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Abstract

We consider a single-item, independent private value auction environment with two bid-

ders: the leader, who knows his valuation, and the follower, who exerts an effort that affects

the probability distribution of his valuation, which he then learns. We provide sufficient con-

ditions under which a revenue-maximizing auction solicits bids sequentially and partially dis-

closes the leader’s bid to the follower, thereby influencing the follower’s effort. This disclosure

rule, which is novel, prescribes sometimes revealing only a pair to which the leader’s bid be-

longs and sometimes (not always) revealing the bid itself. Thus, the interval-pooling pattern of

Crawford and Sobel (1982) is suboptimal. The induced effort distortion relative to the first-best

is discussed.
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JEL codes: D82, D83

1 Introduction

A seller seeks to maximize revenue by selling the item he holds to one of two bidders, whose

valuations are independent and private. One bidder knows his valuation, whereas the other bid-

der must exert a costly effort to acquire information about his valuation. The seller designs, an-

nounces, and commits to a selling mechanism. He is restricted to choosing a mechanism with an

ex-post efficient allocation rule, which assigns the item to the bidder with the highest expected
⇤Nikandrova is at Birkbeck, University of London; Pancs is at the University of Rochester.
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valuation (conditional on the information acquired by the initially uninformed bidder). Apart

from this restriction on the allocation rule, the seller’s choice of a mechanism is unconstrained.

Because of the option value of influencing the uninformed bidder’s action by disclosing to him

something about the informed bidder’s bid, it is optimal for the seller to approach the bidders

sequentially. We call the informed bidder, who is (optimally) approached first, the leader, and the

bidder who chooses his information-acquisition effort and is (optimally) approached second, the

follower.

This paper focuses on the following question: To maximize his revenue, how should the seller

disclose the leader’s bid (or report) to the follower? A related question is: How does the optimal

disclosure rule distort the follower’s effort schedule relative to the corresponding schedule in the

first-best mechanism, which maximizes the ex-ante expected surplus (the sum of the seller’s and

the bidders’ payoffs)? Restricting the seller to choosing an ex-post efficient allocation rule does

not imply that the mechanism will be first-best (as it would in the canonical auction environment

of Myerson, 1981), because the seller’s disclosure rule may induce the follower’s effort profile that

fails to maximize the ex-ante expected surplus.

Answering this paper’s questions is a step toward understanding a larger problem, which is

intractable at its most general. This larger problem is concerned with revenue maximization by

a seller who faces multiple bidders, each of whom chooses how much divisible and cumulable

information to acquire. The canonical class of mechanisms has the seller approach bidders one by

one to confidentially recommend how much information to acquire and to solicit a confidential

report regarding the outcome of information acquisition, possibly revisiting bidders with addi-

tional disclosures about others’ reports, followed by requests to acquire additional information,

and finally allocating the item as a function of all past reports. This paper’s model is a special case

that assumes that information can be acquired by only one bidder (the follower), is divisible but

not cumulable (i.e., the follower cannot acquire some information in the first instance, and then
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add to that information at a later stage), and that the allocation rule must be ex-post efficient.1

Subject to these restrictions, the class of considered mechanisms is canonical. Fixing the admissi-

ble allocation rule to be ex-post efficient enables us to isolate the distortions due to the disclosure

rule, which is the focus of this paper, from the distortions due to an allocation rule, which have

been studied extensively in the optimal-auction literature without information acquisition.2

In addition to being of conceptual interest, the model captures some features of procurement

auctions that are observed in practice. For example, in Great Britain, rail passenger services are

franchised for a limited period to train operating companies. An auction determines the award

of the franchise. This auction fits the model’s assumptions. An incumbent and a potential en-

trant bid for the right to run passenger services in a certain region. The incumbent (the leader)

is likely to know his valuation for running the services, whereas the entrant (the follower) can

choose how much information to acquire about his valuation. In practice (as will also be implied

by the model), the incumbent’s bid is distinct from his payment because the incumbent may re-

quest an operating subsidy from the government. Any details about this request that may leak

to the entrant are a noisy signal about the incumbent’s valuation; this signal guides the entrant’s

information acquisition. For instance, the entrant can interpret the incumbent’s request for a large

subsidy in two ways: (i) the incumbent is weak and needs help to continue operating, or (ii) the

incumbent is strong and plans to invest in new trains and services. An incumbent who does not

request a subsidy can be interpreted as mediocre. This interpretation, which pools the extremes,

is consistent with the model’s implications, as we will go on to show.

We show that the policies of either always concealing or always disclosing the leader’s valua-

tion are suboptimal for the seller. Moreover, under some conditions, the seller optimally partitions

the leader’s valuations (or types) into pairs of conjugate types, and discloses to the follower the

pair to which the leader’s valuation belongs, but conceals the actual valuation (Figure 1). An op-

1It is assumed that even though the seller is unable to commit to an ex-post inefficient allocation rule, he com-
mits to a disclosure rule. Such differential commitment is common in policy design. For example, the U.K.
Chief Medical Officer advises, “Women who are pregnant or trying to conceive should avoid alcohol altogether”
(http://www.nhs.uk/chq/Pages/2270.aspx#close, accessed: 16 August 2013). This advice pools any number of units
of alcohol under the same recommendation of “do not drink,” thereby precluding a pregnant woman from making a
better-informed decision of whether, how much, and when to drink. At the same time, professional ethics preclude
physicians from punishing a new mother by refusing to treat babies with Fetal Alcohol Spectrum Disorder. As a result,
an ex-post inefficient decision cannot be enforced, whereas an inefficient information-disclosure rule can.

2Although of great interest, the study of the optimal interaction of disclosure and allocation rules is outside the
scope of this paper.

3



leader's type

pairs of pooled types

0 10.8

disclosed types

0.3

Figure 1: An example of a conjugate disclosure rule. The seller reveals the leader’s type when it
is less than 0.3; the seller pools any leader’s type that exceeds 0.3 with a conjugate type into a pair
that straddles 0.8.

timal partition is described by a weakly decreasing matching function, which pools the leader’s

valuations into pairs so that lower valuations are matched with higher valuations. The seller may

also choose to reveal some of the leader’s valuations without pooling them.

The paper’s main finding, the optimality of the conjugate disclosure rule, can be equivalently

restated in terms of the shape of the follower’s effort schedule that is implied by the optimal dis-

closure rule. This schedule is hump shaped and “shifted to the right” relative to the first-best

schedule, which is also hump shaped. That is, when the leader’s valuation is low, the follower

acquires inefficiently little information, whereas when the leader’s valuation is high, the follower

acquires inefficiently much information. To gain intuition for this distortion, consider two bench-

marks: a first-best mechanism, in which the planner’s goal is to maximize the total surplus, and a

revenue-maximizing mechanism in which the seller can directly control the follower’s effort.

In the first-best benchmark, the planner benefits from the follower’s information because this

information helps the planner efficiently allocate the item. This benefit is maximal when the

leader’s valuation is intermediate. When the leader’s valuation is low, the follower is the likely

efficient recipient of the item, even if little is known about his exact valuation. When the leader’s

valuation is high, he is the likely recipient. In either extreme case, the planner gains little from

additional information about the follower’s valuation. So the follower’s first-best effort schedule

is hump shaped. Moreover, this schedule can (nonuniquely) be implemented in a mechanism that

reveals the leader’s valuation to the follower.

In the revenue-maximizing benchmark in which the seller controls the follower’s effort, he

sets this effort to zero when the leader’s valuation is below a certain threshold, and sets it to be

maximal otherwise. The intuition for this “bang-bang” property of the effort schedule stems from
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the fact that, for any leader’s valuation, denoted by q1, ex-post efficient allocation enables the seller

to charge the follower amount q1, but the leader less than q1, and so the seller prefers selling to the

follower. Indeed, by making the follower a take-it-or-leave-it offer at price q1, the seller ensures

that the follower buys if and only if the follower’s expected valuation, denoted by q2, exceeds q1, as

is required by ex-post efficiency. When q2 < q1, the seller cannot possibly hope to sell for q1 to the

leader; if the leader knew that he would be charged q1, he would profitably mimic a bidder with

a lower valuation, thereby undermining the incentive compatibility of the seller’s mechanism. As

a result, the seller instructs the follower to acquire information so as to increase the probability of

an ex-post efficient sale to the follower. In particular, because information acquisition induces a

mean-preserving spread in the probability distribution of q2, the event q2 � q1 (corresponding to

an ex-post efficient sale to the follower) is more likely either when q1 is low and the information-

acquisition effort is minimal or when q1 is high and the information-acquisition effort is maximal.

The economic forces present in both benchmarks combine in this paper’s central case, in which

the seller maximizes his revenue and cannot directly control the follower’s effort. The seller in-

fluences the follower’s information-acquisition effort indirectly, by strategically revealing infor-

mation about the leader’s bid. Because the Bayesian follower cannot be deceived systematically,

the seller’s disclosure distorts, but does not disregard, the first-best effort schedule, which would

have prevailed under full disclosure. Therefore, the rightward shift in the follower’s optimal ef-

fort schedule relative to the first-best schedule is a compromise between the first-best and the

bang-bang schedules of the two benchmarks. This compromise is illustrated in Figure 2.

Figure 2 suggests a correspondence between the structure of an optimal disclosure rule and

the shape of the optimal effort schedule. The Revelation Principle for games with private actions

(Myerson, 1982, 1986) implies that all that the follower needs to be told is the effort that the seller

would like him to exert. Then, given any target effort schedule, the corresponding rule for disclos-

ing leader’s bids can be easily designed. For example, both in the first-best effort schedule and

in the optimal effort schedule, the same effort is exerted for (at most) two leader’s types, which

can be read off Figure 2 by intersecting an effort schedule with a horizontal line corresponding to

a recommended effort (not shown). This suggests the first-best effort schedule and the optimal

effort schedule can both be implemented by means of some conjugate-disclosure rule. The first-

best effort schedule is easy to derive, whereas deriving the optimal effort schedule is a nontrivial
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leader's type

follower's effort

Figure 2: The follower’s optimal effort schedule (the solid hump-shaped curve) is a compromise
between his first-best effort schedule (the dashed hump-shaped curve) and the bang-bang effort
schedule (the two dashed horizontal line segments), corresponding to the benchmark in which
the seller controls the follower’s effort.

task. Indeed, we have found that instead of deriving the optimal effort schedule directly, it is more

convenient to derive the optimal disclosure rule first and then obtain the implied effort schedule.

The outcome that maximizes the seller’s revenue can be implemented in a second-price auction

with a tax (or subsidy) for the leader.3 The role of the tax is to encourage the leader to bid truthfully.

He would do so without a tax in a model in which the follower exerted no effort. Because the

follower does exert an effort, the leader realizes that by biasing his bid toward intermediate values,

he can encourage the follower to exert a greater effort. A greater information-acquisition effort

translates into a more dispersed probability distribution of the follower’s expected valuations,

which benefits the leader, whose payoff is convex in the follower’s expected valuation. Hence, the

corrective tax is necessary.

This paper is most closely related to two strands of literature: mechanism design with en-

dogenous information acquisition and the models of Bayesian persuasion. Mechanism design

with information acquisition tends to focus on mechanisms that are simultaneous in the sense

that all bidders acquire information simultaneously, so the issues of optimal bid-disclosure do not

arise. For instance, Shi (2012) studies a revenue-maximizing simultaneous auction. Bergemann

and Välimäki (2002) study a Vickrey-Clark-Groves mechanism, which in the present model, cor-

responds to the second-price auction and is neither first-best nor profit-maximizing.

3Also the first-best outcome can be implemented in a second-price auction, but with a different tax.
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Methodologically, the most pertinent Bayesian-persuasion paper is by Rayo and Segal (2010),

who derive a canonical class of disclosure rules in a discrete-type optimal disclosure model.4 In

deriving the seller’s optimal bid-disclosure rule, our paper adapts their results to the continuous

type-space auction model and exploits the special structure of our setting.

One of the paper’s contributions is establishing the optimality of pooling pairs of types, never

intervals of types, under the same message. To our knowledge, the only paper with a pooling

pattern similar to ours is Golosov et al. (2011), who consider a dynamic version of Crawford and

Sobel (1982). In that version, in every period, an expert, who is privately informed about a fixed

state of the world, sends a message to a decision maker. Golosov et al. (2011) construct an equi-

librium that eventually reveals that state. A critical ingredient in their construction is a disclosure

rule that initially pools faraway types into pairs. These pairs are not ordered in the same way as

in our paper, however. Furthermore, their pairwise disclosure serves a different purpose (i.e., the

eventual separation of types) in a disclosure game that is substantively different (i.e., has multiple

stages of communication and no commitment).5

The seller’s disclosure problem is reminiscent of, but is not directly related to, the literature

on optimal delegation (Krishna and Morgan, 2008; Kovac and Mylovanov, 2009; Amador and

Bagwell, 2013). In this literature, an uninformed principal offers a contract designed to elicit in-

formation from an informed agent and to make him take a desired action. Optimal contracts

typically involve intervals of pooled types and intervals of revealed types. By contrast, in the

present model, the pooling of intervals of types is suboptimal, and pooling into conjugate pairs of

types emerges instead. The difference in the results is due to a crucial difference in the settings.

The optimal-delegation literature assumes that the uniformed party designs the contract, whereas

in this paper, the the informed party (the seller) designs it.

Among other papers that study information acquisition in auctions are Bergemann and Välimäki

(2002), Persico (2003), Compte and Jehiel, 2007, and Crémer et al. (2009). Bergemann and Välimäki

4Kamenica and Gentzkow (2011) address the same conceptual problem as Rayo and Segal (2010) do, but in a model
with less structure, and so obtain results that are less sharp for the purposes of the present paper.

5Introducing commitment into a canonical cheap-talk model does not generate anything resembling the conjugate
disclosure that we find. Indeed, in the quadratic formulation of Crawford and Sobel (1982), if one assumes that the
sender commits to a disclosure rule, full disclosure becomes optimal. Intuitively, the sender cannot persuade the re-
ceiver to systematically bias his action (to indulge the sender’s bias), but by committing to full disclosure, he can make
the receiver’s action match the state. Such matching maximizes the sender’s ex-ante expected utility, because the seller
is risk-averse with respect to the discrepancy between the receiver’s action and the state.
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(2002) are concerned with efficient mechanisms in environments with simultaneous information

acquisition; these mechanisms are no longer efficient when information acquisition can be se-

quential, as Section 3 illustrates. Persico (2003) and Compte and Jehiel (2007) compare revenues

in standard auctions. Compte and Jehiel, 2007 and Crémer et al. (2009) find that dynamic auctions

deliver higher revenues than static ones when bidders can acquire information sequentially; this

insight justifies our focus on dynamic mechanisms, which indeed are shown to dominate static

ones. Crémer et al. (2009) design a revenue-maximizing auction. Because they assume that the

seller can charge bidders for participation, optimal information disclosure turns out to be trivial

and is not the focus of their paper. By contrast, the present paper rules out participation fees

(and with them, the seller’s ability to sell information about the leader’s bid to the follower) by

imposing interim individual rationality and focuses on the information-disclosure design.

