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Abstract

We investigate the feasibility of implementing an allocation rule with a gradual revelation mech-

anism, where the agents reveal their private information over time (rather than all at once). With

independently distributed types, private values, and transferable utilities satisfying a single crossing

property, an ex-post monotonicity condition is suffi cient for budget-balanced implementation of any

incentive compatible allocation rule with any gradual revelation scheme. When we extend the single

crossing property over the set of randomized allocations, a weaker monotonicity condition is both

necessary and suffi cient for budget-balanced implementation by gradual revelation.
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1 Introduction

In her celebrated novel, Sense and Sensibility, Jane Austen writes about the “life and loves” of the

Dashwood sisters in the 18th century England. Elinor Dashwood falls in love with Edward Ferrars. The

attraction is mutual but Edward is already secretly engaged to another girl, who turns out to be more

interested in Edward’s family fortune than in Edward himself. At the end of the novel, Edward loses

his rights to the family money but ends up marrying Elinor. Obviously, not all love stories are meant

to have such happy endings. In the same novel, Elinor’s sister Marianne is romantically involved with

John Willoughby. But unlike Edward, Willoughby prefers a comfortable lifestyle to the pursuit of true

love. Therefore he gets married to a young lady with a large fortune instead of Marianne.

From a cold blooded mechanism design perspective, it is easy to come up with a simple incentive

scheme which would generate the above allocation rule where idealist Edward would lose his fortune but

succeed in love and materialist Willoughby would secure a financially comfortable life but be deprived
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of romance. A direct revelation mechanism would ask each of the gentlemen if he is the more idealist or

the more materialist type and then assign him to the appropriate spouse.

Although the revelation principle is an essential tool in the analysis of design problems, it does

not provide a good recipe for writing a literary masterpiece. In Sense and Sensibility, it takes three

volumes with more than 300 pages for Elinor and Edward to unite. First, Edward starts acting detached

and Elinor comes to the conclusion that he has lost interest in her. Then she learns of Edward’s prior

engagement, which he feels compelled to honor. Edward’s mother finds out about the engagement as well

and disinherits him in disapproval. Once Edward loses the connection to his wealthy family, Edward’s

fiancé breaks up with him and marries his brother, who is now the sole inheritor of the family estate.

Elinor hears about the marriage in Edward’s family and assumes that it was Edward who got married.

It is almost at the end of the novel that Edward shows up unexpectedly and announces to Elinor that

he is not burdened with his earlier engagement or with his obligations to the family any more.

To sustain the suspense throughout the novel, Jane Austen does not reveal the traits of her characters

at once. Instead, the revelations are supported by a sequence of decisions made by the characters. These

decisions make sense from the characters’ perspective. Each decision reflects the preferences of the

decisionmaker given what he / she knows about the other characters at the time that the decision is

made. The decisions not only serve to reveal the qualities of the characters to the audience (and to the

other characters in the book) but they also lead to the outcome to be faced at the end of the novel.1

In this paper, we investigate the feasibility of implementing an allocation rule with gradual revelation

schemes such as the one that serves as the foundation of the story line in Sense and Sensibility. We study

this question in the context of an economy with independently distributed types, private values, and

transferable utilities satisfying a single crossing property. A well known condition which is indispensable

—both for implementation by simultaneous revelation as prescribed by the revelation principle and for

implementation by gradual revelation that we try to motivate in this paper —is incentive compatibility :

An implementable allocation rule should provide each agent with the incentive to report his type truth-

fully under his prior beliefs on the types of the other agents. The results of this paper identify other

conditions that guarantee implementation of an allocation rule with a gradual revelation mechanism.

These results are presented in three propositions with closely related proofs.

In a recent paper, Ely, Frankel, and Kamenica (2013) discuss the idea that gradual revelation of

information has an entertainment value for a Bayesian audience. They give many examples from real

life auctions, political primaries, mystery novels, sports events, gambling, and reality TV supporting the

contention that receivers of information have preferences over the evolution of their beliefs in time. The

model we develop in Section 2 benefits a great deal from their formalization of sequential revelations

1For many other examples of strategic thinking in Austen’s work, see the intriguing book by Chwe (2013).
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as a stochastic path of beliefs. Ely, Frankel, and Kamenica identify the revelation sequences that a

designer would commit to in order to maximize the “suspense”or the “surprise”that the audience would

experience. The current paper complements their work by detailing how such a revelation sequence can

be supported by the behavior of self-interested agents instead of the actions of a central designer with a

commitment power.

Sustaining suspense and surprise is not the only economic motivation for pursuing gradual revelation.

Some settings require the participation in the mechanism to be a voluntary decision for the agents. By

rejecting to participate in a mechanism, an agent can resume a predetermined strategic interaction with

the other agents. For instance, a firm can revert to a state of competition by refusing to take part in a

cartel with its rivals. If this firm’s payoff in the competition game is not convex in the information on

its rivals, the participation payoff threshold of this firm can be reduced by revealing some preliminary

information during the cartel negotiations (Celik and Peters, 2011, 2013).

Another justification for gradual revelation is the agents’ability to partially verify the state by using

hard evidence (Bull and Watson, 2007; Deneckere and Severinov, 2008). For instance, a worker may have

access to two pieces of evidence, the first one ruling out that the worker is unskilled for the job, and the

second one establishing that she is not lazy. However, due to the time and attention span constraints,

this worker may have the ability to successfully report only a single piece of evidence to her superiors.

In this case, in order to evaluate whether this worker is the right person for the job, the management

should follow a two step procedure where the co-workers reveal the nature of their complaints first and

then the worker makes her defense with the help of the appropriate hard evidence. A similar logic applies

under the presence of communication costs (Van Zandt, 2007; Fadel and Segal, 2009; Mookherjee and

Tsumagari, 2013). For instance, if the cost structure constrains an agent to a binary message space, an

effi cient use of this space would require conditioning the exact meaning of this agent’s message to the

messages chosen by the other agents earlier in the mechanism.

There is one class of allocation rules which can be trivially implemented through gradual revela-

tion schemes. When an allocation rule is dominant strategy incentive compatible, truthful revelation

remains as the optimal strategy of an agent regardless of what he learns about the types of the other

agents. Mookherjee and Reichelstein (1992) establish that an incentive compatible allocation rule can

be transformed into a dominant strategy incentive compatible one as long as the original allocation rule

is ex-post monotone. The resulting allocation rule from this transformation is identical to the original

one up to a transfer function which yields the same interim expected payoff for the agents as in the

original allocation rule. Mookherjee and Reichelstein prove this result in a continuous type environment

by invoking the revenue equivalence theorem. In Section 3, we extend this transformation to our discrete

type model (Proposition 1).

In Section 4, we turn our attention to the analysis of the budget-balanced mechanisms, which remain
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as the main focus for the rest of the paper. It is well known that dominant strategy implementation is

generally incompatible with balancing the budget. Therefore the transformation discussed above requires

some outside intervention in order to provide the agents with the appropriate transfers. However, with

Proposition 2, we show that the ex-post monotonicity condition, which is suffi cient for dominant strategy

implementation of an incentive compatible allocation rule, is also suffi cient for its budget-balanced

implementation under any possible sequence that the private information may be revealed.

Unlike the dominant strategy transfers, which depend only on the final type reports of the agents, the

balanced budget transfers depend on the entire path of revelations made by them. With these transfers,

the agents find it optimal to report their types truthfully not only at the start of the game under their

prior beliefs but also at any information set they may reach during the process of revelations. Moreover,

these transfers make the agents indifferent between any revelation they may make prior to their final

reporting of the exact types. Thanks to this indifference condition, it is an equilibrium behavior for

each type of each agent to randomize between different revelations with the appropriate frequencies that

would generate the aimed sequence of information disclosures.

We construct these balanced budget transfers by following the expected externality method introduced

by Arrow (1979) and d’Aspremont and Gerard-Varet (1979). The crucial point in supporting a balanced

budget is making sure that each agent’s transfer reflects the expected level of the externality he imposes

on the other agents at each step of the revelation procedure. However, achieving this in our dynamic

setting is a more involved exercise than what is required in a simultaneous revelation game, since the

expectations in our case are based on the endogenous probability distributions which are determined by

the earlier revelations made by the same set of agents.

Ex-post monotonicity is a suffi cient condition to reconcile gradual revelation with a balanced budget,

but it is not necessary. In Section 5, we introduce a weaker monotonicity condition which is defined

with respect to the intended sequence of revelations. When the single crossing property is extended

over the stochastic allocations, this weaker monotonicity condition is necessary and suffi cient for budget-

balanced implementation by gradual revelation (Proposition 3). Mookherjee and Tsumagari (2013) refer

to a similar monotonicity condition to characterize the implementable output functions in the context

of communication costs. We discuss the relation between these monotonicity conditions in Section 5.

One complication in proving the suffi ciency part of Proposition 3 is the identification of the optimal

continuation behavior of an agent when this agent makes an off-the-equilibrium-path revelation which

is inconsistent with his type. We resolve this complication by designating a "type to imitate" for each

deviation that a particular type can follow. We show that a gradual revelation mechanism can provide

the incentives for a deviating type to imitate only these designated types once he makes the decision to

deviate from the equilibrium behavior. This mechanism ensures that a type of an agent is indifferent

between the revelations he makes with a positive probability (but not necessarily all possible revelations).
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2 The Model

In an environment with incomplete information, I is the set of agents. We refer to the private information

of an agent as his type. The agents’types are drawn independently from finite sets of real numbers.

Formally, each agent i ∈ I has a finite type set Θi ⊂ R with generic element θi. Agent i’s type is

distributed with respect to the prior distribution µ0
i ∈ ∆Θi , independently of the other agents’types. In

standard notation, the cross product space Θ = ×i∈IΘi is the set of type profiles with generic element

θ = {θi}i∈I . We define µ0 =
{
µ0
i

}
i∈I as the collection of the priors on the agents’types. Similarly, Θ−i

stands for ×j∈I−{i}Θj with generic element θ−i = {θj}j∈I−{i} and µ0
−i represents

{
µ0
j

}
j∈I−{i}.

Y is the finite set of economic alternatives. An agent’s preferences over the economic alternatives

depend on his own type but not on the types of the other agents. Accordingly, preferences of agent i are

represented by the utility function ui : Y ×Θi → R. The continuous type model where the agents’types

are drawn from a continuous distribution and their utility functions are continuously differentiable can

be seen as a limit of our discrete type model. We will refer to this limit case to better illustrate some of

the points we make. We assume that the preferences satisfy the following single crossing property:

Assumption (SC) For any agent i and any two economic alternatives y and ŷ ∈ Y , the utility difference

ui (y, θi)− ui (ŷ, θi) is either weakly increasing or weakly decreasing in θi.

