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Abstract

Many important auctions—from spectrum rights to collectors’ items on eBay—involve the
same set of bidders repeated over time and bidders may face budget constraints in the course
of auctions. We consider sequential auctions in which bidders have multi-unit demand, but
are potentially budget constrained. For the case of two bidders with binary valuations and
two auctions, we first derive the equilibrium to the second-price auction. In contrast to the
standard static analogue, the auction involves mixed strategies in the first auction. The results
are used as a departure point for deriving the optimal mechanism when the two auctions are
independently conducted by separate designers. While the second auction mechanism is very
sensitive to the amount of the bidders’ remaining budgets a deterministic direct mechanism is
employed. In contrast, the optimal mechanism in the first auction involves offering lotteries
to the bidders that assure that with positive probability a least one bidders budget constraint
binds in the second auction.
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1 Introduction

In many sequential auctions—including large scale ones such a for spectrum rights and

smaller ones such as collector’s items on eBay—the same set of bidders frequently inter-

act and compete against one-another repeatedly. While such sequential settings have been

given much attention of late in the literature on auctions [cites here], an important aspect

that often features in such settings has by and large not been discussed; namely that in the

course of such sequential auctions bidders may have limited budgets available to them for

the purposes of bidding and therefore my deplete their budget in the course of the sequence

of sales. Indeed, especially in larger auctions, bidders may be capital constrained, implying

that budgets may be depleted in the course of bidding (see, e.g., Cramton 1995 or Burguet

and McAfee 2005). With the notable exception of Pitchik 2009 the implications of bud-

get constraints in sequential auctions has not yet been extensively explored. The present

manuscript contains some preliminary observations and results concerning bidding in such

settings and the design of optimal mechanisms when auctioneers are independent, but the

group of bidders remain the same across auctions. In contrast to the work by Pitchik, our

model differs in that we consider stochastically equivalent goods whose values are drawn

only just prior to commencement of the auction, whereas Pitchik considers heterogenous

goods with ex ante privately known values. Moreover, her focus is then specifically on the

implications of the order sales (an issue that does not arise in our framework); while we

are interested in how limited budgets affect bidding and optimal mechanism especially when

absent budget constraints the auctions are otherwise equivalent.

The implication of budget constraints in sequential auctions is three-fold. An immediate

implication of potentially depleted budgets in latter auctions is that bidders’ bids are capped

at their remaining budget, affecting equilibrium bidding when their valuations exceed their

budgets. Forward looking bidders in earlier auctions must anticipate this, which brings about

two further considerations. First, a bidder must determine whether it is worth shielding her

budget in order to remain more competitive in the subsequent auctions. But second, driving

up first period bids has the effect of depleting the rival’s budget in the first auction when

one loses—which reduces competition in the subsequent auctions, as a rival’s bidding ability
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is curtailed due to high first-auction prices.

After introducing the basic model in Section 2 we consider various aspects of bidding

in different settings in order to draw out some of the salient features in sequential auctions

with budget-constrained bidders. In particular, in Section 3 we consider the equilibrium to

a sequence of second-price auctions. Here we assume that budgets are sufficiently generous

to cover the first period equilibrium price with budgets remaining for the second auction;

while the amount carried over into the second is insufficient to win the second auction. We

show that bidders with low values in the first auction bid aggressively in the first auction

as losing with high bids entails greater payoffs in the second auction. Indeed, in contrast to

static settings (with or without budget constraints) bidders utilize mixed strategies as they

trade-off higher probabilities of winning the first auction with higher expected payoffs in the

second auction when a rival’s budget is depleted.

In Section 4 we consider the optimal direct mechanism in the second of two auctions,

allowing for all possible budget constellations. While the analysis is broadly separated into

two cases—depending on bidders’ possible values—each of these falls into several sub-cases

depending on the budgets that are available to the bidders. This analysis is followed in

Section 5 with a derivation of the optimal auction mechanism across the sequence of auctions,

however, making the simplifying assumption that there is only one bidder. The insights from

Sections 4 and 5 are used in Section 6 to comment on aspects of the optimal mechanism in

the first auction of the two-bidder model. In particular, budget constraints generate bidder

surpluses in the second auction mechanism when bidders may obtain goods below their value

when their budgets are capped. The first auction mechanism designer is able to extract these

potential surpluses in the first auction mechanism by introducing mean-preserving lotteries

that place positive weight on binding budget constraints for the bidders.

2 The Basic Model

Consider two risk-neutral bidders i = 1, 2 who are in a sequence of two auctions for two

(stochastically) identical indivisible goods. Bidders’ values Vi are i.i.d. draws from a two-
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point distribution with Vi ∈ {v, v} (where v > 0)1 with ρ := Pr{V = v}. Bidders’ values

are drawn at the beginning of each auction. All bids are made public at the conclusion of

an auction. Thus, values for the second good are not known until after the first auction is

completed with a revelation of the bids placed in the first auction.

Both bidders have a budget of m ≥ v available to them for purposes of bidding, with

remaining money being directly consumed so that a bidders’ payoffs when not participating

in an auction is given by m. Budgets are (for simplicity) assumed to be the same for both

bidders and are common knowledge.

We first consider the equilibrium to a sequence of second-price auctions. Then we de-

rive properties of the optimal direct mechanisms when the auctioneers are distinct and act

independently of one-another.

3 A Sequence of Second-Price Auctions

Using backward induction we first consider the final auction, before deriving the equilibrium

for the first auction.

3.1 The Second Auction

The second auction is essentially a standard static second-price sealed bid auction. However,

with (potentially binding) budget constraints bidders may no longer be able to afford to pay

their value, placing an upper bound on the bid placed in the second auction. In general,

with budget constraints the bidder’s optimal strategy in a second price auction is to bid

bi = min{m2
i , vi}, where m2

i denotes the budget available to bidder i in the second auction.

As is demonstrated below, having assumed that m ≥ v, the bidder who loses the first

auction is not budget-constrained in the second auction, whereas the winner of the first

auction may be, depending on the price paid in the first auction. Letting p1 denote the price

paid in the first auction, the equilibrium in the second auction is thus summarized by,

1So that the potential for meaningful bid-shading below v exists.
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Proposition 1 (Second Auction Bidding in the Second-Price Format) Equilibrium

bidding of the second auction in second-price sealed bid auctions is given by

b∗i =

min{m− p1, vi} if i won the first auction,

vi else.

(1)

It follows from Proposition 1 that since equilibrium bids in the second auction are a func-

tion of the first auction price, expected payoffs in the second auction depend on the outcome

of the first auction. As bidders are forward-looking in the first auction, they therefore must

anticipate how their first-auction bids potentially impact their second auction payoffs. Thus,

the equilibrium of the first auction must be solved while simultaneously accounting for the

implications of bidding in the first auction on payoffs in the second auction. In general this

can be done by (1) postulating possible equilibrium prices of the first auction, (2) using these

to determine second-auction payoffs, (3) determining expected second-auction payoffs, as a

function of first period strategies, and (4) confirming that equilibrium bidding in the first

auction generates the price structure initially postulated, thus confirming the equilibrium.

In the present exposition we restrict attention to cases in which budgets m are sufficiently

tight (i.e., small, relative to V ) so that—in equilibrium—the winner of the first auction is

surely unable to bid above v in the second auction.2 In order to formalize this, let B denote

the set of possible equilibrium bids in the first auction with b := inf{B} then we suppose

that m− b < v.3

Then expected payoffs for the second period auction are those given in Table 1.

2Cases with less severe budget constraints have similar features as the equilibrium we consider. In the

interest of expediency we abstract from these cases, although these analyses are available from the authors

upon request.

3As is derived later, this implies that m < 2v − ρ(1 − ρ) (v − v) (see Eq. 8). We maintain throughout

that m ≥ v.
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history value bid payoff expected payoff

v|w m− p1 0
Won 1st

v|w m− p1 0
0

v|l v v − (m− p1)
Lost 1st

v|l v v − (m− p1)
ρv + (1− ρ)v − (m− p1)

Table 1: Equilibrium in the Second Auction with Severe Budget Constraints

3.2 The First Auction

3.2.1 The High-Value Bidder’s Strategy

Similar to a static second-price auction, in the first auction, the high valued bidder places

the bid that makes him indifferent between winning and losing the first auction whenever

he is called upon to actually pay the bid he placed. A high-value bidder who places the bid

bi and loses the first auction obtains an overall expected payoff of

0 + [ρv + v(1− ρ)− (m− bi)] ,

since in losing the first auction, his bid becomes the price paid by his rival in the first auction,

i.e., p1 = bi.

