
Implementation with Contingent Contracts ∗

Rahul Deb † and Debasis Mishra ‡

January 1, 2014

Abstract

We study dominant strategy incentive compatibility in a mechanism design setting

with contingent contracts where the utility of each agent is observed by the princi-

pal and can be contracted upon. Our main focus is on the class of linear contracts

(one of the most commonly observed contingent contracts) which consist of a trans-

fer and a flat rate of profit sharing. We first demonstrate the applications of linear

contracts. We show that they can achieve efficient outcomes with budget balance over-

coming a known shortcoming of the VCG mechanism. Additionally, they can be used

to implement social outcomes (like the Rawlsian) that are not incentive compatible

using transfers alone. We then give implicit (using a condition called acyclity) and

explicit characterizations of social choice functions that are implementable using lin-

ear contracts. Further, we provide a foundation for them by showing that, in finite

type spaces, every social choice function that can be implemented using a more general

nonlinear contingent contract can also be implemented using a linear contract.

∗This paper is a significant revision of an earlier paper titled “Implementation with Securities”. We are

grateful to the co-editor Matthew Jackson and three anonymous referees for their insightful comments and

suggestions on the earlier version of the paper. We are also grateful to Juan Carlos Carbajal, Arunava Sen,

Andy Skrzypacz, Rakesh Vohra and numerous seminar audiences for valuable feedback.
†University of Toronto. Email: rahul.deb@utoronto.ca
‡Indian Statistical Institute, Delhi. Email: dmishra@isid.ac.in

1

1 Introduction

The classic setting in mechanism design with quasi-linear utilities is the following. Agents

privately observe their types and make reports to the mechanism designer. Based on these

reports, the mechanism designer chooses an alternative and transfer amounts. Agents then

realize their utility from the chosen alternative and their final payoff is this utility less their

transfer amount. We refer to such mechanisms as quasilinear mechanisms. An important

aspect of this setting is that the mechanism is a function only of the reports and not of the

realized utilities of the agents. This could either be because the principal cannot observe

these utilities or that they are not verifiable by third parties and hence contracts based on

them cannot be enforced.

However, in many practical settings, principals can and do offer contracts which are

functions of both the agents’ reports and their realized utilities. These are called contin-

gent contracts. Perhaps the simplest and most commonly observed example of a contingent

contract is a linear contract. Here the contract consists of an lump sum transfer and a flat

percentage (such as a royalty rate or a tax) which determines how the principal and agent

share the latter’s utility. Contingent contracts are ubiquitous and they are commonly ob-

served in the form of taxes used to finance public goods provision. Other settings where

they are used include publishing agreements with authors, musicians seeking record labels,

entrepreneurs selling their firms to acquirers or soliciting venture capital, and sports associ-

ations selling broadcasting rights. In addition, auctions are often conducted in which buyers

bid using such contracts as opposed to simply making cash bids. Examples include the sale of

private companies and divisions of public companies, government sales of oil leases, wireless

spectrum and highway building contracts.

Here, like the standard mechanism design setting, the agents first report their types to

the principal who then chooses an alternative based on these reports. The utility of an

agent, which depends on his true type and the chosen alternative, is then realized. Unlike,

the standard setting however, the realized utility from the chosen alternative is observable

not just to the agent but also to the principal, and since it is contractible, the payoffs from

the contract to both can depend on it. Additionally, there is often uncertainty in these

environments. At the interim stage (after realizing the type but before the alternative is

chosen), agents only know the distribution of utilities that arise from each alternative.

This paper is the first to study the problem of dominant strategy implementation in such

a general environment. With this implementation criterion, it is not necessary to assume

that either the principal or the agents have prior beliefs over the types of all agents. A

mechanism in this context consists of a social choice function (scf) and a contingent contract

which determines each agent’s payoff as a function of their realized utility and the profile of

2

announced types. We say that an scf is implementable using a (linear) contingent contract if

there exists a (linear) contingent contract such that truthful reporting of type is a dominant

strategy for each agent in the resulting mechanism.

1.1 Summary of Results

We first demonstrate how expanding the set of contracts from quasilinear transfers to linear

contingent contracts can be useful for achieving desirable social outcomes. These results can

be grouped into the following two categories.

Efficiency with Budget Balance. A seminal impossibility result in mechanism design

theory is that no efficient and dominant strategy quasi-linear mechanism can be budget bal-

anced (Green and Laffont, 1979). An implication of this impossibility is that even though

it is possible to implement the efficient scf (for instance, using the VCG mechanism), it is

not possible to redistribute the resulting welfare. In contrast to this impossibility result,

we show that there exist simple linear contracts that achieve efficiency and, in addition, are

budget-balanced and individually rational. The mechanism we construct divides the social

welfare of an efficient social choice function equally among all the agents.

Implementing Aggregate Utility Maximizers. We show that using linear contracts,

the mechanism designer can implement a larger class of scfs than those possible using quasi-

linear transfers. We identify a family of scfs called aggregate utility maximizers (supplemented

with a tie-breaking rule) and show that they are implementable using linear contracts if the

type space is finite. An scf is an aggregate utility maximizer if it maximizes a social welfare

function which depends on the agents’ utilities and the alternative and is (weakly) increasing

in the agents’ utilities.

As an application of this result, consider a planner interested in the goal of reducing in-

equality (as opposed to efficiency). This is typically modeled using the max-min or Rawlsian

scf in which the planner chooses an alternative that maximizes the minimum utility of agents.

It has been shown that the Rawlsian scf may not be implementable using quasilinear trans-

fers. However, since the Rawlsian scf is an aggregate utility maximizer, our result implies

that it is implementable using a linear contract. Thus, linear contracts allow the principal to

achieve certain important welfare objectives which may not be possible to implement using

quasilinear transfers.

Having demonstrated these applications of linear contracts, we then provide a character-

ization of the set of scfs that are implementable.

3

Characterization of Implementable SCFs. We show that if the type space is finite,

any scf implementable using a general nonlinear contingent contract can also be implemented

using a linear contract. Put differently, this result states that the set of scfs implementable

by linear contracts is not expanded by using contingent contracts that depend nonlinearly

on the realized utility of the agents. This result can be interpreted as a foundation for linear

contracts and provides one explanation for their ubiquity in practical applications.1

Further, we show that the set of scfs implementable by linear contracts is characterized

by a condition called acyclicity, which is simple to interpret and apply. As an applica-

tion, we show that (the above mentioned) aggregate utility maximizers are acyclic and are

hence implementable. When the type space satisfies an additional richness condition, imple-

mentability is characterized by a weaker condition called 2-acyclicity. Moreover, under this

richness condition, we show that the an scf (which breaks ties consistently) is implementable

only if it is an aggregate utility maximizer. Thus, under reasonable assumptions on the type

space, we completely characterize the set of implementable scfs using linear contracts.

Finally, we show that (under a mild condition) all implementable scfs can be implemented

using linear contracts that satisfy two appealing properties: they are individually rational

and the agents make non-negative payments. Hence, the mechanism designer neither has to

pump in additional sums of money nor has to break individual rationality for implementation.

1.2 Organization of the Paper

The rest of the paper is organized as follows. For ease of exposition, the bulk of the analysis in

the paper is conducted in a simplified deterministic framework which is described in Section

2. We show the existence of an efficient, dominant strategy incentive compatible, budget-

balanced, and individually rational linear mechanism in Section 3. In Section 4, we show

that the family of aggregate utility maximizers can be implemented using linear contracts. In

Section 5, we show the implementability equivalence between contingent and linear contracts,

and provide implicit and explicit characterizations of scfs that are implementable using linear

contracts. Then, we discuss how these results can be generalized to environments with

uncertainty in Section 6. In order to make formal connections with our model, we defer

the discussion of the related literature to Section 7. Finally, in Section 8, we discuss the

extent to which some of the results can be extended and provide a few avenues for future

research. Appendix 1 contains the proofs of the theorems which are missing from the body

1Though this result requires finiteness of type space, it can be showed to hold in an uncountable type

space under additional technical conditions.

4

and Appendix 2 has some extensions of our results.

2 The Deterministic Model

There is a set of agents N := {1, . . . , n} who face a mechanism designer (principal). The set

of alternatives is A. For ease of exposition, we begin by examining a deterministic model

and the majority of the analysis in the paper will be conducted in this framework. Here, the

type of an agent i is given by a map vi : A→ R and Vi denotes the set of all possible types

of agent i. Using the standard notation, V := V1 × . . . × Vn denotes the set of types of all

the agents and V−i :=
∏

j 6=i Vj is the set of types of all agents except i. In this deterministic

environment, the ex-post utility of agent i with type vi for an alternative a is given by vi(a),

and is observed by both the agent and the mechanism designer.2 We assume that there are

no two distinct types vi, v
′
i such that vi(a) = v′i(a) for all a ∈ A or, in words, that there are

no two identical types with different names.3

In Section 6, we describe the general model with uncertainty. There, the ex-post utility

of agent i is a random variable, the distribution of which depends on the type vi and the

alternative a. At the interim stage (that is, after the type is realized and before an alternative

is chosen), this ex-post utility is not known to both the mechanism designer and the agents.

A social choice function (scf) is a map f : V → A. This map specifies the chosen

alternative for every reported profile of types.

The fundamental difference separating our model from the standard mechanism design

setting is that the ex-post utility of every agent is contractible. A commonly observed contract

which has this feature is a linear contract. A linear contract for agent i consists of two

mappings, a royalty (or tax) rule ri : V → (0,∞) and a transfer rule ti : V → R. A linear

mechanism (f, (r1, t1), . . . , (rn, tn)) consists of a linear contracts (ri, ti) for each agent i and

an scf f . The payoff assigned to agent i by a linear mechanism is

ri(v
′
i, v
′
−i)vi(f(v′i, v

′
−i))− ti(v′i, v′−i),

if his true type is vi and the profile of reported types is (v′i, v
′
−i). In words, a linear contract

specifies a transfer amount and a fraction of the utility to be shared. Notice that we do not

allow ri(vi, v−i) = 0 for any profile of types vi, v−i. The main reason we impose this restriction

is to prevent the principal from“buying”the agents, thereby making them indifferent amongst

reports and trivializing the implementation problem.

2We use the term ‘utility’ to distinguish this from the final ‘payoff’ that the contract awards.
3This assumption is not necessary for the results and is made to reduce cumbersome notation and addi-

tional qualifiers in the statements of the theorems.

5

A special case of the linear mechanism is the standard quasi-linear mechanism (f, t1, . . . , tn),

in which the contracts just specify transfers, and where ri(·) = 1 for all i. The payoff assigned

to agent i by such a quasi-linear mechanism is vi(f(v′i, v
′
−i)) − ti(v′i, v′−i) if the agent’s true

type is vi and the profile of reported types is (v′i, v
′
−i).

An important aspect of linear contracts is that the payoff awarded by the contract is

increasing in the realized utility vi(·) of the agent since the ri’s are restricted to being

positive. We now define a general nonlinear class of contracts which satisfy this property.

A contingent contract of agent i is a map si : R × V → R which is strictly increasing

in the first argument. A contingent contract of agent i assigns a payoff to him for every

realized ex-post utility and for every profile of reported types. A contingent mechanism

is (f, s1, . . . , sn), where f is an scf and (s1, . . . , sn) are the contingent contracts of the agents.

The payoff assigned to agent i by a contingent mechanism is

si(vi(f(v′i, v
′
−i)), v

′
i, v
′
−i),

if his true type is vi and the profile of reported types is (v′i, v
′
−i). Note that, since si is strictly

increasing in the first argument, the assigned payoff by a contingent contract is strictly larger

for greater realized utilities. Notice also that a linear contract is a special case of a contingent

contract.

The timing of the model can be summarized as follows:

Types vi

are

realized

−→
Types v′i

reported to

principal

−→
Principal

chooses

alternative a

−→
Agents

realize

utility vi(a)

−→

Contract offers

payoffs as a

function of

vi(a) and (v′i, v
′
−i)

While the contingent contracts we consider are very general and model many real world

contracts, they are with loss of generality. Requiring si to be strictly increasing in the first

argument is not completely innocuous as it rules out certain commonly used contracts which

are weakly increasing such as call options and convertible debt. Again, this assumption is

made is to prevent the principal from making agents indifferent amongst reports (for instance,

by buying the agents). Additionally, notice that we do not allow the payoff to agent i from

the contingent contract to depend on the realized utilities of the other agents but only on

their announced types. This is true in most real world contingent contracts and, to the best

of our knowledge, this simplifying assumption is made in all of the papers in the literature.

Most importantly, in this deterministic version of our framework, the monotonicity re-

striction may prevent the principal from punishing detectable misreports from the agent.

6

Here, the realized utility may reveal the true type of the agent and thus, in principle, con-

tracts can be written which impose large punishments whenever misreports are detected.

Such punishments may not be possible using a contingent contract as the monotonicity re-

quirement will then impose a restriction on the payoffs that the contract can offer other

agents. That said, we should point out that this deterministic version of our model is merely

for expositional purposes and in the general version of our model with uncertainty (described

in Section 6), realized utilities do not generally reveal types.

We now define the notion of dominant strategy implementation that we use.