Notice that this assumption is trivially satisfied when agents have at most two types.

The single crossing property implies an order on the set of economic alternatives Y for each agent.

That is, for each agent i, there exists a function hi : Y → R such that for any two economic alternatives

y and ŷ ∈ Y ,

hi (y) ≥ hi (ŷ) if and only if ui (y, θi)− ui (ŷ, θi) is weakly increasing in θi. (1)

If function hi (·) satisfies condition (1), any positive monotone transformation of it also satisfies this con-

dition. Non-uniqueness of function hi (·) will not be a problem for our analysis, since we will be exclusively

concerned with its monotonicity properties, which are robust under such a monotone transformation.

For many settings, where preferences satisfy a one dimensional condensation condition (Mookherjee and

Reichelstein, 1992), function hi (·) has a natural interpretation such as the probability of receiving an

object, the level of a public good, or the amount of production.

In addition to the economic alternative and his type, an agent’s payoff is also affected by the monetary

transfer he receives. We assume that the payoff functions are quasilinear in transfers and can be written

as

ui (y, θi) + xi (2)

for agent i, where y is the economic alternative, θi is agent i’s type, and xi ∈ R is his monetary transfer.
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Following the earlier literature, we define a decision rule as a mapping from type profiles into

economic alternatives y : Θ → Y and a transfer rule as a mapping from type profiles into agents’

transfers x : Θ → R|I|, with xi yielding the relevant dimension of the transfer rule for agent i. We

refer to (y (·) , x (·)) as an allocation rule. (y (·) , x (·)) is incentive compatible under belief µ0 if the

following constraint is satisfied for all i ∈ I and all
(
θi, θ̂i

)
∈ Θ2

i pairs:

Eθ−i|µ0−i {ui (y (θi, θ−i) , θi) + xi (θi, θ−i)} ≥ Eθ−i|µ0−i
{
ui

(
y
(
θ̂i, θ−i

)
, θi

)
+ xi

(
θ̂i, θ−i

)}
. (3)

If (y (·) , x (·)) satisfies the incentive compatibility constraints above, we know from the proof of the

revelation principle that there exists a direct revelation mechanism where the agents reveal their types

all at once, knowing that the economic alternative and their transfers will be chosen according to this

allocation rule. Of course, the revelation principle does not rule out the possibility of implementing the

same allocation rule in alternative ways.

What we study in this paper is these alternative ways of implementation. In particular, we investigate

if we can implement an allocation rule —or a close variant of it —while delaying the full disclosure of

private information of the agents by making them reveal their types gradually, presumably to cater to

the demand for suspense.2

Our model is a discrete type model but perhaps this point is better explained by referring to a well

known example where types are distributed on a continuum. Consider a first price sealed bid auction

such that the type (the private value for the auctioned object) of each bidder is uniformly distributed on

the interval [0, 1]. This auction has an equilibrium where each bidder bids |I|−1
|I| times his value, so that

the types of the bidders are revealed simultaneously at the observation of their bids. The dutch auction

(the descending price auction where the asking price of the object lowers in time) is another mechanism

which implements the same allocation rule with a gradual revelation scheme. The dutch auction has

an equilibrium where each bidder waits until the asking price declines to the |I|−1
|I| times his value and

accepts to buy the object at that price if no other bidder chose to buy it earlier at a higher price. As

time passes and the asking price declines, the bidders in the dutch auction (and the outside observers)

keep updating their beliefs about their rivals until some bidder buys the object and reveals his type

completely. This makes the dutch auction more exciting than the first price sealed bid auction, even

though both auction formats generate the same economic allocation where the bidder with the highest

value receives the object and pays |I|−1
|I| times his value.

The idea that an audience may demand suspense (and surprise) in the revelation of information is

recently studied by Ely, Frankel, and Kamenica (2013). We refer to their model in order to integrate

2 In what follows, we assume that suspense is demanded by an audience which is not a direct participant to the

mechanism. Our model also applies to a setting where the participating agents have preferences over the evolution of their

beliefs, but these preferences are separable from their preferences over the economic alternatives.
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the notion of gradual revelation in the mechanism design framework. Ely, Frankel, and Kamenica are

concerned with information disclosures by a single informed party, but their approach can be extended

to accommodate revelations made by multiple agents. In this extended model, t ∈ {0, 1, ..., T} denotes

the period. In each period, each agent chooses a signal from a finite3 set. The audience and all the agents

observe the signals sent and update their beliefs on the sending agents. The resulting period t belief on

the type of agent i is denoted by µti ∈ ∆Θi, and µt = {µti}i∈I is a collection of these beliefs. Technically,

an agent’s information policy is a function that maps the current period t, the agent’s type θi, the

current belief µt into a distribution over the signals.4 The agents’information policies together generate

a stochastic path of beliefs on the agents’types. Let µ̃ti ∈ ∆ (∆Θi) be a distribution on agent i’s type

distributions and define µ̃t =
{
µ̃ti
}
i∈I as a collection of these distributions. Following the terminology

of Ely, Frankel, and Kamenica, a belief martingale is a sequence
{
µ̃t
}T
t=0

such that

i) µ̃0 is degenerate at prior µ0, and

ii) E
[
µt|µ0, ..., µt−1

]
= µt−1 for all t = 1, ..., T .

A realization of a belief martingale is the belief path {µt}Tt=0.

We also add a final period, period T + 1, to Ely, Frankel, and Kamenica’s timing, where each agent

can send a last signal. In our formulation, this will be the period where the agents will be given the

incentive to fully reveal their private information if they have not done so in earlier periods. A gradual

revelation mechanism determines the economic alternative and the agents’transfers as functions of

all the signals sent in T + 1 periods.

For an illustration of how a gradual revelation mechanism would work, we reconsider the independent

private values auction setting. The bidders in the example start with the prior belief that the types of

their rivals are uniformly distributed on the interval [0, 1]. This corresponds to the period 0 belief µ0 in

our model. Then, in period 1, the gradual revelation mechanism may ask each bidder to send either a

"high" signal or a "low" signal. After observing the period 1 signal of a bidder, his rivals update their

belief on the bidder’s value to a triangular distribution with the cumulative distribution function θ2
i if the

signal is high or with the cumulative distribution function 2θi−θ2
i if the signal is low.

5 This corresponds

to the period 1 belief µ1
i , which happens to have two possible realizations in this example. In period

2, depending on the period 1 revelations, some of the bidders may be asked to send a second signal

revealing their type completely.6 Finally in period 3, all the remaining bidders reveal their types and

3We concentrate on finite message sets in order to use sequential equilibrium as our solution concept.

4Following Ely, Frankel, and Kamenica, we assume that the information policy is memoryless, i.e., the signal depends

on the current period and the current belief instead of the full history.

5These cumulative distribution functions are derived from the Bayes rule with the assumption that each bidder sends

the high signal with a probability equal to his value θi ∈ [0, 1].

6For instance, bidder i may reveal his type if and only if he is the only bidder who happened to send the "high" signal

7



the mechanism determines the economic alternative and the transfers by processing the data generated

by the bidders in all the three time periods.

Any allocation rule implemented by a gradual revelation mechanism would still respect the incentive

compatibility conditions: Starting with the first period of the mechanism, type θi of agent i can choose

to imitate type θ̂i by following the equilibrium strategy of this latter type. For this strategy not be a

profitable deviation, condition (3) must hold in expectation. However, a gradual revelation scheme as

in the preceding paragraph introduces many additional conditions to be satisfied in the construction

of an equilibrium. First, consider an agent who waits until the last period to reveal his type. Such

an agent will have superior information about the other agents than what he knew in period zero.

Therefore his truthtelling constraints in period T + 1 will be more stringent than the interim version

of the incentive compatibility constraints in (3). Moreover, a gradual revelation mechanism should also

provide the incentive to send the accurate signals in periods earlier than T + 1. For instance, if an agent

is supposed to randomize between different signals (as is the case in period 1 in the above example), his

expected continuation payoff from these signals must be equal to each other and weakly larger than the

continuation payoff from any other signal that he is not supposed to send in equilibrium.

3 Dominant Strategy Incentive Compatibility

There is one class of allocation rules which are easily shown to be implementable with gradual revela-

tion. Suppose (y (·) , x (·)) is dominant strategy incentive compatible, i.e., it satisfies the incentive

constraints in (3) for all θ−i ∈ Θ−i instead of satisfying them in expectation only. In this case, we can

construct a gradual revelation mechanism where the chosen allocation depends only on the type reports

at time T + 1 but not on the sent signals or the updated beliefs in earlier periods. Regardless of what an

agent learns on the types of the other agents in these earlier periods, he would prefer to report his type

truthfully at the end of the procedure. Moreover, since the payoffs do not depend on the revelations

made in periods 1 to T , all types of all agents would be indifferent between all the information policies

available to them. Accordingly, sending their signals in a type dependent manner to generate any given

martingale would be an equilibrium behavior for the agents.7

Under the single crossing property, it is well known that dominant strategy incentive compatibility

demands a monotonic relation between agent i’s type and function hi. If decision rule y (·) is dom-

in period 1.

7These strategy profiles constitute an ex-post equilibrium, where each agent’s strategy is optimal whatever the types of

the other agents are. As noted by Fadel and Segal (2009) in their Proposition 6, such strategy profiles can be supported

as equilibria under any prior beliefs. In fact, this observation extends to the interdependent values case, where an agent’s

payoff may depend on another agent’s type, as long as the allocation rule satisfies the ex-post version of the incentive

compatibility constraints (see Van Zandt, 2007).
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inant strategy incentive compatible with some transfers, then it must be ex-post monotone, i.e.,

hi [y (θi, θ−i)] must be weakly increasing in θi for all θ−i ∈ Θ−i and all i ∈ I. For instance, for private

value auctions, ex-post monotonicity corresponds to the requirement that the probability of assigning

the object to any given agent increases in the private value of this agent, regardless of the values of all

the other agents.

