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Abstract

We develop and analyze an axiomatic model of strategic thinking in games, and demonstrate

that it accommodates well-known empirical puzzles that are inconsistent with standard game theory.

We model the reasoning process as a Turing machine, thereby capturing the stepwise nature of the

procedure. Each ‘cognitive state’ of the machine is a complete description of the agent’s state of

mind at a stage of the reasoning process, and includes his current understanding of the game and his

attitude towards thinking more. We take axioms over the reasoning about games within each cognitive

state. These axioms restrict the scope of the reasoning process to understanding the opponent’s

behavior. They require that the value of reasoning be purely instrumental to improving the agent’s

choice, and relate the suitability of the reasoning process to the game at hand. We then derive

representation theorems which take the form of a cost-benefit analysis. Players behave as if they

weigh the instrumental value of thinking deeper against the cost. To compare behavior across different

games, we introduce a notion of cognitive equivalence between games. Games within the same cognitive

equivalence class induce the same cost of reasoning function and only differ in the incentives to reason,

where incentives are related to the difference in payoffs across actions. We further enrich our model

and allow the agent to account for the opponent’s own cost-benefit reasoning procedure. Lastly, we

apply our model to Goeree and Holt’s (2001) well-known ‘little treasures’ games. We show that the

model is consistent with all the ‘treasures’ that fall within the domain of our theory. We perform a

single-parameter calibration exercise using stringent restrictions on the model’s degrees of freedom,

and show that the model closely matches the experimental data.
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1 Introduction

Individual behavior systematically deviates from the predictions of standard game theory in a

large number of strategic settings. Since the seminal work of Nagel (1995) and Stahl and Wilson

(1994, 1995), studies of ‘initial responses’ have become a major path of inquiry to uncover the

cognitive processes that underlie individuals’ strategic choices. This literature shows that, when

playing games without clear precedents, individuals typically do not appear to perform the kind

of fixed point reasoning entailed by classical equilibrium concepts. Rather, individuals’ choices

reveal distinct patterns that suggest that the thinking process occurs in steps.1 In an influential

study of initial responses, however, Goeree and Holt (2001) find that individual play is consistent

with equilibrium predictions for some parameters, but inconsistent for others. The findings of

Goeree and Holt do not bring to light a clear pattern of reasoning, but the intuitive appeal of these

results suggests that they are the consequence of a fundamental underlying reasoning process.

Our aim in this paper is to provide a tractable unifying framework which makes explicit the

reasoning procedure in strategic settings. We analyze the foundational properties that shape this

process, and demonstrate that, using the same minimal parametric assumptions throughout, this

model is highly consistent with well-known empirical results and with Goeree and Holt’s ‘intuitive

contradictions’. We then illustrate that the mechanisms behind these results may serve to better

understand and isolate the forces behind the informal intuition.

We view reasoning as stemming from a costly introspection procedure in which it is as if, at

each step of the reasoning process, the player weighs the value of thinking deeper against a cost. We

further relate the ‘value of thinking’ to the payoff structure of the game, and endogenize the number

of steps that the agent performs, or his ‘depth of reasoning’. Thus, in our approach, incentives not

only affect individual choices in the traditional sense, but they also shape the cognitive process

itself.2 As shown in Alaoui and Penta (2013), acknowledging the interaction between cognition and

incentives in games is empirically relevant, and may be instrumental to a better understanding

of existing models of strategic thinking.3 Furthermore, from a methodological viewpoint, this

approach has the advantage of bridging the study of strategic thinking with standard economics

concepts, opening new directions of research.

From a naive perspective, a cost-benefit tradeoff appears natural and within the core of stan-

dard economic theory. But reasoning about opponents’ choices is not a conventional domain of

analysis, and it is distinct from other realms of bounded rationality, such as complexity and costly

contemplation over processing information. It is then not obvious how the value of reasoning

should be perceived, which elemental properties should hold, or how the tradeoff with the costs

should be characterized. To address these questions, here we follow the classical decision theory

methodology. That is, we take axioms over the primitive preferences and constraints to aid our

1For a recent survey on the empirical and theoretical literature on initial responses see Crawford, Costa-Gomes
and Iriberri (2012). For studies that focus more directly on the cognitive process itself, see Agranov, Caplin
and Tergiman (2012), or the recent works by Bhatt and Camerer (2005), Coricelli and Nagel (2009), and Bhatt,
Lohrenz, Camerer and Montague (2010), which use fMRI methods finding further support for level-k models. For
recent theoretical work inspired by these ideas, see Strzalecki (2010), Kets (2012) and Kneeland (2013).

2It is a well known theme in the Economics of Education literature that incentives may affect standard measures
of cognitive and non cognitive abilities. For a recent survey of the vast literature that combines classical economic
notions such as comparative advantage and incentives with measurement of cognitive abilities and psychological
traits, see for instance, Almlund et al. (2011).

3In Alaoui and Penta (2013), we show that the cost-benefit approach delivers a rich set of predictions while
maintaining a general structure. We test these predictions experimentally, and find that our model provides a
unifying framework that accommodates the empirical evidence. Existing models that take individuals’ depth of
reasoning as exogenous cannot jointly account for these findings.
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understanding of the deeper forces behind the cost-benefit representation. Our domain of pref-

erences is atypical, however. Since the agent’s fundamental decision problem is inseparable from

the strategic context, this leads us to directly consider preferences over games. In this sense, we

take a step towards providing a framework for modeling individual reasoning process in strategic

settings.

We begin our analysis with the notion of ‘cognitive state’. To make explicit the underlying

premise of our approach, we take a cognitive state to be a complete description of the agent’s

state of mind at some stage of a reasoning process. We do not impose restrictions on the richness

of these states, and therefore any stepwise reasoning process can be modeled with no essential

loss of generality as a Turing machine defined over this set of states. At a minimum, however, a

cognitive state includes the agent’s current understanding of the game and his attitude towards

further pursuing the reasoning process, which we model as a preference system over lotteries of

games cross the choice to perform an additional round of reasoning. We then impose standard

continuity and monotonicity axioms, as well as others that are suited to this problem. First, we

impose axioms that restrict the scope of the problem by removing orthogonal considerations. In

particular, one axiom requires that the value of reasoning is purely instrumental and comes only

from the agent’s potential payoff gain. Furthermore, since our focus is on understanding reasoning

about the opponents, we also ignore issues of computational complexity in determining one’s own

best responses. We focus instead on the cognitive complexity of refining one’s understanding of

the opponents’ behavior. Lastly, our ‘unimprovability’ axiom effectively requires that the decision

maker’s reasoning process is apt to the game he is playing. We discuss these novel axioms in detail,

as they serve to elucidate the nature of the reasoning process and of the ‘as-if’ interpretation behind

the cost-benefit analysis.

Our axioms restrict the agent’s preferences within each mental state, but we impose no re-

striction across states. Our representation therefore concerns the determinants of the value of

reasoning and the agent’s ‘choice’ of whether or not to reason further. But it does not restrict how

a specific reasoning process, or machine, transitions from one state to another, or how it relates

to other reasoning processes. Our approach is therefore consistent with different specifications of

the reasoning process itself. Given an arbitrary rule that assigns games to reasoning processes, we

define a notion of cognitive similarity between games. This notion allows us to define the concept of

comparability of the reasoning process across games. Games within the same cognitive equivalence

class induce the same cost of reasoning function and only differ in the incentives to reason, which

allows for comparative statics on the depth of reasoning as the payoffs are changed. For instance,

it may seem plausible that two games that are identical up to positive affine transformation are

equally ‘difficult’ to reason about, but that two games with different best responses are not. Our

model accommodates this view as well as other examples of cognitive partitions.

We then apply our model to analyzing the findings of Goeree and Holt’s (2001) five static ‘little

treasures’. These intuitive results are difficult to reconcile with standard game theory and they

cannot be explained by existing models of bounded rationality, but we show that they are well

within our model. In particular, we take the most stringent parametric restrictions of our model,

and append it with a transition function across mental states consistent with standard level-k

models. Maintaining the same assumptions throughout, we perform a calibration exercise. Our

model does not only fit the qualitative results, it is also highly consistent with the quantitative

findings under these inflexible parameters. Hence, in addition to serving as a unifying theoretical
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framework, this model accommodates well-known empirical results from a wide range of studies

and provides a mechanism for the intuition underlying many known experiments.

The rest of the paper is structured as follows. Section 2 introduces the general framework

and provides a brief overview of the representation theorem. Section 3 provides the axioms and

main theorems for the decision maker’s reasoning over the game, and Section 4 further adds the

component of the agent’s beliefs over the opponent’s reasoning. Section 5 then demonstrates that

our model is highly consistent with the static ‘treasures’, and Section 6 concludes. All proofs are

in the Appendix.

2 The Model of Reasoning

Consider an individual who, in attempting to predict his opponent’s behavior, proceeds in steps

instead of following an equilibrium-like fixed-point reasoning procedure. For instance, consider the

process of iteratively eliminating dominates strategies. In the first step, player i deletes options

that a rational player j would never play. In the second step, player i further deletes player j’s

strategies that are only justified by conjectures that involve dominated strategies for player i, and

so forth. Alternatively, as posited by models of ‘level-k reasoning’, in the first step player i believes

that player j would play a specific action (possibly a mixture), and best responds to that. In the

second step, player i takes into account that player j may anticipate i’s first round, and best

respond to j’s response to i’s first round, and so on.

