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Abstract

This paper studies strongly symmetric equilibria (SSE) in continuous-time

games of strategic experimentation with Poisson bandits. SSE payoffs can be

studied via two functional equations similar to the HJB equation used for Markov

equilibria that they generalize. This is valuable for three reasons. First, these

equations retain the tractability of Markov equilibrium, while allowing for pun-

ishments and rewards: the best and worst equilibrium payoff are explicitly solved

for. Second, they capture behavior of the discrete-time game: as period length

goes to zero, the SSE payoff set converges to their solution. Third, they encom-

pass a large payoff set: there is no perfect Bayesian equilibrium in the discrete-

time game with frequent interactions achieving higher efficiency.
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Séminaire Parisien de Théorie des Jeux), Toulouse, the 2012 International Conference on Game Theory

at Stony Brook, and the 2013 North American Summer Meeting of the Econometric Society for their

comments and suggestions. Part of this paper was written during a visit to the Hausdorff Research

Institute for Mathematics at the University of Bonn under the auspices of the Trimester Program

“Stochastic Dynamics in Economics and Finance”. Financial support from the Cowles Foundation

and Deutsche Forschungsgemeinschaft (SFB/TR 15) is gratefully acknowledged.
†Yale University, 30 Hillhouse Ave., New Haven, CT 06520, USA, johannes.horner@yale.edu.
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de Sciences Économiques, C.P. 6128 succursale Centre-ville; Montréal, H3C 3J7, Canada,
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1 Introduction

There is a troubling disconnect between discrete-time and continuous-time game theory.

With few exceptions, games in discrete time use either subgame-perfect equilibrium or,

if there is incomplete information, perfect Bayesian equilibrium as a solution concept.

With few exceptions, games in continuous time are concerned with Markov equilibria

only. The technical reasons for this divide are well-known: defining outcomes, strategies

and equilibrium in continuous time raises serious mathematical difficulties; restricting

attention to Markov strategies bypasses these. Conceptually, however, the discontinuity

is artificial and deeply unsatisfactory.

This paper proposes a middle ground. As we show, strongly symmetric equilibria

retain the tractability of Markov equilibria. Markov perfect equilibrium payoffs can be

studied via a well-known functional equation, the Hamilton-Jacobi-Bellman (or Isaacs)

equation. Similarly, the set of strongly symmetric equilibrium payoffs is characterized

by a pair of coupled functional equations. At the same time, unlike Markov equilib-

rium, strongly symmetric equilibrium allows for patterns of behavior that are both

experimentally compelling and theoretically fundamental: punishments and rewards.

We confine our analysis to a particular class of models, the so-called two-armed

bandit model, which has been extensively studied both in discrete and in continuous

time (see, in particular, Keller et al. (2005) and Keller and Rady (2010)). More specif-

ically, the set-up is as in Keller and Rady (2010). The motivation for this restriction

is two-fold. First, the characterization of the appropriate boundary (or transversality)

conditions for strongly symmetric equilibria hinges on fine details of the set-up, an

analysis that we only know how to carry out within the confines of a specific model,

as is also the case for Markov perfect equilibria. Second, restricting attention to such

a well-studied model allows us to provide a closed-form for the equilibrium payoff set,

a concrete illustration of how a slight weakening of the solution concept dramatically

alters our understanding of incentives and expands the set of achievable payoffs.

Strongly symmetric equilibria (or SSE) are not new. They have been introduced to

repeated games at least since Abreu (1986). They are known to be restrictive. To begin

with, they make no sense if the model itself fails to be symmetric. But as Abreu (1986)

already observes for repeated games, they are (i) easily calculated, being completely

characterized by two simultaneous equations; (ii) more general than static Nash, or

even Nash reversion, (iii) globally optimal in some cases, that is, for some parameters

in his environment. See also Abreu, Pearce and Stacchetti (1986) for optimality of

symmetric equilibria within a standard oligopoly framework, and Abreu, Pearce and

Stacchetti (1993) for a motivation for the solution concept based on a notion of equal
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bargaining power. A more general analysis for repeated games with perfect monitoring

is carried out by Cronshaw and Luenberger (1994) showing how the solution for the

set of SSE payoffs is obtained by finding the largest scalar solving a certain equation.

These threes properties generalize to stochastic games (with “Markov perfect” re-

placing “Nash” in the three statements). Our first step involves establishing the rather

straightforward functional analogues of the equations derived by Abreu, and Cronshaw

and Luenberger for repeated games. This motivates the coupled functional equations

in continuous-time that we put forth as a tool to analyze stochastic games as the bandit

model. We then provide a formal limiting result to support the use of these functional

equations to define the set of equilibria in continuous-time: the set of strongly sym-

metric equilibrium payoffs of the discrete-time game converges to the solution of these

functional equations.

This is the central result of this paper. To be sure, we can and do directly define

the set of strongly symmetric equilibria in continuous time as the set of solutions

to these functional equations. After all, this is what is usually done with Markov

equilibria. Checking systematically convergence of the equilibrium payoffs as defined

in the discrete-time game to those as defined in the continuous-time game would defeat

the purpose of exploiting the tractability of continuous time, whether for Markov or

strongly symmetric equilibria. But given that, to the best of our knowledge, this paper

is the first attempt at studying these coupled equations in continuous-time games,

we view it as useful and reassuring to check that they capture precisely the strategic

elements of the discrete-time game with frequent interactions in this particular instance.

This is by no means a foregone conclusion: there are well-known examples in which

the continuous-time definition of Markov equilibrium yields a set of payoffs that does

not coincide with the limit of the set of Markov equilibrium payoffs for the discrete-

time approximation. In fact, one corollary of our analysis is that the infinite-switching

equilibria in Keller et al. (2005) have no counterpart in discrete time, no matter how

small the time interval between consecutive choices; see also Heidhues, Rady and Strack

(2012).

While proving this limit result requires some care, actually solving the continuous-

time equations is a straightforward exercise in the case of the bandit model. This is

where the analytical convenience of continuous time comes into play, yielding simple

and exact solutions that admit intuitive interpretations. The resulting equilibrium

payoff correspondence is rich: the symmetric Markov equilibrium is neither the lowest

nor the highest selection. In fact, we show that the restriction to SSE is without loss

in terms of joint payoffs: there is no sequence of perfect Bayesian equilibria in the

discrete-time game whose limit (as we take the length of the time intervals to zero)
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sum of payoffs or experimentation rates would be higher than in the best SSE. The

same holds true regarding the worst SSE joint payoff, which equals the single-agent

payoff.

Both the best and the worst equilibrium are of the cutoff type, in which players

experiment if and only if the belief exceeds a certain threshold. This contrasts with the

non-existence of such equilibria within the set of Markov equilibria (see Proposition 3

of Keller and Rady (2010)). Cutoffs and equilibrium payoffs vary continuously with

the parameters, including in the limit as a single success fully reveals the arm. The

cutoff in the best equilibrium (identified in Lemma 1) satisfies an intuitive property:

the less informative a success, the lower the cutoff. To understand this, note that, if a

success is perfectly informative, as in Keller et al. (2005), there is no scope for providing

incentives after a success, as it is strictly dominant to play the risky arm afterwards.

In that case and only in that case does the cutoff coincide with the single-agent cutoff.

The less informative a success is, the more players can exploit the continuation play

after a success to enforce discipline. Whether or not the first-best, cooperative solu-

tion can be achieved hinges on a simple comparison: does a success at the cooperative

threshold take the posterior belief above or below the single-agent threshold? If infor-

mativeness does not take the posterior above this threshold, the cooperative solution

can be implemented. Unlike for Markov equilibria, comparative statics regarding this

cutoff and best payoff are straightforward: the lower the payoff on the safe arm, or the

more patient players are, the lower the cutoff. The same holds true if the number of

players increases.

2 The Model

The basic setup is that of Keller et al. (2005) and Keller and Rady (2010). Time

t ∈ [0,∞) is continuous, and the discount rate is r > 0. There are N ≥ 1 players, each

facing the same two-armed bandit problem with one safe and one risky arm.

The safe arm S generates a known expected payoff s > 0 per unit of time. The risky

arm R generates lump-sum payoffs that are independent draws from a time-invariant

distribution on IR\{0} with a known mean h > 0. These lump sums arrive at the jump

times of a standard Poisson process whose intensity depends on an unknown state of

the world, θ ∈ {0, 1}. If θ = 1, the intensity is λ1 > 0 for all players; if θ = 0, the

intensity is λ0 for all players with 0 ≤ λ0 < λ1. These constants are again known to

the players. Conditional on θ, the Poisson processes that drive the payoffs of the risky

arm are independent across players.
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We are interested in discrete-time versions of the experimentation game where

players can only adjust their actions at the times t = 0,∆, 2∆, . . . for some fixed

∆ > 0. The expected discounted payoff increment from using S for the length of

time ∆ is
∫ ∆

0
r e−r t s dt = (1 − δ)s with δ = e−r∆. Conditional on θ, the expected

discounted payoff increment from using R is E
[∫ ∆

0
r e−r t h dNθ,t

]
where Nθ,t is a stan-

dard Poisson process with intensity λθ; as Nθ,t − λθt is a martingale, this simplifies to∫ ∆

0
r e−r t hλθ dt = (1 − δ)λθh. We assume that λ0h < s < λ1h, so each player prefers

R to S if R is good (θ = 1), and prefers S to R if R is bad (θ = 0).

Players start with a common prior belief about θ. Thereafter, they observe each

other’s actions and outcomes, so they hold common posterior beliefs throughout time.

With p denoting the subjective probability that θ = 1, the expected discounted payoff

increment from using R conditional on all available information is (1 − δ)λ(p)h with

λ(p) = pλ1 + (1− p)λ0. This exceeds the payoff increment from using S if and only if

p exceeds the myopic cutoff belief

pm =
s− λ0h

(λ1 − λ0)h
.

To derive the law of motion of beliefs, consider one of the intervals of length ∆

on which the player’s actions (k1, . . . , kN) ∈ {0, 1}N are fixed, with kn = 1 indicating

that player n uses R, and kn = 0 indicating that she uses S. With K =
∑N

n=1 kn

players using the risky arm, the probability in state θ of a total of j = 0, 1, 2, . . . lump

sums during this time interval is (Kλθ∆)j

j!
e−Kλθ∆ by the sum property of the Poisson

distribution. Given the belief p held at the beginning of the interval, therefore, the

probability assigned to J lump sums arriving within the length of time ∆ is

Λ∆
J,K(p) =

KJ∆J

J !

[
pλJ

1γ
K
1 + (1− p)λJ

0γ
K
0

]
with γθ = e−λθ∆, and the corresponding posterior belief is

B∆
J,K(p) =

pλJ
1γ

K
1

pλJ
1γ

K
1 + (1− p)λJ

0γ
K
0

.

For K > 0, the absence of a lump-sum payoff over the length of time ∆ makes

players more pessimistic: B∆
0,K(p) < p whenever p > 0. Throughout the paper, we

shall assume ∆ small enough that λ1γ
N
1 > λ0γ

N
0 . This guarantees that successes

always make players more optimistic: B∆
J,K(p) > p for all J ≥ 1, K > 0 and p < 1.

For any bounded function w on [0, 1] and any K ∈ {0, 1, . . . , N}, we define a
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bounded function E∆
Kw by

E∆
Kw(p) =

∞∑
J=0

Λ∆
J,K(p)w(B

∆
J,K(p)).

This is the expectation of w with respect to the distribution of posterior beliefs when

the current belief is p and K players use R for a length of time ∆.

A history of length t = ∆, 2∆, . . . is a sequence

ht =
(
(kn,0)

N
n=1, (jn,∆)

N
n=1, . . . , (kn,t−∆)

N
n=1, (jn,t)

N
n=1

)
,

such that kn,τ = 0 ⇒ jn,τ+∆ = 0. This history specifies all actions kn,τ ∈ {0, 1} taken

by the players, and the resulting number of realized lump-sums jn,τ+∆ ∈ IN0. We write

Ht for the set of all histories of length t, set H0 = {∅}, and let H =
∪∞

t=0,∆,2∆,... Ht.

In addition, we assume that players have access to a public randomization device in

every period, namely, a draw from the uniform distribution on [0, 1], which is assumed

to be independent of θ and across periods. Following standard practice, we omit its

realizations from the description of histories.

Along with the prior belief p0, each profile of strategies induces a distribution over

H. Given a history ht, we can recursively define the sequence of beliefs pτ through

pτ = B∆
Jτ ,Kτ−∆

(pτ−∆), where Jτ =
∑N

n=1 jn,τ and Kτ−∆ =
∑N

n=1 kn,τ−∆.
1

A behavioral strategy σn for player n is a sequence (σn,τ )τ=0,∆,2∆,..., where σn,τ is

a map from Hτ to the set of probability distributions on {0, 1}; a pure strategy takes

values in the set of degenerate distributions only. A (pure or behavioral) strategy is a

Markov (stationary) strategy if it depends on ht only through the posterior belief pt.

It is symmetric if this map is the same for all players.

Player n seeks to maximize the average discounted expected payoff

(1− δ)E

[
∞∑
ℓ=0

δℓ
{
1{kn,ℓ∆ = 0}s+ 1{kn,ℓ∆ = 1} [1{θ = 1}λ1 + (1− 1{θ = 1})λ0]h

}]
.

By the law of iterated expectations, this equals

(1− δ)E

[
∞∑
ℓ=0

δℓ
{
1{kn,ℓ∆ = 0}s+ 1{kn,ℓ∆ = 1}λ(pℓ∆)h

}]
.

1Anticipating on the solution concept, this requires Bayes’ rule to be applied off-path as well. This

is a game of observable actions, so this raises no particular difficulty.
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Nash equilibrium, perfect Bayesian equilibrium and Markov perfect equilibrium of the

game with period length ∆ are defined in the usual way.

Our focus is on pure-strategy strongly symmetric equilibria. As we shall see, the

restriction to pure strategies entails no loss in terms of equilibrium payoffs, when λ0 > 0

and we take the period length ∆ to 0. A pure-strategy strongly symmetric equilibrium

(SSE) is a perfect Bayesian equilibrium in which all players use the same pure strategy:

σn(ht) = σn′(ht), for all n, n
′ and ht ∈ H. This implies symmetry of behavior after any

history, not just on the equilibrium path of play. Note that any symmetric Markov

perfect equilibrium is a strongly symmetric equilibrium. Endowing the set of histories

with the product topology, the set of SSE is compact, and so is the set of SSE payoffs.