If he wins, and has to pay his bid of bi his expected payoff is

[v − bi] + 0.

The equilibrium bid, denoted by b, equates these two payoffs. Hence,

b =
(1− ρ) (v − v) +m

2
. (2)

3.2.2 The Low-Value Bidder’s Strategy

It is easy to demonstrate that no pure-strategy equilibrium bidding strategy exists for the

low-type bidder. Instead, he uses a mixed strategy under which on the support of the

strategy he trades-off lower probabilities of winning the first auction with higher expected

second-auction payoffs by placing higher bids (which lowers the competition in the second

auction, as the rivals’ funds are more depleted).
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We now derive the equilibrium bid distribution of the low-type bidder. Note first that

in equilibrium he will never bid above the high-value bidder’s equilibrium bid. Indeed, it is

clear that the upper end of the support of the mixed strategy b of the low types must be

equal to the bid placed by high types. It is seen by contradiction that it cannot be below

this: if it were, then whenever called upon to place a bid near the upper end the bidder

does not decrease the probability of winning by simply bidding b, but should he then lose,

he has managed to more severely tighten the rival’s budget for the second auction, thereby

increasing his own second auction expected payoff.

Consider first his expected payoff for the game if he bids bi and wins the first auction.

Since he then surely loses the second auction (by assumption of the severity of the budget

constraint), his overall payoff is simply:

Πwin 1 = [(v − E [b−i|bi > b−i]) Pr{bi > b−i}] + 0,

where E [b−i|bi > b−i] is the expected price to be paid (i.e., his rival’s bid) when he wins with

having placed the bid bi, and Pr{bi > b−i} is the probability that he wins when placing the

bid bi.

Hence, letting F (·) :
[
b, b
]
→ [0, 1] denote the mixed strategy distribution used by low-

valued bidders in the first period (where b is given by (2) and b is yet to be determined),

Πwin 1 =

(
v −

∫ bi
b
b−idF

F (bi)

)
(1− ρ)F (bi) =

(
vF (bi)−

∫ bi

b

b−idF

)
(1− ρ).

If, when placing the bid bi he loses the first auction, his payoff from the auction is

obviously zero, but his rival pays a price bi in the first auction, and therefore the bidder’s

second auction payoff is as given in the table above with p1 being replaced by bi. Hence his

expected payoff for this case is:

Πlose 1 = 0 + π2|lost1st Pr{bi < b−i} = [ρv + (1− ρ)v − (m− bi)] [ρ+ (1− ρ)(1− F (bi))] .

Taking these two together we get the low-type’s overall expected payoff at the beginning

of the game as:

Πi =

(
vF (bi)−

∫ bi

b

b−idF

)
(1− ρ) + [ρv + (1− ρ)v − (m− bi)] [ρ+ (1− ρ)(1− F (bi))] .
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Now recall that equilibrium requires that his payoff be constant for all bids on the support

of the strategy, i.e.,

Πi(b) = const. ∀ b ∈
[
b, b
]
;

and since the upper end of the support is given by b from above, we have F (b) = 1. Therefore

Π(b) = Π(b) =

(
v −

∫ b

b

b−idF

)
(1− ρ) +

[
ρv + (1− ρ)v − (m− b)

]
ρ

=

(
v −

∫ b

b

b−idF

)
(1− ρ) +

ρv + (1− ρ)v + v −m

2
ρ

And therefore F (b) is implied by:(
vF (b)−

∫ b

b

xdF

)
(1− ρ) + [ρv + (1− ρ)v − (m− b)] [ρ+ (1− ρ)(1− F (b))] =

=

(
v −

∫ b

b

xdF

)
(1− ρ) +

ρv + (1− ρ)v + v −m

2
ρ. (3)

Differentiating the left-hand side of equation (3) with respect to b yields,

f(b)[2b+ ρ(v − v)−m]− 1

1− ρ
+ F (b) = 0. (4)

Equation (4) is a differential equation in F (b). To solve it, rewrite it using f(b) = dF (b)
db

as follows:
dF (b)

1
1−ρ

− F (b)
=

db

[2b+ ρ(v − v)−m]
(5)

For now assume that (2b + ρ(v − v) − m) is positive—something that will be ascertained

later. Solving (5), we obtain:

F (b) =
1

1− ρ
− C√

2b+ ρ(v − v)−m
(6)

where C is a positive constant.

Since F (b) = 1, using b from Equation (2) we get,

F (b) = 1 =
1

1− ρ
− C√

2b+ ρ(v − v)−m

=
1

1− ρ
− C√

(v − v)
,
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therefore

C =
ρ

1− ρ

√
v − v,

and

F (b) =
1

1− ρ

[
1− ρ

√
v − v√

2b+ ρ(v − v)−m

]
. (7)

And as F (b) = 0, it follows that

b =
m− ρ(1− ρ)(v − v)

2
;

with b > 0, since m > v.

Note that the expression under the square root in (6) and (7), 2b + ρ(v − v) − m, is

positive for all b ∈ [b, b], since b = m−ρ(1−ρ)(v−v)
2

, confirming the postulated solution to the

differential equation (4).

Finally, our initial conjecture of severe budget constraints (i.e., m−b < v ∀ b ⇒ m−b < v)

holds whenever

m− b =
m+ ρ(1− ρ)(v − v)

2
< v,

or

m < 2v − ρ(1− ρ) (v − v) . (8)

The derivation is summarized in the following proposition:

Proposition 2 (Bidding in the First Auction in the Second-Price Format) Suppose

that m ∈ (v, 2v − ρ(1− ρ) (v − v)), so that there are sever budget constraints, but bidders

can afford to pay at least v. Equilibrium bidding in the first of the two second-price sealed

bid auctions is then given by

b∗i = b =
(1− ρ) (v − v) +m

2
,

if the bidder has a high value. If the bidder has a low value he uses the mixed strategy given

by

F (b) =
1

1− ρ

[
1− ρ

√
v − v√

2b+ ρ(v − v)−m

]
,

on
[
b, b
]
=
[
m−ρ(1−ρ)(v−v)

2
, (1−ρ)(v−v)+m

2

]
.
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3.3 Expected bid from low-type

Let E1b stand for the expected bid by a low type v in the first period. That is, E1b =∫ b

b
bdF (b). Given the probability distribution F (.) of the first-period bids of the low type,

we can complete the RHS Equation (3) from above (assuming no masspoints). We have:

E1b =

∫ b

b

bdF = bF |bb −
∫ b

b

Fdb

= b− b− b

1− ρ
+

ρ

1− ρ

√
v − v

∫ b

b

(2b+ ρ(v − v)−m)−
1
2db

=
1

1− ρ

[
b− ρb+ ρ

√
v − v(2b+ ρ(v − v)−m)

1
2 |bb
]

=
1

1− ρ

[
b− ρb+ ρ

√
v − v

(
(2b+ ρ(v − v)−m)

1
2 − (2b+ ρ(v − v)−m)

1
2

)]
=

1

1− ρ

[
m− ρ(1− ρ)(v − v)

2
− ρ

(1− ρ) (v − v) +m

2
+

+ρ
√
v − v

(√
v − v − ρ

√
v − v

)]
=

1

1− ρ

[
(1− ρ)

m

2
− ρ(1− ρ)(v − v) + ρ(1− ρ)(v − v)

]
=

m

2

3.4 Expected seller’s payoff

Note that the sum of the seller’s payoffs over the two periods is equal to m. Indeed, if bidder

i wins in period 1, he pays bj, the first-period bid of bidder j. Then in the second period

bidder j wins by bidding, say v and pays m− bj, the bid of bidder i in period 2.

Let E1p stand for the expected payment in the first-period auction conditional on both

bidders having type v in the first period. Note that E1p =
∫ b

b
bd(F 2(b) + 2F (b)(1 − F (b)).