Mookherjee and Reichelstein (1992) argue that there is a sense in which the ex-post monotonicity

condition is also suffi cient for dominant strategy incentive compatibility. In the context of a model

with a continuum of types and continuously differentiable utility functions, they show that if alloca-

tion rule (y (·) , x (·)) is incentive compatible and decision rule y (·) is ex-post monotone, then transfer

rule x (·) can be transformed into another transfer rule xDS (·), which constitutes a dominant strategy

incentive compatible allocation rule together with y (·) and which yields the same interim transfers as

x (·). Mookherjee and Reichelstein construct xDS (·) by invoking the revenue equivalence theorem in

their continuous type environment. We show that this result extends to our model with discrete types.

Proposition 1 Suppose that the single crossing condition in Assumption SC holds and (y (·) , x (·)) is

an incentive compatible allocation rule under belief µ0. There exists a transfer rule xDS (·) such that

i) allocation rule
(
y (·) , xDS (·)

)
is dominant strategy incentive compatible and

ii) Eθ−i|µ0−ix
DS
i (θi, θ−i) = Eθ−i|µ0−ixi (θi, θ−i) for all θi ∈ Θi, all i ∈ I,

if and only if decision rule y (·) is ex-post monotone.

Proof. The "only if" part is a standard result from screening theory, which can be proved by adding

the two dominant strategy incentive compatibility constraints between any two types under allocation

rule
(
y (·) , xDS (·)

)
.

As a first step to proving the "if" part, define ∆i

(
θi, θ̂i|θ−i

)
as the payoff premium of type θi for

revealing his type truthfully instead of imitating an "adjacent" type θ̂i when the other agents’types are

given as θ−i:

∆i

(
θi, θ̂i|θ−i

)
= ui (y (θi, θ−i) , θi) + xi (θi, θ−i)− ui

(
y
(
θ̂i, θ−i

)
, θi

)
− xi

(
θ̂i, θ−i

)
. (4)

Notice that function ∆i

(
θi, θ̂i|θ−i

)
can take positive or negative values depending on θ−i but (3) implies

that Eθ−i|µ0−i∆i

(
θi, θ̂i|θ−i

)
is non-negative.

The next step is defining function gi (θi, θ−i). The rate of change of this function between any two

adjacent types θi and θ̂i is given as:

gi (θi, θ−i)−gi
(
θ̂i, θ−i

)
=

∆i

(
θ̂i, θi|θ−i

)
Eθ̃−i|µ0−i∆i

(
θi, θ̂i|θ̃−i

)
−∆i

(
θi, θ̂i|θ−i

)
Eθ̃−i|µ0−i∆i

(
θ̂i, θi|θ̃−i

)
Eθ̃−i|µ0−i∆i

(
θi, θ̂i|θ̃−i

)
+ Eθ̃−i|µ0−i∆i

(
θ̂i, θi|θ̃−i

)
(5)
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for all θ−i. This equation determines gi (·, θ−i) up to a constant8 for any θ−i. The following equation

yields this constant term and thus pins down the function:

Eθi|µ0i {gi (θi, θ−i)} = 0 (6)

for all θ−i.

When function gi is defined as above, its expectation with respect to its second argument θ−i is zero

as well:

Eθ−i|µ0−i {gi (θi, θ−i)} = 0 (7)

for all θi. To see this last point observe that the expectation of the right hand side of equation (5) over

θ−i given µ0
−i is equal to zero. Hence Eθ−i|µ0−i {gi (θi, θ−i)} is a constant function of θi with the expected

value of zero (equation (6)).

We define xDS (·) with the equation xDSi (θi, θ−i) = xi (θi, θ−i) +gi (θi, θ−i). Part (ii) of the proposi-

tion follows from (7). Under condition SC and the ex-post monotonicity of y (·), the dominant strategy

incentive compatibility constraints between the adjacent types will be suffi cient for all the other dom-

inant strategy incentive compatibility constraints. Therefore, to prove part (i), it is suffi cient to show

that the updated payoff premium to revealing the type as θi rather than imitating an adjacent type θ̂i

under the allocation rule
(
y (·) , xDS (·)

)
is non-negative for all i and all θ−i:

ui (y (θi, θ−i) , θi) + xDSi (θi, θ−i)− ui
(
y
(
θ̂i, θ−i

)
, θi

)
− xDSi

(
θ̂i, θ−i

)
= ∆i

(
θi, θ̂i|θ−i

)
+ gi (θi, θ−i)− gi

(
θ̂i, θ−i

)
(8)

=
∆i

(
θ̂i, θi|θ−i

)
+ ∆i

(
θi, θ̂i|θ−i

)
Eθ̃−i|µ0−i∆i

(
θi, θ̂i|θ̃−i

)
+ Eθ̃−i|µ0−i∆i

(
θ̂i, θi|θ̃−i

)Eθ̃−i|µ0−i∆i

(
θi, θ̂i|θ̃−i

)
(9)

The terms in expectations are all non-negative thanks to the incentive compatibility of (y (·) , x (·)).

Hence the sign of

∆i

(
θ̂i, θi|θ−i

)
+ ∆i

(
θi, θ̂i|θ−i

)
=

[
ui (y (θi, θ−i) , θi)− ui

(
y
(
θ̂i, θ−i

)
, θi

)]
−
[
ui

(
y (θi, θ−i) , θ̂i

)
− ui

(
y
(
θ̂i, θ−i

)
, θ̂i

)]
(10)

determines the sign of the updated payoff premium. This sum is a non-negative number due to the single

crossing and the ex-post monotonicity conditions. (Either θi ≥ θ̂i and therefore ui
(
y (θi, θ−i) , θ̃i

)
−

8 If the incentive constraints between types θi and θ̂i are binding in both directions (which would indeed be the case

if the allocation rule is pooling these types together), then both Eθ̃−i|µ0−i∆i

(
θi, θ̂i|θ̃−i

)
and Eθ̃−i|µ0−i∆i

(
θ̂i, θi|θ̃−i

)
will

be equal to zero. In this case, we adopt the convention that these terms cancel each other out so that the right hand side

of (5) is equal to
∆i(θ̂i,θi|θ−i)−∆i(θi,θ̂i|θ−i)

2
. We follow the same practice in defining similar functions in the proofs of

our later results.
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ui

(
y
(
θ̂i, θ−i

)
, θ̃i

)
is weakly increasing in θ̃i, or θi ≤ θ̂i and therefore ui

(
y (θi, θ−i) , θ̃i

)
−ui

(
y
(
θ̂i, θ−i

)
, θ̃i

)
is weakly decreasing in θ̃i.)

In the proof of the proposition, transfer rule xDS (·) is constructed by the equation

xDSi (θi, θ−i) = xi (θi, θ−i) + gi (θi, θ−i) , (11)

where gi (·) is a function which gives agent i the incentive to reveal his true type θi after he observes θ−i.

Another crucial property of function gi (·) is that it has an expected value of zero when the expectation is

taken either with respect to θi given any θ−i or with respect to θ−i given any θi. In the continuous type

limit of our model, xDS (·) defined in (11) corresponds to the unique (up to a constant depending on θ−i)

transfers that the revenue equivalence theorem yields for the equivalent implementation of (y (·) , x (·))

in dominant strategies (see Mookherjee and Reichelstein, 1992, Proposition 1). In the special case of

our model where the utility function ui (y, θi) is linear in θi for all i, xDS (·) is the same as the transfer

rule derived by Gershkov et al. (2013) in their Theorem 2. Gershkov et al. use this transfer rule in the

construction of a dominant strategy incentive compatible allocation rule which delivers the same interim

expected payoff as an incentive compatible (but possibly ex-post non-monotonic) allocation rule.

If we apply the transformation described in the proof of Proposition 1 to the independent private

value auction example of the previous section, we end up with converting the allocation rule of the first

price auction into the allocation rule of the second price auction, where the highest value bidder receives

the object and pays a monetary amount equal to the second highest value. This allocation rule has the

advantage of being implementable through a gradual revelation mechanism. Whatever the bidders learn

about their rivals in the earlier stages of this mechanism, they still find it optimal to report their types

truthfully at the final stage. Furthermore, since the transfers will depend only on these final period

type reports, the bidders would be indifferent between any of the signals they can submit in the earlier

periods. This last point makes it possible to construct an equilibrium where the bidders’randomizations

over the signals would generate any desired belief martingale.

Both the first price and the second price auction allocation rules yield the same decision regarding

the identity of the winning bidder, the same expected transfers from the bidders at the interim stage, and

the same expected revenue for the seller at the ex-ante stage. However, the realized level of the revenue

has different distributions under these two auctions. As first remarked by Vickrey (1961, Appendix 1),

the second price auction revenue has a larger support and a higher variance than the first price one,

implying that a risk averse seller would strictly prefer the first price auction. In other words, even

though the risk neutral agents are indifferent between the original and the modified allocation rules,

these two rules may not necessarily describe equivalent outcomes for a principal with more elaborate

risk preferences. Perhaps more importantly, in many design settings (such as bilateral trade and provision

of public goods), there does not exist a principal (like the seller in the auction setting) who can cover
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the differences between the monetary transfers to be made under the original allocation rule and the

dominant strategy incentive compatible variant of this allocation rule. These observations point to the

fact that balancing the budget is a desirable property for gradual revelation mechanisms as it is for the

direct revelation mechanisms.

In general, balancing the budget and attaining dominant strategy incentive compatibility are two ob-

jectives which cannot be achieved together. In the following section, we will abandon the latter objective

and concentrate on sustaining gradual revelation without insisting on dominant strategy implementa-

tion. We will see that it is possible to balance the budget and at the same time to provide the incentives

for gradual revelation.

4 Gradual Revelation with Budget Balance:

A Suffi cient Condition

In the previous section, we argued that ex-post monotonicity of the decision rule is a suffi cient condition

to transform an incentive compatible allocation rule into a dominant strategy incentive compatible

one, without considering the budget balance. In this section, we will see that ex-post monotonicity is

also suffi cient for the construction of a gradual revelation mechanism adhering to the balanced budget

requirement.

Unlike the transfers identified in the previous section, the transfers ensuring a balanced budget will

not give us dominant strategy incentive compatibility. Nevertheless, these transfers will provide the

agents with the incentive to make accurate revelations in all periods of the constructed mechanism,

including the last period where they will fully reveal their types.9

Proposition 2 Suppose that the single crossing condition in Assumption SC holds,
{
µ̃t
}T
t=0

is an arbi-

trary belief martingale, and (y (·) , x (·)) is an incentive compatible allocation rule under belief µ0. There

exists a gradual revelation mechanism and a sequential equilibrium of this mechanism where

i) types are gradually revealed according to martingale
{
µ̃t
}T
t=0

and decision rule y (·) is implemented,

ii) the interim expected payoff for type θi of agent i is Eθ−i|µ0−i {ui (y (θi, θ−i)) + xi (θi, θ−i)}, and

iii) transfers are budget-balanced (they add up to
∑
i∈I xi (θ) regardless of the path of revelation),

if decision rule y (·) is ex-post monotone.