The common feature of these two examples is that the player follows a stepwise reasoning

procedure. This is a key aspect of our general framework. Given such a stepwise nature, we

endogenize the point, if any, at which the reasoning process may be interrupted. While it is

customary to think of classical game theory as the domain of unboundedly rational players who

can draw all the conclusions from a given line of reasoning, cognitively bounded individuals may

interrupt the reasoning process earlier. Hence, individuals with different cognitive abilities may

have different ‘depth of reasoning’ in a given game. But it may also be that an agent’s depth of

reasoning may vary across different strategic situations. Our general aim is to understand how

the ‘depth of reasoning’ varies as a function of the individuals’ cognitive abilities and the payoff

structure of the game.

The distinctive feature of our model is that the depth of reasoning results from an ‘as if’ cost-

benefit analysis. Intuitively, each step of reasoning has value to the player. For boundedly rational

individuals, however, such steps may be costly to conduct, and it would be ‘optimal’ to interrupt

the reasoning process if the cost exceeds the ‘value of reasoning’. Formally, we will represent such

cost and benefits through functions ci : N→ R+ and Wi : N→ R+: for each k ∈ N, an individual

who has performed k− 1 steps of reasoning will perform the next step if and only if the cost ci (k)

of performing the k-th step is no larger than its value, Wi (k).

We emphasize that these costs and values are not meant in a literal sense. Rather, we view

the ‘depth of reasoning’ itself as an outcome of the reasoning process, not a conscious choice of

the agent. However, to the extent that individuals’ depth of reasoning varies in a systematic way

across different strategic situations, then it is as if individuals face a tension between cognitive

costs and ‘value of reasoning’, which are related to the payoffs of the underlying strategic situation.

Our cost-benefit approach is thus a result, which follows from more primitive assumptions on the

reasoning process.
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The cost-benefit representation is very convenient, particularly because it enables us to perform

comparative statics exercises on the depth of reasoning as the payoffs of the game are varied. But

strategic thinking is not a standard domain for a cost-benefit approach, and there are several non

obvious modeling choices that might seem arbitrary without a clear foundation. For instance, it

is not clear how the cost and value of reasoning functions should be related to the game payoffs.

Moreover, the comparative statics exercise of increasing the value of reasoning Wi through changing

the game payoffs, while holding ci fixed, requires a notion of which games are equally ‘difficult’

from a cognitive viewpoint, so that their differences would only affect the incentives to reason, not

the cognitive costs. The notion of ‘value of reasoning’ itself is more subtle than in other apparently

related contexts (such as, for instance, the value of information) because it should capture the

idea, inherent to the very notion of bounded rationality, that the agent does not know (or is not

aware of) whatever he has not (yet) thought about. That is, for each k ∈ N, Wi (k) represents the

value that player i assigns to performing the k-th step of reasoning, given that he has performed

k − 1 rounds, and this in general need not be consistent with what player i would actually learn

from the k-th step of reasoning, or with Wi (l), for l 6= k.

In this section we introduce our general framework, and briefly review the main cost-benefit

representations that will be used in Section 5 for the applications. The axioms and the derivation

of these representations are postponed to Section 3.

2.1 Games as ‘Menus of Acts’

Consider a game form F =
〈
N, (Ai)i∈N

〉
, where N is a finite set of players, each with a finite

action set Ai (for each i ∈ N), and let A = ×i∈NAi and A−i = ×j 6=iAj . A game is obtained

attaching payoff functions ui : A → R to the game form: G =
(
F , (ui)i∈N

)
. Holding the game

form constant, let U = Rn|A| denote the set of all payoffs profiles functions, and Ui = R|A| the

set of all payoff functions for player i. Each game is thus identified by a point u ∈ U , and we let

ui ∈ Ui denote the component of u corresponding to player i. These payoffs are measured in ‘utils’.

Given payoff function ui ∈ Ui, each action ai ∈ Ai determines an act ui (ai, ·) : A−i → R that

pays out in utils, as a function of the realization of the opponents’ actions. Each payoff function

ui can thus be seen as a menu of acts for player i, and each game u ∈ U as a collection of menus,

one for each player. For any ui, vi ∈ Ui, and for any α ∈ [0, 1], we denote by αui + (1− α) vi ∈ Ui
the payoff function (or menu of acts) that pays αui (a) + (1− α) vi (a) for each a ∈ A.

We will use the following notation: for any set X, we let ∆ (X) denote the set of simple proba-

bility measures on X, and specifically agents’ conjectures in the game are denoted by µi ∈ ∆ (A−i).

We define player i’s best response in game u as BRui (µ) = arg maxai∈Ai

∑
a−i

µ (a−i)ui (ai, a−i).

We sometimes write BRui (α) for α ∈ ∆ (A) instead of BRui

(
margA−i

α
)

, and BRui (a−i) for the

best response to the conjecture concentrated on a−i ∈ A−i. We will also adopt the following

notation for vectors: for any x, y ∈ Rn, we let x ≥ y denote the case in which x is weakly larger

than y for each component, but not x = y; x = y means x ≥ y or x = y; we let x >> y denote

strict inequality for each component. For c ∈ R and x ∈ Rn, we abuse notation slightly and write

x+ c to mean x+ c · 1, where 1 ∈ Rn.
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2.2 The Reasoning Process as a Machine

In the following we will focus on a specific player i, and model his reasoning process about the

games that he may have to play. We let Π denote the set of all possible reasoning processes

that this player may follow, depending on the specific context, and we let S denote the set of all

possible ‘mental states’ of this player. Each s ∈ S should be interpreted as a full description of

the player’s reasoning at some point of some reasoning process. Without loss of generality, we

can represent each reasoning process π ∈ Π as a machine π =
〈
sπ,0, τπ

〉
over the set of states

S, where sπ,0 ∈ S is the initial state, and τπ : S → S is the transition function, which describes

how the process moves from a mental state to another. Given π, we denote by sπ,k the k-th state

obtained iterating τπ from sπ,0. That is, for k = 1, 2, ..., we let sπ,k = τπ
(
sπ,k−1

)
. (The reference

to π will be dropped when the relevant reasoning process is clear from the context.) Finally,

we let S (π) denote the set of mental states that arise if the agent adopts reasoning process π:

S (π) =
{
s ∈ S : s = sπ,k for some k ∈ N

}
.

For any game u ∈ U , we let π (u) denote the reasoning process that a particular player i

adopts to reason about u. Hence, each game u ∈ U induces a sequence of states
{
sπ(u),k

}∞
k=0
≡

S (π (u)) ⊂ S, which can be thought of as the set of mental states that arise in the reasoning

process generated by the game u. Notice that here we are making the implicit assumption that

only the payoffs of the game determine player i’s reasoning process. This restriction, however,

can be easily relaxed, letting π depend on other characteristics of the ‘context’. This may be an

interesting generalization, but we ignore it here.4

We assume that, in each mental state s ∈ S, player i has a particular action asi that he currently

regards as ‘the most sophisticated’ as well as a well-defined system of preferences over ‘which game

to play’ and whether he would prefer to play it with or without further thinking about the strategic

situation. We formalize this as a preference system %s over Ui × {0, 1}, which will be discussed

below.5 We impose the following condition, which requires that the reasoning process is optimal

in a minimal sense at every mental state:

Condition 1 We assume that for any u ∈ U and for any s ∈ S (π (u)), action asi is non-dominated

in u.

We will denote a generic element (ui, x) ∈ Ui × {0, 1} by uxi , and for x = 0, 1 we let %xs denote

the restriction of %s on Ui × {x}. Preferences %0
s are best interpreted as preferences over which

game to play based on the understanding at state s. Preferences %1
s instead can be interpreted as

the preferences that an agent in mental state s has about which game to play, if his choice was

deferred until the agent had performed the next round of reasoning, and the agent played according

to his most sophisticated understanding of the game. For instance: u0
i corresponds to the decision

problem of agent i is ‘choose an act in (ui (ai, ·))ai∈Ai
without any further reasoning’, whereas u1

i

corresponds to the problem ‘choose an act in (ui (ai, ·))ai∈Ai
after having reasoned more about it’;

u1
i %s v

0
i means ‘given his understanding at mental state s, agent i would rather choose an act

in ui after having thought more, than choose an act in vi without further thinking’; and so on.

4We thus identify the payoff structure with the ‘context’ which determines the reasoning process. Because the
entire analysis maintains a given player i, however, the function that assigns games to reasoning processes may
be individual specific. We make no assumptions on interpersonal comparisons of the rule that assigns games to
reasoning processes.

5Given the dependence of s on π (u), the fact that such preferences over which game to play only depend on
ui entails no loss of generality, because the dependence on u−i is embedded in the dependence of the preference
systems on s.
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These preference systems represent the agent’s attitude towards the reasoning process, including

whether or not it should be continued.

2.3 Cognitive Partitions

Consider the following definitions:

Definition 1 Two mental states s, s′ ∈ S are similar if they induce the same actions and the same

preferences over Ui × {0, 1}: That is, if asi = as
′
i and %s=%s′ .

Two reasoning processes π, π′ ∈ Π are similar if they induce sequences of pairwise similar

states. That is, if sπ,k and sπ
′,k are similar for every k ∈ N∪{0}.

Definition 1 states that two states are similar, if the agent has the same attitude towards the

reasoning process as well as the same candidate action in those states. In turn, the next definition

states that two games are ‘cognitively similar’ if they induce a sequence of cognitively similar

states.

Definition 2 Two games u, v ∈ U are cognitively similar (for player i), if they induce similar

reasoning processes. That is, if π (u) and π (v) are similar.