Then the expected payment received by the seller in the first period is equal to:

Eπs
1 = ρ2b+ 2ρ(1− ρ)E1b+ (1− ρ)2E1p (9)

Let us compute the value of E1p. We have:
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E1p =

∫ b

b

bd(F 2(b) + 2F (b)(1− F (b)) = 2

∫ b

b

bdF (b)−
∫ b

b

bdF 2(b) = m− b+

∫ b

b

F 2(b)db

=
m− (1− ρ) (v − v)

2
+

∫ b

b

F 2(b)db (10)

Let us compute
∫ b

b
F 2(b)db. We have:∫ b

b

F 2(b)db =

∫ b

b

(
1

1− ρ

[
1− ρ

√
v − v√

2b+ ρ(v − v)−m

])2

db

=
1

(1− ρ)2

∫ b

b

[
1− 2

ρ
√
v − v√

2b+ ρ(v − v)−m
+

(
ρ2(v − v)

(2b+ ρ(v − v)−m

)]
db

= − b− b

(1− ρ)2
+

2

(1− ρ)2

∫ b

b

(
1− ρ

√
v − v√

2b+ ρ(v − v)−m

)
db

+
ρ2(v − v)

(1− ρ)2

∫ b

b

1

(2b+ ρ(v − v)−m)
db

= − b− b

(1− ρ)2
+

2

(1− ρ)

∫ b

b

F (b)db+
ρ2(v − v)

(1− ρ)2
|bb log(2b+ ρ(v − v)−m)

= − b− b

(1− ρ)2
+

2

(1− ρ)

(
b− m

2

)
+

ρ2(v − v)

(1− ρ)2
(
log(2b+ ρ(v − v)−m)− log(2b+ ρ(v − v)−m)

)
= −(1 + ρ) (v − v)

2(1− ρ)
+ (v − v) +

ρ2(v − v)

(1− ρ)2
(
log(v − v)− log(ρ2(v − v))

)
= −(1 + ρ) (v − v)

2(1− ρ)
+ (v − v)− 2ρ2(v − v)

(1− ρ)2
log(ρ) (11)

Next, combine (11) with (10) to obtain:

E1p =
m− (1− ρ) (v − v)

2
− (1 + ρ) (v − v)

2(1− ρ)
+ (v − v)− 2ρ2(v − v)

(1− ρ)2
log(ρ)

=
m

2
− ρ(1 + ρ)(v − v)

2(1− ρ)
− 2ρ2(v − v)

(1− ρ)2
log(ρ) (12)

Therefore, the expected seller’s payoff in period 1 is equal to:

Eπs
1 = ρ2

(
(1− ρ) (v − v) +m

2

)
+ ρ(1− ρ)m+ (1− ρ)2

(
m

2
− ρ(1 + ρ)(v − v)

2(1− ρ)
− 2ρ2(v − v)

(1− ρ)2
log(ρ)

)
=

1

2
(m− ρ(1− ρ)(v − v))− 2ρ2(v − v) log(ρ) = b− 2ρ2(v − v) log(ρ) (13)
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4 Optimal Direct Mechanism in the Second Auction

Let us investigate the optimal direct mechanism. We start with period 2. Let m2
1 and

m2
2 denote the remaining budget of bidder 1 and bidder 2, respectively. Without loss of

generality we let m2
1 ≥ m2

2.

Assumption 1 The second-period auction is offered after the buyers have learned their

second-period values.

Assumption 2 The current owner’s value of the object is normalized to 0.

Also, let pi and p
i
denote the probabilities with which bidder i with announced valuation

v and v, respectively, trades in period 2. Let ti and ti denote the transfers which bidder i

with announced valuation v and v, respectively, makes to the mechanism designer.

The optimal mechanism in period 2 maximizes

ρ(t1 + t2) + (1− ρ)(t1 + t2)

subject to the following incentive constraints for i ∈ {1, 2}:

piv − ti ≥ p
i
v − ti

p
i
v − ti ≥ piv − ti (14)

We omit here the upwards incentive constraints. The latter require the probabilities to

increase in value i.e. pi ≥ p
i
for i ∈ {1, 2}—it is straightforward to show that these are

satisfied in the mechanism that we construct.

The mechanism also has to satisfy the following individual rationality constraint:

p
i
v − ti ≥ 0

and budget constraints:

max{ti, ti} ≤ m2
i for i ∈ {1, 2}

The probabilities of trade have to satisfy the following conditions: 1 ≥ pi ≥ 0, 1 ≥ p
i
≥ 0,

for i ∈ {1, 2} and

ρ(p1 + p2) + (1− ρ)(p
1
+ p

2
) ≤ 1 (15)

11



Three additional restrictions follow from the fact that the good cannot be allocated with a

probability exceeding 1:

p1 + p2 ≤ 2− ρ (16)

p
1
+ p

2
≤ 1 + ρ (17)

(1− ρ)p
i
+ ρpj ≤ 1− ρ(1− ρ) (18)

For (16), suppose that i always get’s the good when he has a high value (i.e., pi = 1),

then j can only be awarded the good when he has a high value if i does not have a high

value (i.e., pj = 1− ρ).

For (17), suppose that i only get’s the good when both bidders have a low value (i.e.,

p
i
= 1−ρ2), then the most j can expect is to get it the good when he has a low value and the

rival has a high value (i.e., pj = (1−ρ)ρ). Together this yield p
1
+p

2
= 1−ρ2+(1−ρ)ρ = 1+ρ.

Our goal is to provide a closed form solution for the mechanism designer’s profits and the

bidders’ payoffs. First, let us provide some preliminary results. If the mechanism is efficient

then p1 + p2 = 2− ρ and p
1
+ p

2
= 1− ρ.

Further, in the absence of budget constraints it is optimal to set p
1
+ p

2
= 0 if ρv ≥ v.

Conversely, it is optimal to set p
1
+ p

2
= 1− ρ if ρv < v. We will use these observations to

derive optimal mechanisms.

First, as in a standard situation without budget constraints, in an optimal mechanism

we should have binding individual rationality constraints of low-valuation types and binding

incentive constraints of high-value types: (note that there may be other mechanisms where

these constraints do not bind, but there is an optimal mechanism where they bind since one
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can simply lower the associated probabilities of trade.4) Thus, we can assume:

p1v − t1 = p
1
v − t1

p2v − t2 = p
2
v − t2

p
1
v − t1 = 0

p
2
v − t2 = 0

Then, letting ∆ := v − v, the budget constraints can be rewritten as follows:

piv − p
i
∆ ≤ m2

i for i ∈ {1, 2}

Using the above equations, we can rewrite the principal’s objective function as follows:

max
p1,p2,p1,p2

ρ(p1v − p
1
∆+ p2v − p

2
∆) + (1− ρ)v(p

1
+ p

2
) = (19)

max
p1,p2,p1,p2

ρv(p1 + p2) + (v − vρ)(p
1
+ p

2
) (20)

subject to the following constraints:5

piv − p
i
∆ ≤ m2

i for i ∈ {1, 2} (23)

ρ(p1 + p2) + (1− ρ)(p
1
+ p

2
) ≤ 1 (24)

p1 + p2 ≤ 2− ρ (25)

1 ≥ pi ≥ p
i
≥ 0, for i ∈ {1, 2} (26)

4Note: Suppose that max{m2
1,m

2
2} ≤ .5v. Then—if in fact the auctioneer has no value for the object—

taking both budgets and randomly (equally likely) allocating the good to either bidder is an optimal mech-
anism in which bidders have positive expected payoffs. We are suggesting that for this case we consider
the (equivalently optimal) mechanism in which the auctioneer might hold on to the object, assigning only
just a high enough probability to the bidders winning that they are willing to surrender their whole budgets
(a similar story can be told for budget constrained high types). The tricky thing here is then when one
considers the two-auction game this inefficiency in the second auction can have negative feedback into the
first auction.