Definition 1 An scf f is implementable by a linear contract in dominant strategies

if there exist linear contracts ((r1, t1), . . . , (rn, tn)) such that for every i ∈ N , for every

v−i ∈ V−i, we have

ri(vi, v−i)vi(f(vi, v−i))− ti(vi, v−i) ≥ ri(v
′
i, v−i)vi(f(v′i, v−i))− ti(v′i, v−i) ∀ vi, v′i ∈ Vi.

In this case, we say that the linear mechanism (f, (r1, t1), . . . , (rn, tn)) is incentive compatible.

The notion of implementation with contingent contracts can be defined analogously.

Definition 2 An scf f is implementable by a contingent contract in dominant strate-

gies if there exist contingent contracts (s1, . . . , sn) such that for every i ∈ N , for every

v−i ∈ V−i, we have

si(vi(f(vi, v−i)), vi, v−i) ≥ si(vi(f(v′i, v−i)), v
′
i, v−i) ∀ vi, v′i ∈ Vi.

In this case, we say that the contingent mechanism (f, s1, . . . , sn) is incentive compatible.

We will be concerned with two important properties of mechanisms which are defined

below.

Definition 3 A contingent mechanism (f, s1, . . . , sn) is budget-balanced if at every type

profile v ≡ (v1, . . . , vn) ∈ V , we have∑
i∈N

si(vi(f(v)), v) =
∑
i∈N

vi(f(v)).

A contingent mechanism (f, s1, . . . , sn) is (ex-post) individually rational if at every type

profile v ≡ (v1, . . . , vn) and every i ∈ N , we have

si(vi(f(v)), v) ≥ 0.

Budget-balance requires the sum of payoffs of the agents from the contingent contracts to

be equal to the sum of ex-post utilities, that is, the designer does not add or take away any

aggregate utilities of the agents. Individual rationality requires that the payoff of each agent

from the contingent mechanism is non-negative.

7

3 Achieving Efficiency with Budget Balance

This is the first of two sections which provide applications of linear contracts. The aim is to

demonstrate that these contracts are powerful tools that allow a planner to achieve objectives

which are not possible with standard quasilinear mechanisms. In this section, we focus on

efficient allocations.

An scf f ∗ is efficient if at every profile of types v ≡ (v1, . . . , vn) ∈ V , we have

f ∗(v) ∈ argmax
a∈A

∑
i∈N

vi(a).

Additionally, a linear mechanism with such an scf is called efficient. A seminal result in the

mechanism design literature is that the efficient scf can be implemented using Groves transfer

rules (Groves, 1973). However, Green and Laffont (1979) showed that it is impossible to

satisfy efficiency, dominant strategy incentive compatibility, and budget-balancedness using

quasi-linear mechanisms. This impossibility can be overcome by considering a weaker notion

of implementability - Bayesian implementation. Arrow (1979) and d’Aspremont and Gérard-

Varet (1979) construct a Bayesian incentive compatible mechanism, known as the dAGV

mechanism, that is efficient and budget-balanced. However, it is not individual rational.

Indeed, Myerson and Satterthwaite (1983) formally establish that it is impossible to satisfy

efficiency, Bayesian incentive compatibility, budget-balancedness, and individual rationality,

even in a simple two agent model of bilateral trading.

We now define a linear contract which overcomes these impossibilities.

Definition 4 An equal sharing mechanism consists of an efficient scf f ∗ and linear con-

tracts ((r∗1, t
∗
1), . . . , (r∗n, t

∗
n)), where for every type profile v ≡ (v1, . . . , vn) ∈ V and for every

i ∈ N

r∗i (v) :=
1

n

t∗i (v) := − 1

n

∑
j 6=i

vj(f
∗(v)).

Theorem 1 An equal sharing mechanism is dominant strategy incentive compatible and

budget-balanced. Further, if at every type profile v ≡ (v1, . . . , vn) ∈ V , we have
∑

i∈N vi(f
∗(v)) ≥

0, then the equal sharing mechanism is also individually rational.

Proof : Let (f ∗, ((r∗1, t
∗
1), . . . , (r∗n, t

∗
n))) be an equal sharing mechanism. Fix i ∈ N and

v−i ∈ V−i. For any vi,∈ Vi, agent i chooses a report v′i to maximize

r∗i (v
′
i, v−i)vi(f

∗(v′i, v−i))− t∗i (v′i, v−i) =
1

n

[
vi(f

∗(v′i, v−i)) +
∑
j 6=i

vj(f
∗(v′i, v−i))

]
,

8

which by the definition of f ∗ is maximized at v′i = vi. This implies dominant strategy incen-

tive compatibility. Moreover, this payoff is clearly nonnegative whenever
∑

i∈N vi(f
∗(v)) ≥ 0

which implies individual rationality. �

Observe that, as the proof demonstrates, the equal sharing mechanism divides the welfare

generated from the mechanism equally among the agents. Also note that it is simple to extend

the above argument to accommodate costly alternatives. Here, there is a cost κ(a) associated

with each alternative a and the principal implements an scf fκ which satisfies

fκ(v) ∈ argmax
a∈A

{∑
i∈N

vi(a)− κ(a)

}
,

for each v ≡ (v1, . . . , vn) ∈ V . By augmenting transfers of the equal sharing mechanism

to include an equal share of the cost of the alternative κ(fκ(v))/n, the contract will raise

exactly the amount required to cover the cost.

4 Implementing Aggregate Utility Maximizers

Theorem 1 showed that using linear contracts allows for efficient redistribution. We now

show that employing linear contracts significantly expands the set of implementable scfs

over those that can be achieved using quasi-linear transfers.

To show this, we need to introduce some new notation. Given a type profile v ≡
(v1, . . . , vn) ∈ V , we can define a vector va ≡ (v1(a), . . . , vn(a)) ∈ Rn for each alterna-

tive a ∈ A. This is the utility vector of the agents if alternative a is chosen as the outcome.

Given a type space V , it induces a set of permissible utility vectors for each alternative. We

will denote the set of utility vectors va of alternative a as Ua.
We will now define the notion of an aggregate utility function. Define the following set

X := {(a, x) : a ∈ A, x ∈ Ua}.

An aggregate utility function is a map W : X → R. An aggregate utility function W

is monotone if for every a ∈ A and every x, y ∈ Ua such that y ≥ x, we have W (a, y) ≥
W (a, x).4

Definition 5 A social choice function f is an aggregate utility maximizer (AUM)

if there exists a monotone aggregate utility function W : X → R such that at every profile

v ∈ V , we have

f(v) ∈ argmax
a∈A

W (a, va).

4For any x, y ∈ Rn, if xi ≥ yi for all i ∈ N , we write x ≥ y.

9

Further, an AUM f satisfies consistent tie-breaking if there exists a linear ordering P on

A such that at every profile v ∈ V , f(v) is the maximum alternative in the set {a ∈ A :

W (a, va) ≥ W (b, vb) ∀ b ∈ A} with respect to the linear order P .

This class of scfs include a number of commonly used social welfare functions. Below are

a few examples.

1. Affine Maximizers. An scf f is an affine maximizer if there exist non-negative

constants (γ1, . . . , γn) ∈ Rn+ \ {0} and a map κ : A→ R such that for all v ∈ V

f(v) ∈ argmax
a∈A

[∑
i∈N

γivi(a)− κ(a)

]
.

2. Generalized Utilitarianism. f is a generalized utilitarian scf if there exist for every

agent i ∈ N , an increasing function gi : R→ R such that for all v ∈ V

f(v) ∈ argmax
a∈A

[∑
i∈N

gi(vi(a))

]
.

Note that an affine maximizer is a special case of a generalized utilitarian scf where

gi’s are taken to be linear functions.

3. Generalized Gini. At any type profile v ∈ V and any a ∈ A, order the utility numbers

(v1(a), . . . , vn(a)) and let va(k) denote the k-th lowest of these utility numbers. f is a

generalized Gini scf if there exist (γ1, . . . , γn) ∈ Rn+ \ {0} such that γ1 ≥ . . . ≥ γn ≥ 0

and for all v ∈ V

f(v) ∈ argmax
a∈A

[∑
i∈N

γiv
a
(i)

]
.

4. Max-min/Rawlsian. f is a max-min scf if for all v ∈ V

f(v) ∈ argmax
a∈A

min
i∈N

vi(a).

Note that a max-min scfs is a special case of the generalized Gini scf, where we set

γ1 = 1 and γi = 0 for all i 6= 1.

The following result shows that an AUM with consistent tie-breaking is implementable if

the type space is finite. Bikhchandani et al. (2006) showed (see their supplemental material)

that Rawlsian scfs may not be implementable using a quasi-linear mechanism. Indeed, if

the set of alternatives is finite and the type space is unrestricted, Roberts (1979) has shown

that every scf that can be implemented using a quasi-linear mechanism must be an affine

maximizer. Hence, these examples illustrate that the set of implementable scfs is significantly

enlarged by considering linear contracts.

10

Theorem 2 Suppose the type space is finite. Then, every AUM with consistent tie-breaking

is implementable.

The proof of Theorem 2 is given in Appendix 1. It uses a general characterization of

implementable scfs that we establish in Theorem 3 in the next section.

5 Characterizing Implementable SCFs

We now characterize the set of scfs that are implementable with linear contracts. The char-

acterization yields an important property of linear contracts in finite type spaces: Every scf

that can be implemented using a contingent contract can also be implemented using a linear

contract. We show this result by providing an implicit characterization of implementable

scfs.

We first derive an intuitive necessary condition for an scf to be implementable using a

contingent contract. Given an scf f , for every i ∈ N and for every v−i ∈ V−i, we define

two binary relations �fv−i
and �fv−i

on Vi as follows. For notational convenience, we write

�f≡�fv−i
and �f≡�fv−i

; the dependence on v−i is implicitly implied. Fix an i ∈ N and

v−i ∈ V−i. For any, vi, v
′
i ∈ Vi, we define

v′i �f vi if v′i(f(vi, v−i)) ≥ vi(f(vi, v−i)).

Further, for any vi, v
′
i ∈ Vi, we define v′i �f vi if v′i(f(vi, v−i)) > vi(f(vi, v−i)).

A few comments about these binary relations are in order. In words, v′i �f vi if the

type v′i gets a higher utility than type vi from the alternative chosen by the scf f for the

latter type. Clearly, the relation �f is reflexive. However, note that the relation is nei-

ther antisymmetric, complete nor transitive. It is entirely possible that for types v′i 6= vi,

v′i(f(vi, v−i)) ≥ vi(f(vi, v−i)) and vi(f(v′i, v−i)) ≥ v′i(f(v′i, v−i)) both hold simultaneously

(even with either or both of the inequalities being strict) which implies that �f need not

be antisymmetric. Notice that this can happen because the utilities of the two types are

being compared for two, potentially different alternatives. Similarly, it is easy to construct

examples where �f is not complete or transitive.

Definition 6 An scf f is acyclic if for every agent i ∈ N , for every v−i, and for every

sequence of types v1
i , . . . , v

k
i ∈ Vi with v1

i �f . . . �f vki , we have vki �f v1
i .

In words, f is acyclic if there does not exist a cycle in the relation �f where the relation

is strict for at least one pair of types in the cycle. The simple lemma below shows that this

condition is necessary for implementability by a contingent contract.

11

Lemma 1 If an scf is implementable by a contingent contract, it is acyclic.

Proof : Let f be an scf that is implementable by contingent contracts (s1, . . . , sn). Fix

v−i ∈ V−i and consider a sequence of types v1
i , . . . , v

k
i ∈ Vi for agent i, such that v1

i �f

. . . �f vki . Hence, vji (f(vj+1
i , v−i)) ≥ vj+1

i (f(vj+1
i , v−i)) for all j ∈ {1, . . . , k − 1}. Pick any

j ∈ {1, . . . , k − 1}. Since si implements f , incentive compatibility yields

si(v
j
i (f(vji , v−i)), v

j
i , v−i) ≥ si(v

j
i (f(vj+1

i , v−i)), v
j+1
i , v−i). (1)

Further, vji (f(vj+1
i , v−i)) ≥ vj+1

i (f(vj+1
i , v−i)) and monotonicity of si in the first argument

imply that

si(v
j
i (f(vj+1

i , v−i)), v
j+1
i , v−i) ≥ si(v

j+1
i (f(vj+1

i , v−i)), v
j+1
i , v−i). (2)

Adding Inequalities (1) and (2) gives

si(v
j
i (f(vji , v−i)), v

j
i , v−i) ≥ si(v

j+1
i (f(vj+1

i), v−i), v
j+1
i , v−i).

Summing over j ∈ {1, . . . , k − 1} and telescoping, we get

si(v
1
i (f(v1

i , v−i)), v
1
i , v−i) ≥ si(v

k
i (f(vki , v−i)), v

k
i , v−i)

≥ si(v
k
i (f(v1

i , v−i)), v
1
i , v−i),

where the last inequality follows from incentive compatibility of si. But monotonicity of si

in the first argument implies that v1
i (f(v1

i , v−i)) ≥ vki (f(v1
i , v−i)). Hence, vki � v1

i , and this

implies that f is acyclic. �

The following theorem shows that for finite type space this condition is also sufficient for

implementation by a contingent contract. Moreover, the theorem shows that acyclicity is

sufficient for implementation by a linear contract. The proof is in Appendix 1.