If non-empty, this set is simply an interval in IR. Its characterization is the subject of

the next section.

3 Characterizing Equilibrium Payoffs

Fix ∆ > 0. For p ∈ [0, 1], let W
∆
(p) and W∆(p) denote the supremum and infimum,

respectively, of the set of payoffs over (pure-strategy) strongly symmetric equilibria,

given prior belief p. If a pure-strategy SSE exists, these extrema are achieved, and

W
∆ ≥ W∆.

Proposition 1 Suppose that W
∆ ≥ W∆. The pair of functions (w,w) = (W

∆
,W∆)

solve the functional equations

w(p) = max
κ∈K(p;w,w)

{
(1− δ)[(1− κ)s+ κλ(p)h] + δE∆

Nκw(p)
}
, (1)

w(p) = min
κ∈K(p;w,w)

max
k∈{0,1}

{
(1− δ)[(1− k)s+ kλ(p)h] + δE∆

(N−1)κ+kw(p)
}
, (2)

where K(p;w,w) ⊆ {0, 1} denotes the set of all κ such that

(1− δ)[(1− κ)s+ κλ(p)h] + δE∆
Nκw(p) (3)

≥ max
k∈{0,1}

{
(1− δ)[(1− k)s+ kλ(p)h] + δE∆

(N−1)κ+kw(p)
}
.

Moreover, W∆ ≤ w ≤ w ≤ W
∆
for any solution (w,w) of (1)–(3).

Proof: Fix a pair (w,w) that satisfies (1)–(3). Note that (1)–(2) imply that w ≤ w.

Given such a pair, and any prior p, we construct two SSE whose payoffs are respectively

w and w. It then follows that W∆ ≤ w ≤ w ≤ W
∆
. Let κ and κ denote a selection of
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the maximum and minimum of (1)–(2). The equilibrium strategies are described by a

two-state automaton, whose states are referred to as “good” or “bad.” The difference

between the two equilibria lies in the initial state: w is achieved when the initial state

is good, w when it is bad. In the good state, play proceeds according to κ; in the bad

state, according to κ. Transitions are as follows. If the state is good and all players

play κ, play remains in the good state; otherwise, play shifts to the bad state. If after

some history h, the state is bad and all players play κ, play switches from the bad

state to the good state with some probability η(p) ∈ [0, 1] where p is the belief held

after history h. This switch is determined by the public randomization device (i.e., the

switch is a deterministic function of its realization). Otherwise, play remains in the

bad state. The probability η(p) is chosen so that

w(p) = (1− δ)[(1− κ(p))s+ κ(p)λ(p)h] (4)

+ δ
{
η(p) E∆

Nκ(p)w(p) + [1− η(p)] E∆
Nκ(p)w(p)

}
,

with (1)–(3) ensuring that η(p) ∈ [0, 1]. This completes the description of the strategies.

The choice of η along with (1)–(2) rules out profitable one-shot deviations in either

state, so that the automaton describes equilibrium strategies, and the desired payoffs

are obtained.

It remains to show that (W
∆
,W∆) solve the functional equations whenever W

∆ ≥
W∆. Note that in any SSE, given p, the action κ(p) must be an element ofK(p;W

∆
,W∆).

This is because the left-hand side of (3) with w = W
∆
is an upper bound on the con-

tinuation payoff if no player deviates, and the right-hand side with w = W∆ a lower

bound on the continuation payoff after a unilateral deviation. Consider the equilibrium

that achieves W
∆
. Then

W
∆
(p) ≤ max

κ∈K(p;W
∆
,W∆)

{
(1− δ)[(1− κ)s+ κλ(p)h] + δE∆

NκW
∆
(p)

}
,

as the action played must be in K(p;W
∆
,W∆) and the continuation payoff is at most

given by W
∆
. Similarly, W∆ must satisfy (2) with “≥”instead of “=.” Suppose now

that the “≤” were strict. Then we can define a strategy profile given prior p that (i)

in period 0, plays the maximizer of the right-hand side, and (ii) from t = ∆ onward,

abides by the continuation strategy achieving W
∆
(p∆). Because the initial action is in

K(p;W
∆
,W∆), this constitutes an equilibrium; and it achieves a payoff strictly larger

than W
∆
(p), a contradiction. Hence, (1) must hold with equality for W

∆
. The same

reasoning applies to W∆ and (2).
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4 Continuous Time

As ∆ tends to 0, equations (1)–(2) transform into differential-difference equations in-

volving terms that are familiar from Keller and Rady (2010). A formal Taylor approx-

imation shows that for any κ ∈ {0, 1} and K ∈ {0, 1, . . . , N},

(1− δ)[(1− κ)s+ κλ(p)h] + δE∆
Kw(p)

= w(p) + r
{
(1− κ)s+ κλ(p)h+K b(p, w)− w(p)

}
∆+ o(∆)

where

b(p, w) =
λ(p)

r
[w(j(p))− w(p)]− λ1 − λ0

r
p(1− p)w′(p)

and

j(p) =
λ1p

λ(p)
.

As in Keller and Rady (2010), we can interpret b(p, w) as the expected benefit of

playing R when continuation payoffs are given by the function w. It weighs a discrete

improvement in the overall payoff after a success against a marginal decrease in the

absence of a success.2

Applying this approximation to (1)–(2), cancelling the terms of order 0 in ∆, di-

viding through by ∆, letting ∆ → 0 and using the notation

c(p) = s− λ(p)h

for the opportunity cost of playing R, we obtain

w(p) = s+ max
κ∈K(p;w,w)

κ [Nb(p, w)− c(p)] , (5)

w(p) = s+ min
κ∈K(p;w,w)

(N − 1)κ b(p, w) + max
k∈{0,1}

k [b(p, w)− c(p)] . (6)

To determine K(p;w,w) in the limit as ∆ → 0, we will in general require Taylor ex-

pansions of higher order. We say that the action κ satisfies the incentive-compatibility

constraint of order ℓ at p if we can write the difference between the left-hand and the

right-hand sides of the inequality (3) as aκ,ℓ(p)∆
ℓ+o(∆ℓ) with a positive leading coeffi-

cient aκ,ℓ(p) > 0. Thus, the incentive constraint of order 0 for κ ∈ {0, 1} is tantamount

to the strict inequality w(p) > w(p). The constraint of order 1 requires w(p) = w(p)

2As the belief is updated downward in the absence of a success, we can compute b(p, w) whenever w

possesses a left-hand derivative at p. In the following, we assume that the functions under consideration

have left-hand derivatives of arbitrarily high order at each belief in the open unit interval.

8



as well as Nb(p, w) − c(p) > (N − 1)b(p, w) (for κ = 1) or c(p) > b(p, w) (for κ = 0),

and so on. We say that κ satisfies the incentive-compatibility constraint of order ∞ at

p if there is a ∆̄ > 0 such that the two sides of (3) coincide for all ∆ ∈ (0, ∆̄). This is

obviously the case for κ = 0 at p = 0, and for κ = 1 at p = 1.

We tentatively take K(p;w,w) to be the set of all κ ∈ {0, 1} that satisfy the

incentive-compatibility constraint of order ℓ at p for some ℓ ∈ {0, 1, 2, . . . ,∞}. With

this definition, any action κ that is incentive compatible at a belief p admits a ∆κ,p > 0

such that (3) holds for all ∆ ∈ (0,∆κ,p). We will see below that this is actually not

enough to capture all the restrictions that discrete-time incentive compatibility imposes

in the limit as ∆ → 0. At the boundaries of the unit interval, this will be no issue, of

course, as we trivially have K(0;w,w) = {0} and K(1;w,w) = {1}.

It is instructive to consider the unconstrained versions of (5)–(6), obtained by re-

placing K(p;w,w) with {0, 1} everywhere. The unconstrained version of (5) is

w(p) = s+ max
κ∈{0,1}

κ [Nb(p, w)− c(p)] . (7)

Its unique solution is the N -player cooperative value function in continuous time, de-

noted V ∗
N in Keller and Rady (2010). It satisfies V ∗

N(p) = s for p ≤ p∗N , and V ∗
N(p) > s

for p > p∗N , where

p∗N =
µN(s− λ0h)

(µN + 1)(λ1h− s) + µN(s− λ0h)

and µN > 0 is implicitly defined by

r

N
+ λ0 − µN (λ1 − λ0) = λ0

(
λ0

λ1

)µN

.

On (p∗N , 1], we have

V ∗
N(p) = λ(p)h+

c(p∗N)

u(p∗N ;µN)
u(p;µN)

with

u(p;µ) = (1− p)

(
1− p

p

)µ

.

V ∗
N is once continuously differentiable, so that Nb(p, V ∗

N)−c(p) is continuous in p. This

difference has a single zero at p∗N , being positive to the right of it and negative to the

left.

Setting N = 1, we obtain the single-agent value function V ∗
1 and corresponding
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cutoff p∗1. This function is the unique solution of the unconstrained version of (6),

w(p) = s+ min
κ∈{0,1}

(N − 1)κ b(p, w) + max
k∈{0,1}

k [b(p, w)− c(p)] . (8)

In fact, as b(p;V ∗
1 ) ≥ 0 everywhere, we have minκ∈{0,1}(N − 1)κ b(p, V ∗

1 ) = 0, and (8)

with this minimum set to zero is just the Bellman equation for V ∗
1 .

Returning to the constrained problem with its potentially smaller correspondence

of feasible actions, we immediately see that a solution to (5)–(6) must satisfy V ∗
1 ≤

w ≤ w ≤ V ∗
N , and the infimum of the set of beliefs at which w > s must lie in [p∗N , p

∗
1].

To locate this infimum more precisely, we consider a family of candidate solutions.

For any p in the open unit interval interval, we define a continuous function VN,p by

setting

VN,p(p) = λ(p)h+
c(p)

u(p;µN)
u(p;µN)

for p > p, and VN,p(p) = s otherwise. From Keller and Rady (2010), we know that VN,p

is the players’ common payoff function in continuous time when all N of them use the

risky arm on (p, 1] and there is no experimentation otherwise; in particular, VN,p(p) =

s+Nb(p, VN,p)− c(p) on (p, 1]. For p = p∗N , this is just the cooperative value function

V ∗
N . For p > p∗N , we have VN,p < V ∗

N on (p∗N , 1), and VN,p is continuously differentiable

except for a convex kink at p, which implies a discontinuity in Nb(p;VN,p) − c(p):

this difference is positive on (p, 1], approaches zero as p tends to p from the right,

is positive at p itself, and then decreases monotonically as p falls further, eventually

assuming negative values.

Now consider the pair of functions (w,w) = (VN,p, V
∗
1 ) for a given p ∈ [p∗N , p

∗
1]. On

(p, 1), where VN,p > V ∗
1 , both actions are incentive compatible. On (0, p], where VN,p =

V ∗
1 = s and V ′

N,p = (V ∗
1 )

′ = 0 (with V ′
N,p(p) meaning the left-hand derivative), κ = 0 is

incentive compatible, satisfying the constraint of order 1 (if p < p∗1) or 2 (if p = p∗1) at

p, and the constraint of order 1 at lower beliefs. The incentive compatibility constraint

of order 1 for κ = 1 on (0, p] hinges on how Nb(p, VN,p) − c(p) = Nλ(p)[VN,p(j(p)) −
s]/r − c(p) compares with (N − 1)b(p, V ∗

1 ) = (N − 1)λ(p)[V ∗
1 (j(p)) − s]/r, that is, on

the sign of λ(p)[NVN,p(j(p))− (N − 1)V ∗
1 (j(p))− s]− rc(p). The situation at p = p is

of particular interest.

Lemma 1 There is a belief p̂ ∈ [p∗N , p
∗
1] such that

λ(p)
[
NVN,p(j(p))− (N − 1)V ∗

1 (j(p))− s
]
− rc(p)

10



is negative if 0 < p < p̂, zero if p = p̂, and positive if p̂ < p < 1. Moreover, p̂ = p∗N if

and only if j(p∗N) ≤ p∗1, and p̂ = p∗1 if and only if λ0 = 0.

Proof: See Appendix A.

A direct consequence of this result is that for p > p̂, (w,w) = (VN,p, V
∗
1 ) does not

solve (5)–(6). In fact, p > p̂ implies that κ = 1 satisfies the incentive compatibility

constraint of order 1 at p. As Nb(p;VN,p)− c(p) > 0, this in turn means that VN,p(p) <

s + maxκ∈K(p;VN,p,V
∗
1 ) κ

[
Nb(p;VN,p)− c(p)

]
. In the case where p̂ = p∗N , therefore, this

means that (w,w) = (VN,p, V
∗
1 ) solves (5)–(6) if and only if p = p∗N and hence w = V ∗

N .

Assume p̂ > p∗N now. For p∗N ≤ p < p̂, (w,w) = (VN,p, V
∗
1 ) solves (5)–(6) even

though the leading coefficient in the Taylor expansion of the incentive-compatibility

constraint for κ = 1 at p is negative, and hence K(p;VN,p, V
∗
1 ) = {0}. (Recall that the

constraint of order 0 is satisfied on (p, 1), and so K(p;VN,p, V
∗
1 ) = {0, 1} there.)

This is the point where we have have to refine our definition of K(·;w,w) if, for

fixed functions w and w, we want to interpret the system (5)–(6) as the limit of (1)–

(2) as ∆ → 0. Note first that for every ∆ > 0, we can choose p∆ > p such that

p∆ → p and VN,p(p
∆)−V ∗

1 (p
∆) = o(∆) as ∆ → 0. This means that in the expansion of

E∆
NVN,p(p

∆)−E∆
N−1V

∗
1 (p

∆), it is the term of order 1 that dominates as ∆ becomes small,

not the term of order 0. Moreover, we can take p∆ so that the posterior belief after

N − 1 or N failed experiments of length ∆ is below p, which implies that in the above

expansion, the term of order 1 is determined entirely by the comparison of the “jump

benefits” Nλ(p∆)∆ [VN,p(j(p
∆)) − s] and (N − 1)λ(p∆)∆ [V ∗

1 (j(p
∆)) − s]. Therefore,

the difference between the left-hand and the right-hand sides of (3) at p∆ is ∆ times

λ(p∆)[NVN,p(j(p
∆)) − (N − 1)V ∗

1 (j(p
∆)) − s] − rc(p∆) plus terms of higher order. If

p < p̂, this is negative for small ∆, implying that κ = 1 is not incentive compatible

immediately to the right of p.