5The solution also has to satisfy the following constraints:

p
1
+ p

2
≤ 1 + ρ (21)

(1− ρ)p
i
+ ρpj ≤ 1− ρ(1− ρ) (22)

However, we can show that both (21) and (22) are redundant. To see that (21) is redundant, note that by
(26) pi ≥ p

i
. So (21) follows from a combination of (24) and (26). To see that (22) is redundant, again use

the fact that pi ≥ p
i
. Then, if pi ≤ 1 − ρ, then p

i
≤ 1 − ρ and so (22) holds because pj ≤ 1. On the other

hand, if pi > 1− ρ, then (22) is implied by (24)

13



Bidder’s Payoffs From the binding IC and IR constraints:

ti = p
i
v

ti = piv − p
i
∆

So bidders’ ex ante expected payoffs are

π2
i := m2

i + ρ
[
piv − ti

]
+ (1− ρ)

[
p
i
v − ti

]
= m2

i + ρp
i
∆. (27)

Also, the maximal total surplus (i.e., assuming an efficient allocation, viz. trade takes

place with prob. 1) is given by

TSmax := Rev +
∑
i

π2
i = (1− ρ)2v + ρ(2− ρ)v +

∑
i

m2
i

Whereas the equilibrium expected surplus is

TSEq = ρv(p1 + p2) + (v − vρ)(p
1
+ p

2
) +

∑
i

m2
i .

4.1 Case 0: Benchmark without budget constraints

As a benchmark, let us consider Problem (19) subject to (24)-(26), i.e. omit the budget

constraints. Then the solution depends on the sign of ρv − v.

If ρv − v ≥ 0, then the expected value of the high valuation sufficiently exceed the low

valuation to make it desirable to attempt to extract surplus only from the high valued bidder.

Thus, it is optimal to set p1 + p2 = 2− ρ and p
1
+ p

2
= 0. The principal’s expected profits

are equal to (1− (1− ρ)2)v = ρ(2− ρ)v. Bidders’ expected payoffs are

π2
i = m2

i .

If ρv − v < 0, then it is optimal to set p1 + p2 = 2 − ρ and p
1
+ p

2
= 1 − ρ. The latter

follows from the objective and the constraint (24). In particular, for instance, the principal

can set pi = 1, p
i
= 0, pj = 1 − ρ, p

j
= 1 − ρ, i.e., bidder i is assigned the good iff he has a

high value, otherwise the good is given to bidder j.

The principal’s expected profits are equal to ρv+(1−ρ)v. The bidders’ expected payoffs

for the chosen allocation probabilities are π2
i = m2

i and π2
j = m2

j + ρ(1− ρ)∆.

14



In general,

π2
1 ∈

[
m2

1,m
2
1 + ρ(1− ρ)∆

]
π2
2 = m2

2 + ρ(1− ρ)∆− π2
1 +m2

1

∈
[
m2

2,m
2
2 + ρ(1− ρ)∆

]
Remark 1 Notice, thus, that the bidders’ expected payoffs need not be identical even when

they have the same budget and a bidder’s payoff need not be uniquely defined by the optimal

mechanism—only the bounds of individual payoffs and the sum of bidders’ payoffs is pinned

down.

4.2 Case 1: ρv ≥ v

Returning now to the problem with budget constraint we first consider the case in which

ρv ≥ v

Lemma 1 (Binding Budget Constraint) Bidder i’s budget constraint binds iff m2
i ≤ v,

and when it does not bind it is optimal to set p
i
= 0.

Proof of Lemma 1: Note first that that if m2
i ≥ v, ∀i then trivially neither budget con-

straint binds and p
1
= p

2
= 0.

Second if max{m2
1,m

2
2} = m2

1 ≥ v, then bidder 1’s budget constraint does not bind so

p
1
= 0. If bidder 2’s budget constraint is not binding, then p

2
= 0 and by (25) p2 ≥ 1 − ρ,

since p1 ≤ 1. But then bidder 2’s budget constraint will fail whenever m2
2 < v.

Lastly, suppose that max{m2
1,m

2
2} = m2

1 ≤ v. Then both budget constraints are binding.

The proof is by contradiction.

At first, suppose that neither budget constraint in (23) is binding. Then pi < 1 since

max{m2
1,m

2
2} = m2

1 < v, and p
i
= 0 for i ∈ {1, 2} since the value of the objective is

decreasing in p
1
and p

2
. Since m2

1 +m2
2 < v + (1− ρ)v, we have p1 + p2 < 2− ρ, i.e. (25) is

non-binding. But then the value of the objective in (19) can be increased by raising p1 and

p2, so the original mechanism cannot be optimal.

Next, suppose that only one budget constraint in (23) is binding. Suppose without loss

of generality that the budget constraint of bidder 1 is non-binding, while that of bidder 2 is

15



binding. Then p
2
= 0, since the objective function is decreasing in p

2
= 0, and p2 < 1, since

max{m2
1,m

2
2} = m2

1 < v. If p
1
= 0, then p1 + p2 < 2− ρ i.e. (24) and (25) are non-binding,

since m2
1 +m2

2 < v+ (1− ρ)v. Therefore, the value of the objective (19) can be increased by

raising p2.

If p
1
> 0, then the value of the objective (19) can be increased by increasing p2, decreasing

p1 by the same amount, and also decreasing p
1
so that the budget constraint of bidder 1

remains binding.

�

Remark 2 (Binding Budget Constraints) When the budget constraint binds then (23)

becomes p
i
=

vpi−m2
i

∆
. Since p ≥ 0, it follows that p ≥ m2

i

v
; and since p ≤ 1, it follows that

pi ≤
∆+m2

i

v
; and since pi =

p∆+m2
i

v
, it follows that p ≤ v−m2

i

∆
. Moreover, if m2

i ≤ v then it is

possible to extract all of the bidder’s budget by setting pi = p
i
=

m2
i

v
. In sum then,

Whenever i’s budget constraint binds then

pi ∈
[
m2

i

v
,min

{
1,

m2
i

v
,
∆+m2

1

v

}]
p
i
∈
[
0,min

{
v−m2

i

∆
,
m2

i

v
, 1
}]

.

(28)

In order to determine the exact optimal (sum of) probabilities, one must distinguish

between various constellations of available budgets relative to bidders’ possible valuations.

In order to do so, we refer to Figure 1 in which—without loss of generality—we postulate

that the bidder with the larger budget is indexed by i = 1, i.e., m2
1 ≥ m2

2.

Figure 1: Case 1—Subcases

Case 1.a m2
1 +m2

2 ≥ v + (1− ρ)v = (2− ρ)v, min{m2
1,m

2
2} = m2

2 ≥ (1− ρ)v.

In this case, the principal can attain the expected payoff (1 − (1 − ρ)2)v—the same as

without budget constraints by setting p1 + p2 = 2− ρ, with 1 ≥ max{p1, p2}, min{p1, p2} ≥

1− ρ, and p
1
+ p

2
= 0.

Hence

π2
i = m2

i , ∀i.
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Remark 3 Since p
i
= 0 the bidders’ payoffs follow readily. In order to determine equilibrium

values for p1 vs. p2 we use the budget constraint. Specifically, with min{m2
1,m

2
2} = m2

2, note

that it must be the case that m2
2 < v (otherwise both budgets are greater than v and we have

Case 0—the case without budgets being an issue). Hence,

p2 ∈ [1− ρ,m2
2/v] and p1 = 2− ρ− p2.

Case 1.b max{m2
1,m

2
2} = m2

1 ≥ v, min{m2
1,m

2
2} = m2

2 < (1− ρ)v.

Since m2
1 ≥ v, bidder 1’s budget constraint is not binding and it is optimal to set p

1
= 0.

And bidder 2’s budget constraint must be binding i.e. p2v − p
2
∆ = m2

2. It follows that

p
2
=

p2v−m2
2

∆
. Substituting this into the objective (19) we can rewrite it as follows:

max
p1,p2,p1,p2

ρvp1 + (v − vρ)p
1
+

p2v

∆
(ρ∆+ (v − vρ))− m2

2

∆
(v − vρ) (29)

Note that ρ∆+v−vρ = v(1−ρ) > 0. So, the coefficient on p2 in (29) is positive. However, it is

smaller than the coefficient on p1. So in the optimal mechanism we have: p1 = 1, p
1
= 0, and

p2 and p
2
should be set to that p2 is maximized subject to (1−ρ) ≥ p2 ≥ p

2
and p

2
=

p2v−m2
2

∆
.

The solution is to set p2 = (1− ρ) when m2
2 ≥ (1− ρ)v. Then p

2
=

p2v−m2
2

∆
≤ (1− ρ). When

m2
2 < (1− ρ)v, we should set p2 = p

2
so that p2v = m2

2.

Bidders’ payoffs are

π2
1 = m2

1, (30)

π2
2 =

m2
2 + ρ

m2
2

v
∆ if m2

2 < (1− ρ)v,

m2
2 + ρ

(1−ρ)v−m2
2

∆
∆ = m2

2 + ρ [(1− ρ)v −m2
2] if m2

2 ≥ (1− ρ)v.