This section concludes with an outline for the rest of the paper. Section 2 describes the eco-

nomic environment. Section 3 derives the first-best allocation and an auction that implements it.

Section 4 establishes the suboptimality of the policies of full disclosure, no disclosure, and interval

pooling. Under additional conditions, the section partially characterizes an optimal auction by

establishing that an optimal disclosure rule is conjugate, and then formulates an optimal-control

problem whose solution delivers the matching function underlying the conjugate disclosure rule.

The section also discusses how and why the follower’s effort schedule in the optimal auction

departs from the corresponding schedule in the first-best auction. Section 5 discusses some imme-

diate generalizations and extensions that do not alter the spirit (and often not even the letter) of the

main results. Section 6 seeks optimal disclosure rules in two examples. Section 7 concludes. Some

proofs are relegated to the Appendix. Technical results comprise the Supplementary Appendix.

2 Model

Environment

The seller must allocate an item, which he values at zero, to one of two bidders, whom he contacts

sequentially. Bidder 1, the leader, privately observes his valuation, or type, denoted by q1 and

drawn according to a c.d.f. G with the corresponding p.d.f. g and support Q1 ⌘ [0, 1]. The c.d.f. G

on (0, 1) is smooth, with bounded derivatives. Bidder 2, the follower, is unsure of his valuation,
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and privately exerts an effort a 2 A ⌘ [0, 1] to acquire information, which determines his expected

valuation, or type, denoted by q2 2 Q2 ⌘ [0, 1], as will be specified shortly. The cost of effort a is

C (a) ⌘ ca2/2, c > 0.

For any i 2 {1, 2}, let xi 2 [0, 1] be the probability that bidder i gets the item, and let ti 2 R be

his payment. Then, the leader’s payoff is

q1x1 � t1,

and the follower’s payoff is

q2x2 � t2 � C (a) .

Both bidders are expected-utility maximizers.

Effort Technology

The follower’s type, q2, is interpreted as his expected underlying valuation conditional on the

privately observed outcome of his information-acquisition effort. The underlying valuation is not

modeled, because it affects the follower’s payoff only through q2. For any a 2 A, q2 is drawn

according to a c.d.f that is linear in a:6

F (q2 | a) ⌘ aFH (q2) + (1 � a) FL (q2) , q2 2 Q2 ⌘ [0, 1] . (1)

Whenever the p.d.f.s corresponding to the c.d.f.s F, FH, and FL exist, they are denoted by f , fH,

and fL. The c.d.f. F may have mass points at {0, 1}, but on (0, 1), it is assumed to be smooth, with

bounded derivatives. Conditional on a, q1 and q2 are independent.

For a to be interpreted as an information-acquisition effort, F is assumed to satisfy

Condition 1 (Information Acquisition). (i) (equality of means)
´ 1

0 FH (s)ds =
´ 1

0 FL (s)ds, and

(ii) (rotation) for some q⇤ 2 (0, 1), for all s 2 (0, q⇤)[ (q⇤, 1), it holds that (q⇤ � s) (FH (s)� FL (s)) >

0.

According to Condition 1, the follower who exerts effort a, with probability a, receives a more

6In principal-agent problems, the linearity condition (1) is known as the Linear Distribution Function Condition,
whose special case is the Spanning Condition of Grossman and Hart (1983, p. 25).
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informative signal about his underlying valuation, and with probability 1 � a, receives a less in-

formative signal.7 For this interpretation, part (i) requires the follower’s effort not to affect his

expected type.8 In particular, part (i) rules out the situations in which the follower’s effort is a

value-enhancing investment. In addition, part (ii) implies that a higher effort induces a mean-

preserving spread of the distribution of the follower’s types.9 This mean-preserving spread cap-

tures a standard, but perhaps counter-intuitive, implication of Blackwell’s informativeness cri-

terion (Blackwell, 1951, 1953). According to this criterion, a more informative signal about the

follower’s (unmodelled) underlying valuation induces a greater dispersion of the probability dis-

tribution over conditional expectations, q2.10,11 When a = 1, the realized q2 can be interpreted

either as an expectation of a still-uncertain underlying valuation or as the underlying valuation

itself.

An example of the information-acquisition technology specified in Condition 1 is:

Example 1 (Information Acquisition). F (q2 | a) = a/2 + (1 � a) q2 for q2 < 1, and F (1 | a) = 1.

Example 1 can be interpreted to say that with probability a, the follower observes a perfectly in-

formative signal that reveals his underlying valuation v, which is distributed uniformly on {0, 1},

and with probability 1 � a, the follower observes a partially informative signal about v.

An example that violates Condition 1 is

Example 2 (Valuation Enhancement). FH (q2) = q2
2 and FL (q2) = q2 for q2 2 Q2.

This example violates part (i) of Condition 1, whereas part (ii) holds with q⇤ = 0. Here, a

7A signal structure that rationalizes the probability distribution of types in Condition 1 is given in Supplementary
Appendix B.1.

8For any c.d.f. H on [0, 1], its expectation is
´

xdH (x) =
´
(1 � H (x))dx.

9Here is the proof that parts (i) and (ii) imply a mean-preserving spread. Let a0 > a. Part (ii) implies
(q⇤ � s) (F (s | a0)� F (s | a)) � 0, which combined with part (i) gives

´ x
0 F (s | a0)ds �

´ x
0 F (q | s)ds for all x 2 [0, 1].

That is, F (· | a) second-order stochastically dominates F (· | a0), and the claim about the mean-preserving spread fol-
lows.

10For example, suppose that the underlying valuation, denoted by v, is distributed uniformly on [0, 1]. Conditional
on the observation of a perfectly uninformative signal, the probability distribution of v is still uniform on [0, 1] and so
q2 = 1/2. By contrast, conditional on the observation of a perfectly informative signal, the probability distribution of v is
degenerate at the true underlying valuation and so q2 = v. To summarize, anticipating a perfectly uninformative signal,
one assigns probability one to q2 = 1/2, whereas anticipating a perfectly informative signal, one views q2 as distributed
uniformly on [0, 1]. In the former case, the dispersion of the probability distribution of conditional expectations, q2, is
zero, while in the latter case, it is equal to the dispersion of the probability distribution of the underlying valuation.

11Characterizing the informativeness of a signal through the induced dispersion of the probability distribution of
conditional expectations is common in the literature. See, for example, Ganuza and Penalva (2010), Johnson and Myatt
(2006) or Shi (2012).
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higher effort induces a first-order stochastic-dominance shift in the distribution of q2. Here, an

effort is investment in enhancing the valuation, not in acquiring information.

To simplify the exposition by avoiding the corner solution a = 1, assume that the cost of effort

is sufficiently large:12

c >
ˆ q⇤

0
(FH (s)� FL (s))ds. (2)

The Seller’s Problem

The seller chooses, publicly announces, and commits to a mechanism that is ex-post efficient and

interim individually rational. A mechanism is ex-post efficient if, for any type profile (q1, q2),

the probability that bidder i 2 {1, 2} gets the item is xi(qi, q�i) = 1{qi>q�i}, where 1{} is the in-

dicator function. A mechanism is interim individually rational if, having observed his type qi,

bidder expects a nonnegative payoff.

By the Revelation Principle for multi-stage games (Myerson, 1986), no generality is lost by

restricting attention to direct-revelation mechanisms of the following form:

1. The leader observes q1 and confidentially reports q̂1 2 Q1.

2. The seller confidentially sends a message m 2 M to the follower according to some disclo-

sure rule µ : Q1 ! D (M), which associates with each report of the leader a probability

distribution over messages.

3. The follower exerts an effort a⇤ (m) 2 A, then observes q2 and confidentially reports q̂2 2 Q2.

4. Bidder i with q̂i > q̂�i gets the item. Payments (t1, t2) : Q1 ⇥ Q2 ! R2, the functions of

bidders’ reports, are assessed.

If the seller’s message were independent of the leader’s report, the described direct-revelation

mechanism would be strategically equivalent to a mechanism in which the seller asked both bid-

ders to submit their reports simultaneously.

Without loss of generality, the seller can focus on the (perfect Bayes-Nash) equilibria that are

incentive-compatible, meaning that
�

q̂1, q̂2
�

= (q1, q2). Nor does a loss of generality occur in

12This condition is derived by requiring that the first-best effort, given in (6), be less than 1.
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setting M = A, although a different M will sometimes be convenient.

The seller chooses a disclosure rule µ and payments (t1, t2) that induce an ex-post efficient,

interim individually rational, and incentive-compatible mechanism that maximizes the seller’s

expected revenue:

ˆ
Q1

ˆ
M

ˆ
Q2

(t1 (q1, q2) + t2 (q1, q2))dF (q2 | a⇤ (m))dµ (m | q1)dG (q1) . (3)

Ex-post efficiency and interim individual rationality are restrictive but essential for main-

taining the focus on optimal information disclosure. When interim individual rationality is not

imposed, optimal information disclosure is trivial; when ex-post efficiency is not imposed, it is

conflated with the design of optimal allocation rule.13 Moreover, ex-post efficiency and interim

individual rationality are relevant for applications where the seller cannot impose fees for par-

ticipation or information about the leader’s type and cannot commit to an allocation rule that is

inefficient given the revealed information about bidders’ valuations.14

3 A First-Best Auction

The first-best outcome obtains when a fictitious planner maximizes the expected total surplus

(i.e., the sum of bidders’ payoffs), observes each bidder’s type, and directly controls the follower’s

effort.

For every leader’s type q1, the follower’s first-best effort a (q1) maximizes the total surplus:

a (q1) 2 arg max
a2A

⇢ˆ
Q2

max {q1, q2}dF (q2 | a)� C (a)
�

. (4)

Integrating by parts gives:

a (q1) 2 arg max
a2A

(

1 �
ˆ 1

q1

F (q2 | a)dq2 � C (a)

)

.

13Without ex-post efficiency, the full mechanism-design problem is intractable. Without interim individual rational-
ity, the seller can extract the bidders’ entire surplus by implementing a first-best auction that admits full disclosure, as
in the model of Crémer et al. (2009).

14Fees for participation and for the information about the leader’s type are ruled out by interim (but not ex-ante)
participation constraints.
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For a given q1, the planner’s marginal net benefit from an increase in the follower’s effort is

the derivative of the maximand in the above display:

R (q1, a) ⌘ �
ˆ 1

q1

∂F (q2 | a)
∂a

dq2 � C0 (a) . (5)

Because for any a > 0, R (1, a) = �C0 (a) < 0 and R (0, a) = �C0 (a) < 0 (by part (i) of Con-

dition 1), if the leader’s valuation is the highest possible or the lowest possible, it is first-best for

the follower to exert no effort. Indeed, in either of these extreme cases, no additional information

about the follower’s valuation affects the item’s efficient allocation. So no additional information

is solicited.

Part (ii) of Condition 1 implies that R (q1, a) is strictly increasing in q1 for q1 < q⇤ and is strictly

decreasing in q1 for q1 � q⇤, where q⇤ is defined in that condition. Hence, by the Monotone

Selection Theorem (Milgrom and Shannon, 1994), the first-best effort, denoted by a (q1), is weakly

increasing in q1 for q1 < q⇤ and is weakly decreasing in q1 for q1 � q⇤. Moreover, the dependence

is strict when a (q1) 2 (0, 1) (Edlin and Shannon, 1998), which can be shown to be the case when

q1 2 (0, 1).15

The following theorem summarizes the properties of the first-best effort.

Theorem 1. The first-best effort

a (q1) =
1
c

ˆ 1

q1

(FL (s)� FH (s)) ds, q1 2 [0, 1] (6)

satisfies a (0) = a (1) = 0, is strictly increasing in q1 when q1 < q⇤, and is strictly decreasing in q1 when

q1 � q⇤.

The following corollary describes a modified second-price auction that implements the first-

best effort. In this auction, the leader who bids b pays the (possibly negative) tax

T (b) ⌘
ˆ b

0
(F (s | a (b))� F (s | a (s)))ds. (7)

15In particular, q1 2 (0, 1) implies a (q1) > 0 because the quadratic cost satisfies C0 (0) = 0; and a (q1) < 1 holds for
q1 = q⇤, and hence for all q1, by (2).
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Corollary 1. In a mechanism that implements the first-best outcome, the seller

1. asks the leader to submit a bid, denoted by b, and charges him the tax T (b);

2. discloses b to the follower and invites him to bid in the second-price auction;

3. allocates the item according to the rules of the second-price auction.

In equilibrium, each bidder bids his type, and the follower exerts the first-best effort.

Proof. See Appendix 1.

If not for the leader’s tax, the mechanism in Corollary 1 would have been a standard second-

price auction executed sequentially and with the leader’s bid made public. The tax offsets the

leader’s incentives to manipulate the follower’s information acquisition by bidding untruthfully.

To see the incentives for untruthful bidding, suppose that type-q1 leader faces no tax (i.e., T ⌘ 0)

and bids truthfully (i.e., b = q1). Then, his payoff in the second-price auction is Eq2 [max {0, q1 � q2}],

the standard expression except that the leader’s bid affects the probability distribution of q2.

Because max {0, q1 � q2} is convex in q2, Jensen’s inequality implies that the leader gains from

the follower’s valuation being more spread out, which occurs when the follower exerts more effort

(footnote 9). The leader can induce the follower to exert more effort by untruthfully bidding away

from his valuation and toward q⇤. By the envelope argument, this untruthful bidding would

have had a second-order detrimental effect on the leader’s payoff if the follower’s effort had been

fixed. Because the follower’s effort responds to the leader’s bid, however, untruthful bidding has

a first-order beneficial effect on the leader’s payoff.

The role of the tax in discouraging untruthful bidding can be appreciated by considering the

tax-induced reduction in the leader’s return to increasing marginally his bid. This reduction is

T0 (b) = a0 (b)
ˆ b

0

∂F (s | a (b))
∂a

ds,

where the integral is positive for all b 2 (0, 1) (by Condition 1). Therefore, the sign of T0 (b) is the

same as the sign of a0 (b), which is positive when b < q⇤ and is negative when b > q⇤. In other

words, bids below q⇤ are taxed on the margin, and bids above q⇤ are subsidized on the margin.
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4 A Seller-Optimal Auction

Without information acquisition, the seller’s problem would have been trivial. The ex-post effi-

cient allocation rule, interim individually rational participation, and incentive compatibility would

have uniquely determined the seller’s expected payoff, by the revenue equivalence theorem. With

information acquisition, however, the allocation is not uniquely determined by the ex-post effi-

ciency requirement, because the follower’s effort influences the allocation. So the seller’s problem

is non-trivial and will be analyzed in three steps, comprising three subsections.

In Section 4.1, incentive compatibility is used to substitute payments out of the seller’s objec-

tive function. This step relies on the standard envelope argument for local incentive compatibility

and yields a virtual surplus.16 The seller’s problem then reduces to an information-disclosure

problem in which the policies of full disclosure and no disclosure are suboptimal.