9A gradual revelation mechanism induces a dynamic optimization problem for each type of each agent. For the mech-

anism we construct, we will show that following an accurate revelation path is a solution to this dynamic optimization

problem. Solving this problem involves identifying an optimal action in each round, contingent on the history of the earlier

signals. The complication is that, as Fadel and Segal (2009) observe, these histories must include the histories which are

not supposed to be reached on the equilibrium path given the type of the agent.
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The proof of the proposition will follow from the lemma below. When the agent types are inde-

pendently distributed, the typical method to attain budget-balanced implementation —while keeping

the Bayesian incentives intact — is outlined by the expected externality approach of Arrow (1979) and

d’Aspremont and Gerard-Varet (1979).10 In our context, applying the expected externality method

directly would involve replacing function gi (·) that we used in the construction of xDSi (·) in (11) with

the summation of |I| different terms, each of which depends on the type report of each of the |I| agents:

Eθ̃−i|µ0−igi
(
θi, θ̃−i

)
−
∑
j 6=i

1

|I| − 1
Eθ̃−j |µ0−jgj

(
θj , θ̃−j

)
. (12)

Here, agent i’s incentive to report truthfully is provided by the first term, and the remaining terms are

there just to balance the budget. However, since the expected level of gi (·) is zero in both θi and θ̃−i in

our setting, this construction amounts to reverting to the original transfer function xi (·), which assures

simultaneous revelation of the types but which is not necessarily suitable for gradual revelation.

We break this tension between the provision of the right incentives and the budget balance by letting

the transfers depend on the signals sent by the agents in the first T periods as well as the type reports

submitted in period T + 1. Construction of these transfers will benefit from the expected externality

approach discussed above. We will still refer to an analogous expression to (12) to determine the evolution

of the transfers in each time period. However, the relevant probability distribution in the calculation

of the expectations in this expression will not be the prior belief µ0. Instead, the gradual revelation

mechanism transfers will depend on the expected values of the functions gi
(
·, θ̃−i

)
conditional on the

updated belief of the period in question. Since the beliefs evolve on the path of play according to

the signals sent by the agents in our setting, the analogous expression to (12) will not be additively

separable in the agents’signals. Agent i will have an effect not only in the value of its first term through

his final type report but also in the values of the remaining |I| − 1 terms through his information policy.

Nevertheless, we will be able to provide a proof for the lemma below by invoking the fact that the last

|I| − 1 terms in this expression will be equal to zero in expectation for agent i regardless of the signal

he chooses to submit.

Lemma 1 Suppose that the single crossing property in Assumption SC holds, decision rule y (·) is ex-

post monotone, allocation rule
(
y (·) , xτ−1 (·)

)
is incentive compatible under belief µτ−1, and E

[
µτ |µτ−1

]
=

µτ−1. There exists a belief dependent transfer rule xτ (·, µτ ) such that

a) allocation rule (y (·) , xτ (·, µτ )) is incentive compatible under belief µτ ,

b) for all θi, all µτi , and all i, Eµτ−i|µτ−1−i
Eθ−i|µτ−ix

τ
i

(
θi, θ−i, µ

τ
i , µ

τ
−i
)

= Eθ−i|µτ−1−i
xτ−1
i (θi, θ−i), and

10See d’Aspremont, Cremer, and Gerard-Varet (2004) and Kosenok and Severinov (2008) for an extension of this method

to correlated types. See Borgers and Norman (2009) for an extension to interdependent values. See Eso and Futo (1999)

for how to smooth the transfers when the principal is risk averse, ambiguity averse (Bose, Ozdenoren, Pape, 2006), or is

expecting the agents to collude (Che and Kim, 2006, 2009, and Pavlov, 2008).
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c) xτ (·, µτ ) is budget-balanced:
∑
i x

τ
i (θ, µτ ) =

∑
i x

τ−1
i (θ) for all θ and all µτ .11

Proof. The proof of the lemma follows similar steps as in the proof of the "if" part of Proposition

1. We first define the payoff premium of type θi for revealing his type truthfully instead of imitating an

adjacent type θ̂i when the other agents’types are given as θ−i:

∆τ
i

(
θi, θ̂i|θ−i

)
= ui (y (θi, θ−i) , θi) + xτ−1

i (θi, θ−i)− ui
(
y
(
θ̂i, θ−i

)
, θi

)
− xτ−1

i

(
θ̂i, θ−i

)
. (13)

Then we define function gτi (θi, θ−i) with equations

gτi (θi, θ−i)−gτi
(
θ̂i, θ−i

)
=

∆τ
i

(
θ̂i, θi|θ−i

)
Eθ̃−i|µτ−1−i

∆τ
i

(
θi, θ̂i|θ̃−i

)
−∆τ

i

(
θi, θ̂i|θ−i

)
Eθ̃−i|µτ−1−i

∆τ
i

(
θ̂i, θi|θ̃−i

)
Eθ̃−i|µτ−1−i

∆τ
i

(
θi, θ̂i|θ̃−i

)
+ Eθ̃−i|µτ−1−i

∆τ
i

(
θ̂i, θi|θ̃−i

)
(14)

where θi and θ̂i are two adjacent types and

Eθi|µτ−1i
{gτi (θi, θ−i)} = 0 (15)

for all θ−i. As in the proof of Proposition 1, this definition implies that

Eθ−i|µτ−1−i
{gτi (θi, θ−i)} = 0 (16)

for all θi. Finally we define the period τ transfers as

xτi (θ, µτ ) = xτ−1
i (θ) + Eθ̃−i|µτ−ig

τ
i

(
θi, θ̃−i

)
− 1

|I| − 1
Eθ̃i|µτi

∑
j 6=i

Eθ̃−i−j |µτ−i−jg
τ
j

(
θj , θ̃i, θ̃−i−j

)
. (17)

Budget balancedness in part (c) of the lemma holds by construction. Part (b) follows from (15) and

(16). Under Assumption SC and ex-post monotonicity of y (·), the incentive compatibility constraints

in (3) between the adjacent types are suffi cient for all the other incentive compatibility constraints.

The expected value of the updated payoff premium to revealing the type as θi rather than imitating an

adjacent type θ̂i is

Eθ−i|µτ−i
{

∆τ
i

(
θi, θ̂i|θ−i

)
+ gτi (θi, θ−i)− gτi

(
θ̂i, θ−i

)}
=

Eθ−i|µτ−i
{

∆τ
i

(
θ̂i, θi|θ−i

)
+ ∆τ

i

(
θi, θ̂i|θ−i

)}
Eθ̃−i|µτ−1−i

∆τ
i

(
θi, θ̂i|θ̃−i

)
+ Eθ̃−i|µτ−1−i

∆τ
i

(
θ̂i, θi|θ̃−i

)Eθ̃−i|µτ−1−i
∆τ
i

(
θi, θ̂i|θ̃−i

)
(18)

under belief µτ−i. To prove part (a) of the lemma, it is suffi cient to show that this payoff premium is non-

negative. The terms Eθ̃−i|µτ−1−i
∆τ
i

(
θi, θ̂i|θ̃−i

)
and Eθ̃−i|µτ−1−i

∆τ
i

(
θ̂i, θi|θ̃−i

)
are both non-negative since

11Notice that we still need to identify xτi (θ, µτ ) when the type profile θ is not in the support of belief µτ . In the

equilibrium we will construct to prove Proposition 2, this would correspond to an off-the-equilibrium-path event that an

agent first sends a signal, and later reports a type which is not in the support of the equilibrium belief generated by the

earlier signal. In this case, our budget balance requirement still demands the sum of the transfers to be equal to
∑
i xi (θ),

where θ will be determined by the final type reports.
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(
y (·) , xτ−1 (·)

)
is incentive compatible under belief µτ−1. As in the proof of Proposition 1, Assumption

SC and ex-post monotonicity of y (·) imply that ∆τ
i

(
θ̂i, θi|θ−i

)
+ ∆τ

i

(
θi, θ̂i|θ−i

)
is non-negative for all

θ−i as well.

This lemma establishes the following: Start with a transfer rule which makes a decision rule incentive

compatible under a certain belief. If this belief is updated in a Bayesian fashion, it is possible to

modify the transfer rule to make the original decision rule incentive compatible under the updated

belief. Moreover, the resulting belief dependent allocation rules yield the same interim expected payoff

as the initial allocation rule. This ensures that the agents will be indifferent between all the belief

updates they may generate about their own types. In Appendix A, we provide a numerical example to

this construction.

To see how Proposition 2 follows from Lemma 1, first consider the case where T = 1. In this case, the

agents are given an opportunity to send some signals simultaneously in period 1 and then they report

their types in period 2. The gradual revelation mechanism maps the reported types into the economic

alternative prescribed by the decision rule y (·). The transfers depend on both the signals sent in period

1 and the types reported in period 2. We relabel the signals available to each agent i in period 1 as the

beliefs in the support of µ̃1
i . The gradual revelation mechanism maps the sent signals and the reported

types into transfers by using the belief dependent transfer rule x1
(
·, µ1

)
described in Lemma 1 (setting

x0 (·) in the lemma equal to x (·) in the proposition).

This gradual revelation mechanism has an equilibrium where each agent reports his type truthfully in

period 2 and randomizes between the signals in period 1 so that the resulting updated belief after sending

a signal is identical to the label of the signal. Optimality of truthful reporting under the updated beliefs

follows from part (a) of the lemma. Moreover, part (b) implies that agents are indifferent between all

the signals available to them in period 1, proving that the randomizations prescribed by µ̃1 constitute

an equilibrium behavior. Another implication of this indifference condition is that the equilibrium

yields the interim payoff Eθ−i|µ0−i {ui (y (θi, θ−i)) + xi (θi, θ−i)} for agent i with type θi. Finally, budget

balancedness follows from part (c) of the lemma.