We are thus led to the conclusion that the only appropriate solution to (5)–(6) is

the pair of functions (VN,p̂, V
∗
1 ). This still begs the question, of course, whether this

solution is the limit of the bounds (W
∆
,W∆) on equilibrium payoffs in discrete time.

In the following two sections, we will answer this question affirmatively.

Before doing so, we briefly compare the cutoff p̂ with the belief at which all experi-

mentation stops in the unique symmetric Markov perfect equilibrium of the continuous-

time game.

Proposition 2 For λ0 > 0, the cutoff p̂ is strictly lower than the belief at which all

11



experimentation stops in the symmetric Markov perfect equilibrium of the continuous-

time game.

Proof: Keller and Rady (2010) establish that in the unique symmetric Markov

perfect equilibrium of the continuous-time game, all experimentation stops at the belief

p̃N implicitly defined by rc(p̃) = λ(p̃N)[ũ(j(p̃N))− s], where ũ is the players’ common

equilibrium payoff function. The results of Keller and Rady (2010) further imply that

VN,p̃N (j(p̃N)) > ũ(j(p̃N)) > V ∗
1 (j(p̃N)), so that NVN,p̃N (j(p̃N)) − (N − 1)V ∗

1 (j(p̃N)) >

ũ(j(p̃N)), and hence p̂ < p̃N by Lemma 1.

The unique symmetric Markov perfect equilibrium in Keller and Rady (2010) im-

plies a double-barrel inefficiency. Not only is the overall amount of experimentation

too small, i.e. there is an inefficiently high probability of never finding out the true

state of the world in the long run; the speed of experimentation is inefficiently slow

to boot. The continuous-time limit of the strongly symmetric equilibria that we shall

construct does better along both dimensions.

5 Bounds on Equilibrium Payoffs and the Range of

Experimentation

For ∆ > 0, let p̃∆ be the infimum of the set of beliefs at which the experimentation game

with period length ∆ admits a strongly symmetric equilibrium with payoff exceeding

s. Let p̃ = lim inf∆→0 p̃
∆. For small ϵ > 0, consider the problem of maximizing the

average of the players’ payoffs in the discretized setting subject to symmetry of actions

at all times and no use of R at beliefs p ≤ p̃ − ϵ. Denote the corresponding value

function by W̃∆,ϵ. By definition of p̃, there exists a ∆̃ϵ > 0 such that for ∆ ∈ (0, ∆̃ϵ),

the function W̃∆,ϵ provides an upper bound on the players’ common payoffs in any

strongly symmetric equilibrium, and hence W
∆ ≤ W̃∆,ϵ. As the optimal solution to

this constrained optimization problem is feasible for a similarly constrained planner in

continuous time, we have W̃∆,ϵ ≤ VN,pϵ with pϵ = max{p̃ − ϵ, p∗N}. Lemma B.3 in the

Appendix establishes that W̃∆,ϵ → VN,pϵ uniformly as ∆ → 0.

As any player can choose to ignore the information contained in the other players’

experimentation results, the value function W∆
1 of a single agent experimenting in

isolation constitutes an obvious lower bound on a player’s payoff in any (not just

strongly symmetric) equilibrium, and so we have W∆ ≥ W∆
1 . Lemma B.4 (applied for

p̄ = 1) establishes uniform convergence W∆
1 → V ∗

1 as ∆ → 0.

12



Now, fix ϵ > 0 and consider a sequence of ∆’s smaller than ∆̃ϵ and converging to

0 such that the corresponding beliefs p̃∆ converge to p̃. For each ∆ in this sequence,

choose p∆ > p̃∆ such that B∆
0,N−1(p

∆) < p̃∆, and hence B∆
0,N(p

∆) < p̃∆ as well. If the

players start at the belief p∆, therefore, and N − 1 or all of them use R for ∆ units

of time without success, then the posterior belief ends up below p̃∆ and there is no

further experimentation in equilibrium. Now, playing R at p∆ (against N − 1 players

who do so) yields at most

(1− δ)λ(p∆)h+ δ

{
Λ∆

0,N(p
∆)s+

∞∑
J=1

Λ∆
J,N(p

∆)W̃∆,ϵ(B∆
J,N(p

∆))

}

= r∆λ(p∆)h+ (1− r∆)

{
[1−Nλ(p∆)∆]s

+Nλ(p∆)∆ W̃∆,ϵ(B∆
1,N(p

∆))

}
+ o(∆)

= s+
{
r[λ(p̃)h− s] +Nλ(p̃)[VN,pϵ(j(p̃))− s]

}
∆+ o(∆),

while playing S yields at least

(1− δ)s+ δ

{
Λ∆

0,N−1(p
∆)s+

∞∑
J=1

Λ∆
J,N−1(p

∆)W∆
1 (B∆

J,N−1(p
∆))

}

= r∆ s+ (1− r∆)

{
[1− (N − 1)λ(p∆)∆]s

+ (N − 1)λ(p∆)∆W∆
1 (B∆

1,N−1(p
∆))

}
+ o(∆)

= s+
{
(N − 1)λ(p̃)[V ∗

1 (j(p̃))− s]
}
∆+ o(∆).

Incentive compatibility of R at p∆ for small ∆ requires

λ(p̃)
[
NVN,pϵ(j(p̃))− (N−1)V ∗

1 (j(p̃))− s
]
− rc(p̃) ≥ 0.

Letting ϵ → 0, we have pϵ → p̃ and thus

λ(p̃)
[
NVN,p̃(j(p̃))− (N−1)V ∗

1 (j(p̃))− s
]
− rc(p̃) ≥ 0. (9)

By Lemma 1, this means p̃ ≥ p̂. For any ϵ > 0 and ∆ ∈ (0, ∆̃ϵ), therefore, the set of

beliefs at which experimentation can be sustained in a strongly symmetric equilibrium

of the discrete-time game with period length ∆ is contained in the interval (p̂ − ϵ, 1],

and we have the chain of inequalities W
∆ ≤ W̃∆,ϵ ≤ VN,pϵ ≤ VN,p̂−ϵ. Upon letting
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ϵ → 0, this yields lim sup∆→0 W
∆
(p) ≤ VN,p̂(p) for all p.

In the following section, we show constructively that these bounds on the range of

experimentation and the best and worst equilibrium payoffs are tight, that is, p̃ = p̂

and, for all p, lim∆→0W
∆
(p) = VN,p̂(p) and lim∆→0W

∆(p) = V ∗
1 (p).

6 Strongly Symmetric Equilibria for Small ∆

6.1 The Non-Revealing Case (λ0 > 0)

The equilibrium construction for λ0 > 0 is inspired by the first part of the proof of

Proposition 1. For sufficiently small ∆ > 0, we shall exhibit a strongly symmetric

equilibrium that can be summarized by two functions, κ and κ, which will not depend

on ∆. The equilibrium strategy is characterized by a two-state automaton. In the

“good” state, play proceeds according to κ and the equilibrium payoff satisfies

w∆(p) = (1− δ)[(1− κ(p))s+ κ(p)λ(p)h] + δE∆
Nκ(p)w

∆(p), (10)

while in the “bad” state, play proceeds according to κ and the payoff satisfies

w∆(p) = max
k

{
(1− δ)[(1− k)s+ kλ(p)h] + δE∆

(N−1)κ(p)+kw
∆(p)

}
. (11)

That is, w∆ is the value from a player’s best response to all other players following κ.

A unilateral deviation from κ in the good state is punished by a transition to the

bad state in the following period; otherwise we remain in the good state. If there

is no unilateral deviation from κ in the bad state, a draw of a public randomization

device determines whether the state next period is good or bad (and guarantees that

the payoff is indeed given by w∆); otherwise we remain in the bad state.

With continuation payoffs given by w∆ and w∆, the common action κ ∈ {0, 1} can

be sustained at a belief p if and only if

(1− δ)[(1− κ)s+ κλ(p)h] + δE∆
Nκw

∆(p) (12)

≥ (1− δ)[κs+ (1− κ)λ(p)h] + δE∆
(N−1)κ+1−κw

∆(p).

The functions κ and κ define an SSE, therefore, if and only if (12) holds for κ = κ(p)

and κ = κ(p) at all p.

The probability η∆(p) of a transition from the bad to the good state in the absence
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of a unilateral deviation from κ(p) is then pinned down by the requirement that

w∆(p) = (1− δ)[(1− κ(p))s+ κ(p)λ(p)h] (13)

+ δ
{
η∆(p) E∆

Nκ(p)w
∆(p) + [1− η∆(p)] E∆

Nκ(p)w
∆(p)

}
.

If k = κ(p) is optimal in (11), we simply set η∆(p) = 0. Otherwise, (11) and (12) imply

δE∆
Nκ(p)w

∆(p) ≥ w∆(p)− (1− δ)[(1− κ(p))s+ κ(p)λ(p)h] > δE∆
Nκ(p)w

∆(p),

so (13) holds with

η∆(p) =
w∆(p)− (1− δ)[(1− κ(p))s+ κ(p)λ(p)h]− δE∆

Nκ(p)w
∆(p)

δE∆
Nκ(p)w

∆(p)− δE∆
Nκ(p)w

∆(p)
∈ (0, 1].

We specify the functions κ and κ as follows. Given p ∈ (p̂, p∗1) and p̄ ∈ (pm, 1), let

κ(p) =

1 if p > p,

0 if p ≤ p,

while

κ(p) =

1 if p > p̄,

0 if p ≤ p̄.

Note that punishment and reward strategies agree outside of (p, p̄). The continuous-

time payoff function associated with the common Markov strategy κ is VN,p; we write

V1,p̄ for the continuous-time payoff function obtained from a best response against the

opponents’ common strategy κ. In Appendix B, we establish uniform convergence

w∆ → VN,p and w∆ → V1,p̄ as ∆ → 0, and V1,p̄ → V ∗
1 as p̄ → 1.

Proposition 3 For λ0 > 0, there are beliefs p♭ ∈ (p̂, p∗1) and p♯ ∈ (pm, 1) such that

for all p ∈ (p̂, p♭) and p̄ ∈ (p♯, 1), there exists ∆̄ > 0 such that for all ∆ ∈ (0, ∆̄),

the two-state automaton with functions κ and κ defines a strongly symmetric perfect

Bayesian equilibrium of the experimentation game with period length ∆.

Proof: See Appendix A.
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6.2 The Fully Revealing Case (λ0 = 0)

As we have seen supra, as long as λ0 > 0 and breakthroughs are not fully revealing,

there is some scope for the provision of intertemporal incentives after any history such

that the players’ belief remains above p̂. This is no longer the case for λ0 = 0, though.

This can be seen in Condition (9), which we can rewrite as follows:

rc(p̃) ≤ λ(p̃)
[
VN,p̃(j(p̃))− s+ (N−1)[VN,p̃(j(p̃))− V ∗

1 (j(p̃))]
]
.

At beliefs such that a single failed round of experimentation takes us below p̃, intertem-

poral incentives can be provided conditional on there being a success in this potentially

last round of experimentation, by virtue of the term (N−1)[VN,p̃(j(p̃))− V ∗
1 (j(p̃))]. If

λ0 > 0, there exists a ν > 0 such that, for all p̃ ∈ [p̂, pm], (N−1)[VN,p̃(j(p̃))−V ∗
1 (j(p̃))] >

ν. This means that it is always possible to provide intertemporal incentives that are

substantial; indeed, they are bounded away from 0, while an agent’s benefit from de-

viating is of order ∆, since he can only enjoy the fruits of his deviation for a single

period. Yet, if λ0 = 0, j(p̃) = 1, and VN,p̃(j(p̃)) = V ∗
1 (j(p̃)) = λ1h, implying that

intertemporal incentives cannot be provided ‘close to p̃’, as now any success takes us to

a belief of one, so that everyone will play risky forever in any equilibrium. This raises

the possibility of unravelling. If we cannot support incentives just above the candidate

threshold below which play proceeds according to the symmetric Markov equilibrium,

will the actual threshold not “shoot up”?

To settle whether unravelling occurs or not requires us to study the discrete-time

game in considerable detail. As already mentioned, we do not claim that the specific

choice of the discrete-time game is innocuous: it might well be that requiring players

to move in alternate periods, for instance, would yield different conclusions.

Because the optimality equations for the discrete-time game are less tractable than

their continuous-time analogue, the details of their derivation and their properties are

intricate and relegated to the Appendix.3

First, we show that there is no perfect Bayesian equilibrium with any experimen-

tation at beliefs below the single-agent cutoff p∆1 = inf{p : W∆
1 (p) > s}.

3These difficulties are already present for the study of the Markov equilibrium in discrete time.

Unlike in the continuous-time limit, in which an explicit solution is known (see Keller et al. (2005)),

the symmetric MPE in discrete time does not seem to admit an easy solution. In fact, there are open

sets of beliefs for which there are multiple symmetric Markov equilibria in discrete time, no matter

how small ∆. It is not known whether these discrete-time equilibria all converge (in some sense) to

the symmetric equilibrium of Keller et al. (2005); in fact, it is not known whether some discrete-time

Markov equilibrium converges to it.
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Lemma 2 Let λ0 = 0. Fix ∆ > 0 and any prior belief p < p∆1 . Then the unique

perfect Bayesian equilibrium outcome specifies that all players play safe in all periods.4

Proof: See Appendix C.

Lemma 2 already rules out the possibility that the asymmetric equilibria of Keller

et al. (2005) with an infinite number of switches can be approximated in discrete time.

The highest payoff that can be hoped for, then, involves all players experimenting

above p∆1 .

Unlike for the case λ0 > 0 (see Proposition 3), an explicit description of a two-state

automaton implementing strongly symmetric equilibria whose payoffs converge to the

obvious upper and lower bounds appears elusive. This is because, for beliefs that are

arbitrarily close to (but above) p∆1 , equilibrium strategies are necessarily mixed. The

proof of the next proposition establishes that the length of the interval of beliefs for

which this is the case is vanishing as ∆ → 0. In particular, for higher beliefs (except

for beliefs arbitrarily close to 1, when κ(p) = 1 is strictly dominant), both pure actions

can be enforced in equilibrium.