(31)

Cases 1.c, 1.d, 1.e, 1.f. m2
1 +m2

2 < v + (1− ρ)v, max{m2
1,m

2
2} = m2

1 < v.

From the binding budget constraints we have p
i
=

piv−m2
i

∆
≥ 0, so pi ≥

m2
i

v
, ∀i. Also, given

that both budget constraints in (23) are binding, the value of the objective becomes:

max
p1,p2,p1,p2

(p1 + p2)v

∆
(ρ∆+ (v − vρ))− m2

1 +m2
2

∆
(v − vρ) (32)

Note that (32) depends only on the sum (p1 + p2) and is increasing in it. Therefore, it is

optimal to set (p1 + p2) as high as possible.
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Since both budget constraints are binding, let us consider when this implies that both

(24) and (25) are non-binding. First, suppose thatm2
1 ≥ v (Recall that we also havem2

1 ≤ v).

Then (p1+p2) cannot reach its upper bound of 2−ρ i.e., (25) is non-binding if m2
2 < (1−ρ)v.

In this case, with binding budget constraint of bidder 2, p2 reaches its maximal value when

we set p2 = p
2
=

m2
2

v
< 1− ρ. Therefore p1 + p2 < 2− ρ since p1 ≤ 1.

Then, given the binding budget constraint of bidder 1, p1 and p
1
are maximal when we

set p1 = 1 and p
1
=

v−m2
1

∆
. Then (24) will be non-binding if

ρ

(
1 +

m2
2

v

)
+ (1− ρ)

(
v −m2

1

∆
+

m2
2

v

)
< 1.

which can be rearranged as:

m2
2

v
< (1− ρ)

(
m2

1 − v

∆

)
. (33)

Thus, (33) delivers a condition for both (24) and (25) to be non-binding in case v ≥ m2
1 ≥ v

Now, suppose that m2
1 < v (and so m2

2 < v). Then to maximize p1 + p2, we should set

p1 = p
1
=

m2
1

v
and p2 = p

2
≤ m2

2

v
and so (24) is non-binding if

∑
mi < v.

Thus, if (33) fails or
∑

mi ≥ v, then either (24) and (25) will be binding our Cases

1.c and 1.d below. Let us derive the condition determining which of the constraints will be

binding (24) and (25)

Substituting p
1
+ p

2
=

(p1+p2)v−m2
1−m2

2

∆
into (24) we obtain:

(p1 + p2)

(
ρ+

(1− ρ)v

∆

)
− (1− ρ)(m2

1 +m2
2)

∆
≤ 1 (34)

If (34) holds with p1 + p2 = 2− ρ, then in the optimal mechanism (24) is non-binding, and

(25) is binding. If (34) fails with p1 + p2 = 2− ρ, then in the optimal mechanism p1 and p2

are determined by (34) holding as equality.

Remark 4 (Binding constraints) Notice that the condition that distinguishes whether 24

or 25 is binding is derived from the two constraints. Viz.∑
pi ≤

∆+ (1− ρ)
∑

m2
i

v − ρv∑
pi ≤ 2− ρ.
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Hence,

∆+ (1− ρ)
∑

m2
i

v − ρv
R 2− ρ∑

m R v + (1− ρ)v.

Therefore if v ≤
∑

m < v + (1 − ρ)v (Case 1.d), then 24 binds. If v + (1 − ρ)v ≤
∑

m ≤

v + (1− ρ)v (Case 1.c).

Case 1.c:

v + (1− ρ)v ≤
∑

m ≤ v + (1− ρ)v, m2
1 < v.

Note that in this case
m2

2

v
≥ (1 − ρ)

(
m2

1−v

∆

)
. So, as established above, in the optimal

mechanism p1 + p2 = 2− ρ (i.e., 25 binds).

Since p2 = 2− ρ− p1, p2 ≤ 2− ρ− m2
1

v
. Therefore p

2
=

p2v−m2
2

∆
≤ (2−ρ)v−m2

1−m2
2

∆
. Similarly,

p
1
=

p1v−m2
1

∆
≤ (2−ρ)v−m2

1−m2
2

∆
.

Since p1+ p2 = 2− ρ, we have p
1
+ p

2
= 1− ρ. Hence, p

i
=

piv−m2
i

∆
≤ 1− ρ. for i ∈ {1, 2}.

So, for i, j ∈ {1, 2}, i ̸= j,

pi ≤
(1− ρ)∆ +m2

i

v
, pj ≥ 2− ρ− (1− ρ)∆ +m2

i

v
=

v + v(1− ρ)−m2
i

v
. (35)

We also have, for i, j ∈ {1, 2}, i ̸= j:

pi ≥ 1− ρ (36)

pi ≥
m2

i

v
, pj ≤ 2− ρ− m2

i

v
=

(2− ρ)v −m2
i

v
. (37)

Combining (35), (36) and (37), we conclude that for i, j ∈ {1, 2} i ̸= j the following restric-

tions have to hold:

max

{
1− ρ,

m2
i

v
,
v + v(1− ρ)−m2

j

v

}
≤ pi ≤ min

{
1,

(2− ρ)v −m2
j

v
,
(1− ρ)∆ +m2

i

v

}
.

(38)

Since v + v(1− ρ) ≤ m2
1 +m2

2, (38) gives us

max

{
1− ρ,

m2
i

v

}
≤ pi ≤ min

{
1,

(2− ρ)v −m2
j

v

}
. (39)
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It follows that

π2
i ∈

[
m2

i + ρmax
{
(1− ρ)v −m2

i , 0
}
,m2

i + ρmin
{
v −m2

i , (2− ρ)v −m2
1 −m2

2

}]

With ∑
i

π2
i = (1− ρ)

∑
i

m2
i + ρ(2− ρ)v.

Case 1.d:

v ≤
∑

m < v + (1− ρ)v, m2
1 < v.

m2
2

v
≥ (1− ρ)

(
m2

1−v

∆

)
.

As established above, p1 + p2 =
∆+(1−ρ)

∑
m2

i

v−ρv
(i.e., 24 binds). Since pi ≤ min

{
m2

i

v
, 1
}
, it

follows that pj ≥
∆+(1−ρ)

∑
m2

i

v−ρv
−min

{
m2

i

v
, 1
}
= max

{
∆

(
1−m2

i
v

)
+(1−ρ)m2

j

v−ρv
,
(1−ρ)(

∑
m2

i−v)
v−ρv

}
. for

i, j ∈ {1, 2}, i ̸= j.

Since pi ≥
m2

i

v
, it follows that pj ≤

∆+(1−ρ)
∑

m2
i

v−ρv
− m2

i

v
=

∆+(1−ρ)m2
j−

ρ∆m2
i

v

v−ρv
for i, j ∈ {1, 2},

i ̸= j

Thus, we have:

max

∆
(
1− m2

i

v

)
+ (1− ρ)m2

j

v − ρv
,
(1− ρ) (

∑
m2

i − v)

v − ρv
,
m2

i

v

 ≤ pi (40)

pi ≤ min

m2
i

v
, 1,

∆+ (1− ρ)m2
i − ρ

∆m2
j

v

v − ρv

 . (41)

Since p
i
=

piv−m2
i

∆
, (40) implies that:

max


v∆
(
1 + (1− ρ)m2

j

)
−
((

v
v

)2
− ρ

)
vm2

i

(v − ρv)∆
,
v(1− ρ)(m2

j − v)− ρm2
i∆

(v − ρv)∆
, 0

 ≤ p
i

(42)

p
i
≤ min

{
m2

i

v
,
v −m2

i

∆
,
v − ρ

∑
m

v − ρv

}
. (43)

Note that the first term in the max operator on the left-hand side of (40) is greater than the

second term, 0, if

m2
j >

ρ

1− ρ

∆

v
m2

i + v (44)
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Finally, (43) implies that

π2
i ∈

m2
i + ρmax


v∆
(
1 + (1− ρ)m2

j

)
−
((

v
v

)2
− ρ

)
vm2

i

(v − ρv)∆
,
v(1− ρ)(m2

j − v)− ρm2
i∆

(v − ρv)
, 0

 ,

m2
i + ρmin

{
v −m2

i ,∆
v − ρ

∑
m

v − ρv

}]
With ∑

i

π2
i =

∑
i

m2
i + ρ

v − ρ
∑

i m
2
i

v − ρv
∆

Case 1.e:

m2
1 < v.

m2
2

v
< (1− ρ)

(
m2

1−v

∆

)
.

