

M+1
i )

Proof of Lemma B.5. The proof is by induction.

Base case We want to show that exists some m such that, the following holds.

∀M ≥ m ∀i ∈ I $0
i (R

M
i ) = $0

i (R
M
i \RM+1

i ) = $0
i (R

M+1
i )

Because Si is a finite set, there exists some m such that Smi = SMi for all M ≥ m. By
Lemma B.3, the following holds for all M ≥ m.

Smi = SMi = $0
i (R

M
i \RM+1

i ) = $0
i (R

M
i )

Inductive hypothesis There exists some m such that

∀M ≥ m ∀i ∈ I $k
i (R

M
i ) = $k

i (R
M
i \RM+1

i ) = $k
i (R

M+1
i )

Induction step Let

A′ = {σ ∈ LPS(Xm+1
−i ) : σ assumes $m+1

−i (Rm+1
−i )} and

A = {σ ∈ LPS(Xm+1
−i ) : (margXm

−i
σ) assumes $m

−i(R
m
−i)}.

By applying Lemma B.4 under the induction hypothesis, we can see that the following
is true.

{margpXk
−i
σ : σ ∈ A′ ∩ A} = {margpXk

−i
σ : σ ∈ A \ A′} = {margpXk

−i
σ : σ ∈ A}
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From this, the following equalities can be deduced from the definition of RmAR in
this paper.

{margpXk
−i
σ : σ ∈ %m+1

i ◦$m+1
i (Rm+2

i )}
= {margpXk

−i
σ : σ ∈ %m+1

i ◦$m+1
i (Rm+1

i \Rm+2
i )}

= {margpXk
−i
σ : σ ∈ %m+1

i ◦$m+1
i (Rm+1

i )}

It immediately follows that $k+1
i (Rm+2

i ) = $k+1
i (Rm+1

i \Rm+2
i ) = $k+1

i (Rm+1). The
induction hypothesis implies the existence of a number m that satisfies some property.
Note that, if this property is satisfied for m = n, then it is also satisfied for all m ≥ n.
By changing the arguments above where necessary, it is immediately shown that

∀M ≥ m+ 1 $k+1
i (RM+1

i ) = $k+1
i (RM

i \RM+1
i ) = $k+1

i (RM).
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