The gradual revelation mechanism above can be extended to longer horizons (T > 1), by relabeling

signals at each period t as the beliefs in the support of the distribution µ̃ti and then letting the transfers

depend on signals sent in all periods and the types reported in period T + 1. These transfers are

determined iteratively by using the evolution of the equilibrium beliefs and function xT
(
·, µT

)
described

in Lemma 1 (set function xT−1 (·) equal to xT−1
(
·, µT−1

)
, function xT−2 (·) equal to xT−2

(
·, µT−2

)
,

etc.). This extended gradual revelation mechanism has an equilibrium where the agents’randomizations

on the signals respect martingale
{
µ̃t
}T
t=0

and where they report their true types in period T + 1.

Notice that Proposition 2 does not put a restriction on the belief martingales. As long as the decision

rule is ex-post monotone, we can construct the transfers that would induce the martingale we choose.
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Unlike the transfer rule in Proposition 1, however, the transfers we construct here are contingent on the

belief martingale that we intend to support.

How we make use of Arrow (1979) and d’Aspremont and Gerard-Varet’s (1979) expected externality

approach to balance the budget here is similar to the way that Athey and Segal (2013) calculate the

transfers for their balanced team mechanism in an infinite horizon design setting.12 In each period

of their dynamic setting, agents acquire additional private information and decide on a new economic

alternative. The distribution of the private information is affected by both the past information and the

past decisions. Athey and Segal are interested in the implementation of the effi cient decision rule. This

requires the design of a mechanism with a full revelation property, such that the agents would reveal all

the private information they hold at each period. In the process of identifying this mechanism, Athey

and Segal show that, for any mechanism satisfying the full revelation property, there exists another full

revelation mechanism which implements the same decision rule with a balanced budget. The analysis in

this section suggests that Athey and Segal’s result extends to mechanisms where the agents are induced

to follow more general information policies than fully revealing their information at every opportunity.

The results derived in this section refer to an ex-post monotonicity condition, which is satisfied by

many allocation rules of particular interest. For instance, Mookherjee and Reichelstein (1992) show

that the incentive compatible allocation rule which maximizes the objective function of a principal (ex-

ante expected value of the gross benefit from the chosen economic alternative minus the transfers to

the agents) is ex-post monotone. In the context of linear utility functions (such as the bidders’value

functions in auctions), Manelli and Vincent (2010) and Gershkov et al. (2013) argue that for any

incentive compatible allocation rule, there exists an ex-post monotone and incentive compatible rule

which generates the same interim expected payoffs (but not necessarily the same economic alternatives

and the same interim transfers).

We close this section by remarking that the ex-post monotonicity condition is suffi cient for construct-

ing a gradual revelation mechanism but it is not necessary. Characterization of a necessary and suffi cient

condition will be the subject of the following section.

5 Gradual Revelation with Budget Balance:

A Necessary and Suffi cient Condition

The single crossing property in Assumption SC is concerned with the agents’ preferences only over

the deterministic economic alternatives. As demonstrated by Strausz (2006), this assumption does not

12 In fact, Fadel and Segal (2009) refer to Athey and Segal’s work (their footnote 18) to suggest that the budget-unbalanced

mechanism in their Proposition 6 can be transformed into a budget-balanced one.
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imply a regularity on how different types of an agent would evaluate the randomizations on the economic

alternatives. We start this section by extending the single crossing property over these randomized

alternatives.

Assumption
(
SC
)
For any agent i and any two (possibly randomized) economic alternatives q and

q̂ ∈ ∆Y , the expected utility difference Ey|q {ui (y, θi)} − Ey|q̂ {ui (y, θi)} is either weakly increasing or

weakly decreasing in θi.

Notice that this stronger version of the single crossing property is also trivially satisfied when agents

have at most two types.

The same way that Assumption SC implies an order on set Y , the extended single crossing property

in Assumption SC implies an order on set ∆Y for each agent i. Moreover, since the expected utility

is linear in utility levels from deterministic economic alternatives, this order satisfies the independence

condition. Accordingly, for each agent i, there exists a function h̄i : Y → R such that for any two

randomized economic alternatives q and q̂ ∈ ∆Y ,

Ey|q
{
h̄i (y)

}
≥ Ey|q̂

{
h̄i (y)

}
if and only if Ey|q {ui (y, θi)} − Ey|q̂ {ui (y, θi)} is weakly increasing in θi.

In Section 3, we remarked that the ex-post monotonicity of the decision rule y (·) is a necessary

condition for dominant strategy incentive compatibility under Assumption SC. Below, we identify a

similar monotonicity property on y (·) which would be a necessary condition for sustaining gradual

revelation under Assumption SC.

Consider a gradual revelation mechanism where the agents reveal their private information with

respect to the belief martingale
{
µ̃t
}T
t=0
. Take an arbitrary period t and a belief µt in the support of

µ̃t such that µti assigns positive probabilities to types θi and θ̂i of agent i. Starting with this period, a

possible deviation for type θi is following the equilibrium strategy of type θ̂i in the continuation of the

mechanism. For this deviation not to be profitable, Eθ−i|µt−i
{
ui (y (θi, θ−i) , θi)− ui

(
y
(
θ̂i, θ−i

)
, θi

)}
must be at least as large as the difference between the expected equilibrium transfers to type θ̂i and

type θi, where the expectation is taken under period t belief µt−i. Similarly, the same expected transfer

difference must be at least as large as Eθ−i|µt−i
{
ui

(
y (θi, θ−i) , θ̂i

)
− ui

(
y
(
θ̂i, θ−i

)
, θ̂i

)}
, for type θ̂i

not to find it optimal to start imitating type θi in period t. Supposing that θi is larger than θ̂i, these two

inequalities imply that Eθ−i|µt−i
{
h̄i [y (θi, θ−i)]

}
≥ Eθ−i|µt−i

{
h̄i

[
y
(
θ̂i, θ−i

)]}
under Assumption SC.

This discussion yields the following condition on the decision rule as a necessary condition for gradual

revelation: Decision rule y (·) is monotone with respect to martingale
{
µ̃t
}T
t=0

if for all periods

t ≤ T , all µt in the support of µ̃t, and all i ∈ I, Eθ−i|µt−i h̄i [y (θi, θ−i)] is weakly increasing in θi when

the domain of θi is restricted to the support of µti.
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For an illustration of this monotonicity requirement, consider a private value auction with two bidders

labelled as bidders A and B. Each bidder’s private value for the auctioned object can take one of three

equally likely values: θ < θ̂ < θ̄. A natural choice for function h̄i here is letting it be equal to bidder

i’s probability of receiving the object. Consider the symmetric decision rule which assigns the object

to a type θ̄ bidder with probability 1 if and only if the rival’s type is θ̂, and to a type θ̂ bidder with

probability 1/2 if and only if the rival’s type is θ. In all the remaining cases, no bidder receives the

object. Accordingly, h̄A and h̄B are given as below:

h̄A θA θ̂A θ̄A

θB 0 1/2 0

θ̂B 0 0 1

θ̄B 0 0 0

h̄B θA θ̂A θ̄A

θB 0 0 0

θ̂B 1/2 0 0

θ̄B 0 1 0

(19)

Suppose that we want to implement this decision rule gradually with a belief martingale
{
µ̃t
}1

t=0
where

T = 1. Since the types are assumed to be equally likely, µ0
i is uniform. Moreover, we construct the

belief martingale such that bidder B’s type is fully revealed in period 1, i.e., µ̃1
B consists only of the

three degenerate beliefs.

The decision rule is monotone for both bidders in period 0 since Eθj |µ0j h̄i [y (θi, θj)] is weakly increasing

in θi. This requirement is trivially satisfied for bidder B in period 1 as well, since the supports of the

beliefs on his types are singletons. We now discuss the restrictions on distribution µ̃1
A of period 1 beliefs

on bidder A that would ensure monotonicity for this bidder in period 1.

First, notice that this decision rule cannot be implemented in dominant strategies since h̄A [y (θA, θB)]

is not monotone in θA and therefore ex-post monotonicity fails. This implies that µ̃1
A cannot assign full

weight on the prior belief µ0
A: Bidder A cannot wait until after hearing the type of bidder B to make his

first revelation. However, monotonicity of h̄A would be restored if the domain of θA is restricted either

to
{
θA, θ̂A

}
or to

{
θA, θ̄A

}
in period 1. This observation implies that the decision rule is monotone with

respect to
{
µ̃t
}T
t=0

if the support of µ̃1
A consists only of beliefs assigning positive probabilities either only

to types θA and θ̂A or only to types θA and θ̄A. In other words, the monotonicity condition demands

that bidder A sends a signal fully separating his types θ̂A and θ̄A before he hears the type of bidder B,

but it allows for type θA to stay mixed with either one of the other two types.

With the following proposition, we establish that this monotonicity condition is also suffi cient for

gradual revelation.

Proposition 3 Suppose that the single crossing property in Assumption SC holds,
{
µ̃t
}T
t=0

is a belief

martingale, and (y (·) , x (·)) is an incentive compatible allocation rule under belief µ0. There exist a

gradual revelation mechanism and a sequential equilibrium of this mechanism where

i) types are gradually revealed according to martingale
{
µ̃t
}T
t=0

and decision rule y (·) is implemented,
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ii) the interim expected payoff for type θi of agent i is Eθ−i|µ0−i {ui (y (θi, θ−i) , θi) + xi (θi, θ−i)},

iii) transfers are budget-balanced (they add up to
∑
i∈I xi (θ) regardless of the path of revelation),13

if and only if decision rule y (·) is monotone with respect to martingale
{
µ̃t
}T
t=0
.

The "only if" part of the proposition is already discussed above. The "if" part will follow from the

lemma below:

Lemma 2 Suppose that the single crossing property in Assumption SC holds, τ is a time period such

that 0 < τ ≤ T , decision rule yτ−1 (·) is monotone with respect to martingale
{
µ̃t
}T
t=0
, and allocation

rule
(
yτ−1 (·) , xτ−1 (·)

)
is incentive compatible under belief µτ−1. There exist a decision rule yτ (·, µτ )

and a transfer rule xτ (·, µτ ) for all µτ in the support of µ̃τ such that

a) allocation rule (yτ (·, µτ ) , xτ (·, µτ )) is incentive compatible under belief µτ ,

b) for all θi and all i,

Eµτ−i|µτ−1−i
Eθ−i|µτ−i

{
ui
(
yτ
(
θi, θ−i, µ

τ
i , µ

τ
−i
)
, θi
)

+ xτi
(
θi, θ−i, µ

τ
i , µ

τ
−i
)}

≤ Eθ−i|µτ−1−i

{
ui
(
yτ−1 (θi, θ−i) , θi

)
+ xτ−1

i (θi, θ−i)
}
, (20)

with equality when θi is in the support of µτi ,

c) xτ (·, µτ ) is budget-balanced:
∑
i x

τ
i (θ, µτ ) =

∑
i x

τ−1
i (θ) for all (θ, µτ ),

d) yτ (θ, µτ ) = yτ−1 (θ) when θi is in the support of µτi for all i, and

e) yτ (θ, µτ ) is monotone with respect to
{
µ̃t
}T
t=0
.