Clearly, the relations in definitions 1 and 2 are equivalence relations. We let C denote the

cognitive partition, that is the partition on U induced by the cognitive equivalence relation, and

let C ∈ C denote a generic cognitive equivalence class. We denote by C (u) the equivalence class

that contains u. Hence, u, v ∈ U are cognitively similar if and only if C (v) = C (u).

We impose the following condition on the cognitive partition:

Condition 2 For any C ∈ C, there exists α ∈ ∆ (A) such that for all j ∈ I,
⋂
u∈C

BRuj (α) 6= ∅.

This condition requires a minimal level of strategic similarity between two games to be consid-

ered cognitively equivalent. In particular, two games can be cognitively equivalent only if there

exists a (possibly correlated) action profile that induces the same best responses for every player

in both games.

Example 1 Consider the following three games: a ‘Battle of the Sexes’ on the left, a Prisoners’

Dilemma in the middle, and a Matching Pennies game on the right:

L R

U 3, 1 0, 0

D 0, 0 1, 3

L R

U 1, 1 −1, 2

D 2,−1 0, 0

L R

U 1,−1 −1, 1

D −1, 1 1,−1

Condition 2 allows the first two games to belong to the same equivalence class, but not the third.

To see this, notice that profile (D,R) produces the same best reply for both players in the left and

middle game (namely, (D,R)), but there is no distribution α ∈ ∆ (A) that would generate the same

profile of best responses in the game on the right and in one of the others. Essentially, whereas

the ‘Battle of the Sexes’ and the Prisoners’ Dilemma are quite different from a strategic viewpoint,

they both share a certain element of coordination. The Matching Pennies game is intrinsically a

game of conflict, and in this sense it is more different from the other games than they are from

each other. Condition 2 captures this minimal notion of strategic similarity within a cognitive
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equivalence class, allowing (but not requiring) the first two games to be cognitively equivalent, but

not the third.

Notice that, under Condition 2, for every C ∈ C and for every i ∈ N , there exists a non-empty

set Mi (C) ⊆ ∆ (A−i) of player i’s conjectures that induce invariant best responses within the

cognitive equivalence class:

Mi (C) =

{
µi ∈ ∆ (A−i) :

⋂
u∈C

BRui
(
µi
)
6= ∅
}
. (1)

2.3.1 Cognitive Partitions: Discussion and Examples

In the following, we will maintain that the mapping that assigns games to reasoning processes,

hence the cognitive partition, is exogenous. The goal of our analysis will be to endogenize the

number of steps in this reasoning process performed by the agent, and to identify how the depth

of reasoning varies when the payoffs of the game are varied. Here we explain how to think about

such exogenous objects of our model.

In an important example of a reasoning process, common in the literature on level-k reasoning,

a player’s reasoning process is modeled by a sequence of actions
{
âki
}
k∈N that correspond to

‘increasingly sophisticated’ behavior. This will also be our leading example in the applications

of our model. For instance, in a symmetric game, the baseline model of Nagel (1995) specifies a

level-0 action that represents an exogenous ‘anchor’ of the reasoning process (it may be a pure or

mixed strategy); the level-1 action is the best response to the level-0 action, the level-2 is a best

response to level-1, and so forth. If we hypothesize that player i approaches a specific game u

this way, then the machine π (u) associated to u generates a sequence of
{
sk
}
k∈N such that the

associated actions
{
as

k

i

}
k∈N

reproduce the sequence entailed by the level-k reasoning: that is,

as
k

i = âki for every k. In this case, a sensible notion of cognitive partition may be the following:

(C.1) If u and u′ are such that, for every player, the pure-action best response functions in u and

u’ are the same, then C (u) = C (u′).

According to (C.1), if u′ has the same pure action best responses as u, then the reasoning

process π (u′) generates a sequence of states that produces the same sequence of
{
aki
}
k∈N as game

u. This is a plausible assumption if the sequence
{
aki
}
k∈N is generated by iterating the pure action

best responses as in Nagel (1995), and if there are no reasons to believe that the anchor a0 would

be different in u′. If the anchor changes, then the two games should belong to different cognitive

classes, and (C.1) would not be a good assumption.

Other models of level-k reasoning (e.g., Camerer, Ho and Chong, 2004) assume that the level-k

action is not a best response to the level-(k − 1), but to a distribution of the lower actions (lower

than k). In this case, we can think of the level-k path
{
aki
}
k∈N to be generated by a sequence of

level-k beliefs µk ∈ ∆
({
a0, ..., ak−1

})
, such that aki ∈ BRu

(
µk
)
. A sensible specification of the

cognitive partition may then be to require, for two games to be ‘cognitively equivalent’, that they

induce the same best responses to such beliefs
{
µk
}
k∈N. For instance:

(C.2) Given
{
µk, aki

}
k∈N and u such that aki ∈ BRu

(
µk
)
, if u and u′ are such that BRu

(
µk
)

=

BRu
′ (
µk
)

for each k, then C (u) = C (u′).
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Outside of the domain of level-k theories, another form of iterated reasoning is provided by

iterated deletion of dominated strategies. These are examples of reasoning processes in which

a large set of best responses are considered at the same time (e.g., the best responses to all

distributions concentrated on profiles that have not been deleted yet). In the extreme case in which

all the profiles of best responses matter for the reasoning process, then the cognitive partition

may be specified in terms of equivalence classes of players’ von Neumann-Morgenstern (vNM)

preferences. That is, cognitive equivalence classes are invariant to affine transformations of the

payoffs of every player.

(C.3) If u = (uj)j∈N and u′ =
(
u′j
)
j∈N are such that, for each j, there exists γj ∈ R+ and mj ∈ R

such that uj = γj · u′j +mj , then C (u) = C (u′).

To account for the possibility that the reasoning processes may be affected by translations, (C.3)

may be weakened by setting mj = 0 for all j, so that the cognitive classes would be invariant to

linear transformations only, or by further requiring that γj = γ for all j, so that the scaling factor is

common to all players. These are only some examples of cognitive partitions. As already explained,

we maintain the mapping from games to reasoning processes (hence the cognitive partition) as

exogenous here. Identifying the ‘correct’ mapping from games to processes and the corresponding

cognitive partition is an important complement to our analysis, which we leave to future research.

2.4 Preview of the Cost-Benefit Representation

In the next section we will introduce axioms on the preference systems (%s)s∈S , and obtain different

representations for our cost-benefit approach. The first six axioms deliver our core result (Theorem

1), which provides foundations to our cost-benefit approach.

Core Representation: For any cognitive equivalence class C ∈ C, there exist functions Wi :

Ui×N→ R+ and ci : N→ R+∪{∞} such that for any game u ∈ C and for any k ∈ N, u1
i %k−1 u

0
i

if and only if Wi (ui, k) ≥ ci (k). Furthermore, for any k ∈ N, the ‘value of reasoning Wi (·, k) is

increasing in the ‘payoff differences’ D
(
ui, a

k−1
i

)
:=
(
ui (ai, a−i)− ui

(
ak−1
i , a−i

))
(ai,a−i)∈A. That

is: for each u, u′ ∈ C, D
(
ui, a

k−1
i

)
≥ D

(
u′i, a

k−1
i

)
implies Wi (ui, k) ≥Wi (u′i, k), and Wi (ui, k) =

0 whenever D
(
ui, a

k−1
i

)
= 0.

We refer to this as the ‘core representation’, which corresponds to the model that we tested

experimentally in Alaoui and Penta (2013). Notice that the cost functions are pinned down by the

cognitive equivalence classes, and payoff transformations within the same equivalence class only

affect the ‘incentives to reason’ (through the function W ), but not the ‘cost of reasoning’. As

previously discussed, the cognitive partition thus plays the role of defining the domain in which

exercises of comparative statics are meaningful even in the absence of precise information about the

cost function: even if the shape of ci (k) is unknown, if u, u′ ∈ C and D
(
ui, a

k−1
i

)
≥ D

(
u′i, a

k−1
i

)
,

then the agent’s cognitive bound is (weakly) higher in game u than in u′.

One special case of the ‘core representation’ that will be used for the analysis of the ‘treasures’

in Section 5 is obtained by imposing one extra axiom, which requires that the agent is particularly

cautious about the validity of his current understanding of the game, hence his disposition to further

think about the game is particularly strong. This extra axiom delivers the following functional

form for the value of reasoning function:
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Wi (ui, k) = max
a−i∈A−i

ui (a∗i (a−i) , a−i)− ui
(
ak−1
i , a−i

)
≥ c (k) .

In this representation, the value of the next round is equal to the maximum difference between

the payoff that the player could get if he chose the optimal action a∗i and the payoff he would

receive given his current action ak−1
i , out of all the possible opponent’s actions.

3 The Value of Reasoning and Cost of Introspection: Ax-

ioms and Representations

We impose the following axioms on the preference systems (%s)s∈S :

Axiom 1 (Weak Order) Relation %s is complete and transitive for each s ∈ S.

The next axiom defines the scope of our theory. It consists of two parts. Part (S.1) states

that the reasoning process is purely instrumental in informing the player’s choice. Thus, if i’s

payoffs are constant in his own action, the agent would never strictly prefer to think harder. In the

representation, this will correspond to a value of reasoning equal to zero. This condition can be

equivalently stated as requiring that the agent prefers not to think harder (u0
i %s u

1
i ) whenever ui

is such that D (ui) = 0, where D (ui) denotes the vector of payoff differences in the game, defined

as follows: For any ui ∈ Ui, and âi ∈ Ai, let

D (ui, âi) = (ui (ai, a−i)− ui (â′i, a−i))(ai,a−i)∈A ,

and D (ui) = D (ui, âi)âi∈Ai
.