Theorem 3 Suppose the type space is finite. Then, for any scf f , the following are equiva-

lent.

1. f is implementable by a contingent contract.

2. f is acyclic.

3. f is implementable by a linear contract.

Remark. For every acyclic scf, the proof explicitly constructs a linear contract that imple-

ments it. Under a mild condition on the type space, we show that a linear contract can be

12

constructed such that the resulting mechanism is individually rational and the transfer of

each agent is non-negative (see the remark immediately following the proof). Further, the

linear mechanisms that we construct have the property that the royalties rates ri lie in (0, 1].

Hence, for implementation, the planner neither needs to make payments to nor take away

large amount of utility from the agents. 5

The finiteness of the type space is required for the equivalence between implementability

by contingent and linear contracts. This can be seen from the following simple example of a

single agent with a countably infinite type space where Theorem 3 breaks down.

Example 1

Consider a single agent with the following countably infinite type space

V1 =
{
v2

1, v
3
1, . . .

}
∪ {v∞1 } .

Suppose the set of alternatives A has equal cardinality and consider an scf f which satisfies

f(vk1) 6= f(vk
′

1) for all k 6= k′.

Define the type space such that

vk1(f(vk
′

1)) =

2
k′

if k′ < k,
1
k

if k′ = k,
1

2k′
if k′ > k,

0 if k′ =∞.

Finally, we define utility for type v∞1 as

v∞1 (f(vk
′

1)) =

{
2
k′

if k′ <∞,
1 otherwise.

It is easy to see that f is acyclic. This is because vk1 � vk
′

1 for all k′ < k ≤ ∞ as

vk1(f(vk
′

1)) =
2

k′
>

1

k′
= vk

′

1 (f(vk
′

1)).

Moreover, when k < k′ <∞ then vk1 � vk
′

1 as

vk1(f(vk
′

1)) =
1

2k′
<

1

k′
= vk

′

1 (f(vk
′

1)).

5This is true even for standard quasi-linear mechanisms - every implementable scf can be implemented

(under reasonable conditions) using individually rational and non-negative transfers (Kos and Messner, 2013).

13

Finally, vk1 � v∞1
vk1(f(v∞1)) = 0 < 1 = v∞1 (f(v∞1)).

Lemma 3 in the appendix shows that acyclicity remains a sufficient condition for imple-

mentability if the type space is countable and, hence, f can be implemented using a contin-

gent contract.

We now show that f cannot be implemented by a linear contract. Let us assume to the

contrary that it is implementable by (r1, t1). Then adding the two incentive compatibility

conditions for types vk1 , v
∞
1 misreporting as each other, we get

r1(vk1)[vk1(f(vk1))− v∞1 (f(vk1))] + r1(v∞1)[v∞1 (f(v∞1))− vk1(f(v∞1))] ≥ 0

⇒r1(v∞1)

r1(vk1)
≥ −

1
k
− 2

k

1− 0
=

1

k
.

Similarly, incentive compatibility for types vk1 , v
k+1
1 implies

r1(vk1)[vk1(f(vk1))− vk+1
1 (f(vk1))] + r1(vk+1

1)[vk+1
1 (f(vk+1

1))− vk1(f(vk+1
1))] ≥ 0

⇒r1(vk+1
1)

r1(vk1)
≥ −

1
k
− 2

k
1

k+1
− 1

2(k+1)

=
2(k + 1)

k
.

Multiplying inequalities for succeeding k = 2, . . . , K − 1, we get

r1(vK1)

r1(v2
1)
≥ 2K−3K.

Combining inequalities, we get

r1(v∞1) ≥ r1(vK1)

K
≥ 2K−3r1(v2

1).

Taking the limit K →∞, we observe that the right side diverges, which implies that r1(v∞1)

must be∞ which is a contradiction. Hence, f cannot be implemented using a linear contract.

We now contrast our acyclicity condition with the seminal characterization of implemen-

tation with quasi-linear transfers due to Rochet (1987). His theorem is presented below.

Theorem 4 (Rochet (1987)) A scf f is implementable by quasi-linear transfers if and

only if for every agent i ∈ N , for every v−i ∈ V−i, and for every finite sequence of types

v1
i , . . . , v

k
i ∈ Vi with vk+1

i = v1
i , the following cycle monotonicity condition holds

k∑
j=1

[
vj+1(f(vj+1

i , v−i))− vj+1
i (f(vji , v−i))

]
=

k∑
j=1

[
vj(f(vji , v−i))− v

j+1
i (f(vji , v−i))

]
≥ 0.

14

In contrast to our notion of acyclicity over types, Rochet (1987) provided the following

acyclicity condition over alternatives as a necessary condition for implementation with quasi-

linear transfers. Fix a given agent i and a profile of reports v−i ∈ V−i. For a finite sequence

of types v1
i , . . . , v

k
i ∈ Vi, define a binary relation �fa over alternatives {aji = f(vji , v−i)}kj=1,

as follows

aj
′

i �fa a
j
i whenever vji (a

j′

i) > vji (a
j
i).

A necessary condition for f to be implementable by quasi-linear transfers is that �fa is acyclic

for all finite sequences of types for all agents i ∈ N and all profiles of reports v−i ∈ V−i. The

necessity of this condition can easily be seen by examining the cycle monotonicity condition

in Theorem 4. If there was a cycle in �fa for a sequence of types then each term in the

first summation of the cycle monotonicity condition for that sequence would be negative.

This condition is however not sufficient for implementability by quasilinear transfers and is

neither necessary nor sufficient for implementation by contingent contracts.

By contrast, our acyclicity condition is defined on the set of types and clearly must be

necessary for quasi-linear implementation. This necessity can be seen by observing that if

there is a cycle then each term in the second summation of the cycle monotonicity condition

would be nonpositive with at least one being negative.

Given the equivalence in terms of implementability between contingent and linear mech-

anisms, a natural question to ask is whether the payoffs from every contingent mecha-

nism can also be achieved by a linear mechanism. More precisely, given an scf f and

contingent contracts (s1, . . . , sn) that implement it, we ask if there exist linear contracts

((r1, t1), . . . , (rn, tn)) that implement f such that

si(vi(f(vi, v−i)), vi, v−i) = ri(vi, v−i)vi(f(vi, v−i))− ti(vi, v−i) for all i ∈ N, vi ∈ Vi, v−i ∈ V−i.

Note that this requirement is only for payoffs on the equilibrium path. The following single

agent example shows that this payoff equivalence does not hold.

Example 2

Consider a single agent with type space V1 := {v1
1, v

2
1, v

3
1}. Let the set of alternatives be

A := {a1, a2, a3}. The utilities of each type from the different alternatives is shown in Table

1 below.

Consider the scf f defined as: f(vj1) = aj for j ∈ {1, 2, 3}. This can be implemented by

15

v1
1 v2

1 v3
1

a1 30 20 10

a2 30 20 10

a3 20 10 10

Table 1: Type space for which revenue equivalence fails.

a contingent contract s1, which is as follows:

s1(30, v1
1) = 20, s1(20, v1

1) = 5, s1(10, v1
1) = 1,

s1(30, v2
1) = 16, s1(20, v2

1) = 15, s1(10, v2
1) = 1,

s1(20, v3
1) = 10, s1(10, v3

1) = 5.

Now, suppose there is a payoff equivalent linear contract (r1, t1) that implements f . Then,

r1(v1)v1(f(v1))− t1(v1) = s1(v1(f(v1)), v1) for all v1 ∈ V1.

Incentive compatibility of the linear mechanism would then imply that for all v1, v
′
1,

s1(v′1(f(v′1)), v′1)− s1(v1(f(v1)), v1) ≤ r1(v′1)[v′1(f(v′1))− v1(f(v′1))]. (3)

Taking v′1 = v2
1 and v1 = v3

1 in Inequality (3), we get r1(v2
1) ≥ 1. Taking v′1 = v2

1 and v1 = v1
1

in Inequality (3), we get r1(v2
1) ≤ 1

2
, which gives us a contradiction.

The usual revenue/payoff equivalence in quasi-linear environments (Krishna, 2009) re-

quires that two quasi-linear transfers implementing the same scf must differ in payoffs by

a constant. It is well known that in finite type spaces, this does not hold. However, the

payoff equivalence that we seek is across two classes of contracts implementing the same scf.

The failure of payoff equivalence in the above example is not driven by finite type space

restriction and it is easy to construct examples with a continuum of types.

5.1 An Explicit Characterization

If the type space is finite and rich, we can provide a complete description of the set of scfs

implementable using linear contracts. The richness of type space that we require is the

following.

Definition 7 The type space V is rich if the set of profiles of utility vectors is Ua×U b× . . .

This richness condition requires that every combination of utility vectors is a feasible type

profile. For instance, if va and v′a are two utility vectors corresponding to alternative a in Ua

16

and (va, v−a) is a profile of utility vectors at a type profile, then the profile of utility vectors

v′a, v−a must correspond to a valid type profile in the type space V . Let U := Ua×U b×
We now introduce a new condition on the scfs.

Definition 8 An scf f satisfies binary independence if for every distinct pair of alter-

natives a, b ∈ A and every v, v′ ∈ V such that va = v′a, vb = v′b, f(v) = a implies that

f(v′) 6= b.

Binary independence requires that if a is chosen over b as the outcome by an scf at a

type profile, then b cannot be chosen at a different type profile in which the utility vectors

corresponding to a and b are not changed. In other words, the scf must evaluate a and b

at any type profile independent of utility vectors of other alternatives. Essentially, this is

a consistent tie-breaking condition for arbitrary scfs (which need not be aggregate utility

maximizers). It is in the spirit of binary independence used in the social choice theory

literature (d’Aspremont and Gevers, 2002) from where we borrow the terminology.

We now show that under richness and finiteness of type space, we can strengthen Theorem

3 significantly using the following weakening of acyclicity.

Definition 9 An scf f is 2-acyclic if for every agent i ∈ N , for every v−i ∈ V−i, and for

every pair of types vi, v
′
i ∈ Vi with vi �f v′i, we have v′i �f vi.

Theorem 5 Suppose the type space is rich and finite. Then, the following are equivalent.

1. f is an aggregate utility maximizer with consistent tie-breaking.

2. f is implementable and satisfies binary independence.

3. f is 2-acyclic and satisfies binary independence.

Theorem 5 shows that AUMs with consistent tie-breaking are the only implementable scfs

satisfying binary independence under the additional richness condition. Further, it shows

that 2-acyclicity, a much weaker condition than acyclicity, is equivalent to implementability

under binary independence.

It is interesting to compare this characterization to similar characterizations in the stan-

dard quasi-linear environments. Roberts (1979) showed that affine maximizers are the only

implementable scfs in such environments under some conditions on the type space and set

of alternatives. Though Theorem 5 can be viewed as counterpart of that result in the con-

tingent contract environment, there are significant differences. We require type space to be

finite and rich while Roberts (1979) required the type space to be whole of R|A|, where A is

a finite set of alternatives. Roberts (1979) required at least three alternatives and the scf to

be onto. Though we do not require this, we need binary independence.

17

6 The General Model with Uncertainty

In this section, we present the general model with uncertainty and discuss how the results

in the previous sections extend to this environment. For this, we will need some additional

notation. The type vi of the agent now determines the distribution of the ex-post utility

that an agent receives from an alternative a. We denote by ui, the random variable for agent

i corresponding to the ex-post utility. At the interim stage (that is, after realization of the

type and before an alternative is chosen), this utility is not known to the agent and the

mechanism designer. It is assumed that when agent i has type vi, his ex-post utility ui from

alternative a is drawn from R with cumulative distribution Ga
vi

which depends both on the

true type and the alternative. Note that since the utility is a random variable, its realization

need not reveal the type of the agent.6 In a minor abuse of notation, we use vi(a) to denote

the expected utility from alternative a or vi(a) =
∫
R uidG

a
vi

(ui).

We will impose the following restriction on the distribution of utilities.

Definition 10 The distributions of utilities are ordered by first order stochastic dominance

or simply ordered if for all i, vi, v
′
i ∈ Vi and for all a ∈ A, we have

either Ga
vi
�FOSD Ga

v′i
or Ga

v′i
�FOSD Ga

vi
,

where �FOSD is the first-order stochastic dominance relation.

The above ordering requirement says that for every agent i and every alternative a ∈ A, the

types in Vi can be ex-ante ordered using the �FOSD relation. Note that this does not imply

that the ordering of types has to be the same across the different alternatives. To the best of

our knowledge, most of the theoretical work on mechanism design with contingent contracts

requires this assumption.7 Importantly, the deterministic environment (which corresponds

to the distributions being degenerate) we have studied in the previous sections is ordered in

the above sense.

Finally, as in the deterministic case, we assume that there are no duplicate types. In

other words, for all agents i ∈ N , there are no two types vi, v
′
i ∈ Vi such that vi(a) = v′i(a)

for all a ∈ A.8

6Of course, if the principal knew the prior distribution over the agents’ types, the realized utility would

allow him to update the prior. By contrast, if the principal does not know the type distribution, he will not

be able to make inference (dominant strategy implementation is appropriate for these cases). That said, we

allow the supports of the distributions of utilities to vary over different alternatives. Hence, even without

prior knowledge of how the types are distributed, there may be certain realizations of utility from which the

principal can back out the type of the agent.
7Often, the stronger assumption of affiliation (Milgrom and Weber, 1982) is made instead (DeMarzo et al.,

2005; Gorbenko and Malenko, 2010).
8Again, this assumption is made for expositional purposes and is not required for the results.