In Section 4.2, under additional assumptions, it is demonstrated that the search for a seller-

optimal disclosure rule can be restricted to so-called conjugate disclosure rules, described by a

matching function that pools pairs of the leader’s valuations. The justification for focusing on

conjugate disclosure relies on results of Rayo and Segal (2010), which are adapted for the continu-

ous type space in the seller’s disclosure problem. The shape of the optimal effort schedule is then

derived from the optimal disclosure rule.

In Section 4.3, the seller’s disclosure problem is formulated as an optimal-control problem.

Two remarks clarifying our approach are in order. First, the optimality analysis focuses on

the seller’s relaxed problem that neglects the monotonicity condition that requires the leader’s

probability of winning the item to be nondecreasing in his type. This monotonicity is required by

incentive compatibility and must be verified in applications (e.g., as in Section 6).17 The relaxed

problem, even though restrictive, is sufficiently rich to have become focal in the mechanism-design

literature.

Second, by the Revelation Principle, the canonical disclosure rule takes the form of the ef-

fort schedule that recommends an effort to the follower as a (possibly stochastic) function of the

16For local incentive compatibility, see Fudenberg and Tirole (1991, pp. 284-8) or the Constraint Simplification Theo-
rem of Milgrom (2004), implied by the Envelope Theorem of Milgrom and Segal (2002).

17The analogous monotonicity condition for the follower is guaranteed to hold. The monotonicity condition is guar-
anteed to hold also for the leader in the mechanism that implements the first-best outcome and in the various bench-
marks considered in this paper.
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leader’s type. In order to find this schedule, it is analytically convenient to begin with a non-

canonical disclosure rule, which admits the possibility that distinct messages induce the same

effort. The derived optimal (non-canonical) disclosure rule identifies the optimal effort schedule,

which, in turn, implies a disclosure rule in the canonical form, where pairs of leader’s types are

pooled under the same recommended effort.

4.1 The Seller’s Information-Disclosure Problem

The Follower’s Optimal Effort

When devising a disclosure rule, the seller anticipates its effect on the follower’s effort schedule,

which maps the leader’s type into the follower’s information-acquisition effort. For a given disclo-

sure rule, this schedule is determined as follows. Reasoning backwards, suppose that the follower

has observed his type q2 and the seller’s message m. The follower then chooses the report that

maximizes his expected payoff:

U2 (q2 | m) ⌘ max
q̂22Q2

Eq1|m

h

q21{q̂2>q1} � t2
�

q1, q̂2
�

i

,

where the expectation is over the leader’s type q1 conditional on the seller’s message m and, im-

plicitly, on the disclosure rule. By the Envelope Theorem, incentive compatibility requires

U0
2 (q2 | m) ⌘ dU2 (q2 | m)

dq2
= Eq1|m

⇥

1{q2>q1}
⇤

. (8)

Then, the follower’s expected payoff from exerting effort a0 is

ˆ
Q2

U2 (q2 | m)dF2
�

q2 | a0
�

= U2 (0 | m) +
ˆ 1

0
Eq1|m

⇥

1{q2>q1}
⇤ �

1 � F
�

q2 | a0
��

dq2,

where the equality uses (8) and follows by integration by parts.18 Interchanging the order of in-

tegration and expectation (by Fibula’s theorem) in the right-hand side of the above display yields

18Integration by parts is valid even if even F is discontinuous (e.g., as in Example 1), because U2 (· | m) has a bounded
derivative everywhere and hence is continuous.
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the follower’s choice-of-effort problem:

a⇤ (m) 2 arg max
a02A

 

Eq1|m

"ˆ 1

q1

�

1 � F
�

q2 | a0
��

dq2

#

� C
�

a0
�

!

. (9)

Under the maintained Condition 1, (9) has a unique solution:

a⇤ (m) = Eq1|m [a (q1)] , (10)

where a (q1), defined in (6), is the first-best effort level when the leader’s type is q1.

The Seller’s Virtual Surplus

The seller’s objective function (3) is transformed into the virtual surplus by using a standard

mechanism-design technique: bidders’ transfers are substituted out using bidders’ local incentive-

compatibility constraints, such as the one derived for the follower in (8):19,20

Em,q1,q2

✓

q1 �
1 � G (q1)

g (q1)

◆

1{q1>q2} +

✓

q2 �
1 � F (q2 | a⇤ (m))

f (q2 | a⇤ (m))

◆

1{q2�q1}

�

. (11)

The displayed virtual surplus is standard; it is the expected sum of each bidder’s virtual valuation

times the probability that he gets the item. Here, the probability of getting the item is pinned

down by the ex-post efficient allocation rule. Integrating q2 out and simplifying yields:

ˆ
Q1

Em|q1



q1 �
1 � G (q1)

g (q1)
F (q1 | a⇤ (m))

�

dG (q1) , (12)

where a⇤ (m) is given by (9).21 If not for the possibility that a⇤ depended on q1 (through m), the

virtual surplus (12) would have been standard.

To understand (12), suppose that the leader’s type is q1 and the seller sends a message m.

Ex-post efficiency requires that the leader get the item with probability F (q1 | a⇤ (m)), which is

the probability that q2 < q1. In this case, the seller’s gain is the leader’s virtual valuation q1 �

(1 � G (q1)) /g (q1), which is his true valuation q1 less the information rent (1 � G (q1)) /g (q1).
19The analogue of (8) for the leader is U0

1 (q1) = Em|q1
[F (q1 | a⇤ (m))].

20If F has no density f , skip to (12), which does not rely on the existence of f .
21The virtual surplus in (12) is non-negative because it is bounded below by

´
Q1

[q1 � (1 � G (q1)) /g (q1)]dG (q1) =
0.
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Analogous reasoning suggests that if the follower gets the item (which occurs with probability

1 � F (q1 | a⇤ (m))), the seller’s gain is the follower’s expected virtual valuation conditional on

winning, which can be verified to be q1.22 That is, the follower’s information rent is implicit in

(12). The expression for the virtual surplus is asymmetric because q2 has been integrated out; the

dynamic nature of the mechanism is reflected only in the fact that m may depend on q1.

By (12), the seller’s goal is to design a disclosure rule so as to minimize the expected weighted

probability with which the leader buys (where the weights are the leader’s information rents). The

asymmetric treatment of bidders in the seller’s objective function stems solely from the fact that

the seller can affect the distribution of the follower’s valuations, but not the leader’s. By aiming

to minimize the leader’s expected weighted probability of winning, the seller aims to encourage

the follower to become “stronger,” thereby intensifying bidder competition.23 Whether a better

or a worse informed follower is “stronger” depends on the leader’s valuation. When the leader’s

valuation is high, the follower stands a better chance of outbidding the leader if better informed,

with the distribution of his types more dispersed. The opposite is true when the leader’s valuation

is low.

Two Benchmarks

The expression for the virtual surplus, the maximand in the seller’s disclosure problem, suggests

two benchmarks that are useful for building an intuition for an optimal disclosure rule:

Theorem 2. (i) If the seller observed the leader’s valuation, any disclosure rule would be optimal. In

particular, fully disclosing to the follower the leader’s valuation would be optimal, in which case the first-

best outcome would be achieved.

(ii) If the seller could choose for the follower any effort from an interval [0, ā] with some ā < 1, any disclosure

rule would be optimal and the seller would choose the effort ā1{q1�q⇤}, q1 2 Q1.

Proof. For part (i), if the seller observes the leader’s valuations, he can extract the leader’s entire
22Formally, the follower’s expected virtual valuation conditional on winning when the leader’s type is q1 is

ˆ 1

q1

✓

q2 �
1 � F (q2 | a⇤ (m))

f (q2 | a⇤ (m))

◆

f (q2 | a⇤ (m))
1 � F (q1 | a⇤ (m))

dq2 = q1.

Even though the integrand is written as if F had a positive density, f , the validity of (12) requires no such assumption.
23The bidder asymmetry does not suggest that if he could, the seller would wish to sabotage the leader’s valuation,

so that the leader loses more often.
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information rent by charging him q1 when the follower refuses to buy at q1. In this case, the

leader’s virtual valuation in (11) is replaced simply by his valuation, q1, and hence the implied

(12), ˆ
Q1

Em|q1 [q1]dG (q1) ,

is independent of the follower’s effort.

For part (ii), if the seller can directly and costlessly choose the follower’s effort a 2 [0, ā],24 he

does so to minimize pointwise the probability that the leader is the ex-post efficient recipient of

the item, by (12). Formally, for q1 < q⇤, the seller sets a = 0, and for q1 � q⇤, the seller sets a = ā.25

When the follower has no control over his action, any disclosure rule can be optimal, as truthful

reporting can be made a dominant strategy to the follower (at no additional cost to the seller), for

instance, by making a take-it-or-leave-it offer to the follower at the price q1.

Part (i) of Theorem 2 indicates that managing the leader’s information rent is the sole rationale

for the seller’s strategic disclosure. Part (ii) of the theorem shows that the follower’s information-

acquisition effort is an effective instrument for doing so—at least if this effort can be controlled

directly. Figure 2 juxtaposes the ideal controlled effort schedule and the first-best effort schedule.

The Suboptimality of Full Disclosure and Non-disclosure

The following theorem shows that the restriction that the seller must persuade, but cannot coerce,

the follower to exert an intended effort does not render the seller’s disclosure problem trivial. In

the theorem, full disclosure is a disclosure rule that assigns a distinct message to each type of

the leader. Non-disclosure is a disclosure rule that pools all types of the leader under the same

message.

Theorem 3. Under Condition 1, the policies of full disclosure and non-disclosure are suboptimal. If in

addition, c.d.f.s G, FL, and FH are analytic functions, it is never optimal to pool an open interval of the
24The requirement ā < 1 ensures that the distribution of the follower’s type has the full support [0, 1], thereby

justifying the envelope argument on which the analysis relies.
25The leader’s monotonicity (or global incentive-compatibility) constraint holds; that is, the leader’s expected alloca-

tion F
⇣

q1 | 1{q1�q⇤}
⌘

is weakly increasing in his type q1. Indeed, F (q1 | 0) and F (q1 | 1) are both weakly increasing in
q1, and limq1"q⇤ F (q1 | 0)  limq1"q⇤ F (q1 | 1)  F (q⇤ | 1). The follower’s monotonicity constraint also holds, trivially.
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leader’s types under the same message.26

The proof of Theorem 3 uses the seller’s objective function (12) rewritten in a canonical form,

which is also used in the proofs of subsequent results. To arrive at the canonical form, neglect

the additive term in (12) that is independent of the disclosure rule. Then, the objective function

becomes ˆ
Q1

Em|q1 [p (q1) a⇤ (m)]dG (q1) , (13)

where

p (q1) ⌘
1 � G (q1)

g (q1)
(FL (q1)� FH (q1)) (14)

is the seller’s marginal benefit from an increase in a. The marginal benefit p equals the leader’s

information rent times the marginal increase in the probability that the follower gets the item.

The seller’s objective function (13) is further transformed by using the Law of Iterated Expec-

tations and the relationship a⇤ (m) = Eq1|m [a (q1)], derived in (10), yielding the canonical form

E
⇥

Eq1|m [p (q1)]Eq1|m [a (q1)]
⇤

. (15)

The transformed objective function is canonical in the sense that it coincides with the sender’s

objective function (equation [2]) in the optimal information-disclosure model of Rayo and Segal

(2010), henceforth abbreviated as RS.27 For the rest of the paper, a tuple (p (q1) , a (q1)) is called a

prospect.28 The prospect set is the graph G ⌘ {(a (q1) , p (q1)) : q1 2 Q1}.

The proof of Theorem 3 relies on two lemmas, which are of independent interest. For the first

lemma, call functions a and p co-monotone if (a (s0)� a (s)) (p (s0)� p (s)) � 0 for almost all

s, s0 2 Q1.

Lemma 1. Full disclosure is optimal if and only if a and p are co-monotone.

Proof. Necessity: Suppose that a and p are not co-monotone. Then, an interval I ⇢ Q1 exists on

26A function is analytic if it can be locally represented by a convergent Taylor series. Many common functions are
analytic, and by the Stone–Weierstrass Theorem, any continuous function that is not analytic can be approximated
arbitrarily well by an analytic function.

27In what follows, bracketed indices will refer to equations and lemmas in RS’s paper.
28The set {(p (q1) , a (q1)) : q1 2 Q1} differs from RS’s set of prospects only in that RS require it to be finite, for

tractability.
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which a is strictly increasing and p is strictly decreasing, or the other way around. In this case,

ˆ
I

ˆ
I

�

a
�

s0
�

� a (s)
� �

p
�

s0
�

� p (s)
�

dsds0 < 0.

In the above display, multiplying the parentheses, defining |I| ⌘
´

I ds, and rearranging yields29

ˆ
I

a (s)p (s)ds <
1
|I|

ˆ
I

a (s)ds
ˆ

I
p (s)ds,

where the left-hand side is the seller’s expected payoff from fully disclosing the types in I, and the

right-hand side is the seller’s expected payoff from pooling all types in I under the same message.

Thus, full disclosure is suboptimal.

Sufficiency:30 Suppose that a and p are co-monotone. By contradiction, suppose that, with

probability density p, prospect (a (s) , p (s)) occurs and induces a message m. Suppose also that,

with probability density p0, prospect (a (s0) , p (s0)) with s0 6= s occurs and induces the same mes-

sage m.31 The seller’s gain from pooling the two prospects under message m relative to revealing

each of them is

pa (s) + p0a (s0)
p + p0

pp (s) + p0p (s0)
p + p0

�

p + p0
�

� pa (s)p (s)� p0a
�

s0
�

p
�

s0
�

= � pp0 (a (s0)� a (s)) (p (s0)� p (s))
p + p0

 0,

where the inequality is by co-monotonicity. Thus, a weak improvement can be attained by re-

vealing any two prospects that are sometimes pooled under the same message; full disclosure is

optimal.

For the second lemma, define a nonincreasing line as a straight line that is either vertical or

has a nonpositive slope.

Lemma 2. It is optimal to pool a subset S of the prospect set G under the same message if and only if S lies

on a nonincreasing line.
29The obtained inequality is a continuous version of Chebyshev’s sum inequality.
30The argument is as in Lemma [1] of Rayo and Segal (2010) and is included here for completeness.
31The message m may be also induced by some other prospect. Either prospect may also induce some other message.
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Proof. For sufficiency, suppose first that S lies on a vertical line. Then, the seller’s payoff from S,

E
⇥

E|m [a]E|m [p]
⇤

= pE [a], is independent of the disclosure rule. Any disclosure of the elements

of S is optimal, including pooling them under the same message.