Hence, ‘positive payoff differences’ are a necessary condition to induce the agent to reason. Part

(S.2) pushes the idea further, requiring that the incentives to reason are completely driven by such

payoff differences: games with the same payoff differences provide the same incentives to reason.

Axiom 2 (Scope) For each s ∈ S:

S.1 [Instrumentality] If ui is constant in ai, then u0
i %s u

1
i . That is, D (ui) = 0 implies

u0
i %s u

1
i .

S.2 [Incrementality] If D (ui) = D (vi), then u1
i %s u

0
i if and only if v1

i %s v
0
i .

For convenience, we let Ûi denote the set of payoff functions that are constant in own action:

Ûi = {ui ∈ Ui : ui is constant in ai}.
The next axiom is a ‘cost-independence’ condition, requiring that the extra incentives that are

required to reason about a constant game in a given mental state are independent of the game

itself.

Axiom 3 (Cost-Independence) For each s ∈ S, for any ui, vi ∈ Ûi and c ∈ R+, (ui + c, 1) ∼s
(ui, 0) if and only if (vi + c, 1) ∼s (vi, 0).

To understand the previous axiom, notice that (S.1) implies that u1
i %s u

0
i whenever ui ∈ Ûi.

We may thus have two cases: If u1
i ∼s u0

i , that is if the agent, at mental state s, is indifferent
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between reasoning and not reasoning further about a constant game, then the axiom requires that

he would also be indifferent between reasoning and not reasoning in any other constant game; If

instead the agent strictly prefers not to reason about a constant game ui ∈ Ûi, but he could be

made indifferent if reasoning was accompanied by an extra reward c, then that reward would also

make him indifferent between reasoning or not in any other constant game. Hence, the reward

required to incentivize the agent to reason about a constant game (which, by axiom S.1, provides

no intrinsic incentives to reason) depends only on the mental state, not on the payoffs. Axiom 3

will be used as a ‘calibration axiom’ to pin down the cost of reasoning associated to a given mental

state.

The following axiom contains standard properties:

Axiom 4 For each s ∈ S:

M [%1
s-Monotonicity] ui ≥ vi implies u1

i %s v1
i and there exists a′i s.t. if ui ≥ vi and

ui (a′i, a−i) ≥ vi (a′i, a−i), then u1
i �s v1

i .

C.1 [%1
s-Archimedean] For any vi, ui, hi ∈ Ui such that ui �1

s vi �1
s hi, there exist 0 ≤ β ≤

α ≤ 1 such that αui + (1− α)hi �1
s vi �1

s βui + (1− β)hi.

C.2 For any ui ∈ Ui, if there exists c ∈ R+ s.t. (ui + c, 1) �s (ui, 0) %s (ui, 1), then there exists

c∗ ∈ [0, c) such that (ui, 0) ∼s (ui + c∗, 1).

Parts M and C.1 are standard Monotonicity and Archimedean axioms for the %1
s preference

system over Ui × {1}.6 Part C.2 instead is a minimal continuity requirement for the comparison

of games with and without further reasoning. The axiom is particularly weak. For instance, it

allows non-continuous preferences such as (ui, 0) %s (vi, 1) for all ui, vi ∈ Ui. That is, an agent

who cannot be incentivized to perform the next step of reasoning, no matter how the payoffs are

changed. This is a lexicographic ordering, which can be accommodated by our framework, and

would correspond to the case of an infinite cost of reasoning at that mental state.

For any ui ∈ Ui define the set

Λ (ui) =

{
vi ∈ Ui :

∃λ : Ai → Ai such that

ui (λ (ai) , a−i) = vi (ai, a−i) for all a ∈ A

}
. (2)

In words, the set Λ (ui) comprises all the games that can be obtained from ui by relabeling

acts, or (if the relabeling function λ is not onto) by dropping some acts from the game.

The next axiom concerns the preference system %1
s, and requires that if the agent were to play

a game after having performed the next step of reasoning, then the agent weakly prefers to play

the game about which he has been reasoning, rather than a ‘relabeling’ of that game. The axiom

can be seen as requiring that the reasoning process is apposite to the specific game, and this is

accounted for in the way the agent forms his outlook about the extra steps of reasoning at a mental

state.

Axiom 5 (1-Unimprovability) For any s ∈ S, for any u such that s ∈ S (π (u)) and for any

vi ∈ Λ (ui), ui %1
s vi.

6As usual, the Archimedean property is required for the richness of the choice space (Ui is uncountable). It
could be weakened to a separability axiom for the general representation (Theorem 1). We maintain it nonetheless
because it will be required for the expected utility extension that we introduce in the next subsection.
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We view axioms 1-5 as the basic axioms of our framework, those that define the scope of the

theory and the determinants of the value and cost of reasoning. These axioms are silent about

the content of the reasoning process itself. The next axiom essentially states that the output of

the reasoning process, as evaluated by the preference system %0
s, consists of the action asi that the

agent views as the most sophisticated at state s.

Axiom 6 (Reasoning output) For each s ∈ S, ui ∼0
s u

s
i whenever usi is such that usi (ai, a−i) =

ui (asi , a−i) for all (ai, a−i) ∈ A.

This is consistent with the idea of level-k models that the output of each step of reasoning is

a specific action. The framework defined by axioms 1-5, however, can accommodate other forms

of reasoning as well. For instance, rationalizability or DK-models of iterated dominance, can be

thought of as reasoning processes in which the output consists of both an action and a set (e.g., the

support of the feasible conjectures). Such alternative forms of reasoning could be accommodated

through suitable modifications of Axiom 6.

The next theorem provides a representation theorem for the individuals’ choices to continue

reasoning about the game. It states that each equivalence class C determines a cost function

c : N→ R+. For each k ∈ N, c (k) represents the ‘cognitive cost’ of performing the k-th step of

reasoning (given the previous steps). This cost is weighed against the value W (ui, k) of performing

the k-th step of reasoning in the game u ∈ C in the cognitive equivalence class. Notice that, by

the definition of the cognitive partition (Def. 2), once C is fixed, any u, v ∈ C induce sequences{
sk (π (u))

}
k∈N and

{
sk (π (v))

}
k∈N that correspond to the same action a

sk(π(u))
i and preferences

%sk(π(u)) for each k. Once the cognitive class is clear, we can thus simplify the notation and refer

to such sequences as aki and %k.

Theorem 1 Under Axioms 1-6, for any cognitive equivalence class C ∈ C, there exist functions

W : Ui×N→ R+ and c : N→ R+∪{∞} such that for any game u ∈ C and for any k ∈ N, u1
i %k−1

u0
i if and only if W (ui, k) ≥ c (k). Furthermore, for any k ∈ N: for each u, u′ ∈ C, D

(
ui, a

k−1
i

)
≥

D
(
u′i, a

k−1
i

)
implies W (ui, k) ≥W (u′i, k), and W (ui, k) = 0 whenever D

(
ui, a

k−1
i

)
= 0.

3.1 Further Restrictions

We present next two further representation theorems, obtained imposing additional restrictions

besides those entailed by axioms 1-6. These representations will impose more structure on the

‘value of reasoning’ function W . Both representations will suggest an intuitive interpretation of

the determinants of the value of reasoning, in terms of beliefs about the opportunity to improve

upon the current understanding of the game through introspection. The first representation is

obtained adding a standard independence axiom for the %1
s preference systems, and delivers a

representation in which the agent’s attitude towards the value of reasoning resembles a standard

‘value of information’, except that individuals have subjective beliefs about the realization of

‘signals’. The second representation instead follows from an axiom that captures the attitude

towards reasoning of an agent who is always cautious on relying on his current understanding of

the game, and therefore has a maximal disposition to think more.
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3.1.1 EU-attitude towards reasoning

We introduce next a standard independence axiom for the %1
s preferences:

Axiom 7 (1-Independence) For each s ∈ S: For all vi, ui, hi ∈ Ui, ui %1
s vi if and only if

αui + (1− α)hi %1
s αvi + (1− α)hi for all α ∈ [0, 1).

This axiom plays the usual role of inducing a property of linearity (in this case of the ‘value of

reasoning’ function) which allows for a representation that can be interpreted in terms of ‘beliefs’

and ‘expected value of reasoning’.

Theorem 2 Under Axioms 1-6 and 7, for any cognitive equivalence class C ∈ C, there exists

c : N→ R+ ∪ {∞} and for any k ∈ N a simple probability distribution pk ∈ ∆ (Mi (C)) such that

for any game u ∈ C, u1
i %k−1 u

0
i if and only if∑

µ∈∆(A−i)

pk (µ)
∑
a−i

µ (a−i)
[
ui (a∗i (µ) , a−i)− ui

(
ak−1
i , a−i

)]
≥ c (k) , (3)

where a∗i (µ) ∈ BRui (µ) for any µ ∈Mi (C).