18

We can now define an scf and the contracts analogously to the deterministic environment.

As before, an scf is a mapping f : V → A. Linear contracts are defined identically and consist

of functions ri : V → (0,∞) and ti : V → R for each agent i. Similarly, contingent contracts

are mappings si : R×V → R for each agent i which is strictly increasing in the first argument.

Our notion of (dominant strategy) implementation can be adapted in the natural way.

Agents now compute their expected utility before reporting their types. The definition of

implementability by linear contracrs looks identical to the deterministic case with the only

difference being that the vi(·) in the incentive compatibility constraints now denotes the

expected utility. Implementation by contingent contracts is defined below.

Definition 11 An scf f is implementable by a contingent contract if there exist

contingent contracts (s1, . . . , sn) such that∫
R
si(ui, vi, v−i)dG

f(vi,v−i)
vi

(ui) ≥
∫
R
si(ui, v

′
i, v−i)dG

f(v′i,v−i)
vi (ui),

∀ i, vi, v′i ∈ Vi and v−i ∈ V−i.

In this case, we say that the contingent contracts (s1, . . . , sn) implement f and the contingent

mechanism (f, s1, . . . , sn) is incentive compatible.

Since the alternative is chosen by the principle before the utility is realized, the efficient

scf can be taken to be the one that maximizes the sum of the expected utilities of the agents.

It is easy to see that Theorem 1 generalizes as the equal sharing mechanism will continue

to achieve efficiency with budget balance. Note that for this result, there is no need for the

ordering condition on the distributions.

For the remaining results, however, we need the distributions to be ordered. This is

because acyclicity only characterizes implementability under this condition. Note that, the

definition of acyclicity remains unchanged with, once again, the difference being that the

vi(·)’s used to define the relations �f and �f are expected utilities. Note also that since the

type space is assumed to be ordered vi(a) ≥ (>)v′i(a) is equivalent to Ga
vi
�FOSD (�FOSD

)Ga
v′i

. Finally, observe that if the type space is ordered, acyclicity remains necessary for

implementation. This is because for ordered types v′i, vi ∈ Vi, the following holds

v′i �f vi =⇒
∫
R
si(ui, vi, v−i)dG

f(vi,v−i)

v′i
(ui) ≥

∫
R
si(ui, vi, v−i)dG

f(vi,v−i)
vi

(ui),

where the inequality follows from the monotonicity of si in ui and the fact that G
f(vi,v−i)

v′i
first

order stochastically dominates G
f(vi,v−i)
vi . As in the proof of Lemma 1, this combined with

incentive compatibility ensures that every implementable scf must be acyclic.

19

As with the case of efficiency, a natural way to define aggregate utility maximizers is in

terms of expected utilities and, with this definition, Theorem 2 continues to hold as stated.

The definition of utility vector of the agents corresponding to a given alternative a, Ua, will

remain the same with the vi(·)’s now being expected utilities.

The characterization results, Theorem 3 and Theorem 5, hold verbatim with the adjusted

definitions of acyclicality, richness and binary independence. Finally, uncertainty can be

introduced into the Examples 1 and 2.

7 Related Literature

Mechanism design with contingent contracts originated with the literature on security auc-

tions (Hansen, 1985; Riley, 1988). This paper has been partly inspired by the recent work

which discuss the revenue ranking of auctions conducted with different contingent contracts

(DeMarzo et al., 2005; Che and Kim, 2010; Abhishek et al., 2012). These papers study how

a seller’s revenue is affected by the “steepness” of securities that are admissible as bids. In

contrast to the work on security auctions, our focus is on a general mechanism design environ-

ment and our goal is to characterize dominant strategy incentive compatibility. Additionally,

since we do not focus on auctions, we do not need the space of admissible contingent con-

tracts to be ranked - securities are completely ordered and better securities provide a higher

expected payoff to the seller irrespective of bidder type. This restriction is required in secu-

rity auctions to ensure that a winner can be declared based on the bids but before the utility

is realized. In other words, the linear contracts we consider (which cannot not be ranked

ex-ante) are explicitly prohibited in the security auctions literature. For a recent survey of

work on auctions with contingent payments, see Skrzypacz (2013).

This paper is related to the literature on implementation with quasi-linear transfers which

originated with Rochet (1987) whose characterization we have discussed earlier. Recent con-

tributions (Bikhchandani et al., 2006; Saks and Yu, 2005; Ashlagi et al., 2010; Mishra and

Roy, 2013) to this literature investigate conditions that are weaker than cycle monotonicity

which characterize implementability in such environments with finite alternatives. Our char-

acterization result Theorem 5 using 2-acyclicity (for rich type spaces) is similar in spirit to

these characterizations. This result is also related to Roberts (1979), who offers the coun-

terpart of such a characterization with quasi-linear mechanisms (see also Mishra and Sen

(2012); Carbajal et al. (2013)).

The Myerson-Satterthwaite theorem (Myerson and Satterthwaite, 1983) has started a

literature that investigates various special conditions under which budget-balance, efficiency,

incentive compatibility, and individual rationality is compatible. For instance, Cramton et al.

(1987) show that it is possible while dissolving a partnership, where different agents have

20

predefined property rights over a resource. Similarly, Suijs (1996) shows that this is possible

in queueing models and Mitra and Sen (2010) show that this is possible in some specific

multi-unit auction problems.9 In contrast to these results for specific settings, Theorem 1

shows that these goals are achievable in general with linear contracts.

Like this paper, Rahman (2011) characterizes implementation in an environment where

the principal can observe and condition the mechanism on a noisy signal which is correlated

with the agent’s type. The environment he considers differs fundamentally from ours in

at least two important respects. Firstly, in his model, both the scf and the payments are

functions of the signal and the agent’s report. Hence, the signals in his model depend only on

the agent’s type and not on the allocation. By contrast, in our setting, the scf depends only

on the reports whereas the contracts depend additionally on the realized utility. Secondly,

while we consider general securities, he restricts attention to quasilinear transfers. That said,

it should be noted that he considers a signal structure which is more general than ours as

he does not impose the ordering condition. A challenging and fruitful problem for future

research would be to characterize implementation by contingent contracts in an environment

where utility distributions depend on allocations but are otherwise unrestricted as in Rahman

(2011).

The task scheduling problem in algorithmic mechanism design is related to the implemen-

tation of AUMs (Theorem 2). Here, a principal is trying to minimize the total time taken

to complete a set of tasks by allocating them to a set of agents whose private information is

the time they take to complete the different tasks. Nisan and Ronen (2001) consider a linear

environment and argue that no quasilinear transfers can achieve the optimal time. Instead

they show that the optimum can be achieved if the principal can condition payments on the

realized times of completion. Our characterization could potentially be useful in extending

the results of Nisan and Ronen (2001) to general nonlinear environments. Here, the agents

may have synergies in production– groups of tasks may be completed in less than the sum

of time they would take to complete each task in the group individually. Additionally, the

principal may have more complicated preferences in which certain tasks take precedence over

others. We leave this interesting problem for future research.

9A recent literature in computer science, while still restricting to the standard quasi-linear mechanisms,

tries to achieve the “second-best” (as much budget-balance as possible while maintaining efficiency, incentive

compatibility, and individual rationality) by taking the worst-case approach - contributions to this end are

Moulin (2009) and Guo and Conitzer (2009).

21

8 Concluding Remarks

In this paper, we study a general version of the classic dominant strategy implementation

problem introduced by Rochet (1987). We consider environments where the principal can

offer contracts that depend on the (random) realized utility of the agents, the distribution of

which is a function of the private type of the agent and the outcome. Our model nests the

standard deterministic quasilinear setting. We focus on linear contracts which we motivate

by providing a number of applications. We then provide results which characterize the set of

scfs implementable by linear contracts and, additionally, provide a foundation for restricting

attention to these contracts. Following Rochet (1987), there has been a large and insightful

body of work in dominant strategy quasilinear implementation. We hope that this paper

spurs some interest in studying implementation with contingent contracts. To this end, we

conclude with some discussion about our results and few suggestions for future research.

The proof of our characterization result Theorem 3 uncovers a parallel with Afriat’s

theorem of revealed preference in consumer theory.10 The acyclicity condition we use to

characterize implementability is analogous to the Generalized Axiom of Revealed Preference

(Varian, 1982) which is necessary and sufficient condition for a finite price consumption

data set to be rationalized by a utility maximizing consumer. Additionally, Afriat’s theorem

(Afriat, 1967; Varian, 1982) shows that a data set can be rationalized by a utility function if

and only if it can be rationalized by a concave utility function. Analogously, we show that

acyclicity is necessary and sufficient for implementability using either contingent or linear

contingent contracts. By contrast, implementability by quasilinear transfers is characterized

by cycle monotonicity which is a stronger condition than acyclicity.11

An assumption in our model is that all of the realized utility of the agents is contractible.

While this is appropriate in many settings, it is a strong assumption for others. Theorem

6 in Appendix 2, extends Theorem 3 to an environment where the realized utility is in two

parts – contractible and noncontractible. We show that as long as both are comonotone, the

result will continue to hold. Of course, an important extension for future work is to examine

environments in which these are not comonotone where Theorem 3 does not hold in general.

Theoerem 7 in Appendix 2 shows that the equivalence of implementation between linear

and contingent contracts holds in uncountable type spaces under additional smoothness

conditions. However, the smoothness we require for this result is often absent in many

practical applications such as auctions. We hope to conduct a more formal analysis of

uncountable type spaces in the future. Here, a natural question is: When the equivalence of

10Beginning with (Rochet, 1987), there have been informal analogies made between these two problems.
11Implementability of an scf by quasilinear transfers can be considered to be analogous to rationalizability

of choice data by quasilinear utility functions (Brown and Calsamiglia, 2007).

22

linear contracts and contingent contracts in Theorem 3 fails, is there is a different class of

simple (nonlinear) contracts which are sufficient for implementation?

While we constructed a budget balanced and individually rational efficient linear mecha-

nism, a natural direction of future research will be to identify a larger class of scfs that can

be implemented with budget balanced linear contracts. In particular, an important class of

scfs to focus on would be the class of affine maximizers.

Although we demonstrated that acyclicity is easy to check in the context of aggregate

utility maximizers, it may, in principle, be difficult to verify for certain applications. This is

because it requires checking for the absence of cycles of all finite lengths. Theorem 5 helped

in this regard by showing that the substantially weaker condition 2-acyclicity is sufficient but

only as long as the type space is rich. In Appendix 2, we show that 2-acyclicity is sufficient

in certain commonly utilized settings even when the type space is not rich – linear one

dimensional environments with uncountable types (Theorem 8) and linear two dimensional

environments with countable types (Theorem 9).

Another interesting generalization would be to consider interdependent value settings.

Even the efficient outcome is difficult to implement in this setting using quasi-linear mech-

anisms - Maskin (1992) shows that if the utility function of each agent satisfies a single

crossing condition then the utilitarian efficient outcome can be implemented. However,

Mezzetti (2004) has shown that using two-stage mechanisms that depend on the realized

utilities of agents, the utilitarian efficient outcome can always be implemented even in the

interdependent values model. We are not aware of work analyzing the implementability of

Rawlsian scfs in an interdependent value setting.

Perhaps one of the reasons that contingent contracts have received limited attention is

because of an observation of Crémer (1987). This observation states that by offering a very

low share of the ex-post utility to the agents (ri(·) close to zero), the principal can make

the information rents negligible. In other words, by almost completely buying the agents,

the principal can always get arbitrarily close to the first best. Of course, while this is a

sound theoretical argument, it is seldom observed in real world for a number of reasons. For

instance, the principal may be liquidity constrained and hence, may be unable to finance the

necessary upfront payment to buy the agent. In other cases, as DeMarzo et al. (2005) argue,

the agents may have to make noncontractible, fixed, costly investments in order for profits to

be realized. If the ex-post payoffs offered by the contingent contract are too low, the agent

may choose to just accept the upfront payment and not to undertake the investment. In

practice, environments which feature contingent contracts often have such legal or practical

restrictions on the set of contracts that the principle can offer. For these applications, our

characterization of incentive compatibility is an important first step which can help in the

derivation of optimal contracts.

23

More generally, contingent contracts are necessary to provide incentives in environments

which feature both adverse selection and moral hazard- ex-post utilities are affected by types,

alternatives and actions. A particular example of such an environment is Laffont and Tirole

(1986) where a principal is trying to regulate the cost of an agent who has a private efficiency

parameter and can reduce his cost by conducting costly unobservable effort. In their setting,

the principal is permitted to use very general contracts and they surprisingly show that

the second best solution can be achieved using simple linear contracts. An important but

challenging issue for future research is to provide conditions characterizing implementable

outcomes in the general environment considered in this paper but with additional moral

hazard.