If G is a nonincreasing line that is not vertical, then for some k0 2 R and k1 2 R+, every

prospect (p (q1) , a (q1)) in S can be written as a (q1) = k0 � k1p (q1). The seller’s payoff from S,

E
⇥

E|m [a]E|m [p]
⇤

= k0E [p]� k1E
h

�

E|m [p]
�2
i

,

is maximized when E
h

�

E|m [p]
�2
i

is minimized, which by Jensen’s inequality, occurs when the

signal structure is least informative in Blackwell’s sense, when the random variable E|m [p] is least

dispersed. Least dispersion is achieved by pooling all prospects in S under the same message.

To summarize, pooling all prospects on a line segment is optimal, and strictly so when k1 > 0.

Necessity follows from Rayo and Segal (2010, Lemma 3, p. 960).

Taking S = G in Lemma 2 immediately yields

Corollary 2. Non-disclosure is optimal if and only if the prospect set G lies on a nonincreasing line.

One can now prove Theorem 3.

Proof. (of Theorem 3) Recall that

p (q1) =
1 � G (q1)

g (q1)
(FL (q1)� FH (q1))

a (q1) =
1
c

ˆ 1

q1

(FL (s)� FH (s))ds.

By Theorem 1, a is uniquely maximized at q1 = q⇤ 2 (0, 1). By part (ii) of Condition 1 and by

the above display, q1 < q⇤ =) p (q1) < 0 and q1 > q⇤ =) p (q1) > 0. Thus, a and p are not

co-monotone, and Lemma 1 implies that full disclosure is suboptimal.

The prospect set G does not lie on a nonincreasing line. Indeed, G is not on a vertical line

because the sign of p (q1) depends on q1, as argued above. Nor is G on a decreasing line, because

for each q1 < q⇤, there exists an e > 0 such that a (q1) < a (q⇤ + e) and p (q1) < 0 < p (q⇤ + e) .

Hence, Corollary 2 implies that non-disclosure is suboptimal.
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The remainder of the proof establishes the suboptimality of pooling an open interval of types

and relies on two well-known observations about analytic functions and analytic curves.32

Observation 1. Sums, products, reciprocals (if well-defined), derivatives, and integrals of ana-

lytic functions are analytic.

Observation 2. If two analytic curves coincide on an open interval, the two curves are identical.

By Observation 1, p and a are analytic. Hence, the prospect set G is analytic.

By Lemma 2, all types in an open interval in Q1 can be optimally pooled under the same

message only if a nonincreasing line coincides with the prospect set G on that interval. If so,

Observation 2 implies that G must be a nonincreasing line, which has been shown to be false.

Hence, no interval of types is optimally pooled.

4.2 The Optimality of Conjugate Disclosure

Under an additional regularity assumption, this section derives the structure of an optimal information-

disclosure rule. This section is more technical than the rest of the paper due to the subtleties stem-

ming from the assumption that the leader’s type space is continuous.33 Hence, the section begins

by stating the main result, whose proof is deferred until later in the section.

Main Result

Theorem 4 refers to a “conjugate disclosure rule,” which, roughly speaking, partitions Q1 into

pairs and singletons, and reveals to the follower only the element of the partition to which the

leader’s type belongs. This partition has a special structure, roughly pooling “extreme” leader

types into pairs. The two types that are pooled in a pair are called “conjugate,” hence the name

of the disclosure rule. The theorem’s conclusion holds under a regularity condition, Condition 2,

described shortly.

Theorem 4. Under Conditions 1 and 2, the seller’s disclosure problem has a solution such that

(i) a conjugate disclosure rule is optimal;
32A curve is analytic if it has an analytic parametrization.
33Assuming instead that Q1 is finite would have simplified some arguments, complicated others, and led to weaker

conclusions. In particular, with a finite but large Q1, the optimal disclosure rule fails to be conjugate, but this failure is
economically insignificant. This insignificance can be ascertained by considering an increasing sequence of type sets,
which the remainder of this section does. The conjugate disclosure rule is easy to interpret economically and leads to a
one-dimensional optimal-control problem for finding an optimal disclosure rule.
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(ii) the follower’s induced effort schedule a is maximized at an s⇤ that satisfies s⇤ � q⇤ and a⇤ (s⇤)  a (q⇤),

where q⇤ is the maximizer of the the first-best effort schedule, a. Moreover, the follower’s unconditional

expected optimal and expected efficient efforts are the same, that is, E [a⇤ (m)] = E [a (q1)].

According to part (i) of Theorem 4, the optimality of the conjugate disclosure rule defies the

pooling pattern common in many models of strategic disclosure, in which all types in a certain

interval are pooled (Crawford and Sobel, 1982). According to part (ii) of the theorem, the seller’s

strategic information disclosure distorts the follower’s effort schedule by shifting its peak to the

right relative to the first-best effort schedule. This finding is consistent with the intuition that the

profit-maximizing effort schedule is a compromise between the first-best effort schedule and the

unconstrained-optimal effort schedule of part (ii) of Theorem 2.

Corollary 3 shows that the allocation induced by the optimal disclosure rule can be imple-

mented in a second-price auction with taxes. In particular, by part (i) of Theorem 4, any leader’s

type q1 deterministically induces a message, denoted by m (q1). This message induces the follower

to take a uniquely optimal action, denoted by a⇤ (m (q1)). Let the bidder who bids b be taxed in

the amount

T⇤ (b) ⌘
ˆ b

0
(F (s | a⇤ (m (b)))� F (s | a⇤ (m (s))))ds. (16)

Then,

Corollary 3. In an optimal mechanism, the seller

1. asks the leader to submit a bid, denoted by b, and charges him the tax T⇤ (b);

2. discloses to the follower the message prescribed by the optimal conjugate disclosure rule and invites him

to bid in the second-price auction;

3. allocates the item according to the rules of the second-price auction.

In equilibrium, each bidder bids his type, and the follower exerts the optimal effort.

Proof. See Appendix A.2.

Remark 1. One can modify the auction so that the leader pays the tax if and only if he wins the

item. For this modification, replace T⇤ (b) with T⇤ (b) /F (b | a⇤ (m (b))).

By contrast to the efficient mechanism of Corollary 1, the optimal mechanism of Corollary 3

fails to disclose the leader’s bid and specifies a different tax schedule. Analogous to the efficient
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case, the sign of dT⇤ (b) /db is the same as the sign of da⇤ (m (b)) /db; the tax counteracts the

leader’s tendency to manipulate his bid to induce the follower to acquire more information. Be-

cause T⇤ (b) = T⇤ (b0) does not imply a⇤ (m (b)) = a⇤ (m (b0)), the seller generally cannot disclose

to the follower the leader’s tax T⇤ (b) in lieu of the of the message required by an optimal disclo-

sure policy.

The remainder of this section is concerned with proving Theorem 4.

Restriction to “Regular” Prospect Sets

Recall that the set of prospects is G ⌘ {(a (q1) , p (q1)) : q1 2 Q1}. This paper’s techniques for

finding an optimal disclosure rule rely on G being regular in the sense of

Definition 1. A prospect set is regular if no three prospects lie on the same weakly decreasing

line. Equivalently, a prospect set G is regular if no segment of G is vertical, and if every downward-

sloping segment of G is nonlinear and lies on the boundary of the convex hull of G.34

Regular prospect sets are illustrated in Figure 3.35 Because Condition 1 does not imply (nor is

implied by) the regularity of the prospect set, the subsequent analysis will maintain an additional

assumption:

Condition 2. The prospect set is regular.

Conditions 2 and 1 imply the existence of q 2 [0, q⇤) and q̄ 2 (q⇤, 1) (marked in Figure 3) such

that:36

• On (0, q), G is downward sloping (a is strictly increasing; p is strictly decreasing) and lies on

the boundary of the convex hull of G.

• On (q, q⇤), G is upward sloping (both a and p are strictly increasing).

• On
�

q⇤, q̄
�

, G is downward sloping (a is strictly decreasing; p is strictly increasing) and lies

on the boundary of the convex hull of G.

34Analytically, requiring that no three prospects lie on the same weakly decreasing line is equivalent to requiring that
for every s 2 Q1 such that a0 (s)p0 (s) < 0, (p0 (s) /a0 (s))0 > 0, where primes denote derivatives, assuming that they
exist.

35The functions a and p underlying the prospect sets in Figures 3c and 3d are plotted in Figure 6.
36When Condition 1 is not imposed, q⇤ is defined as the unique maximizer of a, the first-best effort.
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("(1), !(1))
(a) A “generic” regular prospect set. Condi-
tion 1 fails because a (0) > a (1).

!

"

("(#*), !(#*))

("(#), !(#))

("(#), !(#))

("(0), !(0))
(b) A regular prospect set that satisfies Condition 1.

!

"

("(#), !(#))

("(1), !(1))("(0), !(0))

("(#*), !(#*))

(c) Example 1 with uniform G.

!

"

("(#), !(#))

("(1), !(1))

("(0), !(0))

(d) Example 2 with uniform G.

Figure 3: Regular prospect sets. Certain “critical” points have been marked, to be referenced in
subsequent analysis. An increase in q1 corresponds to the clockwise movement along the prospect
set.
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• On
�

q̄, 1
�

, G is upward sloping (both a and p are strictly decreasing).

The partition of G into described segments relies on a being single-peaked (which is implied by

Condition 1, as stated in Theorem 1) and on p being decreasing (possibly on a degenerate interval),

then increasing, and then decreasing again. This restriction on p is an additional joint restriction

on G and F, as is the requirement for any downward-sloping segment of G to be nonlinear and to

lie on the boundary of the convex hull of G. The justification for Condition 2 is that it makes the

analysis tractable while being satisfied for many common distributions G and F.

The restrictions on G and F that are sufficient for the regularity of a prospect set are listed

below.

Lemma 3. A prospect set induced by a and p is regular if

(i) the inverse hazard rate (1 � G) /g is weakly decreasing and weakly concave;

(ii) Condition 1 holds;.

(iii) the (signed) Arrow-Pratt curvature of the follower’s first-best effort, �a00/a0, is strictly increasing.

Proof. See Supplementary Appendix B.

Part (i) of Lemma 3 requires the leader to be “strong,” likely to have high valuations. The

condition holds, for example, for uniform and truncated exponential distributions. The condition

combines the standard monotonicity of the hazard rate with an additional concavity requirement.

Part (ii) of Lemma 3 ensures that the first-best effort schedule peaks at q⇤ (Theorem 1). Then,

part (iii) of the lemma can be interpreted as requiring that the first-best effort schedule become

“more concave” as q1 increases and approaches q⇤, and “more convex” once q⇤ has been passed.

A “bell-shaped” effort schedule satisfies this condition. Because the first-best effort coincides in

the model with the social planner’s marginal benefit (gross of the effort cost) from an increase in

the follower’s effort, this condition can also be interpreted as describing the dependence of the

planner’s return to the follower’s effort on the leader’s type.37

A Discretized Prospect Set

The analysis will draw on the existing optimal-disclosure results developed for a discrete prospect

set and then extend these results to the continuous set G by taking an appropriate limit. The
37In terms of restrictions on the c.d.f. F, part (iii) of Lemma 3 is equivalent to (( fL � fH) / (FH � FL))

0 > 0.
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discrete prospect set, denoted by Gn, is induced by the n-th finite approximation of the leader’s

type space. In particular, for an integer n � 1, let the discretized type space be Qn
1 ⌘ {yi}2n

i=1,

where yi = i/2n, i 2 {1, 2, 3, .., 2n}. The probability of any yi 2 Qn
1 is set equal to G (yi)� G (yi�1),

which is the probability of interval (yi�1yi] ⇢ Q1 under the c.d.f. G. The approximation Qn
1 is finer

for larger values of n (i.e., Qn
1 ⇢ Qn+1

1 ) and satisfies [•
n=1Qn

1 = Q1. The induced discrete prospect

set is Gn ⌘ {(p (y) , a (y)) : y 2 Qn
1}. A prospect (p (yi) , a (yi)) will be referred to as prospect i,

and denoted by (pi, ai) .

Optimal Disclosure with the Discrete Prospect Set

For a discrete prospect set Gn, the seller’s disclosure problem is denoted by Pn and is a special

case of the problem studied by RS (Rayo and Segal, 2010), whose results we shall use. Call a

prospect revealed if it induces a message that causes the follower to assign probability one to

this prospect. Call two prospects pooled if they sometimes induce the seller to send the same

message. Graphically, this shared message can be represented by a pooling link, a line segment

that connects two pooled prospects in the graph Gn. If the prospect set Gn is obtained from G that

satisfies Condition 2, the following partial characterization of a disclosure rule that is optimal for

Pn obtains.

Fact 1. By RS’s Lemma [1], no two prospects are pooled if (i) both lie in Gn \ {(p (q1) , a (q1)) : q1 2 [q, q⇤]}

(in Figure 3, the segment of G connecting prospects (p (q) , a (q)) and (p (q⇤) , a (q⇤))) or (ii) both lie in

Gn \
�

(p (q1) , a (q1)) : q1 2
⇥

q̄, 1
⇤ 

(in Figure 3, the segment of G connecting prospects
�

p
�

q̄
�

, a
�

q̄
��

and (p (1) , a (1))).

Fact 2. By RS’s Lemma [3], at most two prospects can be pooled under the same message, because no more

than two prospects lie on the same line, by Condition 2.38

Fact 3. By RS’s Lemma [4], no two pooling links intersect.

Fact 4. By RS’s Proposition [1], a prospect either is always revealed or is pooled with some other prospects

with probability one.

This partial characterization of an optimal disclosure rule in Pn is further refined by Lemma 4,

which exploits the special structure of the seller’s problem. The lemma identifies an s⇤ and an
38Lemma [3] does not rule out the situation in which a prospect probabilistically invokes one of multiple messages.
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("(s*), !(s*))

("(s*), !(s*))

Figure 4: The discretized prospect set Gn is the union of solid dots. Without loss of generality, the
seller can restrict attention to disclosure rules such as the one illustrated here. Each dashed link
denotes a message that pools two prospects. These links never intersect and are oriented so that
one can draw an upward-sloping line (passing through points (p (s⇤) , a (s⇤)) and (p (s⇤, s⇤))) that
intersects each of them. The isolated prospect is revealed.

s⇤, both in Q1 (not necessarily in Qn), such that each pooling link intersects the line that passes

through prospects (p (s⇤) , a (s⇤)) and (p (s⇤) , a (s⇤)), as shown in Figure 4. Moreover, the exis-

tence of such an s⇤ implies that the optimal effort schedule is single-peaked in q1, with the peak

that is to the right of the peak of the first-best effort schedule.

Lemma 4. Suppose that Condition 2 holds. Any discrete disclosure problem Pn has an optimal disclosure

rule that is partially characterized by an s⇤ 2 [0, q⇤] and an s⇤ 2
⇥

q⇤, q̄
⇤

such that

(i) Any type in [s⇤, s⇤]\Qn
1 either is always revealed or is pooled with some types in ([0, s⇤] [ [s⇤, 1])\

Qn
1 , and, symmetrically, any type in ([0, s⇤] [ [s⇤, 1]) \ Qn

1 either is always revealed or is pooled with some

types in [s⇤, s⇤] \ Qn
1 . The types are pooled so that the pooling links never intersect.