Proposition 4 For λ0 = 0, there are beliefs p§ ∈ (p∗1, p
m) and p♯ ∈ (pm, 1) such that

for all p ∈ (p∗1, p
§) and p̄ ∈ (p♯, 1), there exists ∆̄ > 0 such that for all ∆ ∈ (0, ∆̄), there

exists

- a strongly symmetric equilibrium in which the equilibrium strategy specifies κ(p) =

1 for all p > p and κ(p) = 0 for all p < p∗1 along the equilibrium path (starting

from a prior p0 > p) ;

- a strongly symmetric equilibrium in which the players’ payoff does not exceed their

best-reply payoff against κ(p) = 0 for all p /∈ [p∗1, p]∪ [p̄, 1], κ(p) = 1 otherwise on

the equilibrium path (starting from p0 ∈ (p, p̄)).

Proof: See Appendix C.

While this proposition is somewhat weaker than Proposition 3 –the analogous state-

ment for the case λ0 > 0– its implications for limit payoffs (as ∆ → 0) are the same;

indeed, given that the interval [p∗1, p] can be chosen to be arbitrarily small (as the

proof establishes, of the order ∆ as it turns out), its impact on equilibrium payoffs

4This does not extend to off-path behavior, of course. If a player deviates by pulling the risky arm

and obtains a success, players all switch to the risky arm from that point on.
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starting from p0 > p is of order ∆: that is for both strongly symmetric equilibria

whose existence is stated in the Proposition, the payoff converges to the one in which,

respectively, κ(p) = 1 for all p ≥ p∗1 (for the first SSE, given p0 > p) and the best-reply

payoff against κ(p) = 0 for all p > p∗1 (for the second SSE, given p0 ∈ (p, p̄)).

6.3 Limit SSE Payoffs

Recall that, for fixed ∆, we write W
∆
and W∆ for the pointwise supremum and infi-

mum, respectively, of the set of strongly symmetric equilibrium payoff functions. The

main result of this section is a characterization of W
∆

and W∆ as the period length

vanishes.

Proposition 5 lim∆→0 W
∆
= VN,p̂ and lim∆→0W

∆ = V ∗
1 , uniformly on [0, 1].

Proof: For λ0 > 0 and a given ϵ > 0, the explicit representation for VN,p in Section

4 and the uniform convergence V1,p̄ → V ∗
1 as p̄ → 1 (established in Lemma B.5)

allow us to choose ξ > 0, p ∈ (p̂, p§) (for some p§ > p̂) and p̄ ∈ (p♯, 1) such that

∥VN,p̂−ξ − VN,p̂∥ < ϵ, ∥VN,p − VN,p̂∥ < ϵ and ∥V1,p̄ − V ∗
1 ∥ < ϵ

2
, with ∥ · ∥ denoting the

supremum norm. Note that the same holds for λ0 = 0 (no reference to equilibrium

was made). Next, for λ0 > 0, Proposition 3, Lemma B.7, Section 5 and Lemma B.4

imply the existence of a ∆† > 0 such that for all ∆ ∈ (0,∆†), the two-state automaton

defined by the cutoffs p and p̄ constitutes an SSE of the game with period length ∆

and the following inequalities hold: w∆ ≥ VN,p, W
∆ ≤ VN,p̂−ξ, ∥w∆ − V1,p̄∥ < ϵ

2
and

∥W∆
1 − V ∗

1 ∥ < ϵ. For ∆ ∈ (0,∆†), we thus have

VN,p̂ − ϵ < VN,p ≤ w∆ ≤ W
∆ ≤ VN,p̂−ξ < VN,p̂ + ϵ

and

V ∗
1 − ϵ < W∆

1 ≤ W∆ ≤ w∆ < V1,p̄ +
ϵ

2
< V ∗

1 + ϵ,

so that ∥W∆−VN,p̂∥ and ∥W∆−V ∗
1 ∥ are both smaller than ϵ, which was to be shown.

For the case λ0 = 0, the proof of Proposition 4 establishes that there exists K ∈
IN such that, given p as stated in the Proposition, we can take ∆̄ as (p − p∗1)/K.

Equivalently, p∗1 +K∆̄ = p. Hence, Proposition 4 can be restated as saying that, for

some ∆̄ > 0, and all ∆ ∈ (0, ∆̄), there exists p∆ ∈ (p∗1, p
∗
1 + K∆) such that the two

conclusions of the Proposition hold with p = p∆. Let w
∆, w∆ denote the payoffs from
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the first and second SSE from the Proposition, respectively, fixing the prior.5 Given

that p → p∗1 and w∆(p) → s, w∆(p) → s for all p ∈ (p∗1, p∆), it follows that we can pick

∆† ∈ (0, ∆̄) such that for all ∆ ∈ (0,∆†), w∆ ≥ VN,p − ϵ, and as before, W
∆ ≤ VN,p̂−ξ,

∥w∆ − V1,p̄∥ < ϵ
2
and ∥W∆

1 − V ∗
1 ∥ < ϵ. The obvious inequalities follow as before,

subtracting an additional ϵ to the left-hand side of the first one; and the conclusion

follows as before, using 2ϵ as an upper bound.

7 Perfect Bayesian Equilibrium Payoffs

Our next result shows that the restriction to strongly symmetric equilibria is innocuous.

Proposition 6 In the limit as ∆ → 0, perfect Bayesian equilibria generate the same

range of experimentation and the same set of average payoffs per player as strongly

symmetric equilibria.

Proof: See Appendix A.

8 Comparative Statics

Our next result concerns the question as to what happens when the players become

infinitely patient or impatient. If players are myopic, they will not react to future

rewards and punishments. It is therefore no surprise that in this case the cooperative

solution cannot be sustained in equilibrium. By contrast, if players are very patient,

the planner’s solution can be sustained in equilibrium provided the number of players

is large enough.

Lemma 3 For λ0 > 0,

lim
r→0

j(p∗N)

p∗1
=

λ1

Nλ0

,

and

lim
r→∞

j(p∗N)

p∗1
=

λ1h

s
.

Proof: See Appendix A.

5Hence, to be precise, these payoffs are only defined on those beliefs that can be reached given the

prior and the equilibrium strategies.
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In the following lemma, we show that, in the case λ0 > 0, the more players partic-

ipate in the game the more they will engage in experimentation.

Lemma 4 For λ0 > 0, p̂ is decreasing in N .

Proof: See Appendix A.
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Appendix

A Proofs

Proof of Lemma 1: We start by noting that given the functions V ∗
1 and V ∗

N , the cutoffs

p∗1 and p∗N are uniquely determined by

λ(p∗1)[V
∗
1 (j(p

∗
1))− s] = rc(p∗1) (A.1)

and

λ(p∗N )[NV ∗
N (j(p∗N ))−Ns] = rc(p∗N ), (A.2)

respectively.

Consider the differentiable function f on (0, 1) given by

f(p) = λ(p)[NVN,p(j(p))− (N − 1)V ∗
1 (j(p))− s]− rc(p).

For λ0 = 0, we have j(p) = 1 and VN,p(j(p)) = V ∗
1 (j(p)) = λ1h for all p, so f(p) =

λ(p)[V ∗
1 (j(p))− s]− rc(p), which is zero at p = p∗1 by (A.1), positive for p > p∗1, and negative

for p < p∗1.

Assume λ0 > 0. For 0 < p < p ≤ 1, we have VN,p(p) = λ(p)h + c(p)u(p;µN )/u(p;µN )

with the function u(p;µ) = (1 − p)
(
1−p
p

)µ
which is strictly convex for µ > 0. Moreover,

we have V ∗
1 (p) = s when p ≤ p∗1, and V ∗

1 (p) = λ(p)h + Cu(p;µ1) with a constant C > 0

otherwise. Using the fact that

u(j(p);µ) =
λ0

λ(p)

(
λ0

λ1

)µ

u(p;µ),

we see that the term λ(p)NVN,p(j(p)) is actually linear in p. When j(p) ≤ p∗1, the term

−λ(p)(N − 1)V ∗
1 (j(p)) is also linear in p; when j(p) > p∗1, the nonlinear part of this term

simplifies to −(N−1)Cλµ1+1
0 u(p;µ1)/λ

µ1
1 . This shows that f is concave, and strictly concave

on the interval of all p for which j(p) > p∗1. As limp→1 f(p) > 0, this in turn implies that f

has at most one root in the open unit interval; if so, f assumes negative values to the left of

the root, and positive values to the right.

As VN,p∗1
(j(p∗1)) > V ∗

1 (j(p
∗
1)), moreover, we have

f(p∗1) > λ(p∗1)[V
∗
1 (j(p

∗
1))− s]− rc(p∗1) = 0

by (A.1). The potential root of f must thus lie in [0, p∗1). If j(p
∗
N ) ≤ p∗1, then V ∗

1 (j(p
∗
N )) = s

and

f(p∗N ) = λ(p∗N )[NV ∗
N (j(p∗N ))−Ns]− rc(p∗N ) = 0

by (A.2). If j(p∗N ) > p∗1, then V ∗
1 (j(p

∗
N )) > s and f(p∗N ) < 0, so f has a root in (p∗N , p∗1).
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Proof of Proposition 3: We take p♭ as in Lemma B.8; Lemma B.9 ensures that p♭ > p̂.

We fix a p ∈ (p̂, p♭). By Lemma 1,

λ(p)[NVN,p(j(p))− (N − 1)V ∗
1 (j(p))− s]− rc(p) > 0

on [p, 1]. As VN,p(j(p)) ≤ VN,p(j(p)) for p ≥ p, this implies

λ(p)[NVN,p(j(p))− (N − 1)V ∗
1 (j(p))− s]− rc(p) > 0

on [p, 1]. By Lemma B.5, there exists a belief p♯ > pm such that for all p̄ > p♯, inf{p :

V1,p̄(p) > s} ∈ (p, p∗1) and

λ(p)[NVN,p(j(p))− (N − 1)V1,p̄(j(p))− s]− rc(p) > 0 (A.3)

on [p, 1]. We fix a p̄ ∈ (p♯, 1) and define p† = inf{p : V1,p̄(p) > s}.
By Lemmas B.7 and B.8, there is a ∆0 > 0 such that w∆ ≥ VN,p ≥ w∆ on the unit

interval for all ∆ < ∆0. For any such ∆ and any p ∈ [0, p], the common action κ = κ(p) =

κ(p) = 0 trivially satisfies the incentive constraint (12). In fact, since w∆(p) = s, we have

(1− δ)s+ δE∆
0 w∆(p) ≥ (1− δ)λ(p)h+ δE∆

1 w∆(p) by (11); as w∆ ≥ w∆, this in turn implies

(1− δ)s+ δE∆
0 w∆(p) ≥ (1− δ)λ(p)h+ δE∆

1 w∆(p).

For all ∆ < ∆0 and p ∈ (p̄, 1], moreover, the common action κ = κ(p) = κ(p) = 1 satisfies

the incentive constraint (12) because λ(p)h > s and E∆
Nw∆(p) ≥ E∆

NVN,p(p) ≥ E∆
N−1VN,p(p) ≥

E∆
N−1w

∆(p), where the second of these inequalities follows from convexity of VN,p.

Now, let ν1 > 0 be such that

λ(p)[NVN,p(j(p))− (N − 1)V1,p̄(j(p))− s]− rc(p) > ν1 (A.4)

for all p ∈ [p, p̄]. Such a ν1 exists by (A.3) and the continuity of its left-hand side in p. Fix

p‡ ∈ (p, p†) such that

(Nλ(p‡) + r)
[
VN,p(p

‡)− s
]
< ν1/3. (A.5)

By Lemma B.4, there exists a ∆1 ∈ (0,∆0) such that for ∆ < ∆1, w
∆(p) = s on [0, p‡]. By

the same argument as above, this implies that for these ∆, the common action κ = κ(p) = 0

satisfies the incentive constraint (12) on (p, p‡] as well.

In the remainder of the proof, we simplify the notation by writing pKj for B∆
j,K(p), the

posterior belief starting from p when K players use the risky arm and j of them receive a

lump-sum within the length of time ∆.

For p ∈ (p, p‡] and κ = κ(p) = 1, the left-hand side of the incentive constraint (12)

expands as

r∆λ(p)h+ (1− r∆)
{
Nλ(p)∆w∆(pN1 ) + (1−Nλ(p)∆)w∆(pN0 )

}
+O(∆2)

= w∆(pN0 ) +
{
rλ(p)h+Nλ(p)w∆(pN1 )− (Nλ(p) + r)w∆(pN0 )

}
∆+O(∆2),
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and the right-hand side as

r∆ s+ (1− r∆)
{
(N − 1)λ(p)∆w∆(pN−1

1 ) + [1− (N − 1)λ(p)∆]w∆(pN−1
0 )

}
+O(∆2)

= w∆(pN−1
0 ) +

{
rs+ (N − 1)λ(p)w∆(pN−1

1 )− [(N − 1)λ(p) + r]w∆(pN−1
0 )

}
∆+O(∆2).

For ∆ < ∆1, we have w∆(pN0 ) ≥ s = w∆(pN−1
0 ), so the difference between the left-hand and

right-hand sides is no smaller than ∆ times

λ(p)
[
Nw∆(pN1 )− (N − 1)w∆(pN−1

1 )− s
]
− rc(p)− (Nλ(p) + r)

[
w∆(pN0 )− s

]
plus terms of order ∆2 and higher.

Let ϵ = ν1
15(Nλ1+r) . By Lemmas B.6 and B.4 as well as Lipschitz continuity of VN,p

and V1,p̄, there exists ∆2 ∈ (0,∆1) such that for ∆ < ∆2, ∥w∆ − VN,p∥, ∥w∆ − V1,p̄∥,
maxp≤p≤p‡ |VN,p(p

N
1 ) − VN,p(j(p))| and maxp≤p≤p‡ |V1,p̄(p

N−1
1 ) − V1,p̄(j(p))| are all smaller

than ϵ. For ∆ < ∆2, we thus have

w∆(pN1 ) > VN,p(j(p))− 2ϵ,

w∆(pN−1
1 ) < V1,p̄(j(p)) + 2ϵ,

w∆(pN0 ) < VN,p(p
N
0 ) + ϵ,

so that the expression displayed above is larger than ν1 − [(5N − 2)λ(p) + r]ϵ− ν1/3 > ν1/3

by (A.4), (A.5) and the definition of ϵ. This implies that there is a ∆3 ∈ (0,∆2) such that

for all ∆ < ∆3, the incentive constraint (12) holds for κ on (p, p‡].