In this representation, the ‘value of reasoning’ has an intuitive interpretation. It is as if the

agent has beliefs pk ∈ ∆ (Mi (C)) about the outcome of his future step of reasoning. Such outcomes

consist of conjectures about the opponent’s behavior, to which the agent will be able to respond

optimally, improving on his previous understanding of the game (as entailed by the ‘current action’

ak−1
i ). The left-hand side of equation 3 is reminiscent of the standard notion of ‘expected value of

information’ often used in information economics. However, it should be noticed that the beliefs in

the left-hand side of equation (3) are derived from the %1
s-preference system used to describe the

agent attitudes towards the future steps of reasoning, which is unrelated to the determinants of the

current understanding of the game ak−1
i . In contrast, standard models of information economics

require that agents are ‘Bayesian’ in the stronger sense of using a single prior over everything

that affects choices. As such, the beliefs that describe the outlook on future steps of reasoning

should be consistent with current choice ak−1
i . Formally, let µ̂k ∈ ∆ (A−i) be defined from the

representation in Theorem 2 so that µ̂k (a−i) =
∑
µ∈∆(A−i)

pk (µ)µ (a−i) for each a−i ∈ A−i. Then

µ̂k ∈ BR−1
(
ak−1
i

)
for each ui ∈ C. This property can be obtained appending Axioms 1-7 with

the following, which requires that the current understanding of the game cannot be improved upon

from the viewpoint of the preferences describing the outlook on the future steps of reasoning:

Axiom 8 (1-0 Consistency) For each u ∈ U and for each s ∈ S (π (u)), usi %
1
s vsi for all

vi ∈ Λ (ui).

This property, natural in standard information problems, is not necessarily desirable in the

present context. Axiom 8 requires that the agent’s attitude towards the future steps of reasoning

is essentially the same as that entailed by his current understanding of the game, which seems too

narrow to accommodate central features of boundedly rational reasoning. In particular, it fails to

capture the idea that the agent may not be fully aware of the determinants of the reasoning process

he has yet to perform. Such ‘unawareness’ would introduce a disconnect between the heuristics

that describe the agent’s attitude towards future steps of reasoning and those that the agent has

already performed. This feature would be inconsistent with Axiom 8. For this reason, we do not
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include Axiom 8 among the axioms of the EU-representation. For the sake of completeness, we

nonetheless provide the following result:

Proposition 1 Under Axioms 1-7 and 8, the representation in Theorem 2 is such that, for each

C ∈ C, for each u ∈ C and for each k, ak−1
i ∈ BRu

(
µ̂k
)
.

3.1.2 Optimism towards reasoning

One particular way in which bounded rationality may determine a disconnect between current

understanding and evaluating future steps of reasoning is that the agent may be particularly

cautious or pessimistic about the validity of his current understanding of the game. Consequently,

his disposition to further think about the game is particularly strong. The following representation

is obtained appending an axiom that captures precisely this idea of ‘optimism towards reasoning’

(or ‘pessimism towards current understanding’), in the sense that the agent’s outlook towards

the future reasoning process raises a strong challenge to his current understanding. From this

viewpoint, the following representation stands in sharp contrast to the idea implicit in Axiom 8,

which can be interpreted as saying that the agent’s outlook towards the future does not challenge

the optimality of the current understanding of the game.

Before introducing the axiom that captures the insight we have just discussed, it is useful to

consider the following result:

Lemma 1 Under Axioms 1-6, ui − usi %1
s vi − vsi if and only if v1

i %s v
0
i implies u1

i %s u
0
i .

According to Lemma 1, in every mental state, it is possible to define a binary relation that

orders payoff functions in terms of the strength of the incentives to reason that they provide. We

define such binary relation as follows: ui %∗s vi if and only if ui − usi %1
s vi − vsi . Notation ui %∗s vi

means ‘in state s, payoffs ui provide stronger incentives to reason than vi’.

For any ui ∈ Ui, let :

Γ (ui) =

{
vi ∈ Ui :

∃γ : A→ A such that

ui (γ (a)) = vi (a) for all a ∈ A

}
. (4)

The set Γ (ui) is analogous to the set Λ (ui) introduced in eq. (2), except that payoffs in Γ (ui)

are obtained through a relabeling of the entire action profiles, not only of player i’s own action.

The next axiom states that, whenever s ∈ S (π (u)), then the agent has stronger incentives to

reason if payoffs are as in the ‘actual game’ ui than he would if payoffs were modified through a

relabeling of the strategy profiles.

Axiom 9 For and s ∈ S and for any u ∈ U such that s ∈ S (π (u)), ui %∗s vi for all vi ∈ Γ (ui).

Theorem 3 Under Axioms 1-6 and 9, for any cognitive equivalence class C ∈ C, there exist a

function c : N→ R+ ∪ {∞} such that for any game u ∈ C and for any k ∈ N, u1
i %k−1 u

0
i if and

only if

max
a−i∈A−i

ui (a∗i (a−i) , a−i)− ui
(
ak−1
i , a−i

)
≥ c (k) .
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4 Endogenous Level-k Reasoning

In this section we introduce a special case of the model of reasoning developed above, which extends

existing models of level-k reasoning by endogenizing individuals’ depth of reasoning. Consistent

with the representation theorems above, players’ depth of reasoning stems from a cost-benefit

analysis, in which individuals’ cognitive abilities interact with the incentives provided by the game

payoffs. Furthermore, players take into consideration that their opponents follow a similar process

of reasoning when choosing an action. Thus, in our model, the rounds of introspection that a

player performs can be disentangled from the rounds he believes his opponents perform. Since a

player can face opponents of different skills, he may in principle conceive of an opponent who is as

sophisticated, or more, than he is himself. Our model permits this eventuality, and resolves this

apparent conceptual difficulty of the level-k approach. Hence, by making explicit an appealing

feature of level-k models that play follows from a reasoning procedure, our framework may be

instrumental in attaining a deeper understanding of the mechanisms behind this approach, and

paves the way to a more complete model of procedural rationality.

In the Section 5 we further show that, combined with the restrictions on the value of reasoning

derived in the previous section, this model provides a unified framework to explain important

experimental evidence in games of initial responses, such as the famous ‘little treasures’ of Goeree

and Holt (2001).

4.1 Individual Reasoning

To keep the notation simple, we focus on two players games, G = (Ai, ui)i=1,2. As in the previous

section, we analyze each player in isolation. The ‘path of reasoning ’ of player i is described by

a sequence of (possibly mixed) strategy profiles
{
ak
}
k∈N∪{0}. Profile a0 =

(
a0

1, a
0
2

)
is referred to

as ‘the anchor’ and represents the way player i approaches the game. We follow the literature

on level-k reasoning in assuming that the path of reasoning is determined by iterating players’

best responses. That is, action a0
i represents i’s default action, if he doesn’t think at all. If i

performs one step of reasoning, then he conceives that j’s default action would be a0
j , hence he

best responds with a1
i = BRi

(
a0
j

)
, and so on. In general, the best response need not be unique. In

case of multiplicity, we assume that the action is drawn from a uniform distribution over the best

responses. We abuse notation and write a1
i = BRi

(
a0
j

)
in both cases. We thus define recursively:

aki = BRi
(
ak−1
j

)
(5)

and akj = BRj
(
ak−1
i

)
. (6)

In general, we may have two cases: If the anchor a0 is a Nash Equilibrium, equations (5-6) imply

that ak = a0 for every k. That is, if player i approaches a game with an ‘anchor’ that specifies a

certain equilibrium, further introspection of that initial presumption would not challenge his initial

view. If instead a0 is not a Nash Equilibrium, then aki 6= ak+1
i and the reasoning process generates

a path that may converge to a Nash equilibrium or enters a loop that would only be interrupted by

the ‘choice’ of stopping the reasoning once it becomes too costly (or by the agent’s beliefs about

the opponent’s choice):
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Example 2 Consider the following game, parameterized by x ∈ R:

L R

T x,40 40,80

B 40,80 80,40

If x > 40, this is a version of the matching pennies game. If player 1 approaches the game with

anchor a0 = (T,R), then his ‘path of reasoning’ is
{
ak
}
k∈N∪{0} = (T,B, T,B, ...). If the anchor

instead is a0 = (T, L), then the path of reasoning would be
{
ak
}
k∈N∪{0} = (T, T,B, T,B, ...), and

so on. These sequences clearly do not converge. If x < 40, then action T is dominated or player

1, and the only rationalizable strategy profile (hence, the only Nash equilibrium) in this game is

(B,L). If player 1 approaches the game with (B,L) as an anchor, then the path of reasoning is{
ak
}
k∈N∪{0} = (B,B, ...). If, for instance, player 1 approaches the game with (T, L) as an anchor,

then his path of reasoning is
{
ak
}
k∈N∪{0} = (T,B,B,B, ...). In this case, the path of reasoning

converges to an equilibrium even if the anchor is not one.

Consistent with the model of the reasoning process developed in Sections 2 and 3, we assume

that player i’s understanding of the game is determined by a cost-benefit analysis, where the cost

and the value of reasoning are represented by functions ci : N→ R and Wi : N→ R, respectively.

Consistent with Theorem 1, player i therefore stops the reasoning process when the value of

performing an additional round of introspection exceeds the cost. The point at which this occurs

identifies his cognitive bound k̂i.

It is useful to introduce the following mapping, which identifies the intersection between the

value of reasoning and the cost function: Let K : RN
+ × RN

+ → N be such that, for any (c,W ) ∈
RN

+ × RN
+,

K (c,W ) = min {k ∈ N : c (k) ≤W (k) and c (k + 1) > W (k + 1)} , (7)

with the understanding that K (c,W ) =∞ if the set in equation (7) is empty. Player i’s cognitive

bound, which represents his understanding of the game, is then determined by the value that this

function takes at (ci,Wi):

Definition 3 Given cost and value functions (ci,Wi), the cognitive bound of player i is defined

as:

k̂i = K (ci,Wi) . (8)

Notice that the cognitive bound k̂i is monotonic in the level of the cost and of the value

functions, irrespective of the shape of these functions: k̂i (weakly) decreases as the cognitive costs

increase, and it (weakly) increases as the value of reasoning increases.