(ii) The optimal effort is single-peaked and is maximized at type s⇤ if s⇤ 2 Qn
1 (and, in general, is

maximized at either type max {[0, s⇤] \ Qn
1} or type min {[s⇤, 1] \ Qn

1}).

Proof. See Appendix A.3.

By Lemma 4, a disclosure rule that is optimal in Pn can be represented by a matrix pn ⌘
⇥

pij
⇤

i,j2{1,..,2n}, where pij is the joint probability that prospect i arises and that it induces the message

that pools prospects i and j. The probability that prospect i arises and is revealed is denoted by pii.

The prospect indices that correspond to threshold types s⇤ and s⇤ defined in Lemma 4 are denoted
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by

n⇤ ⌘ min {i : yi � s⇤} (17)

and

n⇤ ⌘ max {i : yi  s⇤} . (18)

In this notation, the seller’s maximal payoff in Pn is

Vn ⌘
2n

Â
i=1

piip (yi) a (yi)+
n⇤

Â
i=n⇤

Â
j2{1,..,n⇤�1}[{n⇤+1,..,2n}

�

pij + pji
� pijp (yi) + pjip

�

yj
�

pij + pji

pija (yi) + pjia
�

yj
�

pij + pji
,

(19)

where the first term is the payoff from revealed prospects, and the second term is the payoff from

pooled prospects.

Implications for Optimal Disclosure with the Continuous Prospect Set

Lemma 4, which describes optimal disclosure in the discrete problem, will be used to suggest an

optimal disclosure in the continuous problem, denoted by P . The argument, which is technical,

will justify the seller’s focus on conjugate disclosure rules, each of which is induced by a matching

function:

Definition 2. A matching function is a function t that takes one of two forms. Either (i) t :

[0, s⇤] ! [s⇤, 1] is weakly decreasing, with t (0) = 1 and t (s⇤) = s⇤, 0 < s⇤ < 1, or (ii) t : [s⇤, s⇤] !

(0, s⇤] [ [s⇤, 1] is weakly decreasing on [s⇤, s0) and on [s0, s⇤], with t (s⇤) = s⇤, lims#s0 t (s) = 0,

t (s0) = 1, and t (s⇤) = s⇤, 0 < s⇤  s0 < s⇤ < 1.

Case (i) in Definition 2 prevails in some natural examples, such as Example 1, discussed in

Section 6. Case (ii) reduces to case (i) when s⇤ = s0 = 0. Case (ii) can be viewed as isomorphic to

case (i) if the matching function’s domain is “offset” by s⇤, so that s⇤ is the “new zero,” and every

point in (0, s⇤) is “greater than” every point in (s⇤, 1).

A matching function t induces a conjugate disclosure rule:

Definition 3. Under the conjugate disclosure rule induced by a matching function t, the seller

who receives leader’s report q1 sends message s to the follower if q1 2 {s, t (s)} for some s; other-

wise, the seller sends message s = q1.
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According to Definition 3, a conjugate disclosure rule either fully discloses the leader’s type or

pools it with one other type. When t is differentiable at s, the seller’s announcement {s, t (s)} in-

duces the follower to assign probability g (s) / (g (s) + |t0 (s)| g (t (s))) to the event q1 = s and the

complementary probability to the event q1 = t (s), by Bayes’s rule. When t0 (s) = 0, the seller’s

announcement {s, t (s)} induces the follower to assign probability one to q1 = s. Intuitively, when

t0 (s) = 0, the seller pools a continuum of types near s with a single type t (s). Finally, when the

range of t excludes some types, the seller reveals each of these types, as is explicitly specified in

Definition 3.

The following lemma shows that, in the continuous problem P , one can construct a disclosure

rule that delivers to the seller a payoff that is approximately equal to the seller’s optimal payoff in

Pn when n is large. The lemma uses the big-O notation, in which O stands for any function that

satisfies lim supn!• |O (2�n) /2�n| < •.

Lemma 5. A conjugate disclosure rule exists that delivers to the seller payoff Vn + O (2�n) in the contin-

uous disclosure problem P , where Vn, defined in (19), is the seller’s optimal payoff in the discrete disclosure

problem Pn.

Proof. See Appendix A.4.

Lemma 5 does not rule out the possibility that, in P , the seller can improve upon the conjugate

disclosure rule. Lemma 6 addresses this issues and shows that the value in P is no greater than

the limit of the values in Pn as n increases.

Lemma 6. The continuous disclosure problem P has a solution, which induces a value denoted by V⇤. The

discrete disclosure problems in the sequence {Pn} have solutions, which induce a corresponding sequence

of values denoted by {Vn}. Then, V⇤  lim infn!• Vn.

Proof. See Appendix A.5.

Proof of the Main Result (Theorem 4)

Lemmas 5 and 6 imply the optimality of the conjugate disclosure rule, hence part (i) of theorem.

Lemma 4’s part (ii) and Lemma 6 imply that the induced effort schedule a is maximized at s⇤,

which satisfies s⇤ � q⇤.
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Because, a⇤ (m) = Eq1|m [a (q1)] for any message m (by 10), a⇤ (s⇤)  maxq1 a (q1) = a (q⇤),

where the equality is by Theorem 1. Hence, a⇤ (s⇤)  a (q⇤).

Furthermore, a⇤ (m) = Eq1|m [a (q1)] implies E [a⇤ (m)] = E
⇥

Eq1|m [a (q1)]
⇤

= E [a (q1)], where

the last equality is by the Law of Iterated Expectations, hence part (ii) of the theorem.

4.3 The Seller’s Optimal-Control Problem

By Theorem 4, the seller can restrict attention to disclosure rules induced by matching functions.

Given this restriction, the seller’s problem reduces to an optimal-control problem that takes the

form of a consumption-saving problem (with the variables reinterpreted appropriately). This

problem can be analyzed numerically.

The focus will be on the examples in which, merely by inspecting the prospect set, one can

conclude that s⇤ = 0. (Such examples are studied in Section 6.) Then, the matching function is of

type (i) of Definition 2, and the seller’s objective function, (13), can be written as

ˆ s⇤

0
p (s) a⇤ (s) g (s)ds +

ˆ s⇤

0
p (t (s)) a⇤ (s) g (t (s)) b (s)ds +

ˆ
[s⇤,1]\range(t)

a (s)p (s)ds, (20)

where b ⌘ �t0 is the derivative of a matching function. The first integral in (20) is the seller’s

payoff from the prospects induced by the leader’s types in [0, s⇤]. The second integral is the seller’s

payoff from the prospects in [s⇤, 1] that are pooled with the prospects in [0, s⇤] by the matching

function. The third integral is the seller’s payoff from the prospects in [s⇤, 1] that are not pooled

with the prospects in [0, s⇤]; such prospects are revealed.

The second integral in (20) uses the change-of-variables formula. It says that for any s 2

(0, s⇤) and a “small” ds > 0, interval (s, s + ds) (whose probability is approximately g (s)ds) is

pooled with interval (t (s + ds) , t (s)) (whose probability is approximately g (t (s)) b (s)ds).39

The change-of-variables formula and Bayes’s rule imply that the follower’s equilibrium effort (10)

takes the special form:

a⇤ (s) =
g (s) a (s) + g (t (s)) b (s) a (t (s))

g (s) + g (t (s)) b (s)
, s 2 [0, s⇤] . (21)

39Indeed, the Taylor expansion implies G (t (s) + ds) ⇡ G (t (s)) + G0 (t (s)) t0 (s)ds.
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One can now formulate the seller’s optimal-control problem:

Definition 4. When s⇤ = 0, the seller’s optimal-control problem is defined as the maximization

of (20) subject to (21) with respect to s⇤ and a piecewise-continuous function b : [0, s⇤] ! R+ such

that a piecewise-differentiable function t : [0, s⇤] ! [s⇤, 1] , where t0 (s) = �b (s) for almost all

s 2 (0, s⇤), satisfies boundary conditions t (0) = 1 and t (s⇤) = s⇤.

5 Generalizations

For the clarity of exposition, the analysis has focused on the case in which the follower’s effort

translates into information acquisition as described by Condition 1. Some of the conclusions con-

tinue to hold for effort technologies that are either more general than or alternative to the one de-

scribed in Condition 1. In particular, the following generalization permits additional information-

acquisition technologies, which can also be combined with (or replaced by) valuation-enhancing

investments.

Condition 3 (Productive Effort). For any efforts a0 and a with a0 > a,

ˆ 1

q2

F
�

s | a0
�

ds 
ˆ 1

q2

F (s | a)ds for all q2 2 Q2.

In the spirit of textbook results on the measures of risk (Rothschild and Stiglitz, 1970; Mas-

Colell et al., 1995, Chapter 6D), Condition 3 can be shown to be equivalent to the following claim.

When a0 > a, a type drawn according to F (· | a0) can be obtained from a type drawn according

to F (· | a) by adding a mean-preserving spread and a first-order stochastic-dominance shift. The

mean-preserving spread corresponds to the acquisition of more precise information about the

underlying valuation. The first-order stochastic-dominance shift corresponds to investment in

enhancing the underlying valuation. In applications, this investment can be interpreted as the

acquisition of a good that is complementary to the auctioned item or as investment in a skill that

is necessary for operating (or consuming) the auctioned item.

The effort in Condition 3 deserves the label “productive” because both the follower and the

surplus-minded planner value it. The planner values the follower’s effort because Condition 3

ensures that the first-best effort in (6) is nonnegative. The follower values the effort because his
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payoff is weakly convex (by incentive compatibility) and weakly increasing in his type, q2, and

Condition 3 is the necessary and sufficient restriction on F for which the follower’s expected payoff

is increasing in a for any payoff function that is weakly convex and weakly increasing.40 In this

sense, Condition 3 is the most general formulation of a productive investment. Economically, both

the follower and the planner benefit from more precise information about the follower’s valuation

and from a stochastically higher follower’s valuation.

A special case of Condition 3 generalizes Condition 1 to capture information acquisition with-

out requiring the c.d.f.’s linearity in effort:

Condition 4 (Generalized Information Acquisition). For some q⇤ 2 (0, 1), for all a, a0 2 (0, 1),

(i) (equal means)
´ 1

0 F (s | a)ds =
´ 1

0 F (s | a0)ds, and (ii) (rotation) s 2 (0, q⇤) [ (q⇤, 1) =)

(q⇤ � q) ∂F (s | a) /∂a > 0.41

Another special case of Condition 3 corresponds to investment in stochastically increasing the

valuation:

Condition 5 (Enhancing Valuation). For any efforts a0 and a with a0 > a,

F
�

q2 | a0
�

 F (q2 | a) for all q2 2 Q2.

The appropriate generalization of the interiority condition (2) is

c > sup
a2A,q12Q1

(

�
ˆ 1

q1

∂F (s | a)
∂a

ds

)

, (22)

which is henceforth assumed to hold.

Assuming Condition 3, but not assuming F’s linearity in effort, one can show that:

• If Condition 1 is replaced by Condition 4, the analysis and most of the results of Section 3

apply unchanged (with references to parts of Condition 1 replaced with references to parts

of Condition 4). The only difference is that no explicit expression for the first-best effort is

available.
40The argument is again analogous to the arguments of Rothschild and Stiglitz (1970, Chapter 6D) and Mas-Colell et

al. (1995, Chapter 6D).
41Without part (i), Condition 4 is the rotation order in Definition 1 of Johnson and Myatt (2006), who build on ear-

lier notions of “simply intertwined” and “satisfying the single-crossing property” random variables. Shi (2012) uses
Condition 4 and gives examples of information-acquisition technologies that induce the order in this condition.
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• Without Condition 4, the first-best effort a need not be hump shaped. For instance, under

Condition 5, a is weakly decreasing.

• The first-best outcome is implementable if and only if the leader’s expected allocation, F (q1 | a (q1)),

is weakly increasing in q1. Whenever the first-best outcome is implementable, it is imple-

mented by the mechanism of Corollary 1.

• As in Theorem 2, if the seller observes the leader’s type, any disclosure rule is optimal. As in

Theorem 2, if the seller directly chooses the follower’s effort, the seller chooses that effort that

minimizes the probability that the leader gets the item. Under Condition 5, this probability

is minimized by the largest feasible effort, independently of the leader’s type.

Assuming Condition 3 and assuming that the c.d.f. F is linear in effort, one can show that:

• The first-best effort is still given by (6) in Theorem 1. The leader’s expected allocation,

F (q1 | a (q1)), is weakly increasing in q1, and hence the mechanism described in Corollary 1

implements the first-best outcome.42

• The conclusion of Theorem 3, establishing the suboptimality of extreme disclosure policies,

may not apply.43 Nevertheless, Theorem 3 can be strengthened. The suboptimality of full

disclosure uses only part (ii) of Condition 1, as the theorem’s proof makes clear. Part (ii) com-

bined with Condition 3 is weaker than Condition 1, accommodates a mixture of information

acquisition and investment in valuation, and delivers the suboptimality of full disclosure.

The suboptimality of non-disclosure does not even rely on part (ii) and hence is quite gen-

eral. Indeed,

dp

da
(q1) =

p0 (q1)
a0 (q1)

= �c

"

✓

1 � G (q1)
g (q1)

◆0
+

1 � G (q1)
g (q1)

fH (q1)� fL (q1)
FH (q1)� FL (q1)

#

,

where fH and fL are the p.d.f.s corresponding to the c.d.f.s FH and FL. By inspection of the

above display, the right-hand side is independent of q1 only “nongenerically.” Hence, non-
42When F has a density, the monotonicity of the leader’s allocation is established by differentiating:

d
dq1

F (q1 | a (q1)) = f (q1 | a (q1)) +
1
c
(FH (q1)� FL (q1))

2 > 0.

43Indeed, let FL ⌘ 1, let FH be any c.d.f. (so Condition 5 holds), and let G have a weakly increasing hazard rate. Then,
both a and p are weakly decreasing and hence co-monotone. By Lemma 1, full disclosure is optimal.
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disclosure (or indeed, merely pooling an open interval of the leader’s types under the same

message) can be optimal only “nongenerically” because it requires dp/da to be constant.

• The conclusion of Theorem 4 still holds; that is, an optimal disclosure rule can be summa-

rized by a matching function. The theorem relies on the prospect set’s regularity, which is

ensured by a version of Lemma 3 that has Condition 5 instead of Condition 1 in part (ii).

6 Optimal Disclosure in Examples

The focus is on Examples 1 and 2. Example 1 satisfies Condition 1 and models pure information

acquisition. Example 2 satisfies Condition 5 and models pure valuation enhancement. In both

examples, G is uniform. The disclosure rule is independent of c; the induced effort varies propor-

tionally to 1/c, which only scales the follower’s effort (provided c � 1/6, which is a maintained

assumption, by (22)).