As VN,p > V1,p̄ on (p, 1), there exist ∆4 ∈ (0,∆3) and ν2 > 0 such that

VN,p(p
N−1
0 )− V1,p̄(p

N−1
0 ) > ν2 (A.6)

for all ∆ < ∆4 and p ∈ (p‡, p̄]. At any belief p in this interval, the difference between the left-

hand and right-hand sides of (12) for κ = κ(p) = 1 is w∆(pN0 )−w∆(pN−1
0 )+O(∆). By Lemmas

B.6 and B.4 and Lipschitz continuity of VN,p, there exists ∆4 ∈ (0,∆3) such that for ∆ < ∆4,

∥w∆ − VN,p∥, ∥w∆ − V1,p̄∥ and maxp‡≤p≤p̄ |VN,p(p
N
0 )− VN,p(p

N−1
0 )| are all smaller than ν2/4.

For ∆ < ∆4 and p ∈ (p‡, p̄), we thus have w∆(pN0 ) > VN,p(p
N
0 ) − ν2/4 > VN,p(p

N−1
0 ) − ν2/2

and w∆(pN−1
0 ) < V1,p̄(p

N−1
0 ) + ν2/4, so that by (A.6) the difference between the left-hand

and right-hand sides of (12) for κ = κ(p) = 1 is larger than ν2/4 + O(∆). Thus, there is a

∆5 ∈ (0,∆4) such that for all ∆ < ∆5, (12) holds for κ on (p‡, p̄].

For p ∈ (p‡, p̄] and κ = κ(p) = 0, the difference between the left-hand and right-hand

sides of (12) is w∆(p) − w∆(p10) + O(∆), and the same steps as in the previous paragraph

yield existence of a ∆̄ ∈ (0,∆5) such that for all ∆ < ∆̄, the incentive constraint (12) for κ

is also satisfied on (p‡, p̄].

Proof of Proposition 6: For any given ∆ > 0, let p̆∆ be the infimum of the set of beliefs

at which there is some (possibly asymmetric) perfect Bayesian equilibrium that gives a payoff
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wn(p) > s to at least one player. Let p̆ = lim inf∆→0 p̆
∆. By construction, p̆ ≤ p̂.

For any fixed ϵ > 0 and ∆ > 0, consider the problem of maximizing the players’ average

payoff subject to no use of R at beliefs p ≤ p̆− ϵ, and write W̆∆,ϵ for the corresponding value

function. Let p̆ϵ = max{p̆ − ϵ, p∗N}. Uniform convergence W̆∆,ϵ → VN,p̆ϵ follows from the

same arguments as in the proof of Lemma B.3.

Consider a sequence of ∆’s converging to 0 such that the corresponding beliefs p̆∆ converge

to p̆. For each ∆ in this sequence, select a perfect Bayesian equilibrium as well as a belief

p∆ > p̆∆ starting from which a single failed experiment takes us below p̆∆. Let L∆ be

the number of players who, at the initial belief p∆, play R with positive probability in the

selected equilibrium. Let L be an accumulation point of the sequence of L∆’s. After selecting

a subsequence of ∆’s, we can assume without loss of generality that player n = 1, . . . , L plays

R with probability α∆
n > 0 at p∆, while player n = L + 1, . . . , N plays S; we can further

assume that (α∆
n )

L
n=1 converges to a limit (αn)

L
n=1 in [0, 1]L.

For player n = 1, . . . , L to play optimally at p∆, it must be the case that

(1− δ)
[
α∆
n λ(p

∆)h+ (1− α∆
n )s

]
+ δ

Pr∆(∅)w∆
n,∅ +

L∑
K=1

∑
|I|=K

Pr∆(I)

∞∑
J=0

Λ∆
J,K(p∆)w∆

n,I,J


≥ (1− δ)s+ δ

Pr∆−n(∅)w∆
n,∅ +

L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)

∞∑
J=0

Λ∆
J,K(p∆)w∆

n,I,J

 ,

where we write Pr∆(I) for the probability that the set of players experimenting is I ⊆
{1, . . . , L}, Pr∆−n(I) for the probability that among the L − 1 players in {1, · · · , L} \ {n}
the set of players experimenting is I, and w∆

n,I,J for the conditional expectation of player

n’s continuation payoff given that exactly the players in I were experimenting and had J

successes (w∆
n,∅ is player n’s continuation payoff if no one was experimenting). As Pr∆(∅) =

(1 − α∆
n )Pr

∆
−n(∅) ≤ Pr∆−n(∅), the inequality continues to hold when we replace w∆

n,∅ by its

lower bound s. After subtracting (1− δ)s from both sides, we then have

(1− δ)α∆
n

[
λ(p∆)h− s

]
+ δ

Pr∆(∅)s+
L∑

K=1

∑
|I|=K

Pr∆(I)

∞∑
J=0

Λ∆
J,K(p∆)w∆

n,I,J


≥ δ

Pr∆−n(∅)s+
L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)

∞∑
J=0

Λ∆
J,K(p∆)w∆

n,I,J

 .
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Summing up these inequalities over n = 1, · · · , L and writing ᾱ∆ = 1
L

∑L
n=1 α

∆
n yields

(1− δ)Lᾱ∆
[
λ(p∆)h− s

]
+ δ

Pr∆(∅)Ls+
L∑

K=1

∑
|I|=K

Pr∆(I)
∞∑
J=0

Λ∆
J,K(p∆)

L∑
n=1

w∆
n,I,J


≥ δ


L∑

n=1

Pr∆−n(∅)s+
L∑

n=1

L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)

∞∑
J=0

Λ∆
J,K(p∆)w∆

n,I,J

 .

By construction, w∆
n,I,0 = s whenever I ̸= ∅. For |I| = K > 0 and J > 0, moreover,

we have w∆
n,I,J ≥ W∆

1 (B∆
J,K(p∆)) for all players n = 1, . . . , N , and hence

∑L
n=1w

∆
n,I,J ≤

NW̆∆,ϵ(B∆
J,K(p∆)) − (N − L)W∆

1 (B∆
J,K(p∆)). So, for the preceding inequality to hold it is

necessary that

(1− δ)Lᾱ∆
[
λ(p∆)h− s

]
+ δ

Pr∆(∅)Ls+
L∑

K=1

∑
|I|=K

Pr∆(I)Λ∆
0,K(p∆)Ls

+

L∑
K=1

∑
|I|=K

Pr∆(I)

∞∑
J=1

Λ∆
J,K(p∆)

[
NW̆∆,ϵ(B∆

J,K(p∆))− (N − L)W∆
1 (B∆

J,K(p∆))
]

≥ δ


L∑

n=1

Pr∆−n(∅)s+
L∑

n=1

L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)Λ
∆
0,K(p∆)s

+
L∑

n=1

L−1∑
K=1

∑
|I|=K, n̸∈I

Pr∆−n(I)
∞∑
J=1

Λ∆
J,K(p∆)W∆

1 (B∆
J,K(p∆))

 .

As

Pr∆(∅) +
L∑

K=1

∑
|I|=K

Pr∆(I) = 1 and
L∑

K=1

∑
|I|=K

Pr∆(I)K = Lᾱ∆,

we have the first-order expansions

Pr∆(∅) +
L∑

K=1

∑
|I|=K

Pr∆(I)Λ∆
0,K(p∆)

= Pr∆(∅) +
L∑

K=1

∑
|I|=K

Pr∆(I)
(
1−Kλ(p∆)∆

)
+ o(∆)

= 1− Lᾱ∆λ(p∆)∆ + o(∆)

and

L∑
K=1

∑
|I|=K

Pr∆(I)Λ∆
1,K(p∆) =

L∑
K=1

∑
|I|=K

Pr∆(I)Kλ(p∆)∆ + o(∆) = Lᾱ∆λ(p∆)∆ + o(∆),
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so the left-hand side of the last inequality expands as

Ls+ L

{
rᾱ [λ(p̆)h− s]− rs+ ᾱλ(p̆) [NVN,p̆ϵ(j(p̆))− (N−L)V ∗

1 (j(p̆))− Ls]

}
∆+ o(∆)

with ᾱ = lim∆→0 ᾱ
∆. In the same way, the identities

Pr∆−n(∅) +
L−1∑
K=1

∑
|I|=K, n̸∈I

Pr∆−n(I) = 1 and
L−1∑
K=1

∑
|I|=K, n̸∈I

Pr∆−n(I)K = Lᾱ∆ − α∆
n

imply

L∑
n=1

Pr∆−n(∅) +
L∑

n=1

L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)Λ
∆
0,K(p∆) = L− L(L− 1)ᾱ∆λ(p∆)∆ + o(∆)

and
L∑

n=1

L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)Λ
∆
1,K(p∆) = L(L− 1)ᾱ∆λ(p∆)∆ + o(∆),

and so the right-hand side of the inequality expands as

Ls+ L
{
− rs+ (L− 1)ᾱλ(p̆) [V ∗

1 (j(p̆))− s]
}
∆+ o(∆).

Comparing terms of order ∆, dividing by L and letting ϵ → 0, we obtain

ᾱ
{
λ(p̆)

[
NVN,p̆(j(p̆))− (N−1)V ∗

1 (j(p̆))− s
]
− rc(p̆)

}
≥ 0.

By Lemma 1, this means p̆ ≥ p̂ whenever ᾱ > 0.

For the case that ᾱ = 0, we write the optimality condition for player n ∈ {1, . . . , L} as

(1− δ)λ(p∆)h+ δ


L−1∑
K=0

∑
|I|=K,n ̸∈I

Pr∆−n(I)

∞∑
J=0

Λ∆
J,K+1(p

∆)w∆
n,I∪̇{n},J


≥ (1− δ)s+ δ

Pr∆−n(∅)w∆
n,∅ +

L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)

∞∑
J=0

Λ∆
J,K(p∆)w∆

n,I,J

 .

As above, w∆
n,∅ ≥ s, and w∆

n,I,0 = s whenever I ̸= ∅. For |I| = K > 0 and J > 0, more-

over, we have w∆
n,I,J ≥ W∆

1 (B∆
J,K(p∆)), w∆

n,I∪̇{n},J ≥ W∆
1 (B∆

J,K+1(p
∆)) and w∆

n,I∪̇{n},J ≤
NW̆∆,ϵ(B∆

J,K+1(p
∆))− (N − 1)W∆

1 (B∆
J,K+1(p

∆)). So, for the optimality condition to hold, it
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is necessary that

(1− δ)λ(p∆)h+ δ


L−1∑
K=0

∑
|I|=K,n ̸∈I

Pr∆−n(I)Λ
∆
0,K+1(p

∆)s

+

L−1∑
K=0

∑
|I|=K,n ̸∈I

Pr∆−n(I)

∞∑
J=1

Λ∆
J,K+1(p

∆)
[
NW̆∆,ϵ(B∆

J,K+1(p
∆))− (N−1)W∆

1 (B∆
J,K+1(p

∆))
]

≥ (1− δ)s+ δ

Pr∆−n(∅)s+
L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)Λ
∆
0,K(p∆)s

+
L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)
∞∑
J=1

Λ∆
J,K(p∆)W∆

1 (B∆
J,K(p∆))

 .

Now,
L−1∑
K=1

∑
|I|=K,n ̸∈I

Pr∆−n(I)K = Lᾱ∆ − α∆
n → 0

as ∆ vanishes. Therefore, the left-hand side of the above inequality expands as

s+

{
r [λ(p̆)h− s] + λ(p̆) [NVN,p̆ϵ(j(p̆))− (N−1)V ∗

1 (j(p̆))− s]

}
∆+ o(∆),

and the right-hand side as s + o(∆). Comparing terms of order ∆, letting ϵ → 0 and using

Lemma 1 once more, we again obtain p̆ ≥ p̂.

Given that we have p̆ = p̂, therefore, the proof is now easily completed along the lines of

the proof of Proposition 5.

Proof of Lemma 3:

Simple algebra yields

j(p∗N )

p∗1
=

λ1

λ0

µN

µ1

(µ1 + 1)(λ1h− s) + µ1(s− λ0h)

(µN + 1)(λ1h− s) + (λ1/λ0)µN (s− λ0h)
.

From the implicit definitions of µ1 and µN , we obtain limr→0 µ1 = limr→0 µN = 0 (so that

the third fraction in the previous expression converges to 1) and

lim
r→0

∂µ1

∂r
=

[
λ1 − λ0 + λ0 ln

λ0

λ1

]−1

= N lim
r→0

∂µN

∂r

implying

lim
r→0

µN

µ1
=

1

N

by l’Hôpital’s rule.
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Furthermore, we note that we can write equivalently

j(p∗N )

p∗1
=

λ1

λ0

(1 + 1
µ1
)(λ1h− s) + (s− λ0h)

(1 + 1
µN

)(λ1h− s) + (λ1/λ0)(s− λ0h)
.

As limr→∞ µ1 = limr→∞ µN = ∞, we can immediately conclude that

lim
r→∞

j(p∗N )

p∗1
=

λ1h

s
.

Proof of Lemma 4: For the case that p̂ = p∗N , this is shown in Keller and Rady (2010).

Thus, in what follows we shall assume that p̂ > p∗N .

Recall the defining equation for p̂ from Lemma 1,

λ(p̂)NVN,p̂(j(p̂))− λ(p̂)s− rc(p̂) = (N − 1)λ(p̂)V ∗
1 (j(p̂)).

We make use of the closed-form expression for VN,p̂ to rewrite its left-hand side as

Nλ(p̂)λ(j(p̂))h+Nc(p̂)[λ0 − µN (λ1 − λ0)]− λ(p̂)s.

Similarly, by noting that p̂ > p∗N implies j(p̂) > j(p∗N ) > p∗1, we can make use of the closed-

form expression for V ∗
1 to rewrite the right-hand side as

(N − 1)λ(p̂)λ(j(p̂))h+ (N − 1)c(p∗1)
u(p̂;µ1)

u(p∗1;µ1)
[r + λ0 − µ1(λ1 − λ0)].

Combining, we have

λ(p̂)λ(j(p̂))h+Nc(p̂)[λ0 − µN (λ1 − λ0)]− λ(p̂)s

(N − 1)[r + λ0 − µ1(λ1 − λ0)]c(p∗1)
=

u(p̂;µ1)

u(p∗1;µ1)
.

It is convenient to change variables to

β =
λ0

λ1
and y =

λ1

λ0

λ1h− s

s− λ0h

p̂

1− p̂
.