24

Appendix 1: Omitted Proofs and Examples

8.1 Proof of Theorem 3

Throughout the proof, we fix an agent i and type profile of other agents at v−i. For notational

convenience, we suppress the v−i from notations everywhere. We begin the proof by noting

that a consequence of acyclicity is that the type space can be partitioned. A type space Vi

can be f -order-partitioned if there exists a partition (V 1
i , . . . , V

K
i) of the type space Vi such

that

P1 for each j ∈ {1, . . . , K} and for each vi, v
′
i ∈ V

j
i , we have vi �f v′i,

P2 for each j ∈ {1, . . . , K − 1}, for each vi ∈ V j
i , and for each v′i ∈ (V j+1

i ∪ . . . ∪ V K
i), we

have v′i �f vi.

We first show that any acyclic SCF f induces an f -ordered-partition of the type space.

Lemma 2 Suppose the type space is finite and f is an acyclic SCF. Then, the type space can

be f -ordered-partitioned.

Proof : Let f be an acyclic scf. Consider any non-empty subset V ′i ⊆ Vi. A type vi is

maximal in V ′i with respect to �f if there exists no type v′i ∈ V ′i such that v′i �f vi. Denote

the set of types that are maximal in V ′i with respect to �f as Ṽ ′i . Since f is acyclic, �f is

acyclic. Since V ′i is finite, we conclude that Ṽ ′i is non-empty (Sen, 1970). Define

M(V ′i) := {vi ∈ Ṽ ′i : v′i �f vi ∀ v′i ∈ V ′i \ Ṽ ′i }.

We claim that M(V ′i) is non-empty. Assume for contradiction that M(V ′i) is empty.

Choose v1
i ∈ Ṽ ′i . Since M(V ′i) is empty, there exists v̄i

1 ∈ V ′i \ Ṽ ′i such that v̄i
1 �f v1

i . Since

v̄i
1 ∈ V ′i \ Ṽ ′i , there exist a sequence of types (v2

i , . . . , v
k
i) such that v2

i �f . . . �f vki �f v̄i1 �f

v1
i and v2

i ∈ Ṽ ′i . Since v2
i ∈ Ṽ ′i and M(V ′i) is empty, there must exist v̄i

2 ∈ V ′i \ Ṽ ′i such

that v̄i
2 �f v2

i . This process can be repeated. Since V ′i is finite, we will get a cycle of types

satisfying vi . . . �f . . . �f . . . vi. Since f is acyclic, vi �f vi. But this contradicts the fact

that �f is reflexive. Hence, M(V ′i) is non-empty.

We note that for any vi, v
′
i ∈ M(V ′i), we have vi �f v′i. Now, we recursively define the

f -ordered partition of Vi. First, we set V 1
i := M(Vi). Having defined V 1

i , . . . , V
k
i , we define

Rk := Vi \ (V 1
i ∪ . . . ∪ V k

i). If Rk 6= ∅, then define V k+1
i := M(Rk) and repeat. If Rk = ∅,

then V 1
i , . . . , V

k
i is an f -ordered partition of Vi by construction. �

A consequence of Lemma 2 is that f satisfies the following property.

25

Definition 12 An scf f satisfies multiplier K-cycle monotonicity, where K ≥ 2 is a

positive integer, if there exists λi : Vi → (0,∞) such that for all sequence of types (v1
i , . . . , v

k
i)

with k ≤ K, we have

k∑
j=1

λi(v
j
i)
[
vji (f(vji))− v

j+1
i (f(vji))

]
≥ 0, (4)

where vk+1
i ≡ v1

i . An scf f is multiplier cycle monotone if it satisfies multiplier K-cycle

monotonicity for all integers K ≥ 2. In this case, we say λi makes f multiplier cycle

monotone.

To show that f is multiplier cycle monotone, we construct a λi that makes it multiplier

cycle monotone.

Constructing λi

We use Lemma 2 to construct the λi map recursively. Let f be an acyclic SCF and

(V 1
i , . . . , V

K
i) be the f -ordered-partition according to Lemma 2. First, we set

λi(vi) = 1 ∀ vi ∈ V K
i . (5)

Having defined λi(vi) for all vi ∈ (V k+1
i ∪ V k+2

i ∪ . . . ∪ V K
i), we define λi(vi) for all vi ∈ V k

i .

Let C be any cycle of types (v1
i , . . . , v

q
i , v

1
i) involving types in (V k

i ∪ V k+1
i ∪ . . . V K

i) with

at least one type in V k
i and at least one type in (V k+1

i ∪ . . . ∪ V K
i). Let C be the set of all

such cycles. For each cycle C ≡ (v1
i , . . . , v

q
i , v

q+1
i ≡ v1

i) ∈ C, 12 define

L(C) =
∑

vji∈C∩(V k+1
i ∪...∪V K

i)

λi(v
j
i)
[
vji (f(vji))− v

j+1
i (f(vji))

]
(6)

`(C) =
∑

vji∈C∩V k
i

[
vji (f(vji))− v

j+1
i (f(vji))

]
. (7)

We now consider two cases.

Case 1. If L(C) ≥ 0 for all C ∈ C, then we set λi(vi) = 1 for all vi ∈ V k
i .

Case 2. If L(C) < 0 for some C ∈ C, we proceed as follows. Since Vi is f -ordered partitioned,

for every vi ∈ V k
i and v′i ∈ (V k+1

i ∪ . . . ∪ V K
i), we have v′i �f vi (Property P1 of f -ordered

partition), and hence,

vi(f(vi))− v′i(f(vi)) > 0.

12We will abuse notation to denote the set of types in a cycle C by C also.

26

Similarly, for every vi, v
′
i ∈ V k

i , we have v′i �f vi (Property P2 of f -ordered partition), and

hence,

vi(f(vi))− v′i(f(vi)) ≥ 0.

Then, for every C ∈ C, we must have `(C) > 0 since C involves at least one type from V k
i

and at least one type from (V k+1
i ∪ . . . ∪ V k

i). Now, for every vi ∈ V k
i , define

λi(vi) := max
C∈C:L(C)<0

−L(C)

`(C)
. (8)

We can thus recursively define the λi map.

Proposition 1 Suppose Vi is finite. If an scf f is acyclic, then λi makes f multiplier cycle

monotone.

Proof : Suppose f is acyclic. By Lemma 2, Vi can be f -ordered-partitioned. Let the induced

partition of Vi be (V 1
i , . . . , V

K
i) and let λ be defined recursively as before using Equations

(5) and (8). Consider any cycle C ≡ (v1
i , . . . , v

q
i , v

q+1
i ≡ v1

i). We will show that∑
vji∈C

λi(v
j
i)
[
vji (f(vji))− v

j+1
i (f(vji))

]
≥ 0. (9)

If C ⊆ V K
i , then vji (f(vji))−v

j+1
i (f(vji)) ≥ 0 (by Property P1 above) and λi(v

j
i) = λi(v

j+1
i)

for all vji , v
j+1
i ∈ C. Hence, Inequality (9) holds.

Now, suppose Inequality (9) is true for all cycles C ⊆ (V k+1
i ∪ . . . V K

i). Consider a cycle

C ≡ (v1
i , . . . , v

q
i , v

q+1
i ≡ v1

i) involving types in (V k
i ∪ . . . ∪ V K

i). If each type in C is in V k
i ,

then again vji (f(vji)) − vj+1
i (f(vji)) ≥ 0 (by Property P1 above) and λi(v

j
i) = λi(v

j+1
i) for

all vji , v
j+1
i ∈ C. Hence, Inequality (9) holds. By our hypothesis, if all types in C belong to

(V k+1
i ∪ . . .∪V K

i), then again Inequality (9) holds. So, assume that C is a cycle that involves

at least one type from V k
i and at least one type from (V k+1

i ∪ . . . ∪ V K
i). Let λi(vi) = µ for

all vi ∈ V k
i . By definition,∑

vji∈C

λi(v
j
i)
[
vji (f(vji))− v

j+1
i (f(vji))

]
= L(C) + µ`(C) ≥ 0,

where the last inequality followed from the definition of µ (Equation (8)). Hence, Inequality

(9) again holds. Proceeding like this inductively, we complete the proof. �

Using λi, we can define our linear contract that implements f . For this, we need to now

define the transfers.

27

Constructing ti

If λi makes f multiplier cycle monotone, then λi satisfies Inequality ((4)) for any cycle

of types. Hence, by Rochet-Rockafellar cycle monotonicity characterization (Rochet, 1987;

Rockafellar, 1970), there exists a map Wi : Vi → R such that

Wi(vi)−Wi(v
′
i) ≤ λi(vi)

[
vi(f(vi))− v′i(f(vi))

]
∀ vi, v′i ∈ Vi. (10)

The explicit construction of Wi involves construction of a weighted directed graph and finding

shortest paths in such a graph - see Vohra (2011). From this, we can define ti : Vi → R as

follows.

ti(vi) = λi(vi)vi(f(vi))−Wi(vi) ∀ vi ∈ Vi.

Proposition 2 If λi makes f multiplier cycle monotone, then (λi, ti) is an incentive com-

patible linear mechanism.

Proof : Substituting in Inequality (10), we get for all vi, v
′
i ∈ Vi,

λi(vi)vi(f(vi))− ti(vi)− λi(v′i)v′i(f(v′i)) + ti(v
′
i) ≤ λi(vi)

[
vi(f(vi))− v′i(f(vi))

]
This gives us the desired incentive constraints: for all vi, v

′
i ∈ Vi

λi(v
′
i)v
′
i(f(v′i))− ti(v′i) ≥ λi(vi)v

′
i(f(vi))− ti(v′i).

�

Remark. Consider a type space Vi and assume that there exists a type vi ∈ Vi such that

vi(a) = 0 for all a ∈ A. Further, assume that for every vi ∈ Vi and for every a ∈ A, we have

vi(a) ≥ 0. In this type space, we can show that there is a linear mechanism that will be

individually rational and the payments of agents will be non-negative. To see this, the Wi

map constructed in the proof can be constructed such that Wi(vi) = 0 - this is easily done

by translating any Wi map to a new map with Wi(vi) = 0. In that case, the net utility of

agent i when his type is vi is given by

λi(vi)vi(f(vi))− ti(vi) = Wi(vi)

≥ Wi(vi)− λi(vi)
[
vi(f(vi))− vi(f(vi))

]
= λi(vi)vi(f(vi))

≥ 0.

28

Similarly, for any vi,

Wi(vi) ≤ Wi(vi) + λi(vi)
[
vi(f(vi))− vi(f(vi))

]
= λi(vi)vi(f(vi)).

Hence, ti(vi) ≥ 0. Finally, note that we can always scale (λi, ti) such that λi lies between

0 and 1 while maintaining ti(·) ≥ 0 and individual rationality. Hence, there are linear

mechanisms in this type space where the payments of agents are non-negative and all agents

are individually rational.

Proof of Theorem 2

We will show that if f is an AUM satisfying consistent tie-breaking, then it is acyclic. By

Theorem 3, we will be done. Let P be the linear order on the set of alternatives that is used

to consistently break ties in f . Further, let W be a monotone aggregate utility function such

that f(v) ∈ argmaxa∈AW (a, va) for every v ∈ V .

Fix an agent i ∈ N and type profile of other agents at v−i. Consider a sequence of types

v1
i �f . . . �f vki . Pick any j ∈ {1, . . . , k − 1}. Let f(vji , v−i) = aj and f(vj+1

i , v−i) = aj+1.

Since vji �f v
j+1
i , we have vji (aj+1) ≥ vj+1

i (aj+1). Denote the utility vector of any alternative

c in type profile (vji , v−i) as vj,c. By monotonicity of W , we get

W (aj+1, v
j,aj+1) ≥ W (aj+1, v

(j+1),aj+1).

Since f(vji , v−i) = aj, we have

W (aj, v
j,aj) ≥ W (aj+1, v

j,aj+1).

Combining this with the previous inequality, we get

W (aj, v
j,aj) ≥ W (aj+1, v

j,aj+1) ≥ W (aj+1, v
(j+1),aj+1).

Using it over all j ∈ {1, . . . , k − 1}, we get that

W (a1, v
1,a1) ≥ W (a2, v

1,a2)

≥ W (a2, v
2,a2)

≥ . . .

≥ . . .

≥ W (ak, v
k−1,ak)

≥ W (ak, v
k,ak)

29

Since f(vki , v−i) = ak, we know that W (ak, v
k,ak) ≥ W (a1, v

k,a1). Hence, we get

W (a1, v
1,a1) ≥ W (a1, v

k,a1). (11)

Now, assume for contradiction that vki �f v1
i . So, vki (a1) > v1

i (a1). By monotonicity of W ,

we have W (a1, v
k,a1) ≥ W (a1, v

1,a1). Using Inequality (11), we get

W (a1, v
1,a1) = W (a2, v

1,a2)

= W (a2, v
2,a2)

= . . .

= . . .

= W (ak, v
k−1,ak)

= W (ak, v
k,ak)

= W (a1, v
k,a1)

= W (a1, v
1,a1).

Now, pick any j ∈ {1, . . . , k − 1}. Since W (aj, v
j,aj) = W (aj+1, v

j,aj+1), by consistent

tie-breaking, it must be that either aj = aj+1 or ajPaj+1. Using it for all j ∈ {1, . . . , k− 1},
we see that either a1 = a2 = . . . = ak or a1Pak. But W (ak, v

k,ak) = W (a1, v
k,a1) implies that

a1Pak is not possible. Hence, a1 = a2 = . . . = ak = a for some a ∈ A. But this implies that

v1
i (a) ≥ v2

i (a) ≥ . . . ≥ vki (a), and this contradicts that vki �f v1
i .