Numerical “solutions” for the seller’s problems are identified by applying Hamiltonian tech-

niques to the optimal-control problem in Definition 4. Because the Hamiltonian analysis imposes

the additional technical assumptions of piecewise continuous differentiability of the matching

function and because we have been unable to show that the problem in Definition 4 is convex,

the presented numerical “solutions” are informed guesses, which have been verified to improve

upon full disclosure and non-disclosure.44 All solutions have also been verified to satisfy the

monotonicity condition (i.e., that F (q1 | a⇤ (q1)) is nondecreasing in q1).

For each example, Figure 5 plots a selection from the set of pooling links in an optimal mecha-

nism. These links are derived from the matching function that solves the problem in Definition 4.

Each pooling link, for some q1 < s⇤, connects the prospects induced by q1 and t (q1), and induces

the follower’s effort a⇤ (q1), which is the ordinate of the intersection point of the solid black curve

and the pooling link. The corresponding abscissa is the seller’s expected marginal benefit from

the follower’s action when the message corresponding to that pooling link has been sent. The col-

lection of the induced efforts and the corresponding expected benefits (i.e., the solid black curve)

is an optimal-prospect path.

44An analogous caveat applies to this section’s references to “optimality.” In the remainder, the quotation marks are
suppressed.
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(a) Example 1. The leader’s types in [0, ŝ] are revealed;
the rest are pooled according to a matching function; ŝ =
0.054 and s⇤ = 0.61.

0

s̀

s*

1
p

a

(b) Example 2. The leader’s types in [ŝ, 1] are revealed;
the rest are pooled according to a matching function; ŝ =
0.74 and s⇤ = 0.24.

Figure 5: An optimal disclosure rule. The solid blue arc is the prospect set, with four prospects
labeled by the leader’s types that induce them. Each point on the solid black curve (optimal-
prospect path) is a tuple containing the follower’s optimal action and the seller’s associated ex-
pected marginal benefit from that action. The tuple is induced by pooling the prospects at the
endpoints of the dashed link that passes through that tuple. The seller’s types that are revealed
lie at the intersection of the solid black curve and the prospect set.

Any optimal-prospect path is nondecreasing, which is a necessary condition for optimality.

If the path had a strictly decreasing segment, then by Lemma [1] in RS, it would be optimal to

pool under a single message all messages that induced that segment. This monotonicity of the

optimal-prospect path implies, in particular, that in Example 2 (Figure 5b), no full disclosure of

prospects induced by q1 < s⇤ can occur, because the prospect set is strictly decreasing when

q1 < s⇤. Whenever a prospect is revealed, however, the optimal-prospect path must coincide

with the prospect set.

For each example, Figure 6 plots the follower’s effort schedule. Constrained by the Bayes

plausibility, the seller designs the disclosure rule so as to better align the follower’s effort, a⇤, with

the marginal benefit from effort, p. Consistent with Theorem 4, doing so involves inducing a

“rightward shift” in the follower’s effort schedule, relative to the first-best effort schedule.

7 Conclusions

This paper’s primary purpose is to isolate, in a simplest model, the distortions that the seller’s

strategic bid-disclosure introduces into an otherwise efficient auction in the presence of moral
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(a) Example 1.

s* s̀ 1
q1

a, a*, p

(b) Example 2.

Figure 6: An optimal effort schedule. The solid curve is the optimal effort, a⇤. The thick dashed
curve is the first-best effort, a. The thin dashed curve is the seller’s marginal benefit from the
follower’s effort, p. The seller uses strategic disclosure to better align a⇤ with p. The areas under
the solid and the dashed thick curves coincide; that is, E [a⇤ (m)] = E [a (q1)].

hazard. In particular, the profit-maximizing seller induces the initially uninformed bidder to ac-

quire inefficiently little information when the initially informed bidder’s valuation is low, and to

acquire inefficiently much information otherwise. Pooling pairs of extreme bids under the same

message accomplishes this distortion.

A natural question is whether such disclosure is ever used in practice. As mentioned in the

Introduction, auctions of rail passenger service franchises fit the model’s assumptions and may

feature a disclosure rule similar to the optimal rule derived in this paper. In particular, the in-

cumbent’s request for a subsidy before the auction can be interpreted as a signal that pools two

extreme types: a productive incumbent who seeks to expand the capacity and an unproductive

incumbent who needs cash to remain in business. Even though the public subsidy request is un-

likely to have been optimally designed, the practice of publicly revealing all such requests may in

part be motivated by the optimality of such a disclosure policy.

Another example of pooling the extremes is the now-defunct practice at the University of Ox-

ford of awarding an “alpha-gamma” grade to a student who is sometimes outstanding (“alpha”),

sometimes abysmal (“gamma”), but never mediocre (“beta”). This grading scheme can be ra-

tionalized by the seller’s disclosure problem (in its canonical form) if one interprets (i) a as a

graduate’s productivity with an employer, (ii) E|m [a] as the probability that the employer hires a

graduate whose grade is m, (iii) p as an employed graduate’s donation (in cash or in service) to
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the university, which for each ability a, can be either high or low, depending on the amount of

credit the graduate gives to Oxford for his success, and (iv) Em
⇥

E|m [p]E|m [a]
⇤

as the expected

donation, which Oxford’s grading scheme is designed to maximize. A relationship between a and

p that is consistent with the grading-scheme application is in Figure 3c.

Even though strategic information disclosure is pervasive in private transactions mediated by

investment banks and realtors, it is rare in government-run procurement auctions, in which as

a part of the formal tender process, the government ought to be able to commit to a particular

disclosure rule. Our analysis suggests that the government may refrain from strategic disclosure

if any of the following conditions hold: (i) the government seeks the first-best outcome, instead of

maximizing its profit; (ii) the government cannot commit to an inefficient disclosure rule; (iii) the

government knows the incumbent’s valuation; or (iv) an optimal disclosure rule is too complex to

compute and too hard to explain to bidders.

A Appendix: Omitted Proofs

A.1 Proof of Corollary 1

For the follower, it is a weakly dominant strategy to bid his type in the second-price auction.

Given this bidding strategy, it is optimal for him to exert the first-best effort because the braced

expression in the surplus-maximization problem (4) coincides with the follower’s expected payoff

in the mechanism in the corollary. The follower’s payoff is nonnegative because the payoff in the

second-price auction is always nonnegative.

The leader chooses b to maximize

ˆ
Q2

1{b>q2} (q1 � q2)dF (q2 | a (b))� T (b) .

Integration by parts and the substitution of T from (7) transforms the above display into

ˆ q1

0
F (s | a (s))ds +

ˆ b

q1

(F (s | a (s))� F (b | a (b)))ds,

which is maximized at b = q1 because F (s | a (s)) is increasing in s. That F (s | a (s)) is increasing
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in s can be seen by letting s0 > s and writing

F
�

s0 | a
�

s0
��

� F (s | a (s)) =
⇥

F
�

s0 | a
�

s0
��

� F
�

s | a
�

s0
��⇤

+
ˆ a(s0)

a(s)

∂F (s | a)
∂a

da > 0,

where the inequality follows by observing that the bracketed term is nonnegative because F is a

c.d.f.; pertaining to the integral, one of three cases prevails: (i) s < s0  q⇤, implying a (s) < a (s0)

(Theorem 1) and ∂F (s | a) /∂a > 0 (Condition 1), and so the integral is positive, (ii) q⇤  s < s0,

implying a (s) > a (s0) (Theorem 1) and ∂F (s | a) /∂a < 0 (Condition 1), and so the integral is

positive, or (iii) s < q⇤ < s0, in which case the inequality follows by considering the change in

the leader’s type from s to q⇤ and applying (i) and then considering the change from q⇤ to s0 and

applying (ii).

A.2 Proof of Corollary 3

For the follower, it is a weakly dominant strategy to bid his valuation in the second-price auction.

The follower participates because he can obtain a nonnegative payoff by exerting no effort, and

his payoff from trading is always nonnegative.

The leader chooses his bid by solving

max
b

ˆ
Q2

1{b>q2} (q1 � q2)dF (q2 | a⇤ (m (b)))� T⇤ (b)
�

,

where a⇤ (m (b)) is the follower’s optimal action conditional on the message m (b), which the seller

sends when the leader bids b. Integration by parts and the substitution of T⇤ from (16) transforms

the above maximand into

ˆ q1

0
F (s | a⇤ (m (s)))ds +

ˆ b

q1

(F (s | a⇤ (m (s)))� F (b | a⇤ (m (b))))ds,

which is maximized at b = q1 because F (s | a⇤ (m (s))) is weakly increasing in s, which is the

monotonicity condition required by incentive compatibility and implied by the hypothesis that

the mechanism is optimal.
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A.3 Proof of Lemma 4

To conclude part (i) of the lemma’s statement from Facts 1–4, it remains to rule out the pooling

patterns depicted in Figure 7. A single argument rules out both patterns.

By contradiction, suppose that an s⇤ and s⇤ with the sought properties do not exist; that is,

one can pick four prospects (pi, ai), i = 1, 2, 3, 4, such that prospects (p1, a1) and (p2, a2) are

pooled under some message, say, m, whereas prospects (p3, a3) and (p4, a4) are pooled under

another message, say m0, and these four prospects satisfy either (a) p4 � p3 � p2 > p1 and

a1 � a2 � a3 > a4 or (b) p4 > p3 � p2 � p1 and a1 > a2 � a3 � a4.45 Let pi, i = 1, 2, 3, 4, denote

the joint probability that type xi (which induces prospect (pi, ai)) is realized and induces either

message m or m0 (whichever is appropriate).

The seller’s expected gain from using distinct messages m and m0 (as in Figure 7) instead of

pooling all four prospects under a single message is

D ⌘ (p1p1 + p2p2) (p1a1 + p2a2)
p1 + p2

+
(p3p3 + p4p4) (p3a3 + p4a4)

p3 + p4

� (p1p1 + p2p2 + p3p3 + p4p4) (p1a1 + p2a2 + p3a3 + p4a4)
p1 + p2 + p3 + p4

,

which can be rearranged to give

D =
(p1 + p2) (p3 + p4)
p1 + p2 + p3 + p4

✓

p3p3 + p4p4

p3 + p4
� p1p1 + p2p2

p1 + p2

◆✓

p3a3 + p4a4

p3 + p4
� p1a1 + p2a2

p1 + p2

◆

< 0,

(A.1)

where the inequality follows either from p4 � p3 � p2 > p1 and a1 � a2 � a3 > a4 or from

p4 > p3 � p2 � p1 and a1 > a2 � a3 � a4. Because D < 0, the pooling patterns in Figure 7 (both

panels) are suboptimal. Part (i) of the lemma follows.

For part (ii), take any four leader’s types x1, x2, x3, x4 2 Qn
1 such that {x1, x2} are pooled under

some message, {x3, x4} are pooled under some other message, and either x1 6= x2 or x3 6= x4

or both. For such pooling to be optimal, it must be that, in particular, the seller does not gain

from pooling {x1, x2, x3, x4} all under the same message; that is, the inequality in (A.1) must be

45Cases (a) and (b) differ in the placement of the strict and weak inequalities. Case (a) prevails if leader’s types
x1, x2, x3, x4 2 Qn

1 satisfy 0 < x1 < x2  x3 < x4 < 1, x2 > q⇤, and x3 < q̄. Case (b) prevails if leader’s types satisfy
either q⇤ > x1 > x2 � x3 > x4 > 0 or x4 > q⇤ > x1 > x2 � x3 > 0 and x2 < q.
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"

("(s4), !(s4))

("(s3), !(s3))

("(s2), !(s2))("(s1), !(s1))

(a)

!

"
("(s4), !(s4))("(s3), !(s3))

("(s2), !(s2))

("(s1), !(s1))

(b)

Figure 7: Contradiction hypotheses for the proof of Lemma 4. Each dashed link denotes a pair of
prospects that are pooled under the same signal. In both panels, the two links cannot be crossed
by an upward-sloping line.

reversed, or D � 0.

Without loss of generality, let the segment connecting the prospects induced by points {x1, x2}

lie southwest of (or “under”) the segment connecting the prospects induced by points {x3, x4}.

Because the two segments cannot intersect, D � 0 immediately implies

p3a3 + p4a4

p3 + p4
� p1a1 + p2a2

p1 + p2
and

p3p3 + p4p4

p3 + p4
� p1p1 + p2p2

p1 + p2
.

Consequently, under the optimal disclosure rule, the effort induced by a message monotonically

increases as one moves in the northeast direction across the pooling links toward s⇤, which estab-

lishes part (ii).

A.4 Proof of Lemma 5

Let P denote the seller’s disclosure problem when the type space is Q1. Let Pn denote the seller’s

disclosure problem when the type space is the discrete Qn
1 . The value of problem Pn, Vn, is

achieved by a solution that is given by a matrix pn, whose typical element pij is the joint prob-

ability that prospect i arises and that it induces the message that pools prospects i and j.

The disclosure rule pn will be used to construct an approximately optimal disclosure rule

for P . Roughly, if in Pn, prospects i and j are pooled only with each other (i.e., Sk pik = pij
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and Sk pjk = pji), then in P , the intervals (yi�1, yi] and
�

yj�1, yj
⇤

will be “linked” pointwise, by

pooling every element in (yi�1, yi] with a corresponding element in
�

yj�1, yj
⇤

according to some

matching function.46 If in Pn, prospects i and j are only sometimes pooled with each other (i.e.,

Sk
�

pik + pjk
�

> pij + pji), then in P , the intervals (yi�1, yi] and
�

yj�1, yj
⇤

are divided into subin-

tervals and only one subinterval in (yi�1, yi] is linked pointwise with a subinterval in
�

yj�1, yj
⇤

.

To make the linking procedure precise, define Pi ⌘
�

j : pij > 0
 

to be the set of prospects that

are optimally pooled with prospect i, i 2 {1, .., 2n}, in Pn. Note that if Pi = {i}, prospect i is

revealed in Pn. Partition interval (yi�1, yi] into a collection of |Pi| subintervals47

Ci ⌘
n⇣

bij, b̄ij

i

: j 2 Pi

o

(A.2)

so that G
�

b̄ij
�

� G
⇣

bij

⌘

= pij, and so that whenever prospects i and j are pooled in Pn, one can

draw a link between element
⇣

bij, b̄ij

i

in Ci and element
⇣

bji, b̄ji

i

in Cj in such a manner that no two

links intersect. If |Pi| = 1, the only subinterval is the interval (yi�1, yi] itself, which either is linked

to some (sub)interval or remains unlinked. The construction of links between (sub)intervals is

illustrated in Figure 8. Thus linked subintervals form the basis for pooling prospects in P .

The rule that pools prospects in P is described by a matching function t. This matching func-

tion is constructed according to the following algorithm, which is initialized by setting i = n⇤,

where n⇤ is defined in (17):

1. If no subinterval in Ci is linked to any other subinterval, set t (q1) = t (yi�1) for all q1 2

(yi�1, yi], with the convention that t (yn⇤�1) = 1 if s⇤ = 0 and t (yn⇤�1) = yn⇤�1 if s⇤ > 0.