The implicit definitions of µ1 and µN imply

N =
β1+µ1 − β + µ1(1− β)

β1+µN − β + µN (1− β)
,
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allowing us to rewrite the defining equation for p̂ as the equation F (y, µN ) = 0 with

F (y, µ) = 1− y + [β(1 + µ)y − µ]
1− β

β

β1+µ1 − β + µ1(1− β)

(µ1 − µ)(1− β) + β1+µ1 − β1+µ

− µµ1
1

(1 + µ1)1+µ1
y−µ1 .

As y is a strictly increasing function of p̂, we know from Lemma 1 that F (·, µN ) admits a

unique root, and that it is strictly increasing in a neighborhood of this root.

A straightforward computation shows that

∂F (y, µN )

∂µ
=

1− β

β

β1+µ1 − β + µ1(1− β)

((µ1 − µN )(1− β) + β1+µ1 − β1+µN )2
ζ(y, µN )

with

ζ(y, µ) = β(1−β)(1+µ1)y− (1−β)µ1+(1−βy)(β1+µ−β1+µ1)+β1+µ (β(1+µ)y−µ) ln(β).

As p∗N < p̂ < p∗1, we have
µN

1 + µN
< βy <

µ1

1 + µ1
,

which implies

ζ(y, µ1) = (β(1 + µ1)y − µ1) (1− β + β1+µ1 log(β)) < 0

and
∂ζ(y, µ)

∂µ
= β1+µ[β(1 + µ)y − µ] ln(β)2 > 0

for all µ ∈ [µN , µ1]. This establishes ζ(y, µN ) < 0.

By the implicit function theorem, therefore, y is increasing in µN . Recalling from Keller

and Rady (2010) that µN is decreasing in N , we have thus shown that y (and hence p̂) are

decreasing in N .

B Convergence and Comparison Results

To establish uniform convergence of certain discrete-time value functions to their continuous-

time limits, we will need the following result.6

Lemma B.1 Let {T∆}∆>0 be a family of contraction mappings on the Banach space (W; ∥·∥)
with moduli {β∆}∆>0 and associated fixed points {w∆}∆>0. Suppose that there is a constant

ρ > 0 such that 1 − β∆ = ρ∆ + o(∆) as ∆ → 0. Then, a sufficient condition for w∆ to

converge in (W; ∥ · ∥) to the limit v as ∆ → 0 is that ∥T∆v − v∥ = o(∆).

6To the best of our knowledge, the earliest appearance of this result in the economics literature is

in Biais et al. (2007). A related approach is taken in Sadzik and Stacchetti (2012).
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Proof: As

∥w∆ − v∥ = ∥T∆w∆ − v∥ ≤ ∥T∆w∆ − T∆v∥+ ∥T∆v − v∥ ≤ β∆∥w∆ − v∥+ ∥T∆v − v∥,

the stated conditions on β∆ and ∥T∆v − v∥ imply

∥w∆ − v∥ ≤ ∥T∆v − v∥
1− β∆

=
∆f(∆)

ρ∆+∆g(∆)
=

f(∆)

ρ+ g(∆)

with lim∆→0 f(∆) = lim∆→0 g(∆) = 0.

In our applications of this lemma, we shall take W to be the Banach space of bounded

functions on the unit interval, equipped with the supremum norm. The operators T∆ will

be Bellman operators for certain optimal strategies in the experimentation game with period

length ∆; the corresponding moduli will be β∆ = δ = e−r∆.

The limit functions will belong to the set V of all continuous v ∈ W with the following

properties: there are finitely many beliefs {pℓ}Lℓ=0 with 0 = p0 < p1 < . . . < pL−1 < pL = 1

such that for all ℓ = 1, . . . , L, (i) the function v is once continuously differentiable with

bounded derivative v′ on the interval (pℓ−1, pℓ), (ii) limp↑pℓ v
′(p) equals the left-hand derivative

of v at pℓ, and (iii) limp↓pℓ−1
v′(p) equals the right-hand derivative of v at pℓ−1. In the

following, we shall always take v′(pℓ) to mean the left-hand derivative at pℓ for ℓ ≥ 1, and

the right-hand derivative for ℓ = 0.

With this convention, the term

b(p, v) =
λ(p)

r
[v(j(p))− v(p)]− λ1 − λ0

r
p(1− p) v′(p)

is well-defined on the entire unit interval for any v ∈ V. We can now provide a first-order

expansion for the discounted expectation δE∆
K that will appear in the Bellman operators of

interest.7

Lemma B.2 For K ∈ {0, 1, . . . , N} and v ∈ V ,

lim
∆→0

1

∆

∥∥δ E∆
Kv − v − r[Kb(·, v)− v]∆

∥∥ = 0.

Proof: This follows from a straightforward Taylor expansion.

Our first application of Lemmas B.1 and B.2 concerns the upper bound on equilibrium

payoffs introduced at the start of Section 5. Take p̃ as defined there. Given ∆ > 0, ϵ > 0 and

any bounded function w on [0, 1], define a bounded function T̃∆,ϵw by

T̃∆,ϵw(p) =

{
max

{
(1− δ)λ(p)h+ δE∆

Nw(p), (1− δ)s+ δw(p)
}

if p > p̃− ϵ,

(1− δ)s+ δw(p) if p ≤ p̃− ϵ.

7Up to discounting, this is nothing but the computation of the infinitesimal generator of the process

of posterior beliefs, of course.
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The operator T̃∆,ϵ satisfies Blackwell’s sufficient conditions for being a contraction mapping

with modulus δ on the Banach space W of bounded functions on [0, 1] equipped with the

supremum norm ∥·∥: monotonicity (v ≤ w implies T̃∆,ϵv ≤ T̃∆,ϵw) and discounting (T̃∆,ϵ(w+

c) = T̃∆,ϵw + δc for any real number c). By the contraction mapping theorem, T̃∆,ϵ has a

unique fixed point in W; this is the value function W̃∆,ϵ of the constrained planner’s problem

considered in Section 5.

From Keller and Rady (2010), we know that the corresponding continuous-time value

function is VN,pϵ with pϵ = max{p̃− ϵ, p∗N}. It belongs to V and satisfies VN,pϵ(p) = λ(p)h+

Nb(p, VN,pϵ) > s on (pϵ, 1]. For pϵ = p∗N , moreover, λ(p)h+Nb(p, VN,pϵ)− s is zero at pϵ and

negative on [0, pϵ).

Lemma B.3 W̃∆,ϵ → VN,pϵ uniformly as ∆ → 0.

Proof: To ease the notational burden, we write v instead of VN,pϵ . Lemma B.2 then implies

(1− δ)λ(p)h+ δE∆
N v(p) = v(p) + r [λ(p)h+Nb(p, v)− v(p)]∆ + o(∆),

(1− δ)s+ δv(p) = v(p) + r [s− v(p)]∆ + o(∆).

Suppose first that pϵ = p̃− ϵ > p∗N . For p > p̃− ϵ, we have v(p) = λ(p)h+Nb(p, v) > s,

and hence T̃∆,ϵv(p) = (1− δ)λ(p)h+ δE∆
N v(p) = v(p) + o(∆) for small ∆.

Next, suppose that pϵ = p∗N ≥ p̃ − ϵ. For p > p∗N , the same argument as in the previous

paragraph yields T̃∆,ϵv(p) = (1− δ)λ(p)h+ δE∆
N v(p) = v(p)+ o(∆) for small ∆. For p ∈ (p̃−

ϵ, p∗N ], we have v(p) = s ≥ λ(p)h+Nb(p, v), which once more implies T̃∆,ϵv(p) = v(p)+ o(∆)

for small ∆.

As T̃∆,ϵv(p) = s = v(p) trivially on [0, p̃−ϵ], we have established that ∥T̃∆,ϵv−v∥ = o(∆).

As the modulus of the contraction T̃∆,ϵ is δ = e−r∆ = 1 − r∆+ o(∆), uniform convergence

W̃∆,ϵ → v now follows from Lemma B.1.

The second application of Lemmas B.1 and B.2 concerns the payoffs in the bad state of

the equilibrium constructed in Section 6.3. Fix a cutoff p̄ > pm, and let K(p) = N − 1 when

p > p̄, and K(p) = 0 otherwise. Given ∆ > 0, and any bounded function w on [0, 1], define

a bounded function T∆w by

T∆w(p) = max
{
(1− δ)λ(p)h+ δE∆

K(p)+1w(p), (1− δ)s+ δE∆
K(p)w(p)

}
.

The operator T∆ also satisfies Blackwell’s sufficient conditions for being a contraction map-

ping with modulus δ on W. Its unique fixed point in this space is the payoff function w∆

(introduced in Section 6.3) from playing a best response against N − 1 opponents who all

play risky when p > p̄, and safe otherwise. For p̄ = 1, the fixed point is the single-agent value

function W∆
1 .

In Section 6.3, we introduced the notation V1,p̄ for the continuous-time counterpart to this

payoff function. The methods employed in Keller and Rady (2010) can be used to establish
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that V1,p̄ has the following properties. First, there is a cutoff p† < pm such that V1,p̄ = s

on [0, p†], and V1,p̄ > s everywhere else. Second, V1,p̄ ∈ V, being continuously differentiable

everywhere except at p̄. Third, V1,p̄ solves the Bellman equation

v(p) = max
{
λ(p)h+ [K(p) + 1]b(p, v), s+K(p)b(p, v)

}
.

Fourth, because of smooth pasting at p†, the term λ(p)h + b(p, V1,p̄) − s is continuous in p

except at p̄; it has a single zero at p†, being positive to the right of it and negative to the

left. Finally, we note that V1,p̄ = V ∗
1 and p† = p∗1 for p̄ = 1.

Let p†,∆ = inf{p : w∆(p) > s}.

Lemma B.4 w∆ → V1,p̄ uniformly as ∆ → 0, and lim inf∆→0 p
†,∆ = p†.

Proof: To ease the notational burden, we write v instead of V1,p̄.

For p > p̄, we have K(p) = N − 1, and Lemma B.2 implies

(1− δ)λ(p)h+ δE∆
K(p)+1v(p) = v(p) + r [λ(p)h+Nb(p, v)− v(p)]∆ + o(∆),

(1− δ)s+ δE∆
K(p)v(p) = v(p) + r [s+ (N − 1)b(p, v)− v(p)]∆ + o(∆).

As v(p) = λ(p)h + Nb(p, v) > s + (N − 1)b(p, v), we thus have T∆v(p) = (1 − δ)λ(p)h +

δE∆
K(p)+1v(p) = v(p) + o(∆) for small ∆.

On (p†, p̄], we have K(p) = 0 and

(1− δ)λ(p)h+ δE∆
K(p)+1v(p) = v(p) + r [λ(p)h+ b(p, v)− v(p)]∆ + o(∆),

(1− δ)s+ δE∆
K(p)v(p) = v(p) + r [s− v(p)]∆ + o(∆).

As v(p) = λ(p)h + b(p, v) > s, we again have T∆v(p) = (1 − δ)λ(p)h + δE∆
K(p)+1v(p) =

v(p) + o(∆) for small ∆.

For p ≤ p†, finally, we have K(p) = 0 and v(p) = s, hence

(1− δ)λ(p)h+ δE∆
K(p)+1v(p) = s+ r [λ(p)h+ b(p, v)− v(p)]∆ + o(∆),

(1− δ)s+ δE∆
K(p)v(p) = s.

As v(p) = s ≥ λ(p)h+ b(p, v), this once more implies T∆v(p) = v(p) + o(∆) for small ∆.

We have thus shown that ∥T∆v − v∥ = o(∆). Uniform convergence w∆ → v now follows

from Lemma B.1.

Turning to the second part of the lemma, we define p†,0 = lim inf∆→0 p
†,∆. For a sequence

of ∆’s converging to 0 such that the corresponding beliefs p†,∆ converge to p†,0, choose p∆ >

p†,∆ such that B∆
0,1(p

∆) < p†,∆. Along the sequence, we have w∆(p∆) > s = w∆(B∆
0,1(p

∆))
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and (1− δ)λ(p∆)h+ δE∆
1 w∆(p∆) > (1− δ)s+ δw∆(p∆) > s. As

(1− δ)λ(p∆)h+ δE∆
1 w∆(p∆)

= r∆λ(p∆)h+ (1− r∆)

{
(1− λ(p∆)∆)s+ λ(p∆)∆w∆

(
B∆

1,1(p
∆)

)}
+ o(∆)

= s+
{
r[λ(p†,0)h− s] + λ(p†,0)[v(j(p†,0))− s]

}
∆+ o(∆),

we can conclude that λ(p†,0)[v(j(p†,0)) − s] ≥ rc(p†,0). As v′(p) = 0 and λ(p)[v(j(p)) − s] =

rb(p, v) < rc(p) for p < p†, this implies p†,0 ≥ p†. And since the inequality p†,0 > p† would

imply v(p) > s = lim∆→0w
∆(p) immediately to the right of p†, we must have p†,0 = p†.

Our third uniform convergence result also concerns the continuous-time limits of equilib-

rium payoffs in the bad state. As it is straightforward to establish with the methods used in

Keller and Rady (2010), we state it without proof.

Lemma B.5 V1,p̄ → V ∗
1 uniformly as p̄ → 1. The convergence is monotone in the sense that

p̄′ > p̄ implies V1,p̄′ < V1,p̄ on {p : s < V1,p̄(p) < λ1h}.

Our last result on uniform convergence concerns the payoffs in the good state of the

equilibrium constructed in Section 6.3. Fix a cutoff p and consider the strategy profile where

all N players play risky for p > p, and all play safe otherwise. As in Section 6.3, we write w∆

for the players’ common payoff function from this strategy profile when actions are frozen

for a length of time ∆. The corresponding payoff function in continuous time is VN,p. The

following result can be obtained from first principles; its proof does not rely on Lemmas B.1

and B.2.

Lemma B.6 w∆ → VN,p uniformly as ∆ → 0.

Proof: As w∆(p) = VN,p(p) = s for p ≤ p, there is nothing to show for these beliefs.