Proof. Given belief µτi , we define function Φµ
τ
i : Θi → Θi as follows. Suppose that under belief

µτ−1
−i , type θi of agent i has to choose a type to imitate within the support of belief µ

τ
i . If θi is in this

support, incentive compatibility of
(
yτ−1 (·) , xτ−1 (·)

)
implies that he will choose his own type. On the

other hand, if µτi does not assign a positive probability to θi, he chooses the type which would minimize

his payoff loss. If there is more than one such type, we define Φµ
τ
i (θi) as the highest of these types.

Formally,

Φµ
τ
i (θi) =

 θi if θi ∈ supp (µτi )

max
{

arg maxθ̂i∈supp(µτi )
Eθ−i|µτ−1−i

{
ui

(
yτ−1

(
θ̂i, θ−i

)
, θi

)
+ xτ−1

i

(
θ̂i, θ−i

)}}
if θi /∈ supp (µτi )

13The equilibrium is consistent with the intended allocation rule in the sense that the agents expect the same interim

payoffs, the equilibrium economic alternative is y (θ), and the sum of the equilibrium transfers is
∑
i∈I xi (θ). Off the

equilibrium path (for instance, when an agent first sends a signal and later reports an inconsistent type with this signal),

the mechanism will determine an economic alternative such as y
(
θ̂
)
in the range of the original decision rule. The balanced

budget constraint requires the sum of the transfers to be equal to
∑
i∈I xi (θ) in this case (where θ is determined by the

final type reports of the agents). The proposition is still valid if we impose an alternative budget constraint and ask this

sum to be equal to
∑
i∈I xi

(
θ̂
)
.
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where supp (µτi ) is the support of belief µτi .

Single crossing condition SC and incentive compatibility of
(
yτ−1 (·) , xτ−1 (·)

)
under µτ−1

−i imply

that Φµ
τ
i (θi) is weakly increasing in θi: It cannot be that a higher type than θi chooses to imitate a

lower type than Φµ
τ
i (θi). We define decision rule yτ (·, µτ ) by setting yτ (θ, µτ ) = yτ−1

({
Φµ

τ
i (θi)

}
i∈I

)
.

This proves parts (d) and (e) of the lemma.

As a first step in the construction of transfer rule xτ (·, µτ ), we define the payoff premium between

two adjacent types θi and θ̂i of agent i under the condition that both types have to imitate types within

the support of belief µτi :

∆
µτi
i

(
θi, θ̂i|θ−i

)
=

[
ui

(
yτ−1

(
Φµ

τ
i (θi) , θ−i

)
, θi

)
+ xτ−1

i

(
Φµ

τ
i (θi) , θ−i

)]
−
[
ui

(
yτ−1

(
Φµ

τ
i

(
θ̂i

)
, θ−i

)
, θi

)
+ xτ−1

i

(
Φµ

τ
i

(
θ̂i

)
, θ−i

)]
. (21)

It follows from the definition of Φµ
τ
i that Eθ−i|µτ−1−i

∆
µτi
i

(
θi, θ̂i|θ−i

)
is non-negative. Similar to our earlier

proofs, we define function gµ
τ
i
i (θi, θ−i) for all agents i and all beliefs µτi with equations

g
µτi
i (θi, θ−i)− gµ

τ
i
i

(
θ̂i, θ−i

)
=

∆
µτi
i

(
θ̂i, θi|θ−i

)
Eθ̃−i|µτ−1−i

∆
µτi
i

(
θi, θ̂i|θ̃−i

)
−∆

µτi
i

(
θi, θ̂i|θ−i

)
Eθ̃−i|µτ−1−i

∆
µτi
i

(
θ̂i, θi|θ̃−i

)
Eθ̃−i|µτ−1−i

∆
µτi
i

(
θi, θ̂i|θ̃−i

)
+ Eθ̃−i|µτ−1−i

∆
µτi
i

(
θ̂i, θi|θ̃−i

) (22)

where θi and θ̂i are two adjacent types, and

Eθi|µτi
{
g
µτi
i (θi, θ−i)

}
= 0 (23)

for all θ−i. This definition implies that

Eθ−i|µτ−1−i

{
g
µτi
i (θi, θ−i)

}
= 0 (24)

for all θi and all µτi . To see this last point take the expectation of both sides of equations (22) and (23).

Finally, we define the period τ transfers with the following equation:

xτi (θ, µτ ) = xτ−1
i

(
Φµ

τ
i (θi) , θ−i

)
+ Eθ̃−i|µτ−ig

µτi
i

(
θi, θ̃−i

)
− 1

|I| − 1
Eθ̃i|µτi

∑
j 6=i

Eθ̃−i−j |µτ−i−jg
µτj
j

(
θj , θ̃i, θ̃−i−j

)
+

1

|I| − 1

∑
j 6=i

[
xτ−1
j (θj , θ−j)− xτ−1

j

(
Φµ

τ
j (θj) , θ−j

)]
(25)

Budget balancedness in part (c) of the lemma holds by construction. To see the proof for part (b), notice

that equations (23), (24), and Φµ
τ
j (θj) = θj for θj ∈ supp

(
µτj
)
imply that

Eµτ−i|µτ−1−i
Eθ−i|µτ−i

{
xτi
(
θi, θ−i, µ

τ
i , µ

τ
−i
)}

= Eθ−i|µτ−1−i

{
xτ−1
i

(
Φµ

τ
i (θi) , θ−i

)}
, (26)

and

yτ
(
θi, θ−i, µ

τ
i , µ

τ
−i
)

= yτ−1
(

Φµ
τ
i (θi) , θ−i

)
(27)
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for all θ−i in the support of µτ−i. It follows from the last two equations that the left hand side of (20)

equals to

Eθ−i|µτ−1−i

{
ui

(
yτ−1

(
Φµ

τ
i (θi) , θ−i

)
, θi

)
+ xτ−1

i

(
Φµ

τ
i (θi) , θ−i

)}
. (28)

Incentive compatibility of
(
yτ−1 (·) , xτ−1 (·)

)
under belief µτ−i implies that this last expression is weakly

smaller than the right hand side of (20) and exactly equal to it for θi ∈ supp (µτi ), proving part (b) of

the lemma.

Assumption SC and monotonicity of function Φµ
τ
i imply that the incentive compatibility constraints

in (3) between the adjacent types are suffi cient for all the other incentive compatibility constraints.

The expected value of the updated payoff premium to revealing the type as θi rather than imitating an

adjacent type θ̂i (for allocation rule (yτ (·, µτ ) , xτ (·, µτ ))) is

Eθ−i|µτ−i
{

∆
µτi
i

(
θi, θ̂i|θ−i

)
+ g

µτi
i (θi, θ−i)− gµ

τ
i
i

(
θ̂i, θ−i

)}
=

Eθ−i|µτ−i
{

∆
µτi
i

(
θ̂i, θi|θ−i

)
+ ∆

µτi
i

(
θi, θ̂i|θ−i

)}
Eθ̃−i|µτ−1−i

∆
µτi
i

(
θi, θ̂i|θ̃−i

)
+ Eθ̃−i|µτ−1−i

∆
µτi
i

(
θ̂i, θi|θ̃−i

)Eθ̃−i|µτ−1−i
∆
µτi
i

(
θi, θ̂i|θ̃−i

)
(29)

under belief µτ−i. To prove part (a) of the lemma, it is suffi cient to show that this payoff premium is non-

negative. We have already seen that the terms Eθ̃−i|µτ−1−i
∆
µτi
i

(
θi, θ̂i|θ̃−i

)
and Eθ̃−i|µτ−1−i

∆
µτi
i

(
θ̂i, θi|θ̃−i

)
are both non-negative. Moreover,

Eθ−i|µτ−i
{

∆
µτi
i

(
θ̂i, θi|θ−i

)
+ ∆

µτi
i

(
θi, θ̂i|θ−i

)}
= Eθ−i|µτ−i


[
ui
(
y
(
Φµ

τ
i (θi) , θ−i

)
, θi
)
− ui

(
y
(

Φµ
τ
i

(
θ̂i

)
, θ−i

)
, θi

)]
−
[
ui

(
y
(
Φµ

τ
i (θi) , θ−i

)
, θ̂i

)
− ui

(
y
(

Φµ
τ
i

(
θ̂i

)
, θ−i

)
, θ̂i

)]
 (30)

is non-negative as well because of Assumption SC and monotonicity of function Φµ
τ
i .

Like Lemma 1, the current lemma is also concerned with transforming an incentive compatible

allocation rule under belief µτ−1 into a family of allocation rules which are all incentive compatible under

the corresponding updated beliefs µτ . According to part (b) of the lemma, the resulting allocation rules

yield the same expected payoff as the initial allocation rule only for the types which are in the support of

the updated belief µτi . The types which are not in the support of this belief may end up with a strictly

lower expected payoff. Hence, under allocation rule (yτ (·, µτ ) , xτ (·, µτ )), whenever an agent is given the

opportunity to send a signal, he will be indifferent between all the signals which lead to beliefs assigning

a positive weight to his realized type. Moreover, he will (weakly) prefer these signals to any other signal

which would generate an inconsistent belief with his type.

In the proof of Lemma 2, we deal with the possibility of the inconsistency of the beliefs and the

type reports as follows: For each type θi which is not assigned a positive probability by the belief

µτi , we designate a "best type to imitate" within the support of this belief. In the event that agent
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i sends a signal leading to belief µτi and then reports his type as θi, the constructed allocation rule

(yτ (·, µτ ) , xτ (·, µτ )) would treat this agent as if he were the designated type in the support of µτi .
14

An implication of this construction is that function gi (·), which plays a crucial role in the proof of this

lemma as well, depends on the belief µτi unlike in the proofs of our earlier results. In Appendix B, we

provide a numerical example to the construction of these modified allocation rules.