Statement and Proof of Lemma 3

Lemma 3 Suppose the type space is countable. If an scf is acyclic, it can be implemented

using a contingent contract.

Proof : Again throughout the proof, we fix an agent i and the type profile of the other

agents at v−i. For notational simplicity, we will suppress the dependence on v−i. Consider

an scf f . We need to show that there exists a contingent contract si such that for every

vi, v
′
i ∈ Vi, we have

s(vi(f(vi)), vi) ≥ s(vi(f(v′i)), v
′
i). (12)

We will define an incomplete binary relation �s, ∼s over tuples {vi(f(v′i)), v
′
i} for all

vi, v
′
i ∈ Vi. These tuples correspond to a type vi making a report of v′i. We first define the

30

relation �s0 and ∼s now.

{vi(f(v′i)), v
′
i} �s0 {v′i(f(v′i)), v

′
i} if vi(f(v′i)) > v′i(f(v′i))

{v′i(f(v′i)), v
′
i} �s0 {vi(f(v′i)), v

′
i} if vi(f(v′i)) < v′i(f(v′i))

{vi(f(v′i)), v
′
i} ∼s {v′i(f(v′i)), v

′
i} if vi(f(v′i)) = v′i(f(v′i))

{v′i(f(v′i)), v
′
i} ∼s {vi(f(v′i)), v

′
i} if vi(f(v′i)) = v′i(f(v′i))

{vi(f(vi)), vi} �s0 {vi(f(v′i)), v
′
i} for all v′i 6= vi

We define �s as the transitive closure of �s0 . Formally, we say {vi(f(v′i)), v
′
i} �s

{v̂i(f(v̂′i)), v̂
′
i} if there exists a finite sequence {{v1

i (f(v′1i)), v′1i }, . . . , {vKi (f(v′Ki)), v′Ki }} such

that

{vi(f(v′i)), v
′
i}R1{v1

i (f(v′1i)), v′1i }R2 · · ·RK{vKi (f(v′Ki)), v′Ki }RK+1{v̂i(f(v̂′i)), v̂
′
i}

where Rk ∈ {�s0 ,∼s} and at least one Rk ≡�s0 . It is easy to argue that acyclicality of f

implies that the relation �s is irreflexive.

Since �s is irreflexive and transitive and Vi is countable, we can then use a standard

representation theorem (Fishburn, 1970) which guarantees the existence of a function si

which respects �s. �

Proof of Theorem 5

1⇒ 2. Clearly, an AUM with consistent tie-breaking satisfies binary independence and it is

implementable by Theorem 2.

2⇒ 3. This follows from Theorem 3.

3⇒ 1. We do this part of the proof in many steps. Let f be a 2-acyclic scf satisfying binary

independence.

Step 1. We show that f satisfies the following positive association property. We say f

satisfies weak positive association (WPA) if for every pair of type profiles v, v′ with

f(v) = a, v′i(a) ≥ vi(a) for all i ∈ N , v′i(x) = vi(x) for all x 6= a, for all i ∈ N , we have

f(v′) = a.

To see this, consider two type profiles v and (v̄i, v−i) with f(v) = a, v̄i(a) > vi(a), and

v̄i(x) = vi(x) for all x 6= a. Assume for contradiction f(v̄i, v−i) = b 6= a. So, we have

v̄i(a) > vi(a) and vi(b) = v̄i(b), and this contradicts 2-acyclicity of f . By repeatedly apply-

ing this argument for all i ∈ N , we get that f satisfies WPA.

31

Step 2. Let Ā := {a ∈ A : there exists v ∈ V such that f(v) = a}, i.e., Ā is the range of

f . Let X̄ := {(a, x) ∈ X : a ∈ Ā}. Note that since V is finite, Ā (the range of f) is finite.

As a result, X̄ is also finite. Now, we define a binary relation Bf on the elements of X̄ . For

any (a, x), (b, y) ∈ X̄ with a 6= b, we let

(a, x) Bf (b, y) if there exists v ∈ V such that va = x, vb = y, f(v) = a

and for any (a, x), (a, x+ ε) ∈ X̄ with ε ∈ Rn+ and x 6= (x+ ε), we let

(a, x+ ε) Bf (a, x).

Note that the binary relation is only a partial order. Binary independence immediately

implies that Bf is anti-symmetric. To see this, pick any (a, x), (b, y) ∈ X̄ with a 6= b. Let

(a, x) Bf (b, y). This implies that there exists a type profile v with va = x, vb = y, and

f(v) = a. By binary independence, for any other v′ with v′a = x, v′b = y, we have f(v′) 6= b.

Hence, (b, y) 7f (a, x).

Step 3. We will say that the binary relation Bf satisfies the following monotonicity prop-

erty. Pick distinct a, b ∈ Ā and x ∈ Ua, y ∈ U b such that (a, x) Bf (b, y). Then, there exists

v such that va = x, vb = y, and f(v) = a. Choose ε ∈ Rn+ such that (x + ε) ∈ Ua. Since f

satisfies WPA (Step 1), at profile v′ with v′a = x+ ε and v′c = vc for all c ∈ A \ {a}, we have

f(v′) = a (note that such v′ exists due to richness of type space). Hence, (a, x+ ε) Bf (b, y).

Step 4. Finally, this implies that Bf is transitive. Suppose a, b, c ∈ Ā are three distinct

alternatives and pick (a, x), (b, y), (c, z) ∈ X̄ such that (a, x) Bf (b, y) Bf (c, z). Since

(a, x) Bf (b, y), there exists a type profile v such that va = x, vb = y, and f(v) = a. Note

that this implies that (a, x) Bf (a′, va
′
) for all a′ ∈ Ā \ {a}. Consider a utility profile v′,

where v′c = z and v′a
′
= va

′
for all a′ ∈ A\{c}. Since (a, x) Bf (a′, v′a

′
) for all a′ ∈ Ā\{a, c},

f(v′) ∈ {a, c}. If f(v′) = c, then (c, z) Bf (b, y), which is a contradiction, since Bf is

anti-symmetric (Step 2). Hence, f(v′) = a, which implies that (a, x) Bf (c, z).

The other case is (a, x + ε) Bf (a, x) Bf (b, y) for some ε ∈ Rn+ with x 6= (x + ε) and

x, (x+ ε) ∈ Ua. But by Step 3, (a, x+ ε) Bf (b, y).

Finally, the case (b, y) Bf (a, x+ε) Bf (a, x), where ε ∈ Rn+ and x 6= (x+ε), x, (x+ε) ∈ Ua.
Since (b, y) Bf (a, x+ ε), there exists a profile v with vb = y, va = x+ ε, and f(v) = b. This

implies that (b, y) Bf (a′, va
′
) for all a′ ∈ Ā \ {b}. Now, consider the profile v′ where

v′a = x, v′a
′

= va
′

for all a′ 6= a (by richness, such a type profile exists). By binary in-

dependence, f(v′) ∈ {b, a}. If f(v′) = a, then (a, x) Bf (b, y) and Step 3 implies that

(a, x + ε) Bf (b, y), which is a contradiction. Hence, f(v′) = b, and this implies that

32

(b, y) Bf (a, x).

Step 5. This shows that Bf is an irreflexive, anti-symmetric, transitive binary relation

on X̄ . By Szpilrajn’s extension theorem, we can extend it to a complete, irreflexive, anti-

symmetric, transitive binary relation on X̄ . Since X̄ is finite, there is a utility representation

W̄ : X̄ → R of this linear order. We can then extend this map to W : X → R as follows,

for every (a, x) ∈ X̄ , let W (a, x) := W̄ (a, x). Then choose δ < min(a,x)∈X̄ W̄ (a, x), and set

W (a, x) := δ for every (a, x) /∈ X̄ .

Now, since Bf satisfies (a, x + ε) Bf (a, x) for all a ∈ Ā, for all x, (x + ε) ∈ Ua with

ε ∈ Rn and x 6= (x + ε), W is monotone. Now, at every profile v, if f(v) = a, by definition,

(a, va) Bf (b, vb) for all b ∈ Ā \ {a}, which implies that W (a, va) > W (b, vb) for all b 6= a.

Hence, W is an AUM. Further, note that W̄ is an injective map. Hence, no tie-breaking is

necessary for W . So, vacuously, it is an AUM with consistent tie-breaking.

33

Appendix 2: Extensions

Throughout this appendix, we conduct the analysis for an arbitrary agent i, fix v−i ∈ V−i
and for notational convenience, we suppress the dependence on v−i. Recall that we can do so

because the incentive compatibility requirement is for each agent i and all possible reports

v−i of the other agents.

Partially Contractible Utilities

We note that in many occasions the entire utility may not be contractible. However, our

results will continue to hold in some such situations. Suppose the utility of an agent has two

components - (1) a revenue component, which is contractible and (2) a happiness component,

which is not contractible. We assume that the happiness is a monotone function of the

revenue and the alternative chosen. Formally, type vi now reflects the revenue of agent i over

various alternatives and this is contractible.

There is a map

gi : R× A→ R

that gives the non-contractible utility of agent i. We assume that gi is non-decreasing

in the first argument.

Consider an scf f . Given a contingent contract si, the net utility of agent i by reporting

v′i with true type vi is given by

si(vi(f(v′i)), v
′
i) + gi(vi(f(v′i)), f(v′i)).

Similarly, given a linear contract (ri, ti), the net utility of agent i by reporting v′i with true

type vi is given by

ri(v
′
i)vi(f(v′i)) + gi(vi(f(v′i)), f(v′i))− ti(v′i).

We will show that Theorem 3 continues to hold even under this setting. Of course,

Theorem 1 does not hold any longer since we there are components of utility that are not

contractible. Since Theorem 3 continues to hold, with an appropriate redefinition of aggre-

gate utility maximizers, we can also show that Theorem 2 holds.

As before, for any scf f , we define the binary relation �f as follows. For any vi, v
′
i ∈ Vi,

we say vi �f v′i if vi(f(v′i)) > v′i(f(v′i)). We also define the binary relation �f as follows. For

any vi, v
′
i ∈ Vi, we say vi �f v′i if vi(f(v′i)) ≥ v′i(f(v′i)).

Definition 13 An scf f is acyclic if for any sequence of types v1
i , . . . , v

k
i with v1

i �f v2
i �f

. . . �f vki , we have vki �f v1
i .

34

As before, we can show the necessity of acyclicity.

Lemma 4 If an scf is implementable by a contingent contract, then it is acyclic.

Proof : Suppose scf f is implementable by a contingent contract si. Consider any sequence

of types v1
i , . . . , v

k
i with v1

i �f v2
i �f . . . �f vki . Choose j ∈ {1, . . . , k − 1}. Since f is

implementable by si, we get that

si(v
j
i (f(vji)), v

j
i) + gi(v

j
i (f(vji)), f(vji)) ≥ si(v

j
i (f(vj+1

i)), vj+1
i) + gi(v

j
i (f(vj+1

i)), f(vj+1
i))

≥ si(v
j+1
i (f(vj+1

i)), vj+1
i) + gi(v

j+1
i (f(vj+1

i)), f(vj+1
i))

where the second inequality used the fact that vji �f vj+1, si is increasing in the first

argument, and gi is non-decreasing in the first argument. Hence, we get that for any j ∈
{1, . . . , k − 1}, we have

si(v
j
i (f(vji)), v

j
i) + gi(v

j
i (f(vji)), f(vji)) ≥ si(v

j+1
i (f(vj+1

i)), vj+1
i) + gi(v

j+1
i (f(vj+1

i)), f(vj+1
i)).

(13)

Adding Inequality (13) for all j ∈ {1, . . . , k − 1} and telescoping, we get

si(v
1
i (f(v1

i)), v
1
i) + gi(v

1
i (f(v1

i)), f(v1
i)) ≥ si(v

k
i (f(vki)), vki) + gi(v

k
i (f(vki)), f(vki)). (14)

Since f is implementable, we have si(v
k
i (f(vki)), vki)+gi(v

k
i (f(vki)), f(vki)) ≥ si(v

k
i (f(v1

i)), v
1
i)+

gi(v
k
i (f(v1

i)), f(v1
i)). This along with Inequality (14) gives us

si(v
1
i (f(v1

i)), v
1
i) + gi(v

1
i (f(v1

i)), f(v1
i)) ≥ si(v

k
i (f(v1

i)), v
1
i) + gi(v

k
i (f(v1

i)), f(v1
i)). (15)

Now, assume for contradiction, vki �f v1
i . Then, vki (f(v1

i)) > v1
i (f(v1

i)). Since si is strictly

increasing in the first argument and gi is non-decreasing in the first argument, we get that

si(v
k
i (f(v1

i)), v
1
i) + gi(v

k
i (f(v1

i)), f(v1
i)) > si(v

1
i (f(v1

i)), v
1
i) + gi(v

1
i (f(v1

i)), f(v1
i)). (16)

This is a contradiction to Inequality (15). �

We now proceed to show that the remainder of the proof of Theorem 3 can be adapted

straightforwardly. First, we define some terminology. For any vi, v
′
i ∈ Vi, let

d(vi, v
′
i) := vi(f(vi))− v′i(f(vi))

and

d′(vi, v
′
i) := gi(vi(f(vi)), f(vi))− gi(v′i(f(vi)), f(vi)).