2. If a subinterval
⇣

bij, b̄ij

i

in Ci is linked to some subinterval
⇣

bji, b̄ji

i

in Cj, define a strictly

decreasing t so that for all s 2
h

bij, b̄ij

i

, g (s) / (b (s) g (t (s))) = pij/pji, and t
⇣

bij

⌘

= b̄ji and

46Recall that type space Qn
1 that induces disclosure problem Pn partitions Q1 into 2n subintervals {(yi�1, yi]}2n

i=1 so
that prospect i in Pn “corresponds” to the interval of types (yi�1, yi] in Q1.

47Here, |Pi| denotes the number of elements in the set Pi.
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!

"
(a) Optimal disclosure in Pn. The solid dots are
prospects. The dashed links pool these prospects. The
prospect that is not pooled is revealed.

!

"
(b) Disclosure in P derived from disclosure in Pn.
Arrow-headed dashed segments indicate subintervals
whose prospects are pooled pointwise. Each prospect
in the interval that is not linked with any other interval
is revealed.

Figure 8: An optimal disclosure rule in the discrete problem Pn is used to construct a disclosure
rule in the continuous problem P .

t
�

b̄ij
�

= bji.48 Otherwise, go to Step 3.

3. If i < n⇤, where n⇤ is defined in (18), increment i by 1 and go to Step 1; otherwise, terminate.49

48When the c.d.f. G is uniform, the sought t is linear: t (s) = b̄ji �
⇣

s � bij

⌘

pji/pij, where pij = b̄ij � bij and pji =

b̄ji � bji. For a general G, set up the initial-value problem t0 = �pjig (s) /
⇣

pijg (t)
⌘

on
h

bij, b̄ij

i

subject to t
⇣

bij

⌘

= b̄ji.
Because the right-hand side of the problem’s ordinary differential equation (ODE) is continuous in (s, t), the Peano
existence theorem implies the existence of a solution. The solution is strictly decreasing because the right-hand side of
the ODE is negative. To see that the solution satisfies t

⇣

b̄ij

⌘

= bji, rewrite the ODE as �g (t (s)) t0 (s) = g (s) pji/pij

and integrate to obtain

�
ˆ b̄ij

bij

g (t (s)) t0 (s)ds = pji.

The displayed integral can be rewritten equivalently by changing the variable of integration from s to z ⌘ t (s):

ˆ b̄ji

t(b̄ij)
g (z)dz = pji.

Integrating gives G
⇣

b̄ji

⌘

� G
⇣

t
⇣

b̄ij

⌘⌘

= pji, which implies t
⇣

b̄ij

⌘

= bji, as desired.
49The non-linked intervals indexed by i > n⇤ or i < n⇤ do not affect the matching function; they automatically

translate into discontinuities. The linked intervals indexed by i > n⇤ or i < n⇤ are accounted for when intervals
indexed by i 2 {n⇤, n⇤ + 1, .., n⇤} are considered.
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Any interval (yi�1, yi] whose elements are revealed contributes to the seller’s payoff (15) amount

ˆ yi

yi�1

p (s) a (s) g (s)ds ⌘ piip (zi) a (zi) , (A.3)

where the identity uses pii = G (yi)� G (yi�1) and implicitly (and not necessarily uniquely) de-

fines zi 2 (yi�1, yi) by appealing to the First Mean Value Theorem for Integration.50

Any pair of linked intervals
⇣

bij, b̄ij

i

and
⇣

bji, b̄ji

i

contributes to the seller’s payoff amount

ˆ b̄ij

bij

g (s)p (s) + b (s) g (t (s))p (t (s))
g (s) + b (s) g (t (s))

g (s) a (s) + b (s) a (t (s))
g (s) + b (s) g (t (s))

(g (s) + b (s) g (t (s)))ds

⌘
�

pij + pji
� g

�

zij
�

p
�

zij
�

+ b
�

zij
�

g
�

zji
�

p
�

zji
�

g
�

zij
�

+ b
�

zij
�

g
�

zji
�

g
�

zij
�

a
�

zij
�

+ b
�

zij
�

a
�

zji
�

g
�

zij
�

+ b
�

zij
�

g
�

zji
�

=
�

pij + pji
� pijp

�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
, (A.4)

where the identity uses pij = G
�

b̄ij
�

� G
⇣

bij

⌘

and pji = G
�

b̄ji
�

� G
⇣

bji

⌘

, and implicitly (and

not necessarily uniquely) defines zij 2
⇣

bij, b̄ij

⌘

by appealing to the First Mean Value Theorem for

Integration; furthermore, zji ⌘ t
�

zij
�

. The equality in the last line of the above display follows by

construction of t. Because t is strictly decreasing, zji 2
⇣

bji, b̄ji

⌘

.

Assembling the contributions (A.3) and (A.4) gives the value of the seller’s objective function

(15) under the disclosure rule induced by t:

V̂n ⌘
2n

Â
i=1

piip (zi) a (zi)+
n⇤

Â
i=n⇤

Â
j2{1,..,n⇤�1}[{n⇤+1,..,2n}

�

pij + pji
� pijp

�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
.

(A.5)

By construction of {zi} and
�

zij
 

, |zi � yi|  yi � yi�1 and
�

�zij � yi
�

�  yi � yi�1. Because a and

p are twice continuously differentiable on (0, 1) with bounded derivatives (which occurs because

g, FL, and FH are twice continuously differentiable with bounded derivatives), the Taylor theorem

implies the following for z 2 (0, 1):

p (z) = p (y) + p0 (y) (z � y) + O
⇣

(z � y)2
⌘

a (z) = a (y) + a0 (y) (z � y) + O
⇣

(z � y)2
⌘

.

50See http://en.wikipedia.org/wiki/Mean_value_theorem#First_mean_value_theorem_for_integration
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By construction, yi � yi�1 = 1/2n. Hence, yi � yi�1 = O (2�n), and so zi � yi = O (2�n) and

zij � yi = O (2�n). Using the standard properties of O, one can write:

p (zi) a (zi) = p (yi) a (yi) + O
�

2�n�

pijp
�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
=

pijp (yi) + pjip
�

yj
�

pij + pji

pija (yi) + pjia
�

yj
�

pij + pji
+ O

�

2�n� ,

which are substituted into (A.5) to obtain

V̂n = Vn + O
�

2�n�

as desired.

A.5 Proof of Lemma 6

Preliminary Definitions

Normalize the set of messages to equal the set of the follower’s posterior probability distribu-

tions: M ⌘ DQ1, where DQ1 denotes the set of Borel probabilities on the space of leader’s types

Q1 = [0, 1]. The space DQ1 is a compact metric space when endowed with the topology of weak

convergence.51 Let D (DQ1) denote the space of probability measures on the subsets of DQ1. Like

DQ1, the space D (DQ1) is also a compact metric space when endowed with the topology of weak

convergence.

In the disclosure problem with a continuum of prospects, the seller can induce any probability

distribution n̂ 2 D (DQ1) over posterior probability distributions as long as n̂ is Bayes plausi-

ble, that is, as long as the expected posterior probability distribution equals the prior probability

distribution: ˆ
DQ1

Pdn̂ = P0,

where P0 is the prior probability measure over the leader’s types. The prior P0 is derived from the

c.d.f. G: P0 {q1 : q1  s} = G (s), s 2 Q1. The necessity of Bayes plausibility follows from Bayes’s

rule, and the sufficiency has been shown by Kamenica and Gentzkow (2011).

51The topology of weak convergence is metrizable under the Prohorov metric.
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Formally, when the prospect set is G, the seller’s disclosure problem is:

V⇤ ⌘ max
n̂2D(DQ1)

ˆ
DQ1

p̄ (P) a⇤ (P)dn̂ s.t.
ˆ

DQ1

Pdn̂ = P0, (A.6)

where

p̄ (P) =
ˆ

Q1

p (q1)dP and a⇤ (P) =
ˆ

Q1

a (q1)dP.

Note that both p̄ (P) and a⇤ (P) are continuous in P. To see this, take an arbitrary sequence {Pk}

of probability measures on Q1 that converge weakly to P. Because Lebesgue measurable func-

tions p and a can have at most a countable number of discontinuity points, the set of disconti-

nuities is of measure zero, and thus by the Mapping Theorem (Billingsley, 1968, Theorem 5.1, p.

30), limk p̄ (Pk) = p̄ (P) and limk a⇤ (Pk) = a⇤ (P) . The continuity of the integrand together with

Proposition 3 on p. 10 of the Online Appendix to Kamenica and Gentzkow (2011) imply that the

solution to problem (A.6) exists. Let n⇤ denote this solution.

Similarly, when the prospect set is Gn, the seller solves

Vn ⌘ max
n̂n2D(DQn

1)

ˆ
DQn

1

p̄ (Pn) a⇤ (Pn)dn̂n s.t.
ˆ

DQn
1

Pndn̂n = P0
n , (A.7)

where Pn is a probability measure on Qn
1 , n̂n is a probability measure on DQn

1 , and P0
n is the prior

probability measure over the leader’s types given the discretization Qn
1 :

P0
n ⌘ P (Bn

1 ) dy1 + P (Bn
2 ) dy2 + ... + P (Bn

2n) d1,

where Bn
i ⌘ (yi�1, yi] and dyi denotes the Dirac measure at yi 2 [0, 1] (i.e., dyi (B) = 1{yi2B}, B ⇢

Q1). Let nn denote a solution to the discrete problem (A.7). The solution exists by Proposition 1

and Corollary 1 of Kamenica and Gentzkow (2011).

Consider a sequence of solutions {nn} and note that {nn} is a sequence of measures over be-

cause for each n, Pn 2 DQn
1 ✓ DQ1 and nn 2 D (DQn

1) ✓ D (DQ1) .

The Proof of the Lemma

Because the space of D (DQ1) is a compact metric space, it is sequentially compact under the

topology of weak convergence, and thus the sequence of {nn} has a subsequence {nn0} such that as
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n0 ! •, nn0 converges weakly to some limit n. Because p̄ (P) and a⇤ (P) are continuous, bounded,

and real-valued functions defined on DQ1, by definition of weak convergence,

ˆ
DQ1

p̄ (P) a⇤ (P)dnn0 !
ˆ

DQ1

p̄ (P) a⇤ (P)dn. (A.8)

By contradiction, suppose that n, the limit of {nn0} , does not solve the continuous problem

(A.6) and that:

e ⌘
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn > 0. (A.9)

Let N ⌘ {n0
1, n0

2, ...} be the set indexing the convergent sequence {nn0} . Because of convergence

(A.8), one can choose an N 2 N such that for all n0 � N, n0 2 N :

�

�

�

�

ˆ
DQ1

p̄ (P) a⇤ (P)dnn0 �
ˆ

DQ1

p̄ (P) a⇤ (P)dn

�

�

�

�

<
e

2
. (A.10)

Because space D (DQ1) is separable and because n⇤ solves the seller’s maximization problem

(A.6) with the leader’s type space Q1, one can choose an N̂ 2 N such that for any n0 � N̂, n0 2 N ,

there exists an approximation n⇤n0 to n⇤ with a support on Qn0
1 :

0 
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤n0 <
e

2
. (A.11)

Proof that such an approximation exists is in the Supplementary Appendix B.

Take N̄ = max
�

N, N̂
 

. Then,

ˆ
DQ1

p̄ (P) a⇤ (P)dnN̄ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤N̄

=

✓ˆ
DQ1

p̄ (P) a⇤ (P)dnN̄ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn

◆

�
✓ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn

◆

+

✓ˆ
DQ1

p̄ (P) a⇤ (P)dn⇤ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤N̄

◆

<
e

2
� e +

e

2
= 0,

where the term in the first parenthesis is less than e/2 by (A.10), the term in the second parenthesis

equals e by the contradiction hypothesis (A.9), and the term in the third parenthesis is less than

e/2 by (A.11). The inequality is a contradiction, however, because nN̄ solves the seller’s discrete
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maximization problem with the leader’s type space QN̄
1 . Hence,

ˆ
DQ1

p̄ (P) a⇤ (P)dn �
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤ ⌘ V⇤.

The argument above shows that every convergent subsequence {nn0} converges weakly to a

limit that delivers a payoff at least as high as V⇤. Consequently, it must be the case that lim infn!• Vn �

V⇤. If not, there exists an e > 0 such that infinitely many nn deliver payoff Vn < V⇤ � e. Then it is

possible to pick a subsequence {nnk} for which no term delivers payoff Vnk � V⇤ � e. By sequential

compactness, {nnk} has a convergent subsequence, which is a subsequence of the original {nn} ,

and by construction, the limit of this subsequence delivers a payoff strictly below V⇤. This payoff

contradicts the earlier established fact that every convergent subsequence of {nn} must converge

weakly to a limit that delivers at least V⇤.
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B Supplementary Appendix: Omitted Technical Details

B.1 A Signal Structure Rationalizing the Information-Acquisition Technology of Sec-

tion 2

The model’s description, in Section 2, could have been specified as follows. The follower exerts

an effort a. This effort affects the precision of a signal z. This signal’s realization induces a con-

ditional probability distribution µz of the underlying valuation v. This conditional probability

distribution implies the expected conditional valuation q2 ⌘ Eµz [v]. Before the realization of z has

been observed, µz and q2 are random variables.

The alternative (but equivalent) approach taken in Section 2 makes direct assumptions on how

a affects the probability distribution of q2. It would have been a mere normalization to identify

the set of signal realizations with the set of conditional (on this signal) probability distributions

by setting z = µz (Kamenica and Gentzkow, 2011). Because each player is an expected-utility

maximizer, however, each cares only about q2, and so it is appropriate to identify the set of signal

realizations with the set of conditional expectations by setting z = q2. The underlying signal

structure that induces the probability distribution of q2 has been left implicit in the paper’s main

body, but can be recovered.

For concreteness, this appendix shows how the dependence of q2 on a assumed in Condition 1

can be (non-uniquely) rationalized with an appropriate joint probability distribution for v and z.

Assume that each c.d.f. Fj in Condition 1 has a p.d.f. f j, j = L, H. Let the follower’s underlying

valuation be v 2 {0, 1} with Pr {v = 1} = p, where p ⌘
´ 1

0 sdFH (s) =
´ 1

0 sdFL (s). Then, by

construction, Pr {v = 1} = E [q2 | a] for all a 2 A, meaning that the probability that the follower

assigns to v = 1 before observing z equals his expectation of the conditional (on z) probability that

v = 1, which is also his conditional expectation of v, denoted by q2. This Bayesian consistency

condition is necessary and sufficient for q2 to represent the follower’s conditional expectation of

his underlying valuation (Kamenica and Gentzkow, 2011).