In order to see how Lemma 2 implies the "if" part of Proposition 3, we start with a revelation

scheme with T = 1 as we have done when discussing Proposition 2. In this case, the gradual revelation

mechanism would ask the agents to send some signals in period 1 and to report their types in period

2. We relabel the signals available to agent i as the beliefs µ1
i in the support of µ̃

1
i . We set y

0 (·)

and x0 (·) in Lemma 2 equal to y (·) and x (·) in Proposition 3. The mechanism would determine the

economic alternative and the transfers by using the sent signals and the reported types as arguments of

the functions y1 (·, ·) and x1 (·, ·) mentioned in Lemma 2.

The gradual revelation mechanism introduced above has an equilibrium where each agent i reports

his type truthfully in period 2 and follows a type dependent randomization over his period 1 signals

so that µ̃1
i is the distribution over the equilibrium beliefs on his types. Part (a) of the lemma implies

the sequential rationality of truthful reporting in period 2, regardless of the signals sent in the earlier

period. Optimality of the signaling behavior in period 1 follows from part (b). Notice that, when the

agents follow their equilibrium path of play, the implemented economic alternative is y (θ) (part d), and

the agents receive the type dependent interim payoff Eθ−i|µ0−i {ui (y (θi, θ−i) , θi) + xi (θi, θ−i)} (part b).

Finally, budget balancedness follows directly from part (c).

The gradual revelation mechanism above can be extended to deal with longer horizons where T > 1.

The extended version of the mechanism conditions the decision rule and the transfers to the signals sent

in all periods t = 1, ..., T and the reported types in period T + 1 through the functions yT
(
·, µT

)
and

xT
(
·, µT

)
identified by Lemma 2. These functions are iteratively determined by using the evolution of the

equilibrium beliefs and setting functions xT−1 (·) and yT−1 (·) equal to xT−1
(
·, µT−1

)
and yT−1

(
·, µT−1

)
,

functions xT−2 (·) and yT−2 (·) equal to xT−2
(
·, µT−2

)
and yT−2

(
·, µT−2

)
, and so on. This extended

gradual revelation mechanism has an equilibrium where the agents’randomizations on the signals respect

martingale
{
µ̃t
}T
t=0

and where their type reports are truthful in period T + 1.

As mentioned in the Introduction, Mookherjee and Tsumagari (2013) consider a setting where gradual

revelation is an implication of communication costs. The economic decision in question is the production

level for each of the two productive agents. These agents have linear utility functions (in their respective

14A crucial step here is ruling out potential deviations where an agent deviates from his equilibrium behavior and

conditions his type report on the revelations of the other agents. The static incentive compatibility constraints do not

exclude the profitability of these dynamic deviations. Under the allocation rule we construct, these deviations are dominated

by imitating the designated type regardless of the other agents’revelations.
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production levels and types) and their types (production costs) are drawn from a continuum. The agents

use deterministic communication strategies so that each round of communication can be represented as

a partition of their type spaces. Mookherjee and Tsumagari are mainly interested in finding the optimal

output function which maximizes a principal’s objective subject to the incentive and communication

constraints. They make important contributions to the debate on organizations by comparing the

performance of centralized versus decentralized production decisions and simultaneous versus sequential

communication protocols from this principal’s perspective under different communication cost structures.

Since the principal is risk neutral in monetary transfers, balancing the budget is not an issue for their

analysis. As a preliminary result, Mookherjee and Tsumagari identify a monotonicity condition which

is necessary and suffi cient for implementability of an output function.

To see how our Proposition 3 relates to Mookherjee and Tsumagari’s characterization, consider a

belief martingale which is generated by deterministic information policies, such that each agent’s type

dependent strategy specifies a single signal at each period rather than a non-degenerate distribution

over signals. For this belief martingale, the monotonicity condition we introduce in this section boils

down to the monotonicity condition in Mookherjee and Tsumagari’s paper. In this sense, Proposition 3

complements Mookherjee and Tsumagari’s analysis by extending their characterization to environments

where the agents have discrete types, communication strategies are stochastic, the economic decisions

are not necessarily one dimensional, and the monetary transfers are budget-balanced.15

6 Appendix A

In this Appendix, we illustrate the construction of the budget-balanced transfers described by Proposition

2 and Lemma 1 with the help of a numerical example based on an independent private values auction.

The two bidders are labelled as A and B. As in the continuous type example mentioned in the text, the

private values of the bidders are uniformly distributed on the interval [0, 1]. We are interested in the

first price auction allocation rule, where the auctioned object is effi ciently allocated to the highest value

15The main difference between the proofs of the Mookherjee-Tsumagari result and our Proposition 3 is as follows. In order

to implement decision rule y (·), we construct a gradual revelation mechanism which uses only the economic alternatives

in the range of y (·). Even if an agent deviates from his equilibrium behavior and sends inconsistent signals in different

stages of this mechanism, he will still be facing an economic alternative within the range of the original decision rule. By

contrast, Mookherjee and Tsumagari make use of the single dimensional nature of their economic alternatives and generate

an auxiliary decision rule for off-the-equilibrium-path events. The resulting mechanism makes the agents in their model

indifferent between all the signals that are available to them, even though each type of each agent chooses a single signal

(per period) with probability one in equilibrium. In our case, the gradual revelation mechanism ensures that each type of

each agent is indifferent between only the signals he would send with positive probability on the equilibrium path, but this

indifference does not necessarily extend to the signals which are not supposed to be sent by this particular type.
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bidder and this bidder pays half of his value as the price of the object.16 The resulting transfer rule for

bidder A is described as

xi (θi, θj) =

 −θi/2 if θi > θj

0 otherwise
. (31)

We want to implement this allocation rule or a budget-balanced close variant of it with a gradual

implementation mechanism, which would generate the symmetric belief martingale
{
µ̃t
}1

t=0
. Distribution

µ̃0
i is degenerate at the uniform prior µ0

i and distribution µ̃
1
i has two equally likely beliefs, µ

high
i and

µlowi , in its support. Beliefs µhighi and µlowi are represented by cumulative distribution functions θ2
i and

2θi − θ2
i respectively on the full support [0, 1]. These beliefs can be sustained by an information policy

where bidder i sends a "high" signal with probability θi and a "low" signal with probability 1− θi.

We now concentrate on the derivation of the gradual revelation transfers for bidder A. The analogous

transfers for bidder B can be constructed identically. The proof of Lemma 1 refers to function g1
A which

can transform an implementable transfer rule into a dominant strategy implementable one. When the

type space is discrete, this function can be constructed by referring to the payoff premium ∆1
A defined

in the same proof. The continuous type assumption in this example allows us to follow a more direct

approach. The only transfers that would achieve incentive compatibility of the effi cient allocation with

dominant strategies in a continuous type setting are the Vickrey Clarke Groves transfers below:

xDSA (θA, θB) =

 −θB + k (θB) if θA > θB

k (θB) otherwise
, (32)

where k (·) gives a constant term which does not depend on the type of bidder A. (Notice that, when

k (·) is set to be zero, these transfers can be implemented by the second price auction.) Accordingly,

function g1
A (θA, θB) will have the form

g1
A (θA, θB) = xDSA (θA, θB)− xA (θA, θB) =

 θA/2− θB + k (θB) if θA > θB

k (θB) otherwise
. (33)

Equation (15) in the proof of the lemma yields the constant k (θB) and therefore pins down function g1
A:

g1
A (θA, θB) =

 θA
2 −

3
4θ

2
B − 1

4 if θA > θB

θB − 3
4θ

2
B − 1

4 otherwise
. (34)

The next step involves taking the expectation of this function under the equilibrium beliefs that bidder

A may have about the type of bidder B:

Eθ̃B |µhighB

{
g1
A

(
θA, θ̃B

)}
=

∫ 1

0

g1
A

(
θA, θ̃B

) [
2θ̃B

]
dθ̃B = −1

6
θ3
A +

1

24
,

Eθ̃B |µlowB
{
g1
A

(
θA, θ̃B

)}
=

∫ 1

0

g1
A

(
θA, θ̃B

) [
2− 2θ̃B

]
dθ̃B =

1

6
θ3
A −

1

24
, (35)

16To simplify the exposition, in the zero probability event that both bidders have the same value, we assume that the

object is not allocated to either bidder.
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where the terms in the square brackets are the density functions derived from the cumulative distribution

functions.

Now we are ready to give the belief dependent transfer rule x1
A

(
θA, θB , µ

1
A, µ

1
B

)
by using equation

(17) in the proof of Lemma 1:

x1
A

(
θA, θB , µ

high
A , µhighB

)
= xA (θA, θB)− 1

6
θ3
A +

1

24
+

1

6
θ3
B −

1

24
=

 − θA2 −
1
6θ

3
A + 1

6θ
3
B if θA > θB

− 1
6θ

3
A + 1

6θ
3
B otherwise

,

x1
A

(
θA, θB , µ

low
A , µhighB

)
= xA (θA, θB)− 1

6
θ3
A +

1

24
− 1

6
θ3
B +

1

24
=

 − θA2 −
1
6θ

3
A − 1

6θ
3
B + 1

12 if θA > θB

− 1
6θ

3
A − 1

6θ
3
B + 1

12 otherwise
,

x1
A

(
θA, θB , µ

high
A , µlowB

)
= xA (θA, θB) +

1

6
θ3
A −

1

24
+

1

6
θ3
B −

1

24
=

 − θA2 + 1
6θ

3
A + 1

6θ
3
B − 1

12 if θA > θB

+ 1
6θ

3
A + 1

6θ
3
B − 1

12 otherwise
,

x1
A

(
θA, θB , µ

low
A , µlowB

)
= xA (θA, θB) +

1

6
θ3
A −

1

24
− 1

6
θ3
B +

1

24
=

 − θA2 + 1
6θ

3
A − 1

6θ
3
B if θA > θB

+ 1
6θ

3
A − 1

6θ
3
B otherwise

.

These transfers are budget-balanced and they make the effi cient allocation of the object incentive

compatible under the updated beliefs in period 1. Moreover, regardless of µ1
A equals to µ

high
A or µlowA ,

Eµ1B |µ0BEθB |µ1Bx
1
A

(
θA, θB , µ

1
A, µ

1
B

)
= EθB |µ0BxA (θA, θB) = −θ

2
A

2
. (36)

We can use function x1
A above to construct a gradual revelation mechanism, where the bidders send

either the high signal or the low signal in period 1 and reveal their type in period 2. The object is

allocated to the bidder with the highest reported type. The transfers for the bidders are determined

by function x1
A where arguments θA and θB are the reported types in period 2 and beliefs µ

1
A and µ

1
B

are determined by the signals in period 1. This gradual revelation mechanism has an equilibrium where

each bidder i sends the high signal with probability θi in period 1 (since he is indifferent between the

signals) and reveals his type truthfully in period 2.