Remark 1 Under the maintained assumptions of Theorem 1:

1. For any ci,if W
′
i (k) ≥Wi (k) for all k, then K (ci,W

′
i ) ≥ K (ci,Wi) .

2. For any Wi, if c′i (k) ≥ ci (k) for all k, then K (c′i,Wi) ≤ K (ci,Wi) .

Example 3 In the representation of Theorem 3, for instance, the value of reasoning takes the

following shape:

Wi (k) = max
(ai,a−i)∈A

ui (a∗i (a−i) , a−i)− ui
(
ak−1
i , a−i

)
.
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Figure 1: Individual Reasoning

In the game of example 2, with x = 80, this representation delivers a constant value of reasoning

equal to 40: as we have seen, from k = 2 on the path of reasoning of player 1 determines a cycle

between T and B. Independent of whether ak−1
1 = T,B, however, this representation yields a value

W1 (k) = 40 when parameter x = 80. Clearly, if all payoffs were multiplied by a constant X > 1,

then the value of reasoning would increase to W ′1 (k) = 40X. Figure 1 illustrates how such an

inccrease of payoffs may increase the depth of reasoning of player 1.7

4.2 From Reasoning To Choice

To determine player i’s behavior, given his understanding of the game, we need to relate players’

reasoning process to their beliefs about the opponent’s reasoning process. We assume that players

reason about the game taking into account that their opponent follows a similar cost-benefit

procedure. Players therefore take into account the sophistication of their opponents. Since a

player’s reasoning ability in this model is captured by the cost function, we use the same tool

to model players’ beliefs over others’ sophistication. We specifically define sophistication in the

following manner:

Definition 4 Consider two cost functions, c′ and c′′. We say that cost function c′ corresponds to

a ‘more sophisticated’ player than c′′, if c′ (k) ≤ c′′ (k) for every k.

For any ci ∈ RN
+, it is useful to introduce the following notation:

C+ (ci) =
{
c ∈ RN

+ : ci (k) ≥ c (k) for every k
}

and (9)

C− (ci) =
{
c ∈ RN

+ : ci (k) ≤ c (k) for every k
}

. (10)

Sets C+ (ci) and C− (ci) respectively comprise the cost functions that are more and less so-

phisticated than ci. Given ci, c
′
i ∈ C+ (ci) and value of reasoning Wi, we say that ‘c′i is strictly

more sophisticated than ci, given Wi’, if K (c′i,Wi) > K (ci,Wi).

We represent players’ beliefs about the sophistication of the opponents (as well as their beliefs

about the opponent’s beliefs) in the standard way, by means of type spaces. The only difference

is that each type will be associated to both beliefs and a cost function:

7Given the definition of K (·), it is easy to verify that the cognitive bound of player 1 would (weakly) increase
when W increases independent of the shape of the cost of reasoning. In particular, c1 need not be monotonic.
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K(ch,W2)

Figure 2: From Reasoning to Choice: the path of reasoning is generated by anchor a0 = (T,R);
choice depends on the beliefs about the opponent’s type.

Definition 5 A C-type space (or just type space) is defined by a tuple
〈

(Tj , γj , τj)j∈N

〉
such that

Tj =
{
t1j , ..., t

mj

j

}
is the set of types of player l, γj : Tj → RN

+ assigns to each type a cost function

and τj : Tj → ∆ (Tj) assigns to each type a belief about the opponent types. (For convenience, we

write τtj instead of τj (tj).)

The simplest case of cognitive type space is the ‘independent common prior’ CTS, in which γl’s

are one-to-one and for each l there exist priors pl ∈ ∆ (Tl) and for all tl, t
′
l ∈ Tl, τtl = τt′l = p−l. In

this case, the type space is merely a collection Tl =
{
ct1 , ..., ctmi

}
of cost functions for each player

l, drawn from some (commoly known) prior distribution pl ∈ ∆ (Tl).

Player i’s choice in the game stems from his depth of reasoning, his anchor a0, and his beliefs

represented by his type ti in a type space. The unit of our analysis will thus be a pair
(
ti, a

0
)
∈

Ti ×A.

Definition 6 Given a type space, and a pair
(
ti, a

0
)
∈ Ti × A. For each j define functions

αj : Tj → Aj such that α0
j (tj) = a0

j for each tj ∈ Tj. Recursively, define for each j = 1, 2, for

each tj ∈ Tj and for each k ∈ N :

αkj (tj) =


αk−1
j (tj) if k > K

(
ctj ,Wj

)
BRj

( ∑
t−j∈T−j

τtj (t−j) · αk−1
−j (t−j)

)
otherwise

(11)

The choice of type ti, given anchor a0, is âi
(
ti, a

0
)

:= α
K(ci,Wi)
i (ti).

Example 4 Consider a type space in which T1 = {c1} and T2 = {cl, ch}, such that cl ∈ C− (c1),

ch ∈ C+ (c1) and the type of player 2 is l with probability q. That is, player 1 believes that with

probability q the opponent would be less sophisticated than himself,and with probability (1− q) he

will be more sophisticated. Consider the game in Example 2 again, with x = 80 so that the value

of reasoning is constant and equal to 40 for both players (see Example 3). Figure 2 represents this

situation for a player that approaches the game with anchor a0 = (T,R). Given the cost functions

and the incentives to reason, we have that K (cl,W2) = 2, K (c1,W1) = 4 and K (ch,W2) = 6.

Hence, the depth of reasoning of player 1 is four, which corresponds to action a4
1 = T in his path
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of reasoning. This, however, need not be the action that he plays in general. To see this, notice

that the recursion in (11) implies that αk2 (l) = R for all k ≥ 2. Hence, if ql = 1 (that is, if player

1 is certain to play against the less sophisticated opponent), for all k ≥ 3 αk1 (t1) is equal to the

best reponse to R, that is αk1 (t1) = B for all k ≥ 3, hence player 1 plays like a level-3, B. Given

the game payoffs, it can be verified that this would be the case as long as ql > 1/2. Hence, if player

1 attaches at least probability 1/2 to his opponent’s depth of reasoning being two, then even though

1’s depth of reasoning is four, he would play like a level-3 player. If instead ql < 1/2, then the

path αk1 (t1) defined by equation (11) coincides with the ‘path of reasoning’ for all k ≤ K (c1,W1).

Hence, if player 1 believes that his opponent is more sophisticated, then he will play according to his

own cognitive bound. The same figure is useful to analyze how player 2 would play if he approached

the same game with anchor a0 = (T,R). The low type of player 2 would play according to his own

cognitive bound, hence he would play R. Now let’s consider the high type of player 2, given anchor

a0 = (T,R). He anticipates that player 1 anticipates that the low type would play R. If ql > 1/2,

equation (11) implies that αk1 (t1) = B for all k ≥ 3, that is, player 1 behaves as a level-3. Given

this, (11) further implies that αk2 (h) = R for all k ≥ 4.Hence the high type behaves as a level-4. If

instead ql < 1/2, then the high type anticipates that player 1 would play according to his cognitive

bound, that is four. Equation (11) then implies that αk2 (h) = L for all k ≥ 5. In that case, the

high type behaves as a level-5.

5 Five ‘Little Treasures’ of Game Theory

In an influential paper, Goeree and Holt (2001, henceforth GH) conduct a series of experiments

on initial responses in different games. While the games they consider are quite different from

one another, the experimental design is similar across the games. For each of these games, GH

contrast individuals’ behavior in the baseline game, or ‘treasure’, with that observed in a similar

game, obtained through simple changes of the payoffs. The latter treatments are referred to as

‘contradictions’. For each of these games, GH show that classical equilibrium predictions often

perform well in the treasure but not in the contradiction. While most of the contradictions seem

intuitive, no unified explanation of these findings has been provided thus far. Among the more

surprising aspects of our theory has been its aptitude to provide such a unifying framework for all

the games in GH that fall within its domain, namely, the static games with complete information.

We next review GH’s findings for these games. We then show that the model is not only qualita-

tively in line with these treasures, but that in fact it is consistent with the empirical distributions

of the findings.

5.1 Five ‘Little Treasures’: Review

Traveler’s Dilemma. In this version of Basu’s well-known Traveler’s dilemma game, two players

choose a number between 180 and 300 (inclusive). The reward they receive is min{a1, a2}+R for

the player who gives the lower number, and min{a1, a2} − R for the player who gives the higher

number. As long as R > 0, this game is dominance solvable, and 180 is the only equilibrium

strategy. GH consider two cases, R = 5 and R = 180.8 They observe that for R = 5, roughly 80%

of subjects choose the highest claim, while for R = 180, roughly 80% choose the Nash strategy.

8GH do not specify the rule in case of tie. In the following, we assume that there are no transfers in that case.
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Matching Pennies. GH consider the following version of the Matching Pennies game. In the

‘treasure’ treatment, parameter x is set equal to 80. The game therefore is symmetric, and players

uniformly randomize over their actions in the unique Nash equilibrium of the game.

x = 80 L (48) R (52)

T (48) x,40 40,80

B (52) 40,80 80,40

The empirical distributions observed for the ‘treasure’ treatment (shown in parenthesis) are

remarkably close to the equilibrium predictions.