Note that the second condition implies that m2
1 ≥ v and m2

2 ≤ (1 − ρ)v. As established

above, in this case neither (24) nor (25) are binding, and the optimal mechanism involves

setting p1 = 1, p
1
=

v−m2
1

∆
; p2 = p

2
=

m2
2

v
.

Then the seller’s revenue is equal to ρm2
1 + (1− ρ)

v−m2
1

∆
v +m2

2.

The bidders profits are:

π2
1 = m2

1 + ρ(v −m2
1)

π2
2 = m2

2 + ρ
∆m2

2

v
(45)

Case 1.f :
∑

m ≤ v.

In this case, neither (24) nor (25) is binding. We have pi = p
i
= pi = mi/v.

Payoffs are
∑

i=1,2m
2
i for the mechanism designer and bidder payoffs are

π2
i = m2

i + ρ
m2

i

v
∆.

Summary of bidder 1’s payoff in case 1:
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π2
1(m

2
1,m

2
2) :



if m2
1 > v

if m2
2 > (1− ρ)v : 1a

if m2
2 < (1− ρ)v : 1b

if m2
1 ∈ [(1− .5ρ)v, v]



if m2
2 > (2− ρ)v −m2

1 : 1a

if m2
2 ∈ [v + (1− ρ)v −m2

1, (2− ρ)v −m2
1] : 1c

if m2
2 ∈

[
(1− ρ)v

m2
1−v

∆
, v + (1− ρ)v −m2

1

]
: 1d

if m2
2 < (1− ρ)v

m2
1−v

∆
: 1e

if m2
1 ∈

[
1
2
[v + (1− ρ)v], (1− .5ρ)v

]

if m2

2 > v + (1− ρ)v −m2
1 : 1c

if m2
2 ∈

[
(1− ρ)v

m2
1−v

∆
, v + (1− ρ)v −m2

1

]
: 1d

if m2
2 < (1− ρ)v

m2
1−v

∆
: 1e

if m2
1 ∈

[
v, 1

2
[v + (1− ρ)v]

]if m2
2 ≥ (1− ρ)v

m2
1−v

∆
: 1d

if m2
2 < (1− ρ)v

m2
1−v

∆
: 1e

if m2
1 ∈

[
1
2
v, v
]if m2

2 ∈ [v −m2
1,m

2
1] : 1d

if m2
2 ∈ [0, v −m2

1] : 1f

if m2
1 ≤ 1

2
v : 1f
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Or,

π2
1 ∈



{m2
1} if m2

1 > v

{m2
1} if m2

2 > (2− ρ)v −m2
1[

m2
1,m

2
1 + ρ[(2− ρ)v +

∑
m]
]

if m2
2 ∈ [v + (1− ρ)v −m2

1, (2− ρ)v −m2
1]

1d if m2
2 ∈

[
(1− ρ)v

m2
1−v
∆ , v + (1− ρ)v −m2

1

]
{m2

1 + ρ(v −m2
1)} if m2

2 < (1− ρ)v
m2

1−v
∆


if m2

1 ∈ [(1− .5ρ)v, v]

[
m2

1,m
2
1 + ρ(v −m2

1)
]

if m2
2 > v + (1− ρ)v −m2

1

1d if m2
2 ∈

[
(1− ρ)v

m2
1−v
∆ , v + (1− ρ)v −m2

1

]
{m2

1 + ρ(v −m2
1)} if m2

2 < (1− ρ)v
m2

1−v
∆

 if m2
1 ∈

[
1
2 [v + (1− ρ)v], (1− .5ρ)v

]

1d if m2
2 ≥ (1− ρ)v

m2
1−v
∆

{m2
1 + ρ(v −m2

1)} if m2
2 < (1− ρ)v

m2
1−v
∆

 if m2
1 ∈

[
v, 1

2 [v + (1− ρ)v]
]

1d if m2
2 ∈

[
v −m2

1,m
2
1

]
{m2

1 + ρ
m2

1

v ∆} if m2
2 ∈

[
0, v −m2

1

]
 if m2

1 ∈
[
1
2v, v

]
{m2

1 + ρ
m2

1

v ∆} if m2
1 ≤ 1

2v

We can break this down into cases, dependent on the size of bidder 2’s (remaining) budget

m2
2:

Case A: m2
2 ∈

[
0,max

{
v −m2

1, (1− ρ)v
m2

1−v

∆

}]

π2
1(m

2
1) =


m2

1 if m2
1 ≥ v

m2
1 + ρ(v −m2

1) if m2
1 ∈ (v, v)

m2
1 + ρ

m2
1

v
∆ if m2

1 ≤ v

(46)

Case B: m2
2 ∈

[
max

{
v −m2

1, (1− ρ)v
m2

1−v

∆

}
,min {v + (1− ρ)v −m2

1,m
2
1}
]

π2
1(m

2
1) =


m2

1 if m2
1 ≥ v

1d if m2
1 ∈ (v, v)

m2
1 + ρ

m2
1

v
∆ if m2

1 ≤ v

(47)
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Case C: m2
2 ∈ [v + (1− ρ)v −m2

1,min {(2− ρ)v −m2
1,m

2
1}]

π2
1(m

2
1) =


m2

1 if m2
1 ≥ v

[m2
1,m

2
1 + ρ[(2− ρ)v +

∑
m]] m2

1 ∈ [(1− .5ρ)v, v]

...

(48)

We now consider the case of the expected high value being below the low value.

4.3 Case 2: ρv < v

Case 2. ρv < v.

Note that the objective function (19) is increasing in each of p1, p2, p1, p2. Therefore,

either both budget constraints in (23) are binding or (24) is binding, or both. For suppose

otherwise, i.e. (24) is not binding and at least one budget constraint (23), say, for bidder 1,

is non-binding. Then we must have p1 = p
1
= 1, for otherwise we can increase the value of

the objective by raising either p1 or p
1
. But this implies that (24) is binding.

Further, if we ignore the budget constraints (23), then (19) subject to (23)-(26) attains

its maximum when we set p1 + p2 = 2 − ρ and p
1
+ p

2
= 1 − ρ. Hence, we should set the

probabilities in this way when budget constraints allows this. For this to be possible, it

is necessary that min{p1, p2} ≥ 1 − ρ. But since min{p1, p2} ≤ min{m2
i ,m

2
2}

v
, we must have

min{m2
1,m

2
2} = m2

2 ≥ (1 − ρ)v. We must also have m2
1 + m2

2 ≥ v + (1 − ρ)v, since this is

necessary for p1 + p2 to reach 2− ρ when p
1
+ p

2
≤ 1− ρ. So, we have:

Case 2.a min{m2
1,m

2
2} = m2

2 ≥ (1− ρ)v, m2
1 +m2

2 ≥ v + (1− ρ)v.

Suppose without loss of generality that m2
1 ≥ m2

2. Then set: p
1
= 0, p

2
= 1 − ρ,

p1 = min{1, m
2
1

v
}, p2 = min{2− ρ−min{1, m

2
1

v
}, m

2
2+(1−ρ)∆

v
}. Note that p1 + p2 = 2− ρ since

min{m2
1,m

2
2} = m2

2 ≥ (1− ρ)v and m2
1 +m2

2 ≥ v + (1− ρ)v.

In this case, the principal attains the maximal expected payoff ρv+(1−ρ)v that she can

attain without budget constraints.

Note that when min{m2
1,m

2
2} = m2

2 ≥ (1− ρ)v, m2
1 +m2

2 ≥ v+ (1− ρ)v = (2− ρ)v, then

p
2
= 0, p

1
= 1− ρ and p2 =

m2
2

v
, p1 = 2− ρ− m2

2

v
is also feasible.
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If m2
1 + m2

2 ≤ v + (1 − ρ)v = (2 − ρ)v or m2
2 ≤ (1 − ρ)v then p1 = 1, p2 = 1 − ρ; and

p
2
=

(1−ρ)v−m2
2

∆
, p

1
=

(1−ρ)v+m2
2

∆
.