35

Definition 14 An scf f is generalized multiplier cycle monotone if there exists λi :

Vi → (0,∞) such that for every sequence of types (v1
i , . . . , v

k
i , v

k+1
i ≡ v1

i) we have

k∑
j=1

[
λi(v

j
i)d(vji , v

j+1
i) + d′(vji , v

j+1
i)

]
≥ 0.

Proposition 3 An scf f is implementable by a linear contract if and only if it is generalized

multiplier cycle monotone.

Proof : The necessity of generalized multiplier cycle monotonicity follows by adding any

cycle of incentive constraints. For sufficiency, suppose f satisfies generalized multiplier cycle

monotonicity. Let λi : Vi → (0,∞) be the corresponding multiplier. Then, by the Rochet-

Rockefellar theorem, there exists a map W : Vi → R such that for every vi, v
′
i ∈ Vi, we

have

W (vi)−W (v′i) ≤
[
λi(vi)d(vi, v

′
i) + d′(vi, v

′
i)
]
. (17)

Now, for any vi ∈ Vi, let

ti(vi) := λi(vi)vi(f(vi)) + gi(vi(f(vi)), f(vi))−W (vi).

Now, substituting in Inequality (17), we get for every vi, v
′
i ∈ Vi,

W (vi)−W (v′i) = λi(vi)vi(f(vi)) + gi(vi(f(vi)), f(vi))− ti(vi)
− λi(v′i)v′i(f(v′i))− gi(v′i(f(v′i)), f(v′i)) + ti(v

′
i)

≤ λi(vi)vi(f(vi))− λi(vi)v′i(f(vi)) + gi(vi(f(vi)), f(vi))− gi(v′i(f(vi)), f(vi)).

Canceling terms, we get

λi(v
′
i)v
′
i(f(v′i)) + gi(v

′
i(f(v′i)), f(v′i))− ti(v′i) ≥ λi(vi)v

′
i(f(vi)) + gi(v

′
i(f(vi)), f(vi))− ti(vi).

This gives us the desired incentive constraints. �

We will now show that if f is acyclic, then it is generalized multiplier cycle monotone. To

do so, we first observe that if f is acyclic, then we can apply Lemma 2 to claim that the type

space can be f -ordered-partitioned. Now, we can use this to construct a λi : Vi → (0,∞)

map recursively. Let (V 1
i , . . . , V

K
i) be an f -ordered-partition of Vi. First, we set for all

vi ∈ V K
i ,

λi(vi) := 1.

Having defined λi(vi) for all vi ∈ V k+1
i ∪ . . . ∪ V K

i , we define λi(vi) for all vi ∈ V k
i . Let C be

any cycle of types (v1
i , . . . , v

q
i , v

1
i) involving types in V k

i ∪ . . . ∪ V K
i with at least one type in

36

V k
i and at least one type in V k+1

i ∪ . . .∪V K
i . Let C be the set of all such cycles. Now, define

for each cycle C ≡ (v1
i , . . . , v

q
i , v

q+1
i ≡ v1

i) ∈ C,

L(C) :=
∑

vji∈C∩(V k+1
i ∪...∪V K

i)

λi(v
j
i)d(vji , v

j+1
i) +

q∑
j=1

d′(vji , v
j+1
i).

and

`(C) :=
∑

vji∈V k
i ∩C

d(vji , v
j+1
i).

Now, consider two possible cases.

• If L(C) ≥ 0 for all C ∈ C, then set λi(vi) = 1 for all vi ∈ V k
i .

• If L(C) < 0 for some C ∈ C, we proceed as follows. Since Vi is f -ordered-partitioned,

for every vi ∈ V k
i and v′i ∈ (V k+1

i ∪ . . . ∪ V K
i), we have d(vi, v

′
i) > 0 (Property P2).

Similarly, for every vi, v
′
i ∈ V k

i , we have d(vi, v
′
i) ≥ 0 (Property P1). Then, for every

C ∈ C, we must have `(C) > 0 since it involves at least one type from V k
i and at least

one type from (V k+1
i ∪ . . . ∪ V K

i). Now, for every vi ∈ V k
i , define

λi(vi) := max
C∈C

−L(C)

`(C)
.

We thus recursively define the λi map.

Proposition 4 If f is acyclic, then λi makes f generalized multiplier cycle monotone.

Proof : Consider any cycle C ≡ (v1
i , . . . , v

q
i , v

q+1
i ≡ v1

i). We will show that

q∑
j=1

λi(v
j
i)d(vji , v

j+1
i) + d′(vji , v

j+1
i) ≥ 0. (18)

If C ⊆ V K
i , then d(vji , v

j+1
i) ≥ 0, d′(vji , v

j+1
i) ≥ 0, and λi(v

j
i) = λi(v

j+1
i) for all vji , v

j+1
i ∈ C.

Hence, Inequality (18) holds. Now, suppose Inequality (18) is true for all cycles C ⊆ (V k+1
i ∪

. . .∪V K
i). Consider a cycle C ≡ (v1

i , . . . , v
q
i , v

q+1
i ≡ v1

i) involving types in (V k
i ∪ . . .∪V K

i). If

each type in C is in V k
i , then again d(vji , v

j+1
i) ≥ 0, d′(vji , v

j+1
i) ≥ 0, and λi(v

j
i) = λi(v

j+1
i) for

all vji , v
j+1
i ∈ C. Hence, Inequality (18) holds. By our hypothesis, if all types in C belong to

(V k+1
i ∪ . . . V K

i), then again Inequality (18) holds. So, assume that C is a cycle that involves

at least one type from V k
i and at least one type from (V k+1

i ∪ . . . ∪ V K
i). Let λi(vi) = µ for

all vi ∈ V k
i . By definition,∑

vji∈C

[
λi(v

j
i)d(vji , v

j+1
i) + d′(vji , v

j+1
i)

]
= L(C) + µ`(C) ≥ 0,

37

where the last inequality followed from the definition of µ. Hence, Inequality (18) again

holds. Proceeding like this inductively, we complete the proof. �

To summarize, we have shown the following result.

Theorem 6 Consider the partially contractible environment and suppose the type space is

finite. Then, for any scf f , the following are equivalent.

1. f is implementable by a contingent contract.

2. f is acyclic.

3. f is generalized multiplier cycle monotone.

4. f is implementable by a linear contract.

An Infinite Type Space where the Equivalence Holds

We show that Theorem 3 extends to a model with infinite set of types under additional

conditions. We make the following assumptions.

A1 The set of alternatives A is a metric space.

A2 The set of types Vi is a compact metric space and each vi ∈ Vi is continuous in a.

A3 The scf f(·) is continuous in vi.

Theorem 7 Let f be an scf and assumptions A1-A3 hold. If scf f can be implemented

by a contingent contract si which is twice continuously (partially) differentiable in the first

argument, then f can also be implemented by a linear contract.

Proof : We are given that f can be implemented by a contingent contract si : R× Vi → R
which is twice continuously differentiable in the first argument. We first show that this

implies that f can also be implemented by a contingent contract s̃i which is convex in the

first argument. Consider the following transformation of s:

s̃i = eγsi where γ > 0.

Clearly, since s̃i is a monotone transformation of si, it is both strictly increasing in the first

argument and incentive compatible. Therefore, it also implements f . We denote partial

derivatives of with respect to the first argument by ∂
∂ui

.

38

Since si is twice differentiable in the first argument, so is s̃i and its second partial deriva-

tive is given by
∂2s̃i
∂u2

i

= γeγsi
(
∂s̃i
∂ui

)2(
∂2s̃i/∂u

2
i

(∂s̃i/∂ui)2
+ γ

)
.

Now, since Vi is compact, f is continuous and si is twice continuously differentiable in

the first argument, this implies that

∂2s̃i(vi(f(v′i)), v
′
i)/∂u

2
i

(∂s̃(vi(f(v′i)), v
′
i)/∂ui)

2
is bounded from below for all vi, v

′
i ∈ Vi.

This is because the above function is continuous on the compact set Vi× Vi and hence must

attain a minimum.

This in turn implies that there exists a large and finite γ > 0 such that s̃i is convex in

the first argument. Incentive compatibility and convexity of s̃i applied in turn then yield the

following inequality for all vi, v
′
i ∈ Vi

s̃i(vi(f(vi)), vi) ≥ s̃i(vi(f(v′i)), v
′
i)

≥ s̃i(v
′
i(f(v′i)), v

′
i) +

∂s̃(v′i(f(v′i)), v
′
i)

∂ui
[vi(f(v′i))− v′i(f(v′i))].

Now set multipliers λi(v
′
i) =

∂s̃i(v
′
i(f(v′i)),v

′
i)

∂ui
> 0 for all v′i ∈ Vi and notice that f will satisfy

multiplier cycle monotonicity with these multipliers. Of course, this implies that f can be

implemented by a linear contract (Proposition 2) which completes the proof. �

Sufficiency of 2-acyclicity in a Linear One Dimensional Model

In this section, we describe a simple model of a one dimensional type space with uncountable

types, where 2-acyclicity is sufficient .

We assume that the set of alternatives A is finite. Additionally, we assume that types

are one dimensional and linear. Formally, for every alternative a ∈ A, there exists κa ≥ 0

and γa such that for all i

vi(a) = κavi + γa where vi ∈ Vi ⊆ R.

The following is the characterization result.

Theorem 8 Suppose A is finite and the types are one dimensional and linear. Then, the

following conditions on an scf f are equivalent.

1. f satisfies 2-acyclicity.

39

2. f is multiplier 2-cycle monotone.

3. f is implementable by a linear contract.

4. f is implementable by a contingent contract.

Proof : 1⇒ 2. Define the map ν : A→ R+ as follows. For every a ∈ A,

ν(a) =

{
1
κa

if κa 6= 0

0 if κa = 0

Further, define ν∗ := maxa∈A ν(a) and V 0
i := {vi ∈ Vi : κf(vi) = 0}. Now, define ri : Vi →

(0, 1] as follows. Fix an ε ∈ (0, 1]. For every v1 ∈ Vi,

ri(vi) =

{
ε ∀ vi ∈ V 0

i
ν(f(vi))
ν∗

∀ vi ∈ V \ V 0
i .

Now, note that if vi ∈ V 0
i , then ri(vi)κf(vi) = 0 and if vi ∈ V \ V 0

i , then ri(vi)κf(vi) = 1
ν∗

.

Hence, for every v ∈ V 0
i and v′ ∈ V \ V 0

i , we have

ri(v
′
i)κf(v′i)

> ri(v)κf(vi). (19)

Now, consider any vi, v
′
i ∈ V . Since f is 2-acyclic, it means v′i �f vi implies vi �f v′i.

Equivalently, (v′i − vi)κf(vi) ≥ 0 implies (v′i − vi)κf(v′i)
≥ 0. Equivalently, if vi > v′i and

κf(vi) = 0 then κf(v′i)
= 0. This further means, if vi ∈ V 0

i and v′i < vi, then v′i ∈ V 0
i . Hence,

using Inequality (19), we get that if v′i > vi, then

ri(v
′
i)κf(v′i)

≥ ri(vi)κf(vi). (20)

Now, for any vi, v
′
i ∈ V with v′i > vi, multiplier 2-cycle monotonicity requires that

(v′i − vi)
(
ri(v

′
i)κf(v′i)

− ri(vi)κf(vi)

)
≥ 0. (21)

This is true because of Inequality (20).

2 ⇒ 3. Using Proposition 2, it is enough to show that if f is multiplier 2-cycle monotone,

then it is multiplier cycle monotone. Because f satisfies multiplier 2-cycle monotonicity, for

any v′i > vi, Inequality (21) is satisfied. But, this implies that Inequality (20) is satisfied.

Assume for contradiction that f fails multiplier cycle monotonicity. Let k be the smallest

integer such that f fails multiplier k-cycle monotonicity. Since f satisfies multiplier 2-cycle

40

monotonicity, k ≥ 3. This means for every ri : Vi → (0, 1] and for some finite sequence of

types (v1
i , . . . , v

k
i), we have

k∑
j=1

`f,ri(vji , v
j+1
i) < 0,

where vk+1
i ≡ v1

i and `f,ri(vji , v
j+1
i) := ri(v

j
i)
[
vji (f(vji)) − v

j+1
i (f(vji))

]
. Consider a ri : Vi →

(0, 1]. Let vji > vpi for all p ∈ {1, . . . , k}\{j}. We will show that `f,ri(vj−1
i , vji)+`

f,ri(vji , v
j+1
i)−

`f,ri(vj−1
i , vj+1

i) ≥ 0. To see this,

`f,ri(vj−1
i , vji) + `f,ri(vji , v

j+1
i)− `f,ri(vj−1

i , vj+1
i) = vji [ri(v

j
i)κf(vji) − ri(v

j−1
i)κf(vj−1

i)]

+ vj+1
i [ri(v

j+1
i)κf(vj+1

i) − ri(v
j
i)κf(vji)]

− vj+1
i [ri(v

j+1
i)κf(vj+1

i) − ri(v
j−1
i)κf(vj−1

i)]

= (vji − v
j+1
i)[ri(v

j
i)κf(vji) − ri(v

j−1
i)κf(vj−1

i)]

≥ 0,

where the last inequality follows from the fact that vji > vj+1
i and applying Inequality (20).