Assume that the signal z can be either more precise, with probability a, or less precise, with

probability 1 � a. The realizations of the more and the less precise signals are governed by the

1



conditional p.d.f.s sH (z | v) and sL (z | v), where

sj (z | v) ⌘ zv (1 � z)1�v

pv (1 � p)1�v fj (z) , j 2 {H, L} , v 2 {0, 1} , z 2 [0, 1] . (B.1)

The Law of Total Probability applied to (B.1) implies that, conditional on signal technology j, z is

distributed according to the c.d.f. Fj; that is, the probability that the signal realization does not

exceed z is ˆ
sz

⇥

psj (s | 1) + (1 � p) sj (s | 0)
⇤

ds = Fj (z) ,

which immediately implies that unconditionally, for some effort a, z is distributed with the c.d.f.

F (· | a).

Bayes’s rule implies that z is also the expectation of v conditional on z and on signal technol-

ogy j:

E [v | z, j] = Pr {v = 1 | z, j} =
sj (z | 1) p

sj (z | 1) p + sj (z | 0) (1 � p)
= z,

which immediately implies the expectation that is conditional only on z:

q2 ⌘ E [v | z] = aE [v | z, j = H] + (1 � a)E [v | z, j = L] = z.

Hence, because z is distributed according to the c.d.f. F (· | a), so is q2, as desired.

B.2 Justifying Equation (A.11) in the Proof of Lemma 6

To justify equation (A.11), Lemma 7 demonstrates that one can approximate any n 2 D (DQ1) by a

probability measure that puts some mass only on discrete measures in a countable set. The proof

proceeds in two steps. First, it shows that by choosing n sufficiently large, any probability measure

in DQ1 can be approximated by a probability measure that puts some mass on a countable set
� 1

2n , 2
2n , ..., 1

 

in Q1. Then, a similar argument is repeated to show that if one chooses n sufficiently

large, any measure in D (DQ1) can be approximated by a measure that puts positive mass only

on discrete measures with support
� 1

2n , 2
2n , ..., 1

 

. This second half is slightly trickier because it

requires finding a countable set of non-overlapping neighborhoods in DQ1 which almost cover

space DQ1.

2



Lemma 7. Fix an arbitrary measure n 2 D (DQ1). For every e > 0, there exists N such that for n � N,

�

�

�

�

ˆ
DQ1

f (P) dn �
ˆ

DQ1

f (P) dnn

�

�

�

�

< e,

where f (P) is an arbitrary real-valued uniformly continuous, bounded function, and nn is a probability

measure that puts some mass only on discrete measures in the countable set

Dn ⌘
(

a1d1/2n + a2d2/2n + ... + a2n d1 : a1, ..., a2n 2 Q \ [0, 1] ,
2n

Â
j=1

aj = 1

)

⇢ DQ1,

where Q denotes the set of rational numbers and dk/2n denotes the Dirac measure at k/2n 2 [0, 1] (i.e.,

dk/2n (B) = 1{k/2n2B}, B ⇢ Q1). Set Dn contains probability measures that put some (rational) mass on a

countable set
� 1

2n , 2
2n , ..., 1

 

in Q1.

Proof. The proof proceeds in two steps.

Step 1: It is possible to approximate any measure µ in DQ1 with a measure in Dn by choosing

n sufficiently high.

Let Bn
j ⌘

h

j�1
2n , j

2n

⌘

for j = 1, 2, ..., 2n, so that the family of disjoint sets {Bn
1 , ..., Bn

2n} completely

covers Q1. Note that it is possible to approximate a discrete measure

µ (Bn
1 ) d1/2n + ... + µ (Bn

2n) d1

by

µn ⌘ an
1 d1/2n + ... + an

2n d1,

where an
j 2 [0, 1] \ Q such that Â2n

j=1 an
j = 1 and

2n

Â
j=1

�

�

�

µ
⇣

Bn
j

⌘

� an
j

�

�

�

<
1
2n .

Such choice of
n

an
j

o

is possible because rationals are dense in reals. Then for each n, µn 2 Dn.

Moreover, as n ! •, µn ) µ, where “)” denotes weak convergence and µ 2 DQ1.

To show that µn ) µ, take a uniformly continuous bounded function g on Q1 = [0, 1] .52 Let
52Statements that µn ) µ and that lim

´
gdµm =

´
gdµ for all uniformly continuous, bounded functions are equiva-

lent because

3



kgk• ⌘ supx2Q1
g (x) denote the supremum norm. Then

�

�

�

�

ˆ
gdµn �

ˆ
gdµ

�

�

�

�

=
�

�

�Â2n

j=1 an
j g
⇣

j
2n

⌘

�
´

gdµ
�

�

�

<
�

�

�Â2n

j=1 µ
⇣

Bn
j

⌘

g
⇣

j
2n

⌘

�
´

gdµ
�

�

�

+
1
2n sup

j

�

�

�

�

g
✓

j
2n

◆

�

�

�

�


�

�

�

�

´
Â2n

j=1 g
⇣

j
2n

⌘

1n
Bn

j

odµ �
´

gdµ

�

�

�

�

+
1
2n kgk•


�

�

�

�

Â2n

j=1
´ ⇣

g
⇣

j
2n

⌘

� g
⌘

1n
Bn

j

odµ

�

�

�

�

+
1
2n kgk•


�

�

�Â2n

j=1 supx2Bn
j

�

�

�

g
⇣

j
2n

⌘

� g (x)
�

�

�

µ
⇣

Bn
j

⌘

�

�

�

+
1
2n kgk• .

Note that
�

�

�

j
2n � x

�

�

�

< 1
2n for each x 2 Bn

j . Because g is uniformly continuous, for every e > 0, there

exists a d > 0 such that whenever |x � y| < d, |g (x)� g (y)| < e. Take some e > 0, then for n

such that 1
2n  d,

�

�

�

g
⇣

j
2n

⌘

� g (x)
�

�

�

< e for all x 2 Bn
j and all j. Then, from previous calculations, it

follows that
�

�

�

�

ˆ
gdµn �

ˆ
gdµ

�

�

�

�

 e +
1
2n kgk• .

Because g is bounded, the second term on the right-hand side can be made arbitrarily small by

choosing n sufficiently large, whereas e is arbitrary. Hence,
´

gdµn !
´

gdµ as n ! •, which

implies that µn ) µ.

Step 2: It is possible to approximate any measure n in D (DQ1) with a measure that puts some

mass only on measures in Dn.

Let

V ⌘
(

k

Â
n=0

•

Â
j=1

bnjµ
j
n : µ

j
n 2 Dn, b0j, ..., bkj 2 Q \ [0, 1] ,

k

Â
n=0

•

Â
j=1

bnj = 1, k = 0, 1, 2, ...

)

be a countable subset of probability measures in D (DQ1) . It contains measures that put positive

mass only on measures in a countable set D ⌘ [•
n=0Dn. It will be demonstrated that V is dense in

1. The set of bounded Lipschitz functions on a metric space is dense in the set of continuous bounded functions
on that space (Dudley, R. M., Real Analysis and Probability 2002, Theorem 11.2.4), which implies that instead
of a wider class of bounded continuous function in the definition of the weak convergence, one may actually
consider a smaller class of bounded Lipschitz functions (this fact is sometimes stated as a part of Portmanteau
theorem).

2. Every Lipschitz function between two metric spaces is uniformly continuous.

4



D (DQ1), and thus an arbitrary measure in D (DQ1) can be approximated by some measure in V .

Let n 2 D (DQ1) and

B
⇣

µ
j
n, 1/m

⌘

⌘
n

µ 2 DQ1 : dp

⇣

µ
j
n, µ

⌘

< 1/m
o

be an open ball in D (DQ1) with radius 1/m centered around measure µ
j
n 2 Dn, where dp

⇣

µ
j
n, µ

⌘

denotes Prohorov distance between measures µ
j
n and µ. For each m � 1,

[•
j=1B

✓

µ
j
0,

1
m

◆

⇢ [•
j=1B

✓

µ
j
1,

1
m

◆

⇢ ... and lim
n!•

[•
j=1B

✓

µ
j
n,

1
m

◆

= D (DQ1) .

Take N and J such that

n

✓

[J
j=1B

✓

µ
j
N ,

1
m

◆◆

� 1 � 1/m.

Modify the balls B
⇣

µ
j
N , 1

m

⌘

into disjoint sets by taking

Bm
1 ⌘ B

✓

µ1
N ,

1
m

◆

, Bm
k ⌘ B

✓

µk
N ,

1
m

◆

�


[k�1
j=1 B

✓

µ
j
N ,

1
m

◆�

, k = 2, ..., J.

Then Bm
1 , ..., Bm

J are disjoint and [j
k=1Bm

k = [j
k=1B

�

µk
N , 1

m
�

for all j. Consequently,

n
⇣

[J
k=1Bm

k

⌘

= n

✓

[J
k=1B

✓

µk
N ,

1
m

◆◆

� 1 � 1/m. (B.2)

It is possible to approximate

n (Bm
1 ) dµ1

N
+ ... + n

�

Bm
J
�

d
µJ

N

by

nm ⌘ bm
1 dµ1

N
+ ... + bm

J d
µJ

N
,

where bm
j 2 [0, 1] \ Q is such that ÂJ

j=1 bm
j = 1 and

J

Â
j=1

�

�

�

n
⇣

Bm
j

⌘

� bm
j

�

�

�

<
2
m

.

Since rationals are dense in reals, such choice of
n

bm
j

o

is always possible through an appropriate

5



rescaling. Then for each m, nm 2 D.

To show that nm ) n, take a uniformly continuous bounded function f on DQ1. Then,

�

�

�

�

ˆ
f dnm �

ˆ
f dn

�

�

�

�

=
�

�

�ÂJ
j=1 bm

j f
⇣

µ
j
N

⌘

�
´

f dn
�

�

�


�

�

�ÂJ
j=1 n

⇣

Bm
j

⌘

f
⇣

µ
j
N

⌘

�
´

f dn
�

�

�

+
2
m

sup
j

�

�

�

f
⇣

µ
j
N

⌘

�

�

�


�

�

�

�

´
ÂJ

j=1 f
⇣

µ
j
N

⌘

1n
Bm

j

odn �
´

f dn

�

�

�

�

+
2
m

k f k•


�

�

�

�

ÂJ
j=1
´ ⇣

f
⇣

µ
j
N

⌘

� f
⌘

1n
Bm

j

odn +
ˆ

f 1n⇣
[J

j=1Bm
j

⌘codn

�

�

�

�

+
2
m

k f k•


�

�

�ÂJ
j=1 supµ2Bm

j

�

�

�

f
⇣

µ
j
N

⌘

� f (µ)
�

�

�

n
⇣

Bm
j

⌘

+ k f k• n
⇣⇣

[J
j=1Bm

j

⌘c⌘�
�

�

+
2
m

k f k• .

Each Bm
j is contained in a ball with radius 1/m around µ

j
N , and thus dp

⇣

µ
j
N , µ

⌘

< 1
m for each

µ 2 Bm
j . Because f is uniformly continuous, for every e > 0, there is a d > 0 such that whenever

dp (µ, u) < d, | f (µ)� f (u)| < e. Take some e > 0; then, for m � 1/d,
�

�

�

f
⇣

µ
j
N

⌘

� f (µ)
�

�

�

< e for all

µ 2 Bm
j and all j. Then, from previous calculations

�

�

�

�

ˆ
f dnm �

ˆ
f dn

�

�

�

�

 e +
1
m

k f k• +
2
m

k f k• .

Because f is bounded, the last two terms on the right-hand side can be made arbitrarily small by

choosing m sufficiently large, whereas e is arbitrary. Hence,
´

f dnm !
´

f dn as m ! •, which

implies that nm ) n.

B.3 Proof of Lemma 3

The proof proceeds in steps. Step 1 gives a differential characterization of a class of regular

prospect sets. Step 2 shows that the conditions in that characterization are implied by the con-

ditions of Lemma 3 or its modification discussed in Section 5.

Step 1: Differential Conditions for Regularity

Restrict attention to a class of so-called orderly prospect sets. A prospect set is orderly if it

satisfies a (0) = a (1) = 0 with a � 0, or p (0) = p (1) = 0 with p � 0, or both, and if it is induced

by a and p that are twice differentiable. Because of the differentiability of a and p, an orderly

prospect set is a continuous curve whose endpoints lie on at least one of the axes, which the curve

6



does not intersect.

An orderly prospect set is regular if its every decreasing segment is convex toward the “inte-

rior” of the prospect set. (That is, there are at most one decreasing segment, at most one increasing

segment, and the two segments are “convex away” from each other. This property can be ascer-

tained graphically.) Thus, to establish regularity, one would like to know something about the

behavior of a as a function of p—in particular, d2a/dp2. Because the curve a (p) is given para-

metrically, the sought derivative must be found in a roundabout way, applying the chain rule of

differentiation twice. Then:
d2a

dp2 =
a00p0 � a0p00

(p0)3 , (B.3)

where a0 denotes da (q1) /dq1, etc. The appropriate convexity assumptions require

p0 > 0 and a0 < 0 =) d2a

dp2 < 0 ()
✓

p0

a0

◆0
> 0

p0 < 0 and a0 > 0 =) d2a

dp2 > 0 ()
✓

p0

a0

◆0
> 0,

where the equivalences are established using (B.3). To summarize, an orderly prospect set is reg-

ular if, for all s 2 Q1

p0 (s) a0 (s) < 0 =)
✓

p0 (s)
a0 (s)

◆0
> 0. (B.4)

Step 2: Sufficiency of the Conditions in Lemma 3

The twice-differentiability of a and p and part (ii) of Lemma 3 (or Condition 5 and the linearity

of F in a) ensure that a (0) = a (1) = 0 and a � 0 (respectively, p (0) = p (1) and p � 0), and

hence that the induced prospect set is orderly.

It remains to ascertain that (B.4) holds. Define r ⌘ (1 � G) /g. The following equivalence

holds:
✓

p0

a0

◆0
> 0 () D ⌘

 

(r (FH � FL))
0

FH � FL

!0

< 0.

By the chain rule of differentiation,

D = r00 + r0
fH � fL

FH � FL
+ r

✓

fH � fL

FH � FL

◆0
.

= r00 + r0
fH � fL

FH � FL
+ r

✓

a00

a0

◆0
,

7



with the last equality follows by the differentiation of a, given in (6), Theorem 1.

To conclude (B.4), one must consider two cases: a0 < 0 and p0 > 0, and a0 > 0 and p0 < 0.

Consider the case of p0 > 0 and a0 < 0 first. In this case,

a0 =
1
c
(FH � FL) < 0 and p0 = r0 (FL � FH) + r ( fL � fH) > 0,

which imply fL � fH > 0 as long as r0  0, as part (i) of Lemma 3 supposes. As a result, D < 0

as long as r00  0 (as part (i) of Lemma 3 supposes) and (a00/a0)0 < 0 (as part (iii) of Lemma 3

supposes).

Consider the remaining case in which a0 > 0 and p0 < 0. In this case,

a0 =
1
c
(FH � FL) > 0 and p0 = r0 (FL � FH) + r ( fL � fH) < 0,

imply fL � fH < 0, by r0  0. As a result, D < 0, by r00  0 and (a00/a0)0 < 0. Hence, (B.4) holds,

and the orderly prospect set is regular.
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