In sum,

π2
1 ∈

[
m2

1,m
2
1 + ρ(1− ρ)∆−max

{
0, ρ(1− ρ)v − ρm2

2

}]
π2
2 =

[
m2

2 +max
{
0, ρ(1− ρ)v − ρm2

2

}
,m2

2 + ρ(1− ρ)∆
]
;

with ∑
πi =

∑
i

m2
i + ρ(1− ρ)∆.

Case 2.b ρv < v, min{m2
1,m

2
2} = m2

2 < (1− ρ)v, max{m2
1,m

2
2} = m2

1 > v.

Suppose without loss of generality that m2
1 > m2

2. In this case, the budget constraint of

bidder 1 cannot be binding so, as established above, (24) is binding. Using (24) to substitute

p
1
+ p

2
in (19), we can rewrite the objective as follows:

max
p1,p2,p1,p2

ρv(p1 + p2) + (v − vρ)

(
1

1− ρ
− ρ(p1 + p2)

1− ρ

)
(49)

Since ρv − ρ(v−vρ)
1−ρ

> 0, in the optimal mechanism the value of p1 + p2 should be maximized.

Hence, we set p2 = p
2
=

m2
2

v
< 1− ρ. We also set p1 = 1 and p

1
= 1− m2

2

v(1−ρ)
.

The principal’s profits are equal to:

v +
m2

2ρ(
v
v
− 1)

(1− ρ)
(50)

And

π2
1 = m2

1 + ρ

(
1− m2

2

v(1− ρ)

)
∆,

π2
2 = m2

2 + ρ
m2

2

v
∆;

with ∑
πi =

∑
i

m2
i + ρ∆

(1− ρ)v − ρm2
2

(1− ρ)v
.

Cases 2.c,d,e max{m2
1,m

2
2} = m2

1 < v, m2
1 +m2

2 < v + (1 − ρ)v. In this case both budget

constraints are binding. To see this note that if not, then we should set p1 + p2 = 2 − ρ,
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p
1
+ p

2
= 1 − ρ. But in this case at least one budget constraint will fail since m2

1 + m2
2 <

v(1− ρ) + v. So, in the optimal mechanism we must have p1 + p2 < 2− ρ and therefore (25)

cannot be binding.

Let us now suppose that (24) is binding. And suppose that one budget constraint is

binding, say that of bidder 2, and one budget constraint is non-binding, that of bidder 1. If

p
1
> 0, then we can increase p1 and lower p

1
keeping (24) binding. Then the value of the

objective will increase (see (49)). If p
1
= 0, then p

2
> 0. Then we can lower both p2 and

p
2
and raise p1 keeping (24) binding. Then p1 + p2 will increase and hence the value of the

objective will also increase. We conclude that both budget constraints must be binding.

Finally, let’s determine when (24) also is not binding:

Since the value of the objective (19) is increasing in p1, p2, p1 and p
2
we desire to have:

p1 = p
1
=

m2
1

v
and p2 = p

2
=

m2
2

v
, which allows us to extract the entire budgets; but when

this is feasible, then (24) is non-binding if m2
1 +m2

2 ≤ v (Case 2e).

Moreover, suppose that m2
1 > v, then

m2
1

v
> 1, and therefore it is optimal to set p1 = 1,

and p
1
=

v−m2
1

∆
, then we find that (24) also fails when

m2
2

v
< (1− ρ)

(
m2

1 − v

∆

)
(see Equation 33), which is Case 2.d.

Case 2.c (this is equivalent to Case 1.d):

v ≤
∑

m < v + (1− ρ)v, m2
1 < v.

m2
2

v
≥ (1− ρ)

(
m2

1−v

∆

)
.

Hence

π2
i ∈

m2
i + ρmax


v∆
(
1 + (1− ρ)m2

j

)
−
((

v
v

)2
− ρ

)
vm2

i

(v − ρv)∆
,
v(1− ρ)(m2

j − v)− ρm2
i∆

(v − ρv)
, 0

 ,

m2
i + ρmin

{
v −m2

i ,∆
v − ρ

∑
m

v − ρv

}]
With ∑

i

π2
i =

∑
i

m2
i + ρ

v − ρ
∑

i m
2
i

v − ρv
∆
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Case 2.d m2
1 < v.

m2
2

v
< (1− ρ)

(
m2

1−v

∆

)
.

Note that the second condition implies thatm2
1 ≥ v andm2

2 ≤ (1−ρ)v. This case is analogous

to Case 1.e, and the optimal mechanism involves setting p1 = 1, p
1
=

v−m2
1

∆
; p2 = p

2
=

m2
2

v
.

The the seller’s revenue is equal to ρm2
1 + (1− ρ)

v−m2
1

∆
v +m2

2

The bidders profits are:

π2
1 = m2

1 + ρ(v −m2
1)

π2
1 = m2

2 + ρ
∆m2

2

v
(51)

Case 2.e
∑

m ≤ v.

In this case, neither (24) nor (25) is binding. We have pi = p
i
= pi = mi/v.

Payoffs are
∑

i=1,2m
2
i for the mechanism designer and bidder payoffs are

π2
i = m2

i + ρ
m2

i

v
∆.

5 Optimal Mechanism with One Bidder

To understand what goes on in the first-period auction, let us consider a single bidder case.

Then, with ρv > v. The second period optimal mechanism is as follows:

If m2 ≥ v, then p = 1, t = v, p = 0, t = 0.

If v ≤ m2 < v, then p = 1, t = m2, p = v−m2

∆
, t = v v−m2

∆
.

If v > m2, then p = p = m2

v
, t = t = m2.

Let u2(m
2) be the second period ex-ante payoff of the bidder as a function of the budget.

We have u2(m
2) = m2 if m2 ≥ v; u2(m

2) = m2 + ρ(v − m2) if v ≤ m2 < v; u2(m
2) =

m2 + ρm2

v
∆ if v > m2. Note that u2(m

2) is increasing in m2. Or

u2(m
2) = π2(m2) =


m2 if m2 ≥ v

m2 + ρ(v −m2) if v ≤ m2 < v

m2 + ρm2

v
∆ if m2 < v

(52)
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This payoff is depicted in Figure 2.

Figure 2: Second-Auction Payoff

To simplify the analysis, we suppose that the first-period budget is m1 = v. And we let

q, q, s, s, be the probabilities of trade and expected transfers.

The following constraints have to hold in the first-period mechanism.

vq + u2(m
1 − s) ≥ vq + u2(m

1 − s) (53)

vq + u2(m
1 − s) ≥ m1 (= u2(m

1)) (54)

As standard, we will omit that the incentive constraint of the low type holds in the first

period. We will confirm this later. Also by standard arguments, q ≥ q, hence s ≥ s.

Also, (53) and (54) must be binding in the optimal mechanism. Hence binding (53) can be

rewritten as follows:

vq + u2(m
1 − s) = ∆q +m1 (55)

We need to consider the following three cases:

(i) m1 − s ≥ v; m1 − s ≥ v.

(ii) m1 − s ≤ v; m1 − s ≥ v.

(iii) m1 − s ≤ v; m1 − s ≤ v.

(Note that the fourth case, m1 − s ≥ v; m1 − s < v, is impossible since s ≥ s.)

Case (i). m1 − s ≥ v; m1 − s ≥ v.

Then binding (53) and (54) give us:

vq +m1 − s+ ρ(v −m1 + s) = m1

vq +m1 − s+ ρ(v −m1 + s) = ∆q +m1 (56)

Since m1 = v, (56) simplifies to:

vq −∆q = (1− ρ)s (57)

vq = (1− ρ)s (58)

28



Substituting these values into the profit function of the first-period auctioneer we obtain:

ρs+ (1− ρ)s = ρ
vq −∆q

1− ρ
+ vq = ρ

vq

1− ρ
− q

(
ρ∆

1− ρ
− v

)
(59)

Note that ρ∆
1−ρ

− v > 0 since ρv > v. So, q should be set as low as possible. That is, by (57)

we should set it so that m1 − s = v− s = v− vq−∆q

1−ρ
= v (where the last equality stems from

the restriction on case i, in conjunction with the minimization problem) which gives us:

q =
v

∆
q − 1 + ρ

Substituting this into the objective (59), we obtain:

ρ
vq

1− ρ
− q

(
ρ∆

1− ρ
− v

)
= ρ

vq

1− ρ
− v

∆
q

(
ρ∆

1− ρ
− v

)
+ (1− ρ)

(
ρ∆

1− ρ
− v

)
=

vv

∆
q + (1− ρ)

(
ρ∆

1− ρ
− v

)
(60)

Note that the coefficient on q is positive so we should set q = 1, and hence q should solve:

q =
v

∆
− 1 + ρ

provided that q ≤ 1, which is the case when v ≥ v 2−ρ
1−ρ

. Otherwise, i.e. if we have v < v 2−ρ
1−ρ

we should set q = q = ∆(1−ρ)
v

.