In the ‘contradiction’ treatment, GH modify the parameter x, setting it equal to 320 in one

case and 44 in another. From a Nash equilibrium viewpoint, an agent’s mixture in the equilibrium

in this game is chosen so as to make the other indifferent. So, since x does not affect the payoffs

of the column player, the equilibrium distribution of the row player in the contradictions should

still be the uniform. Equilibrium therefore entails that it should be the column player that reacts

to changes in the row player’s payoffs, reducing the weight on L when x increases, and vice versa.

This prediction seems counterintuitive, and is indeed rejected by the data: in both cases, more than

90% of the row player choose the action with the relatively higher payoffs, T when x = 320 and

B when x = 44. Moreover, this behavior seems to have been anticipated by the column players,

with roughly 80 percent of subjects playing the best response to the action played by most of the

row players, which is R when x = 320 and L when x = 44.

x = 320 L (16) R (84)

T (96) x,40 40,80

B (4) 40,80 80,40

x = 44 L (80) R (20)

T (8) x,40 40,80

B (92) 40,80 80,40

Coordination Game with a Secure Outside Option. The next game is a coordination game

with one efficient and one inefficient equilibrium, which pay (180, 180) and (90, 90), respectively.

The column player, however, has a secure option which pays 40 independent of the row player’s

choice.

L H S

L 90,90 (0,0) x,40

H 0,0 (180,180) 0,40

The parameter x affects the row player’s payoffs, but not the column player. In the treasure

treatment, x is set equal to 0, so that the secure option of the column player leaves the row player

indifferent between his two alternatives. In the contradiction instead the parameter x is set equal

to 400. Notice that, independent of x, a 50-50 combination of H and L dominates S for the

column player. A rational column player therefore would never play S, and therefore a change in

S should not affect the behavior of the row player, if the latter thinks that the column player is

rational. Having eliminated S, the remaining game has three Nash equilibria: (L,L), (H,H), and

one in which player randomize putting 2/3 probability on L. So, the change in x has no impact

on the equilibria of the set. However, the magnitude of x may affect the coordination process. GH

do not report the entire distributions for this experiment. The next two matrices summarize the
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experimental data as reported by GH:9

x = 0 L H (84) S

L

H (96) (80)

x = 400 L H S

L (16)

H (32)

(12)

A Minimum-Effort Coordination Game. In this game players choose efforts levels a1, a2

which can be any integers between 110 and 170. Payoffs are such that ui (a1, a2) = min{a1, a2} −
ai ·d, where d is equal to 0.1 in one treatment and 0.9 in the other. Independent of d, any common

effort level is a Nash equilibrium in this game. The high effort equilibrium is the efficient one.

While the pure-strategy Nash equilibria are unaffected by this change in payoffs, GH’s experimental

data show that agents exert lower effort when the cost is higher.

Kreps Game. The baseline and the modified games are described in the following table. The

numbers in parenthesis represent the empirical distributions observed in the experiment:

Baseline: Left (26) Middle (8) Non Nash (68) Right (0)

Top (68) 200, 50 0, 45 10, 30 20,−250

Bottom (32) 0,−250 10,−100 30, 30 50, 40

Modified: Left (24) Middle (12) Non Nash (64) Right (0)

Top (84) 500, 350 300, 345 310, 330 320, 50

Bottom (16) 300, 50 310, 200 330, 330 350, 340

Notice that the modified game is obtained from the first simply by adding a constant of 300 to

every payoff. This game has two pure-strategy equilibria, (Top, Left) and (Bottom,Right), and

one mixed-strategy equilibrium in which row randomizes between Top and Bottom and column

randomizes between Left and Middle. Clearly, the change in payoff here only affects the weights

in the mixed-equilibrium, not the pure equilibria. Yet, a majority of column play the Non-Nash

action, and the change in payoffs only seems to affect the Row players.

The results of these experiments stand in sharp contrast with standard equilibrium concepts,

and seem to preclude a game theoretic explanation. For instance, in the Kreps’ game most of

individuals play an action that is inconsistent with Nash equilibrium; in the Traveler’s Dilemma

and in the Effort Coordination game, changes in payoffs that do not affect the set of equilibria are

associated to significant changes in behavior; in the Matching Pennies, Nash equilibrium seems

to work only by coincidence in the baseline treatment, but asymmetries in payoffs determine

major departures from the equilibrium predictions. Other heuristics rules, such as assuming that

individuals play according to their ‘maximin’ strategy, or based on risk or loss aversion, may

explain the behavior observed in some games, but not in others.10 Yet, many of the anomalous

9Besides the data summarized in the matrices, GH also report (ibid., p.1408) that 64 percent of row players and
76 of the column players play H in the contradiction treatment (x = 400). These data however are inconsistent: if
76 percent of column play H and 32 percent of observations are (H,H), then cell (L,H) must receive a weight of
44. Since (L,L) is observed 16 percent of the times, it follows that at least 60 percent of row played L, whereas GH
report that 64 percent of Row played H. We will return to this point in Section 5.1.2.

10As GH point out, the ‘maxmin’ criterion may explain the behavior observed in the Kreps’ game, but is incon-
sistent with the evidence in the Matching Pennies and the Coordination games, and in any case it would entails
unrealistic degrees of risk-aversion relative to what is commonly observed. Similarly, explanations based on loss-
aversion would contradict the evidence from Kreps’ game, and losses are not a possibility in most of these games.
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data are related to the nature of the incentives in an intuitive way, which suggests that it should

be possible to develop formal models that account for these patterns of behavior. GH observe that

simple models of level-k reasoning may accommodate the experimental findings in the Traveler’s

Dilemma, Kreps’ Game and in the Effort Coordination game

5.1.1 Five Little Treasures: A Unified Explanation

Throughout this section, we will consider the most stringent representation obtained in Section

3, in which the agent is particularly cautious about the validity of his current understanding of

the game, implying that his his disposition to further think about the game is particularly strong.

This corresponds to the representation provided in Theorem 3, where at each step the ‘value of

reasoning’ for player i, Wi (k), is equal to the maximum difference between the payoff that the

player could get if he chose the optimal action a∗i and the payoff he would receive given his current

action ak−1
i , out of all the possible opponent’s actions. That is:

Wi (k) = max
(ai,a−i)∈A

ui (a∗i (a−i) , a−i)− ui
(
ak−1
i , a−i

)
.11 (13)

We will use this representation to contrast each of the ‘treasures’ with the corresponding ‘con-

tradiction’. As discussed in Section 2.3, this presumes that each treasure and the corresponding

contradictions belong to the same cognitive equivalence class. Given the nature of the payoff trans-

formations involved in GH’s exercises, this assumption is consistent with criterion (C.1) for the

cognitive partition (p. 8).

We begin by considering the games that GH observe could be explained by standard models

of level-k reasoning, though at the cost of ad hoc assumptions, which GH discard as not being

particularly convincing (ibid., p. 1417):

“It is easy to verify that level one rationality also provides good predictions for both

treasure and contradiction treatments in the traveler’s dilemma, the minimum-effort

coordination game, and the Kreps game. There is evidence, however, that at least some

subjects form more precise beliefs about others’ actions, possibly through higher levels

of introspection.”

Consider the Minimum-Effort Coordination game first. Of all the treasures in GH, this seems

to be the least suitable to being approached through some form of level-k reasoning. On the

one hand, any degenerate symmetric profile is a Nash equilibrium, hence if taken as an anchor it

would generate the same profile at all iterations of reasoning process. On the other hand, there

is no obvious way of approaching this game, hence no obvious specification of a0. If, however, we

follow GH and appeal to the principle of insufficient reason to set the anchor equal to the uniform

distribution, then the level-1 levels of efforts with the low and high cost games are 164 and 116,

respectively.

In the Traveler’s Dilemma, two specifications of a0 seem plausible and have been used in the

literature. Namely, the anchor can be specified a0
i = 300 or as the uniform distribution. In

11We focus on this representation for ease of exposition. The results that follow do not rely on this specific func-
tional form. For instance, the results hold for the representation provided in Theorem 2 as well. That representation
however involves a larger number of parameters, which would leave us more freedom in the calibration exercise. The
parsimony of parameters in this representation, if anything, ties our hands more in the quantitative exercise.
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the latter case, standard level-k models roughly suffice to account for GH’s findings, through a

mechanism similar to the one discussed for Minimum-Effort Coordination game. If R = 5, the

best response to the uniform is a1
i = 290, and the path of reasoning is such that aki = 291 − k

for each k ∈ N. If instead R = 180, then the best response to the uniform is 180, hence the shift

in behavior may be explained by ‘level-1 rationality’ in both cases, merely due to a change in the

best response.

While this is consistent with our model, we can also offer an alternative explanation. In

particular, if a0 is specified such that a0
i = 300 in the Traveler’s Dilemma, then aki = 300 − k for

each k ∈ N. The change in behavior in the treasure and contradiction treatment in this case can be

explained by the stronger ‘incentives to reason’ that the game provides when R is increased from 5

to 180. To see this, notice that (13) in this game is equal to max{299−ak−1
i , 2R−2}. Hence, with

R = 5, we have for instance that W (k) = 8 for all k = 1, ....9. This implies that any individual

for whom c (1) > 8 would play 300. When R = 180 instead the value of reasoning is such that

W (k) = 358 for all k < 120, while W (120) = 179 (this is the number of steps in which the level-k

reasoning reaches the Nash equilibrium in this game.) Hence, anyone with a cost function such

that c (1) > 8 and c (k) < 180 for all k would play 300 when R = 5 and 180 when R = 180.12 We

also notice that any representation consistent with Theorem 1 would deliver qualitatively similar

implications, because changing R from 5 to 180 increases the payoff differences of the game, hence

the ‘incentives to reason’. This would suffice to conclude the individuals depth of reasoning would

be larger in the high reward treatment.