Fix an initial belief p > p, therefore, and consider the process of beliefs {pt} starting from

p0 = p that corresponds to N players using the risky arm. Let τ = inf{t ≥ 0: pt ≤ p} and

τ∆ = inf{t = ∆, 2∆, 3∆, . . . : pt ≤ p}. Then,

VN,p(p) = E
[∫ τ

0
re−rth dNθ,t + e−rτs

]
,

w∆(p) = E

[∫ τ∆

0
re−rth dNθ,t + e−rτ∆s

]

where Nθ is a Poisson process with intensity λθ. As τ ≤ τ∆ ≤ τ +∆ almost surely, we have

|w∆(p)− VN,p(p)| ≤ E

[∫ τ∆

τ
re−rth dNθ,t + |e−rτ∆ − e−rτ |s

]

≤ E
[∫ ∆

0
re−rth dN1,t

]
+ (1− e−r∆)s

= (1− e−r∆)(λ1h+ s),
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and hence lim∆→0 ∥w∆ − VN,p∥ = 0 as claimed.

The remaining auxiliary results needed for the proof of Proposition 3 are comparison

results for w∆ and w∆ as ∆ becomes small. We start with equilibrium payoffs in the good

state.

Lemma B.7 Let p > p∗N . Then w∆ ≥ VN,p for ∆ sufficiently small.

Proof: In addition to the stopping times τ and τ∆ introduced in the proof of Lemma B.6,

we define τ∗ = inf{t ≥ 0: pt ≤ p∗N}, which is the stopping time that an N -player cooperative

would use in continuous time. As p > p∗N , we have τ∗ ≥ τ + ∆∗ where ∆∗ > 0 is the

(deterministic) length of time needed for the posterior belief to decay from p to p∗N when no

lump sum arrives. For ∆ ≤ ∆∗, therefore, we have τ ≤ τ∆ ≤ τ + ∆ ≤ τ∗, so τ∆ yields an

expected payoff no smaller than τ ; that is, w∆ ≥ VN,p.

Turning to equilibrium payoffs in the bad state, we define

p♭ =
µ♭(s− λ0h)

(µ♭ + 1)(λ1h− s) + µ♭(s− λ0h)
,

where

µ♭ = µN +
(N − 1)r

N(λ1 − λ0)
.

Lemma B.8 For p < p♭ and ∆ sufficiently small, w∆ ≤ VN,p.

Proof: To ease the notational burden, we write v instead of VN,p. It suffices to show that

T∆v ≤ v for sufficiently small ∆.

Recall that for p > p, v(p) = λ(p)h + Cu(p) with u(p) = (1 − p)
(
1−p
p

)µN

where the

constant C > 0 is chosen to ensure continuity at p. It follows from Keller and Rady (2010)

that v is strictly increasing on [p, 1].

The function u is strictly decreasing and strictly convex, and a straightforward compu-

tation reveals that δE∆
Ku(p) = δ1−

K
N u(p) for all ∆ > 0, K ∈ {1, . . . , N} and p ∈ (0, 1]. We

further note that E∆
Kλ(p) = λ(p) for all K by the martingale property of beliefs.

We define a belief p̌∆ by requiring that B∆
0,1(p̌

∆) = p. Starting from p > p̌∆, when

one player experiments for a length of time ∆ without receiving a lump sum, the resulting

posterior belief remains above p.

On (p̄, 1], we now have

T∆v(p) = max
{
(1− δ)λ(p)h+ δE∆

N v(p), (1− δ)s+ δE∆
N−1v(p)

}
= max

{
(1− δ)λ(p)h+ δλ(p)h+ CδE∆

Nu(p), (1− δ)s+ δλ(p)h+ CδE∆
N−1u(p)

}
= λ(p)h+ CδE∆

Nu(p)

= v(p).
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The third equality holds because δE∆
Nu(p) > δE∆

N−1u(p) (by strict convexity of u) and λ(p)h >

s (as p̄ > pm by assumption), the fourth holds because δE∆
Nu(p) = u(p).

On (p̌∆, p̄], we have

T∆v(p) = max
{
(1− δ)λ(p)h+ δE∆

1 v(p), (1− δ)s+ δv(p)
}

= max
{
λ(p)h+ CδE∆

1 u(p), (1− δ)s+ δv(p)
}

< v(p),

with the inequality holding because δE∆
1 u(p) = δ

N−1
N u(p) < u(p) and s < v(p).

On (p, p̌∆], we still have (1− δ)s+ δv(p) < v(p), while

(1− δ)λ(p)h+ δE∆
1 v(p)

= (1− δ)λ(p)h+ δΛ∆
0,1(p) s+ δ

∞∑
j=1

Λ∆
j,1(p) v(B

∆
j,1(p))

= (1− δ)λ(p)h+ δΛ∆
0,1(p)

[
s− λ(B∆

0,1(p))h− Cu(B∆
0,1(p))

]
+ δE∆

1 [λh+ Cu](p)

= λ(p)h+ δΛ∆
0,1(p)

[
s− λ(B∆

0,1(p))h− Cu(B∆
0,1(p))

]
+ Cδ1−

1
N u(p)

= v(p) + δF (p,∆)

with

F (p,∆) = C(δ−
1
N − δ−1)u(p) + Λ∆

0,1(p)
[
s− λ(B∆

0,1(p))h− Cu(B∆
0,1(p))

]
.

As δ−
1
N = er∆/N < er∆ = δ−1, we have F (p̌∆,∆) < 0. Moreover, as Λ∆

0,1(p) = pγ1+(1−p)γ0

and B∆
0,1(p) = pγ1/Λ

∆
0,1(p), we have

Λ∆
0,1(p)λ(B

∆
0,1(p)) = pλ1γ1 + (1− p)λ0γ0

and

Λ∆
0,1(p)u(B

∆
0,1(p)) = γ0

(
γ0
γ1

)µN

u(p),

hence

F (p,∆) = C

[
δ−

1
N − δ−1 − γ0

(
γ0
γ1

)µN
]
u(p) + [pγ1 + (1− p)γ0]s− [pλ1γ1 + (1− p)λ0γ0]h,

which is continuously differentiable at any (p,∆) ∈ (0, 1) × IR. For ∆ ≥ 0, the nonlinear

part of F is a negative multiple of u, so F is strictly concave in p. As Fp(p, 0) = −Cu′(p)−
λ′(p)h = −v′(p+) < 0, we see that for sufficiently small ∆ > 0, Fp(p,∆) < 0 and hence

F (p,∆) < F (p,∆) for p > p. As F (p, 0) = −Cu(p) + s− λ(p)h = s− v(p) = 0, we thus have

T∆v < v on (p, p̌∆] for sufficiently small ∆ if we can show that F∆(p, 0) < 0. Computing

F∆(p, 0) =
[
r
N − r + λ0 − µN (λ1 − λ0)

]
(s− λ(p)h) + (pλ2

1 + (1− p)λ2
0)h− λ(p)s,
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it is straightforward to check that F∆(p, 0) < 0 if and only if p < p♭.

On [0, p], finally, the monotonicity of v on [p, 1] implies that E∆
1 v(p) is increasing in p.

We thus have

(1− δ)λ(p)h+ δE∆
1 v(p) ≤ (1− δ)λ(p)h+ δE∆

1 v(p) = v(p) + δF (p,∆) < v(p) = s

and hence T∆v(p) = s = v(p).

Lemma B.9 If λ0 > 0, then p̂ < p♭ < p∗1.

Proof: As µN < µ1 and

r + λ0 − µ♭(λ1 − λ0) =
r

N
+ λ0 − µN (λ1 − λ0) = λ0

(
λ0

λ1

)µN

> λ0

(
λ0

λ1

)µ1

,

we have µ♭ < µ1. Combined with the fact that µ♭ > µN , this implies p∗N < p♭ < p∗1, which is

already the desired result in the case that j(p∗N ) ≤ p∗1 and p̂ = p∗N .

Suppose therefore that j(p∗N ) > p∗1 and p̂ > p∗N . From Lemma 1, we know that p♭ > p̂ if

and only if

λ(p♭)[NVN,p♭(j(p
♭))− (N − 1)V ∗

1 (j(p
♭))− s]− rc(p♭) > 0.

Arguing as in the proof of that lemma, we can rewrite the left-hand side of this inequality as

[p♭λ2
1+(1−p♭)λ2

0]h+Nλ0

(
λ0

λ1

)µN

c(p♭)−(N−1)λ0

(
λ0

λ1

)µ1 c(p∗1)

u(p∗1;µ1)
u(p♭;µ1)−λ(p♭)s−rc(p♭).

From the proof of Lemma B.8, moreover, we know that F∆(p
♭, 0) = 0, which is equivalent to

[p♭λ2
1 + (1− p♭)λ2

0]h+ λ0

(
λ0

λ1

)µN

c(p♭)− λ(p♭)s− rc(p♭) = 0.

Thus, p♭ > p̂ if and only if

[r + λ0 − µ♭(λ1 − λ0)] c(p
♭)

u(p♭;µ1)
>

[r + λ0 − µ1(λ1 − λ0)] c(p
∗
1)

u(p∗1;µ1)
.

Now, for µ > 0 and

p(µ) =
µ(s− λ0h)

(µ+ 1)(λ1h− s) + µ(s− λ0h)
,

a straightforward computation reveals that

c(p(µ))

u(p(µ);µ1)
=

(s− λ0h)
(
s−λ0h
λ1h−s

)µ1

(µ+ 1)
(
µ+1
µ

)µ1
.
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Applying this to p♭ = p(µ♭) and p∗1 = p(µ1), we see that p♭ > p̂ if and only if the function

g(µ) =
r + λ0 − µ(λ1 − λ0)

(µ+ 1)
(
µ+1
µ

)µ1

satisfies g(µ♭) > g(µ1).

It is straightforward to show that g′(µ) has the same sign as µ∗ − µ where

µ∗ =
µ1(r + λ0)

r + λ1 + µ1(λ1 − λ0)
< µ1.

It is thus enough to show that µ♭ > µ∗. Our assumption that j(p∗N ) > p∗1 translates into

µN >
µ1λ0

λ1 + µ1(λ1 − λ0)
.

As N−1
N ≥ 1

2 , this implies that µ♭ is greater than

µ̄ =
µ1λ0

λ1 + µ1(λ1 − λ0)
+

r

2(λ1 − λ0)
.

The proof is complete, therefore, if we can show that µ̄ > µ∗.

Simple algebra shows that this inequality is equivalent to the concave quadratic

q(µ) = λ1(r + λ1) + (λ1 − λ0)(r + 2λ0)µ− (λ1 − λ0)
2µ2

being positive at µ1. We know from Keller and Rady (2010) that r
λ1−λ0

< µ1 < r+λ0
λ1−λ0

. As

q( r
λ1−λ0

) = λ1(r + λ1) + 2λ0r and q( r+λ0
λ1−λ0

) = λ1(r + λ1) + λ0(r + λ0) are both positive, we

can indeed conclude that q(µ1) > 0.

C Proofs for the Fully Revealing Case (λ0 = 0)

Modifying notation slightly, we write Λ for the probability that, conditional on θ = 1, a player

has at least one success on his own risky arm in any given round, and g for the corresponding

expected payoff per unit of time.8

Consider an SSE played at a given prior p, with associated payoff W . If K ≥ 1 players

unsuccessfully choose the risky arm, the belief jumps down to a posterior denoted pK . Note

that an SSE allows the continuation play to depend on the identity of these players. Taking

the expectation over all possible combinations of K players who experiment, however, we

can associate with each posterior pK , K ≥ 1, an expected continuation payoff WK . If

K = 0, so that no player experiments, the belief does not evolve, but there is no reason

that the continuation strategies (and so the payoff) should remain the same. We denote

8I.e., Λ = 1− e−λ1∆ = 1− γ1 and g = λ1h.
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the corresponding payoff by W0. In addition, we write α ∈ [0, 1] for the probability with

which each player experiments at p, and QK for the probability that at least one player has a

success, given p, when K of them experiment. The players’ common payoff must then satisfy

the following optimality equation:

W = max

{
(1− δ)p0g + δ

N−1∑
K=0

(
N − 1

K

)
αK(1− α)N−1−K [QK+1g + (1−QK+1)WK+1)] ,

(1− δ)s+ δ
N−1∑
K=1

(
N − 1

K

)
αK(1− α)N−1−K(QKg + (1−QK)WK) + δ(1− α)N−1W0)

}
.

The first term corresponds to the payoff from playing risky, the second from playing safe.

As it turns out, it is more convenient to work with odds ratios

l =
p

1− p
and lK =

pK
1− pK

which we refer to as “belief” as well. Note that

pK =
p (1− Λ)K

p (1− Λ)K + 1− p

implies that lK = (1− Λ)K l. Note also that

1−QK = p (1− Λ)K + 1− p = (1− p)(1 + lK), QK = p− (1− p)lK = (1− p)(l − lK).

We define

m =
s

g − s
, ω =

W − s

(1− p)(g − s)
, ωK =

WK − s

(1− pK)(g − s)
.

Note that ω ≥ 0 in any equilibrium, as s is a lower bound on the value. Simple computations

now give

ω = max

{
l − (1− δ)m+ δ

N−1∑
K=0

(
N − 1

K

)
αK(1− α)N−1−K(ωK+1 − lK+1) ,

δl + δ

N−1∑
K=0

(
N − 1

K

)
αK(1− α)N−1−K(ωK − lK)

}
.

It is also useful to introduce w = ω − l and wK = ωK − lK . We then get

w = max

{
−(1− δ)m+ δ

N−1∑
K=0

(
N − 1

K

)
αK(1− α)N−1−KwK+1 ,

−(1− δ)l + δ

N−1∑
K=0

(
N − 1

K

)
αK(1− α)N−1−KwK

}
. (C.7)
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We define

l∗ =
m

1 + δ
1−δΛ

.

This is the odds ratio corresponding to the single-agent cutoff p∆1 , i.e., l
∗ = p∆1 /(1 − p∆1 ).

Note that p∆1 > p∗1 for ∆ > 0.

We are now ready to prove Lemma 2, which establishes that no perfect Bayesian equilib-

rium involves experimentation below p∆1 or, in terms of odds ratios, l∗.

Proof of Lemma 2: Let l be the infimum over all beliefs for which a positive probability

of experimentation by some player can be implemented in a perfect Bayesian equilibrium.

Note that l > 0: This is because the social planner’s solution is a cutoff policy, with cutoff

bounded away from 0. Below this cutoff, s is both the minmax payoff of a player (which

he can secure by always playing safe) and the highest average payoff that is feasible (given

that this is the social optimum). Hence this must be the unique perfect Bayesian equilibrium

payoff, and the unique policy that achieves it (from the social planner’s problem) specifies

that all players play safe.