7 Appendix B

In this Appendix, we illustrate the construction of the gradual revelation mechanism described by Propo-

sition 3 and Lemma 2 with the help of a numerical example based on an independent private values

auction. The two bidders are referred to as bidders A and B. As in the example worked out in the text

just before the statement of the proposition, we assume that bidder i’s private value for the auctioned

object can take one of three equally likely values θi, θ̂i, or θ̄i. We assume further that θi = θ, θ̂i = 2θ,

and θ̄i = 3θ for both bidders. We want to implement the symmetric decision rule described in table (19)

given in the text, with h̄i representing the probability that agent i receives the auctioned object. The
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transfer for each bidder depends on his own value but not on the value of the other bidder, as described

by the transfer rule below:

xi (θi, θj) =


0 if θi = θi

− 1
4θ if θi = θ̂i

− 2
3θ if θi = θ̄i

(37)

for all θj . Notice that these decision and transfer rules constitute an incentive compatible allocation

rule. We want to implement this allocation rule or a budget-balanced close variant of it with a gradual

revelation mechanism generating the belief martingale
{
µ̃t
}1

t=0
. Distribution µ̃0

i is degenerate at the

uniform prior µ0
i and distribution µ̃

1
i has two equally likely beliefs in its support: µ̄

1
i and µ̂

1
i . Belief µ̄

1
i

assigns probability 2/3 to type θ̄i and probability 1/3 to type θi. Belief µ̂
1
i assigns probability 2/3 to

type θ̂i and probability 1/3 to type θi. These beliefs can be supported with an information policy such

that types θ̄i and θ̂i send separate signals in period 1 and type θi randomizes between these signals with

equal probabilities.

The first point we establish is that the decision rule in table (19) is monotone with respect to the

belief martingale above. The following table gives the expected probability of receiving the object for

bidder A under the equilibrium beliefs he may hold during the implementation:

h̄A θA θ̂A θ̄A

µ0
B 0 1/6 1/3

µ̂1
B 0 1/6 2/3

µ̄1
B 0 1/6 0

(38)

Notice that the acquisition probabilities are increasing in bidder A’s type under beliefs µ0
B and µ̂

1
B but

not under belief µ̄1
B . Yet, monotonicity with respect to the martingale in question is satisfied, since

this martingale fully separates types θ̂A and θ̄A (the two types responsible for the non-monotonicity) in

period 1.

In what follows, we will concentrate on the construction of the gradual revelation mechanism transfers

for bidder A. The analogous transfers for bidder B can be constructed identically. Under the targeted

allocation rule and the prior belief µ0
B , type θ̄A prefers to imitate type θ̂A rather than type θA. Therefore,

type θ̄A would mimic type θ̂A if he is restricted to choose a type in the support of µ̂
1
A. In the language

of the proof of Lemma 2, this means that Φµ̂
1
A

(
θ̄A
)

= θ̂A. Similarly, Φµ̄
1
A

(
θ̂A

)
= θ̄A.17 For all other(

µ1
A, θA

)
pairs, Φµ

1
A (θA) is equal to θA.

Following the proof of Lemma 2, we calculate the values of the payoff premium functions ∆
µ̄1A
A and

17To be accurate, type θ̂A is indifferent between imitating type θ̄A or type θA. The proof of the lemma sets Φµ̄
1
A

(
θ̂A

)
as θ̄A since this function designates the highest of the "best types to imitate."
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∆
µ̂1A
A as defined in (21):

∆
µ̄1A
A

(
θA, θ

′
A|θB

)
=



0 if
(
θA, θ

′
A

)
=
(
θ̄A, θ̂A

)
or
(
θ̂A, θ̄A

)
4
3θ if

(
θA, θ

′
A

)
=
(
θ̂A, θA

)
and θB = θ̂B

− 2
3θ if

(
θA, θ

′
A

)
=
(
θ̂A, θA

)
and θB 6= θ̂B

− 1
3θ if

(
θA, θ

′
A

)
=
(
θA, θ̂A

)
and θB = θ̂B

2
3θ if

(
θA, θ

′
A

)
=
(
θA, θ̂A

)
and θB 6= θ̂B

(39)

∆
µ̂1A
A

(
θA, θ

′
A|θB

)
=



0 if
(
θA, θ

′
A

)
=
(
θ̄A, θ̂A

)
or
(
θ̂A, θ̄A

)
3
4θ if

(
θA, θ

′
A

)
=
(
θ̂A, θA

)
and θB = θB

− 1
4θ if

(
θA, θ

′
A

)
=
(
θ̂A, θA

)
and θB 6= θB

− 1
4θ if

(
θA, θ

′
A

)
=
(
θA, θ̂A

)
and θB = θB

1
4θ if

(
θA, θ

′
A

)
=
(
θA, θ̂A

)
and θB 6= θB

(40)

These payoff premium functions yield the following expected values:

Eθ̃B |µ0B
{

∆
µ̄1A
A

(
θ̄A, θ̂A|θ̃B

)}
= Eθ̃B |µ0B

{
∆
µ̄1A
A

(
θ̂A, θ̄A|θ̃B

)}
= Eθ̃B |µ0B

{
∆
µ̄1A
A

(
θ̂A, θA|θ̃B

)}
= 0

Eθ̃B |µ0B
{

∆
µ̄1A
A

(
θA, θ̂A|θ̃B

)}
=

1

3

Eθ̃B |µ0B
{

∆
µ̂1A
A

(
θ̄A, θ̂A|θ̃B

)}
= Eθ̃B |µ0B

{
∆
µ̂1A
A

(
θ̂A, θ̄A|θ̃B

)}
= 0

Eθ̃B |µ0B
{

∆
µ̂1A
A

(
θ̂A, θA|θ̃B

)}
= Eθ̃B |µ0B

{
∆
µ̂1A
A

(
θA, θ̂A|θ̃B

)}
=

1

12
(41)

When we substitute the expressions above in (22) and use equation (23), we identify functions gµ̄
1
A

A and

g
µ̂1A
A as

g
µ̄1A
A (θA, θB) =


8
9θ if θA = θA and θB = θ̂B

2
9θ if θA 6= θA and θB 6= θ̂B

− 4
9θ otherwise

, (42)

g
µ̂1A
A (θA, θB) =


4
12θ if θA = θA and θB = θB
1
12θ if θA 6= θA and θB 6= θB

− 2
12θ otherwise

. (43)

The next step is finding the expected values of gµ̄
1
A

A and gµ̂
1
A

A under the equilibrium beliefs on bidder B’s

type:

EθB |µB
{
g
µ̄1A
A (θA, θB)

}
=



− 4
9θ if θA = θA and µB = µ̄1

B

2
9θ if θA 6= θA and µB = µ̄1

B

4
3θ if θA = θA and µB = µ̂1

B

− 2
3θ if θA 6= θA and µB = µ̂1

B

(44)
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and

EθB |µB
{
g
µ̂1A
A (θA, θB)

}
= 0 for all θA and µB = µ̂1

B or µ̄
1
B . (45)

Now we are ready to identify function x1
A

(
θA, θB , µ

1
A, µ

1
B

)
which yields the transfer to bidder A as

a function of the signals and the type reports by using equation (25). The values of this function are

reported in the tables below:

x1
A

(
·, µ̄1

A, µ̄
1
B

)
θA θ̂A θ̄A

θB 0 0 0

θ̂B − 1
4θ − 1

4θ − 1
4θ

θ̄B − 2
3θ − 2

3θ − 2
3θ

x1
A

(
·, µ̂1

A, µ̄
1
B

)
θA θ̂A θ̄A

θB − 4
3θ − 19

12θ − 19
12θ

θ̂B
13
12θ

5
6θ

5
6θ

θ̄B
2
3θ

5
12θ

5
12θ

x1
A

(
·, µ̄1

A, µ̂
1
B

)
θA θ̂A θ̄A

θB
4
3θ − 4

3θ − 4
3θ

θ̂B
4
3θ − 4

3θ − 4
3θ

θ̄B
11
12θ − 7

4θ − 7
4θ

x1
A

(
·, µ̂1

A, µ̂
1
B

)
θA θ̂A θ̄A

θB 0 − 1
4θ − 1

4θ

θ̂B 0 − 1
4θ − 1

4θ

θ̄B − 5
12θ − 2

3θ − 2
3θ

As an example to the calculation of this function, consider the off-the-equilibrium-path situation where

both bidders send the signal leading to belief µ̄1
i and then reveal their types as θ̂i. In this case, the

transfer to bidder A is determined as

x1
A

(
θ̂A, θ̂B , µ̄

1
A, µ̄

1
B

)
= xA

(
θ̄A, θ̂B

)
︸ ︷︷ ︸

− 2
3 θ

+ EθB |µ̄1B
{
g
µ̄1A
A

(
θ̂A, θB

)}
︸ ︷︷ ︸

2
9 θ

− EθA|µ̄1A
{
g
µ̄1A
B

(
θA, θ̂B

)}
︸ ︷︷ ︸

2
9 θ

+ xB

(
θ̂A, θ̂B

)
︸ ︷︷ ︸

− 1
4 θ

− xB
(
θ̂A, θ̄B

)
︸ ︷︷ ︸

− 2
3 θ

= −1

4
θ.

This gives us the number in the middle of the upper left table above. All the other entries in these tables

are calculated in the same way.

As mentioned above, transfer function x1
B can be constructed symmetrically to function x

1
A. The proof

of Lemma 2 yields the belief dependent decision rule as y1
(
θA, θB , µ

1
A, µ

1
B

)
= y

(
Φµ

1
A (θA) ,Φµ

1
B (θB)

)
.

Allocation rule
(
x1
A, x

1
B , y

1
)
satisfies conditions (a) to (e) listed in Lemma 2. We can use this allocation

rule to construct a gradual revelation mechanism, where the bidders send either the high signal (leading

to belief µ̄1
i in equilibrium) or the low signal (leading to µ̂

1
i ) in period 1 and report their types in period

2. The allocation decision and the transfers are determined by the signals and the type reports through(
x1
A, x

1
B , y

1
)
. This gradual revelation mechanism has an equilibrium where bidders report their true

types in period 2, type θ̄i sends the high signal in period 1, type θ̂i sends the low signal in period 1, and

type θi randomizes between these two signals with equal probabilities.
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