Since f satisfies multiplier (k − 1)-cycle monotonicity, we know that `f,ri(v1
i , v

2
i) + . . . +

`f,ri(vj−2
i , vj−1

i) + `f,ri(vj−1
i , vj+1

i) + `f,ri(vj+1
i , vj+2

i) + . . . + `f,ri(vki , v
1
i) ≥ 0. But, because of

the last inequality, we must have

k∑
j=1

`f,ri(vji , v
j+1
i) ≥ 0,

which gives us a contradiction.

Of course, 3⇒ 4 and Lemma 1 establishes that 4⇒ 1. This concludes the proof. �

Remark. A closer look at the proof of Theorem 8 reveals that if κa > 0 for all a ∈ A, then

for every scf f , V 0
i = ∅, and hence, every scf f satisfies 2-acyclicity vacuously. Thus, every

scf can be implemented using a linear contract.

Sufficiency of 2-acyclicity in a Linear Two Dimensional Model

In this section, we consider a linear two dimensional generalization of the model in the

previous section. Formally, for every alternative a ∈ A, there exists κa1 ≥ 0, κa2 > 0 and γa

such that for all i

vi(a) = vi1κa1 + vi2κa2 + γa where vi ∈ Vi ⊆ R.

41

The proof will use the following normalized vector for an alternative a ∈ A, which we

denote by

κa =

(
κa1
κa2

, 1

)
.

Note that since we have restricted κa2 > 0,13 the above normalized vector is well defined.

The next result shows that 2-acyclicity implies acyclicity in the linear two dimensional

environment. Thus, from Lemma 3, we can conclude that in countable type spaces, 2-

acyclicity is sufficient for implementability.

Theorem 9 In the linear two dimensional environment, 2-acyclicity implies acyclicity.

Proof : We need to show that 2-acyclicity implies k-acyclicity for all k. We will proceed

by induction on k. The base case of k = 2 is trivially true. As the induction hypothesis,

we assume the implication holds for some k > 2. We will now show the induction step that

2-acyclicity implies k + 1-acyclicity.

Suppose f is 2-acyclic. Consider a sequence v1
i , . . . , v

k+1
i with the following properties.

For all j ∈ {1, . . . , k−1}, each element is weakly greater than the succeeding and no element

is strictly greater than any previous element in the sequence. Formally,

vji � vj+1
i and vj+1

i � vj
′

i for all j′ ∈ {1, . . . , j}

which is equivalent to

κf(vj+1
i)(v

j
i − v

j+1
i) ≥ 0 and κ

f(vj
′

i)
(vj+1
i − vj

′

i) ≤ 0 for all j′ ∈ {1, . . . , j}.

Additionally, without loss of generality, we can take the inequality to be strict for v1
i :

v1
i � v2

i or that κf(v2i)(v
1
i − v2

i) > 0.

The induction hypothesis (k-acyclicity) then implies that

vj
′

i � v1
i or that κf(v1i)(v

j′

i − v1
i) < 0 for all j′ ∈ {2, . . . , k}.

Finally, vk+1
i is such that

vki � vk+1
i or κf(vk+1

i)(v
k
i − vk+1

i) ≥ 0.

The induction hypothesis implies that

vk+1
i � vj

′

i for all j′ ∈ {2, . . . , k} or κ
f(vj

′
i)

(vk+1
i − vj

′

i) ≤ 0 for all j ∈ {2, . . . , k}.

13This assumption is required for the result. It is possible to construct a simple counter example if we

allow κa2 = 0.

42

It is sufficient to show that for such sequences it must be that

vk+1
i � v1

i or κf(v1i)(v
k+1
i − v1

i) < 0.

We consider two cases depending on how the first component of the normalized vector

κf(v1i) compares to the first components of the vectors κf(vji) for j ∈ {2, . . . , k + 1}.
Case I : The first component of κf(v1i) is the largest or smallest in the sequence.

This implies that either (i) the first component of κf(vk+1
i) lies between the first com-

ponents of κf(v1i) and κf(v2i) or that (ii) the first component κf(v2i) lies between the first

component of κf(v1i) and κf(vk+1
i).

Consider subcase (i) first. Here there must be an α ∈ [0, 1] such that κf(vk+1
i) = ακf(v1i) +

(1 − α)κf(v2i). Then, it must be that v1
i � vk+1

i which can be seen from the following series

of inequalities

κf(vk+1
i)(v

1
i − vk+1

i) = κf(vk+1
i)(v

1
i − vki) + κf(vk+1

i)(v
k
i − vk+1

i)

≥ (ακf(v1i) + (1− α)κf(v2i))(v
1
i − vki)

= ακf(v1i)(v
1
i − vki) + (1− α)κf(v2i)(v

1
i − v2

i) + (1− α)κf(v2i)(v
2
i − vki)

> 0.

Note that the strictness follows from the fact that either or both of the first two terms in the

above must be strictly positive depending on the value of α. But then applying 2-acyclicity

to the sequence {v1
i , v

k+1
i } implies that vk+1

i � v1
i .

Now consider subcase (ii). Here there must be an α ∈ [0, 1] such that κf(v2i) = ακf(v1i) +

(1− α)κf(vk+1
i). Observe that

κf(v2i)(v
1
i − vk+1

i) = κf(v2i)(v
1
i − v2

i) + κf(v2i)(v
2
i − vk+1

i) > 0,

which in turn implies that

ακf(v1i)(v
1
i − vk+1

i) + (1− α)κf(vk+1
i)(v

1
i − vk+1

i) > 0.

Hence, it must be that either κf(vk+1
i)(v

1
i − vk+1

i) ≤ 0 and κf(v1i)(v
1
i − vk+1

i) > 0 in which

case this subcase is completed or that κf(vk+1
i)(v

1
i −vk+1

i) > 0. In the latter case, we can once

again apply 2-acyclicity to the sequence {v1
i , v

k+1
i } and get the desired relation vk+1

i � v1
i .

Case II : The ratio of the components in κf(v1i) lies between some κf(vji) and κf(vj+1
i) where

j ∈ {2, . . . , k}. Then, there must be an α ∈ [0, 1] such that κf(v1i) = ακf(vji) + (1−α)κf(vj+1
i).

43

Then

κf(v1i)(v
1
i − vk+1

i) = κf(v1i)(v
1
i − v

j
i) + κf(v1i)(v

j
i − vk+1

i)

> (ακf(vji) + (1− α)κf(vj+1
i))(v

j
i − vk+1

i)

≥ (1− α)κf(vj+1
i)(v

j
i − vk+1

i)

= (1− α)κf(vj+1
i)(v

j
i − v

j+1
i) + (1− α)κf(vj+1

i)(v
j+1
i − vk+1

i)

≥ 0

which completes the proof. �

44

References

Abhishek, V., B. Hajek, and S. R. Williams (2012): “On Bidding with Securities:

Risk aversion and Positive Dependence,” arXiv preprint arXiv:1111.1453.

Afriat, S. N. (1967): “The Construction of Utility Functions from Expenditure Data,”

International Economic Review, 8, 67–77.

Arrow, K. (1979): “?The Property Rights Doctrine and Demand Revelation under Incom-

plete Information,” in Economics and human welfare, New York Academic Press.

Ashlagi, I., M. Braverman, A. Hassidim, and D. Monderer (2010): “Monotonicity

and Implementability,” Econometrica, 78, 1749–1772.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mualem, N. Nisan, and A. Sen

(2006): “Weak Monotonicity Characterizes Deterministic Dominant Strategy Implemen-

tation,” Econometrica, 74, 1109–1132.

Brown, D. J. and C. Calsamiglia (2007): “The Nonparametric Approach to Applied

Welfare Analysis,” Economic Theory, 31, 183–188.

Carbajal, J. C., A. McLennan, and R. Tourky (2013): “Truthful Implementation

and Preference Aggregation in Restricted Domains,” Forthcoming, Journal of Economic

Theory.

Che, Y.-K. and J. Kim (2010): “Bidding with Securities: Comment,” American Economic

Review, 100, 1929–1935.

Cramton, P., R. Gibbons, and P. Klemperer (1987): “Dissolving a Partnership Effi-

ciently,” Econometrica, 55, 615–632.

Crémer, J. (1987): “Auctions with contingent payments: Comment,” American Economic

Review, 77, 746.

d’Aspremont, C. and L.-A. Gérard-Varet (1979): “Incentives and Incomplete Infor-

mation,” Journal of Public economics, 11, 25–45.

d’Aspremont, C. and L. Gevers (2002): Handbook of Social Choice and Welfare -

Volume 2, Elsevier, Amsterdam, chap. Social Welfare Functionals and Interpersonal Com-

parability (Chapter 10), 459–541, ediors: Kenneth J. Arrow, Amartya K. Sen, and K.

Suzumura.

45

DeMarzo, P. M., I. Kremer, and A. Skrzypacz (2005): “Bidding with Securities:

Auctions and Security Design,” American Economic Review, 95, 936–959.

Fishburn, P. C. (1970): Utility Theory for Decision Making, John Wiley and Sons, New

York.

Gorbenko, A. and A. Malenko (2010): “Competition Among Sellers in Securities Auc-

tions,” American Economic Review, 101, 1806–1841.

Green, J. R. and J.-J. Laffont (1979): Incentives in Public Decision Making, North-

Holland.

Groves, T. (1973): “Incentives in Teams,” Econometrica, 41, 617–631.

Guo, M. and V. Conitzer (2009): “Worst-case Optimal Redistribution of VCG Payments

in Multi-unit Auctions,” Games and Economic Behavior, 67, 69–98.

Hansen, R. G. (1985): “Auctions with Contingent Payments,” American Economic Review,

75, 862–865.

Kos, N. and M. Messner (2013): “Extremal Incentive Compatible Transfers,” Journal of

Economic Theory, 148, 134–164.

Krishna, V. (2009): Auction Theory, Academic Press.

Laffont, J.-J. and J. Tirole (1986): “Using Cost Observation to Regulate Firms,”

Journal of Political Economy, 614–641.

Maskin, E. (1992): Privatization, Mohr, Tubingen, chap. Auctions and Privatization, 115–

136, editor: Horst Siebert.

Mezzetti, C. (2004): “Mechanism Design with Interdependent Valuations: Efficiency,”

Econometrica, 72, 1617–1626.

Milgrom, P. R. and R. J. Weber (1982): “A Theory of Auctions and Competitive

Bidding,” Econometrica, 50, 1089–1122.

Mishra, D. and S. Roy (2013): “Implementation in Multidimensional Dichotomous Do-

mains,” Theoretical Economics, 8.

Mishra, D. and A. Sen (2012): “Roberts’ Theorem with Neutrality: A Social Welfare

Ordering Approach,” Games and Economic Behavior, 75, 283–298.

46

Mitra, M. and A. Sen (2010): “Efficient Allocation of Heterogenous Commodities with

Balanced Transfers,” Social Choice and Welfare, 35, 29–48.

Moulin, H. (2009): “Almost Budget-Balanced VCG Mechanisms to Assign Multiple Ob-

jects,” Journal of Economic theory, 144, 96–119.

Myerson, R. B. and M. A. Satterthwaite (1983): “Efficient Mechanisms for Bilateral

trading,” Journal of economic theory, 29, 265–281.

Nisan, N. and A. Ronen (2001): “Algorithmic Mechanism Design,” Games and Economic

Behavior, 35, 166–196.

Rahman, D. (2011): “Detecting Profitable Deviations,” Working Paper, University of Min-

nesota.

Riley, J. G. (1988): “Ex Post Information in Auctions,” Review of Economic Studies, 55,

409–429.

Roberts, K. (1979): The Characterization of Implementable Choice Rules, North Holland

Publishing, chap. Aggregation and Revelation of Preferences, 321–348, editor: J-J. Laffont.

Rochet, J. C. (1987): “A Necessary and Sufficient Condition for Rationalizability in a

Quasi-linear Context,” Journal of Mathematical Economics, 16, 191–200.

Rockafellar, R. T. (1970): Convex Analysis, Princeton University Press.

Saks, M. E. and L. Yu (2005): “Weak Monotonicity Suffices for Truthfulness on Convex

Domains,” in Proceedings of 7th ACM Conference on Electronic Commerce, ACM Press,

286–293.

Sen, A. K. (1970): Collective Choice and Social Welfare, vol. 5, Holden-Day.

Skrzypacz, A. (2013): “Auctions with Contingent Payments - An Overview,” International

Journal of Industrial Organization.

Suijs, J. (1996): “On Incentive Compatibility and Budget Balancedness in Public Decision

Making,” Economic Design, 2, 193–209.

Varian, H. R. (1982): “The Nonparametric Approach to Demand Analysis,” Econometrica,

50, 945–973.

Vohra, R. V. (2011): Mechanism Design: A Linear Programming Approach, Cambridge

University Press.

47

	Introduction
	Summary of Results
	Organization of the Paper

	The Deterministic Model
	Achieving Efficiency with Budget Balance
	Implementing Aggregate Utility Maximizers
	Characterizing Implementable SCFs
	An Explicit Characterization

	The General Model with Uncertainty
	Related Literature
	Concluding Remarks
	Proof of Theorem 3