Consider some prior belief l ∈ [l, l/(1 − Λ)), so that a single failed experiment takes the

posterior belief below l, and fix an equilibrium in which at least one player experiments with

positive probability in the first period. Let this be player n. As the normalized equilibrium

payoff w at the belief l is bounded below by −l, and since by construction the payoff equals

−lK at any belief lK for K ≥ 1, player n’s payoff from playing safe is at least

−(1− δ)l − δ
∑

I⊂N\{n}

∏
i∈I

αi

∏
i∈N\(I∪{n})

(1− αi) l|I|,

while the payoff from playing risky is

−(1− δ)m− δ
∑

I⊂N\{n}

∏
i∈I

αi

∏
i∈N\(I∪{n})

(1− αi) l|I|+1.

Thus, we must have

(1− δ)(m− l) ≤ δ
∑

I⊂N\{n}

∏
i∈I

αi

∏
i∈N\(I∪{n})

(1− αi) (l|I| − l|I|+1)

= δΛl
∑

I⊂N\{n}

(1− Λ)|I|
∏
i∈I

αi

∏
i∈N\(I∪{n})

(1− αi)

≤ δΛl.

(The sum in the second line achieves its maximum of 1 when αi = 0 for all i ̸= n.) This

implies

l ≥ m

1 + δ
1−δΛ

= l∗

and hence l ≥ l∗, establishing the lemma.
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For all beliefs l < l∗, therefore, any equilibrium has w = −l, or ω = 0, for each player.

We now turn to the proof of Proposition 4.

Proof of Proposition 4: Following terminology from repeated games, we say that we

can enforce action α ∈ {0, 1} at belief l if we can construct an SSE for the prior belief l in

which players prefer to choose α in the first round rather than deviate unilaterally.

Our first step is to derive sufficient conditions for enforcement of α ∈ {0, 1}. The condi-

tions to enforce these actions are intertwined, and must be derived simultaneously.

To enforce α = 0 at l, it suffices that one round of using the safe arm followed by

the best equilibrium payoff at l exceeds the payoff from one round of using the risky arm

followed by the resulting continuation payoff at belief l1 (as only the deviating player will

have experimented). See below for the precise condition.

What does it take to enforce α = 1 at l? If a player deviates to α = 0, we jump to wN−1

rather than wN in case all experiments fail. Assume that at lN−1 we can enforce α = 0.

As explained above, this implies that at lN−1, a player’s continuation payoff can be pushed

down to what he would get by unilaterally deviating to experimentation, which is at most

−(1−δ)m+δwN where wN is the highest possible continuation payoff at belief lN . To enforce

α = 1 at l, it then suffices that

w = −(1− δ)m+ δwN ≥ −(1− δ)l + δ(−(1− δ)m+ δwN ),

with the same continuation payoff wN on the left-hand side of the inequality. The inequality

simplifies to

δwN ≥ (1− δ)m− l;

by the formula for w, this is equivalent to w ≥ −l, i.e., ω ≥ 0. Given that

ω = l − (1− δ)m+ δ(ωN − lN ) = (1− δ(1− Λ)N )l − (1− δ)m+ δωN ,

to show that ω ≥ 0, it thus suffices that

l ≥ m

1 + δ
1−δ (1− (1− Λ)N )

= l̃,

and that ωN ≥ 0, which is necessarily the case if ωN is an equilibrium payoff. Note that

(1 − Λ)N l̃ ≤ l∗, so that lN ≥ l∗ implies l ≥ l̃. In summary, to enforce α = 1 at l, it suffices

that lN ≥ l∗ and α = 0 be enforceable at lN−1.

How about enforcing α = 0 at l? Suppose we can enforce it at l1, l2, . . . , lN−1, and that

lN ≥ l∗. Note that α = 1 is then enforceable at l from our previous argument, given our

hypothesis that α = 0 is enforceable at lN−1. It then suffices that

−(1− δ)l + δ(−(1− δ)m+ δwN ) ≥ −(1− δN )m+ δNwN ,
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where again it suffices that this holds for the highest value of wN . To understand this

expression, consider a player who deviates by experimenting. Then the following period the

belief is down one step, and if α = 0 is enforceable at l1, it means that his continuation

payoff there can be chosen to be no larger than what he can secure at that point by deviating

and experimenting again, etc. The right-hand side is then obtained as the payoff from N

consecutive unilateral deviations to experimentation (in fact, we have picked an upper bound,

as the continuation payoff after this string of deviations need not be the maximum wN ). The

left-hand side is the payoff from playing safe one period before setting α = 1 and getting the

maximum payoff wN , a continuation strategy that is sequentially rational given that α = 1

is enforceable at l by our hypothesis that α = 0 is enforceable at lN−1.

Plugging in the definition of ωN , this inequality simplifies to

(δ2 − δN )ωN ≥ (δ2 − δN )(lN −m) + (1− δ)(l −m),

which is always satisfied for beliefs l ≤ m, i.e. below the myopic cutoff lm (which coincides

with the normalized payoff m).

To summarize, if α = 0 can be enforced at the N −1 consecutive beliefs l1, . . . , lN−1, with

lN ≥ l∗ and l ≤ lm, then both α = 0 and α = 1 can be enforced at l. By induction, this

implies that if we can find an interval of beliefs [lN , l) with lN ≥ l∗ for which α = 0 can be

enforced, then α = 0, 1 can be enforced at all beliefs l′ ∈ (l, lm).

Our second step is to establish that such an interval of beliefs exists. This second step

involves itself three steps. First, we derive some “simple” equilibrium, which is a symmetric

Markov equilibrium. Second, we will show that we can enforce α = 1 on sufficiently (finitely)

many consecutive values of beliefs building on this equilibrium; third, we show that this can

be used to enforce α = 0 as well.

It will be useful to distinguish beliefs according to whether they belong to the interval

[l∗, (1+λ1∆)l∗), [(1+λ1∆)l∗, (1+2λ1∆)l∗), . . . For τ ≥ 0, let Iτ+1 = [(1+ τλ1∆)l∗, (1+ (τ +

1)λ1∆)l∗). For fixed ∆, every l ≥ l∗ can be uniquely mapped into a pair (x, τ) ∈ [0, 1)× IN

such that l = (1 + λ1(x + τ)∆)l∗, and we alternatively denote beliefs by such a pair. Note

also that, for small enough ∆ > 0, one unsuccessful experiment takes a belief that belongs to

the interval Iτ+1 to (within O(∆2) of) the interval Iτ . (Recall that Λ = λ1∆+O(∆2).)

Let us start with deriving a symmetric Markov equilibrium. Hence, because it is Marko-

vian, ω0 = ω in our notation, that is, the continuation payoff when nobody experiments is

equal to the payoff itself.

Rewriting the equations, using the risky arm gives the payoff9

ω = l − (1− δ)m− δ(1− Λ)(1− αΛ)N−1l + δ

N−1∑
K=0

(
N − 1

K

)
αK(1− α)N−1−KωK+1,

9To pull out the terms involving the belief l from the sum appearing in the definition of ω, use the

fact that
∑N−1

K=0

(
N−1
K

)
αK(1− α)N−1−K(1− Λ)K = (1− αΛ)N/(1− αΛ).
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while using the safe arm yields

ω = δ(1− (1− αΛ)N−1)l + δ(1− α)N−1ω + δ
N−1∑
K=1

(
N − 1

K

)
αK(1− α)N−1−KωK .

In the Markov equilibrium we derive, players are indifferent between both actions, and so

their payoffs are the same. Given any belief l or corresponding pair (τ, x), we conjecture an

equilibrium in which α = a(τ, x)∆2 +O(∆3), ω = b(τ, x)∆2 +O(∆3), for some functions a, b

of the pair (τ, x) only. Using the fact that Λ = λ1∆+O(∆2), 1− δ = r∆+O(∆2), we replace

this in the two payoff expressions, and take Taylor expressions to get, respectively,

0 =

(
rb(τ, x) +

λ1m

λ1 + r
(N − 1)a(τ, x)

)
∆3 +O(∆4).

and

0 = [b(τ, x)− rmλ1(τ + x)]∆2 +O(∆3).

We then solve for a(τ, x), b(τ, x), to get

α− =
r(λ1 + r)(x+ τ)

N − 1
∆2 +O(∆3),

with corresponding value

ω− = λ1mr(x+ τ)∆2 +O(∆3).

This being an induction on K, it must be verified that the expansion indeed holds at the

lowest interval to which it is meant to hold, I1, and this verification is immediate. (Note that

this solution is actually continuous at the interval endpoints as well).10

We now turn to the second step and argue that we can find N − 1 consecutive beliefs

at which α = 1 can be enforced. We will verify that incentives can be provided to do so,

assuming that ω− are the continuation values used by the players whether a player deviates

or not from α = 1. Assume that N − 1 players choose α = 1. Consider the remaining one.

His incentive constraint to choose α = 1 is

−(1− δ)m+ δωN − δ(1− Λ)N l ≥ −(1− δ)l − δ(1− Λ)N−1l + δωN−1, (C.8)

where ωN , ωN−1 are given by ω− at lN , lN−1. The interpretation of both sides is as before,

the payoff from abiding with the candidate equilibrium action vs. the payoff from deviating.

Fixing l and the corresponding pair (τ, x), and assuming that τ ≥ N − 1,11 we insert our

10This is not the only solution to these equations; as mentioned in the text, there are intervals of

beliefs for which multiple symmetric Markov equilibria exist in discrete time. It is easy to construct

such equilibria in which α = 1 and the initial belief is in (a subinterval of) [l∗, (1 + λ1∆)l∗).
11Considering τ < N −1 would lead to ωN = 0, so that the explicit formula for ω− would not apply

at lN . Computations are then easier, and the result would hold as well.
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formula for ω−, as well as Λ = λ1∆, 1− δ = r∆. This gives

τ ≥ (N − 1)

(
2 +

λ1

λ1 + r

)
− x.

Hence, given any integer N ′ ∈ IN , N ′ > 3(N − 1), there exists ∆̄ > 0 such that for every

∆ ∈ (0, ∆̄), α = 1 is an equilibrium action at all beliefs l = l∗(1+τ∆), for τ = 3(N−1), . . . , N ′

(we pick the factor 3 because λ1/(λ1 + r) < 1).

Fix N − 1 consecutive values of beliefs such that they all belong to intervals Iτ with

τ ≥ 3(N − 1) (say, τ ≤ 4N), and fix ∆ for which the previous result holds, i.e. α = 1 can

be enforced at all these beliefs. We now turn to the third step, showing how α = 0 can be

enforced as well for these beliefs.

Suppose that players choose α = 0. As a continuation payoff, we can use the payoff from

playing α = 1 in the following round, as we have seen that this action can be enforced at

such a belief. This gives

δl + δ(−(1− δ)m− δ(1− Λ)N l + δω−(lN )).

(Note that the discounted continuation payoff is the left-hand side of (C.8).) By deviating

from α = 0, a player gets at most

l + (−(1− δ)m− δ(1− Λ)l + δω−(l1)) .

Again inserting our formula for ω−, this reduces to

mr(N − 1)λ1

λ1 + r
∆ ≥ 0.

Hence we can also enforce α = 0 at all these beliefs. We can thus apply our induction

argument: there exists ∆̄ > 0 such that, for all ∆ ∈ (0, ∆̄), both α = 0, 1 can be enforced at

all beliefs l ∈ (l∗(1 + 4N∆), lm).

Note that we have not established that, for such a belief l, α = 1 is enforced with a

continuation in which α = 1 is being played in the next round (at belief lN > l∗(1 + 4N∆)).

However, if α = 1 can be enforced at belief l, it can be enforced when the continuation payoff

at lN is highest possible; in turn, this means that, as α = 1 can be enforced at lN , this

continuation payoff is at least as large as the payoff from playing α = 1 at lN as well. By

induction, this implies that the highest equilibrium payoff at l is at least as large as the one

obtained by playing α = 1 at all intermediate beliefs in (l∗(1+4N∆), l) (followed by, say, the

worst equilibrium payoff once beliefs below this range are reached).

Similarly, we have not argued that, at belief l, α = 0 is enforced by a continuation

equilibrium in which, if a player deviates and experiments unilaterally, his continuation payoff

at l1 is what he gets if he keeps on experimenting alone. However, because α = 0 can be

enforced at l1, the lowest equilibrium payoff that can be used after a unilateral deviation at
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l must be at least as low as what the player can get at l1 from deviating unilaterally to risky

again. By induction, this implies that the lowest equilibrium payoff at belief l is at least as low

as the one obtained if a player experiments alone for all beliefs in the range (l∗(1 + 4N∆), l)

(followed by, say, the highest equilibrium payoff once beliefs below this interval are reached).

Note that, as ∆ → 0, these bounds converge (uniformly in ∆) to the cooperative solution

(restricted to no experimentation at and below l = l∗) and the single-agent payoff, respec-

tively, which was to be shown. (This is immediate given that these values correspond to

precisely the cooperative payoff (with N or 1 player) for a cut-off that is within a distance

of order ∆ of the cut-off l∗, with a continuation payoff at that cut-off which is itself within

∆ times a constant of the safe payoff.)

This also immediately implies (as for the case λ0 > 0) that for fixed l > lm, both α = 0, 1

can be enforced at all beliefs in [lm, l] for all ∆ < ∆̄, for some ∆̄ > 0: the gain from a deviation

is of order ∆, yet the difference in continuation payoffs (selecting as a continuation payoff

a value close to the maximum if no player unilaterally defects, and close to the minimum

if one does) is bounded away from 0, even as ∆ → 0.12 Hence, all conclusions extend: fix

l ∈ (l∗,∞); for every ϵ > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄, the best SSE payoff

starting at belief l is at least as much as the payoff from all players choosing α = 1 at all

beliefs in (l∗ + ϵ, l) (using s as a lower bound on the continuation once the belief l∗ + ϵ is

reached); and the worst SSE payoff starting at belief l is no more than the payoff from a

player whose opponents choose α = 1 if and only if l ∈ (l∗, l∗ + ϵ), and 0 otherwise.

The first part of the Proposition follows immediately, picking arbitrarily p§ ∈ (p∗1, p
m) and

p♯ ∈ (pm, 1). The second part follows from the fact that (i) p∗1 < p∆1 , as noted, and (ii) for

any p ∈ [p∆1 , p
§], player i’s payoff in any equilibrium is weakly lower than his best-reply payoff

against κ(p) = 1 for all p ∈ [p∗1, p
§], as easily follows from (C.7), the optimality equation for

w.13
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