The seller’s profits are:

vv

∆
+ (1− ρ)

(
ρ∆

1− ρ
− v

)
= ρv +

v2

∆
if v ≥ v

2− ρ

1− ρ
(61)

v(1− ρ) + (1− ρ)

(
ρ∆

1− ρ
− v

)
= ∆ if v < v

2− ρ

1− ρ
(62)

Case (ii). m1 − s ≤ v; m1 − s ≥ v.

In this case, binding (54) and (55) give us:

vq +m1 − s+ ρ(v −m1 + s) = m1

vq +m1 − s+ ρ
m1 − s

v
∆ = ∆q +m1 (63)

Since m1 = v, (63) simplifies to:

vq = (1− ρ)s

vq −∆q +
ρ∆v

v
= s

(
1 +

ρ∆

v

)
(64)
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Substituting these values into the profit function of the first-period auctioneer we obtain:

ρs+ (1− ρ)s =
ρ(

1 + ρ∆
v

) (vq + ρ∆v

v
−∆q

)
+ qv =

ρv(
1 + ρ∆

v

) (q + ρ∆

v
+ qv

)
(65)

Since in (65) the coefficients on q and q are positive, in the optimal mechanism we should

set q and q as high as possible. In particular, we should set q = 1. We should also choose q

so that m1 − s ≤ v; m1 − s ≥ v, which changes (64) to

vq

1− ρ
≤ ∆

v −∆q + ρ∆v
v

1 + ρ∆
v

≥ ∆ (66)

Note that (66) is equivalent to:

q ≤ ∆(1− ρ)

v
(67)

q ≤ v

∆
+ ρ (68)

Note that the right-hand side of (67) is less than or equal than the maximum of 1 and the

right-hand side of (68) if and only if v ≤ v 2−ρ
1−ρ

. The opposite is true if v ≥ v 2−ρ
1−ρ

. I.e.,

∆(1− ρ)

v
≤ max

{
1,

v

∆
+ ρ
}
=

v

∆
+ ρ ⇔ v ≤ v

2− ρ

1− ρ

∆(1− ρ)

v
≥ max

{
1,

v

∆
+ ρ
}
= 1 ⇔ v ≥ v

2− ρ

1− ρ

Thus, if v ≤ v 2−ρ
1−ρ

, the seller’s profits are equal to:

ρs+ (1− ρ)s =
ρ(

1 + ρ∆
v

) (v + ρ∆v

v
−∆

∆(1− ρ)

v

)
+ (1− ρ)∆

?
= ρv

(
1 +

(1− ρ)v∆

v + ρ∆

)
(69)

If v ≥ v 2−ρ
1−ρ

, the seller’s profits are equal to:

ρs+ (1− ρ)s = ρ∆+ v(
v

∆
+ ρ) = ρv +

v2

∆
(70)

Case (iii). m1 − s ≤ v; m1 − s ≤ v.
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In this case, binding (53) and (54) give us:

vq +m1 − s+ ρ
m1 − s

v
∆ = m1

vq +m1 − s+ ρ
m1 − s

v
∆ = ∆q +m1 (71)

Since m1 = v, (71) simplifies to:

vq −∆q +
ρ∆v

v
= s

(
1 +

∆ρ

v

)
(72)

vq +
ρ∆v

v
= s

(
1 +

ρ∆

v

)
(73)

Substituting these values into the profit function of the first-period auctioneer we obtain:

ρs+ (1− ρ)s =
1(

1 + ρ∆
v

) (ρvq + ρ∆v

v
− q(ρv − v)

)
(74)

Note that q should be set as low as possible since ρv > v. So, we should set q so that

m1 − s = v, which is equivalent to: s = ∆. In this case, we have q = (1−ρ)∆
v

. Since q ≤ 1,

this is feasible iff v ≤ v 2−ρ
1−ρ

, and the seller profits are equal to (69).

Otherwise, i.e., if v > v 2−ρ
1−ρ

, this case is not feasible.

5.1 Optimal Mechanism

Now we are in a position to summarize the results of the analysis and identify the optimal

mechanism. Note that (69) is weakly greater than (62) and both these expressions apply

when v ≤ v 2−ρ
1−ρ

. Also, profits in case (iii) are equal to (69).

Also, (70) is the same as (61) and both these expressions apply when v ≥ v 2−ρ
1−ρ

.

Hence, we can state the following result. If v ≤ v 2−ρ
1−ρ

, then the optimal mechanism is

given by the following: q = 1, q = ∆(1−ρ)
v

, s = 1

(1+ ρ∆
v )

(
v + ρ∆v

v
−∆∆(1−ρ)

v

)
≥ m1 − v = ∆,

s = m1 − v = ∆. The seller’s expected profits are equal to (69).

If v ≥ v 2−ρ
1−ρ

, then the optimal mechanism is given by the following: q = 1, q = v
∆
+ ρ,

s = m1 − v = ∆, s =
v2

∆
+ρv

1−ρ
≤ m1 − v = ∆. The seller’s expected profits are equal to (70)
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6 Thoughts on the optimal mechanism with 2 bidders

Deriving the optimal mechanism with two bidders is considerably more involved than that

with one bidder, since here the constellations of budgets and values to one anther also matter.

However, the analysis of previous sections provides the key characteristic of the optimal

mechanism in the first period, when the designer of the first period acts independently of

the mechanism designer in the second period.

Note, in particular, that the mechanism designer of the second auction is able to either

(a) keep bidders at utility levels that do not exceed their outside option, or (b) extract their

entire budgets. Only in the latter case does a bidder receive a payoff that exceeds his initial

budget. This happens when his expected payoff from the auction (i.e., the probability of

obtaining a good of yet unknown value) exceeds the cost of participating when these costs

are low due to a limited budget.

This affords the first-period mechanism designer the opportunity to extract potential

bidder-surplus that is otherwise obtainable in the second auction. In particular, while second-

auction payoffs are more elaborate under the optimal mechanism than those depicted in

Figure 2 for the one-bidder case (note that in the two-bidder case payoffs depend on the values

and budgets of both bidders and are not uniquely pinned-down), the figure can nonetheless

be used to illustrate the principle of rent-extraction at play. Thus, consider Figure 3, and

suppose that an arbitrary first period mechanism leaves the bidder with an expected budget

of m̂2. His continuation utility associated with this budget is u2 (m̂2). Now suppose that

Figure 3: Payoff from Lottery before the Second Auction

prior to the begin of the second auction, the first-auction mechanism designer offers the

bidder the following lottery L in exchange for his second-auction budget:

m2
L =

M with probability m̂2−v

M−v
,

v with probability M−m̂2

M−v
.

(75)

Note that such a lottery is costless to the mechanism designer, since its expected payout is
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equal to its price, i.e.,

E
[
m2

L

]
= M

m̂2 − v

M − v
+ v

M − m̂2

M − v
= m̂2. (76)

However, the bidder is strictly better off with the lottery than with the certain budget, viz.

u2(L) > u2 (m̂2) (see Figure 3). As a result, the first-auction mechanism designer is able to

extract (virtually all of) this surplus and increase his revenue beyond those obtained from

the arbitrary mechanism that initially left the bidder m̂2.

The implication of this is, of course, that the first auction mechanism designer is able to

extract the bidders’ potential surpluses from the second auction. Now note that (keeping

in mind that the two-bidder case differs quantitatively, but not qualitatively) if the budgets

are small, then the first-auction mechanism designer can directly extract the budgets, and if

budgets are large, he can offer lotteries that generate additional surplus in the second auction

that he can extract. Indeed, for the latter case, if his choice of M is unlimited, the added

surplus that can be extracted from the second auction is as high as (i.e., when m2 > v)

lim
M→∞

u2
(
L|M

)
− u2(m2) = ρ∆. (77)
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