The explanation based on ‘level-1 rationality’ has other important limitations. For the low re-

ward treatment the level-1 action is 290, while most of the subjects actually play 300. Furthermore,

even if this discrepancy is ignored, and the evidence explained in terms of ‘level-1’ rationality, it

would remain the puzzle of why in this game such a high fraction of subjects plays according to

level-1 rationality, whereas a classical finding of the literature on level-k is that most individuals

typically perform between two and three rounds of reasoning. The second explanation overcomes

both limitations, endogenizing 300 precisely as the action that would be played, due to the low

incentives to reason provided by the game payoffs when R = 5. We also find that our approach

addresses the concern expressed in the quote above and acknowledges that individuals form more

precise beliefs through higher levels of introspection.

We next turn to the Kreps’ Game, for which the results seem less intuitive than others in GH.

This is perhaps because there is no obvious way of approaching this game, other than equilibrium

play, but it is highly inconsistent with the observed behavior. The message of our theory for this

treasure, however, is the simplest of all. Namely, since the payoff differences are unchanged in the

baseline and modified game, any representation consistent with Theorem 1 (with Axiom 2, in fact)

implies that whatever we observe in the baseline game should not change for the modified game.

This is extremely close to what we observe, especially for the column players (less so for the row

players, where the fraction playing Top goes from 68% to 83%). The distributions observed in the

baseline game could of course be matched through appropriate choices of other parameters of the

model, but the bite of our analysis is in the comparative statics, according to which there should

be no difference in behavior between the two treatments.

12In Alaoui and Penta (2013), we argue that in games such as the Traveler’s Dilemma, where the agents may
understand the inductive pattern in the chain of best responses, a sensible shape for the cost function is one in
which only the first few steps are costly. Such a hump-shaped cost function, though not necessary for the results,
would generate precisely this switch from 300 to 180 in the low and high reward treatment.
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Besides overcoming the weakness of standard level-k models to explain the games above, we

show next that our model also explains the findings in the other treasures and contradictions, for

which no clear explanation was provided: Matching Pennies and the Coordination Game with a

Secure Option. We show that our model not only provides a qualitative explanation for GH’s

findings, but also performs surprisingly well from a quantitative viewpoint. In particular, we

perform a calibration exercise based on an extremely parsimonious specification of parameters.

Holding such parameters constant across all the five treasures and contradictions, we show that

the model’s prediction are surprisingly close to the empirical distributions observed in GH. The

calibration exercise also illustrates how our model can be used for structural work on strategic

thinking.

5.1.2 A Calibration Exercise

We assume that there are two types of players, one (strictly) more sophisticated than the other,

respectively denoted by ‘high’ and ‘low’, and that the cost functions are strictly increasing in each

of the treasures. We maintain that the distribution of types remains the same throughout all

games and for both the row and column players, and let ql denote the fraction of the low type.

Lastly, while in some cases it would seem plausible that some level-zeros are more salient than

others, we maintain throughout that anchors are uniformly distributed in both populations and

for all games. This neutrality serves to illustrate that our assumptions are neither post-hoc nor

arbitrary. The only parameter that we will use in our calibration will thus be the fraction of low

types in the population, ql.

Matching Pennies. Applying equation (13) to the matching pennies game, parameterized by

x, the value of reasoning function takes the following shape:

W1 (k) =

{
40 if ak−1

1 = T

x− 40 if ak−1
1 = B

(14)

W2 (k) = 40.

Since no pure-strategy action profile is a Nash equilibrium in this game, for any anchor a0 ∈ A
the reasoning process determines a cycle in the game. For instance, if the anchor of the row

player is a0 = (T, L), then his sequence of actions
(
ak1
)
k=0,1,...

= (T,B, T,B, ...). Let cl denote the

(increasing) function of the low type, and consider the case x = 80. With x = 80, the W function

is constant for both players. Given cl, a low type may stop reasoning (hence play) at either action,

depending on what his anchor is. If the anchors are distributed uniformly, it follows that the

actions of the low types are distributed uniformly. For the same argument, 50 percent of the high

types of population 1 will believe that the low type of the opponent plays L (resp. R), and if

ql > 1/2 this implies that they would play T (B) irrespective of what their own cognitive bound is

(hence, irrespective of their own cost function). Clearly, a similar argument applies to population

2. If instead ql ≤ 1/2, then the high types would play according to their own cognitive bound,

which depends on the anchor. Once again, the uniformity assumption guarantees that the actions

of the high types are uniformly distributed. Our model therefore predicts that, independent of

ql, actions are uniformly distributed in both populations. This prediction is remarkably close the
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40

280 280
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empirical results for x = 80. Notice, however, that the equilibrium distribution does not arise

from equilibrium reasoning in this case, but from the assumption that anchors are distributed

uniformly. In this sense, the model is consistent with the interpretation provided by GH, “In this

context, the Nash mixed-strategy prediction seems to work only by coincidence, when the payoffs

are symmetric.” (ibid., p. 1407)

Now, consider the case x = 320. The value of reasoning of the column players is not affected,

hence the low types in population 2 will have the same behavior as in the case x = 0. To

understand what happens to the low types of population 1, consider figure 5.1.2. The figure on

the left represents a low type of population 1 with cost function cl whose anchor is either (B,R)

or (T, L). The figure on the right instead represents the situation in which the anchor is (B,L) or

(T,R). The two cases differ in that action aki = T is associated with the odd (left) or even (right)

k’s, respectively. The dashed line represents the value of reasoning when x = 0, whereas the red

‘spiked’ line represents the value of reasoning when x = 320, as implied by equation ( 14).

In this example, the agent performs eight rounds of reasoning when x = 0, independent of the

a0. The action that he chooses would depend on the a0: the individual on the left would play

T , the individual on the right would play B. When x = 320, so that the function increases at

every other step, the individual on the left would still perform eight rounds, hence play T , while

the increased incentives would convince the individual on the right to perform one extra round

of reasoning, and switch from B to T . This mechanism is true in general: it can be shown that,

for any increasing cost function cl, if x is sufficiently high to affect the depth of reasoning, then

the low types playing T in the treasure won’t change, but all those playing B would switch to T .

We assume that x = 320 is high enough to affect the depth of reasoning. Hence, all low types in

population 1, independent of a0, would play T when x = 320.

We consider three cases next:

• If ql > 1/2, then all high types of population 2 play R, best responding to the low types of

population 1 playing T . It remains to consider what the high types of population 1 would

do in this case. Given the depth of reasoning of the low types of population 2, the behavior

that the high types of population 1 would expect from them depends on the anchor that they

adopt. Given the uniformity assumption, 50 percent of high types in population 1 believe

that the low types opponent play L, hence play T . The remaining 50 percent believes that

the low types of population 1 play R, hence play B. It follows that, as long as ql > 1/2, for

x = 320 we expect a fraction (ql/2) of population 2 playing L and
(

1+ql
2

)
of population 1

playing T .
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• If instead ql ∈ (1/8, 1/2), then we may have two cases: Since ql > 1/8, the 50 percent of high

types of population 1 that believe that the low types of population 2 play L will play T , and

the 50 percent of high in population 2 that anticipate this will play R. The remaining 50

percent of high types in both populations will play according to their own cognitive bound.

This will entail playing T for the high types of population 1, and (depending on the shape of

the cost function) either R or L for the high types of population 2. It follows that, while the

entire population 1 will play T , we may have two cases for population 2: either a uniform

distribution over actions, or a distribution with weight (ql/2) over L.

• If ql < 1/8, then all high types of both populations will play according to their own cognitive

bound. It follows that entire population 1 would play T and the actions of population 2 will

be distributed uniformly.

If, based on the empirical results, we discard the explanations that suggest that population 2

would be uniformly distributed over L and R, we are left with two possibilities, both entailing that

a fraction (ql/2) of population 2 play L. If we choose ql to match the empirical distributions, we

obtain ql = .32, which falls precisely in the interval (1/8, 1/2) . The only explanation that appears

consistent with the empirical distribution of population 2 therefore is the following, which requires

that ql ∈ (1/8, 1/2) and all agents in population 1 play T :

x = 320 L (ql/2) R (1− ql/2)

T (1)

B (0)

We next consider the case x = 44, maintaining that ql ∈ (1/8, 1/2). First, it is easy to show

that for any increasing cost functions cl, ch, there exists x > 40 sufficiently low that the both

types of population 1 would choose B at their cognitive bound. Assuming that x = 44 is such

a ‘sufficiently low’ payoff, reasoning similar to the one above delivers the following results: all

low types of population 1 play B, while the low types of population 2 are uniformly split; if

ql ∈ (1/8, 1/2), the 50 percent of high types of population 1 that believe that the low types of

population 2 play R will play B, and the 50 percent of high in population 2 that anticipate this

will play L. The remaining 50 percent of high types in population 1 play according to their own

cognitive bound, that is B. Since the high types in population 2 have the same cost function as

the latter ones, but higher incentives, they would be able to anticipate this, and respond playing

L. Hence, all high types in population 2 play L.

Summarizing, for ql ∈ (1/8, 1/2) our findings for the three games are:

x = 80 L
(

1
2

)
R
(

1
2

)
T
(

1
2

)
B
(

1
2

)
x = 320 L

(
ql
2

)
R
(
1− ql

2

)
T (1)

B (0)

x = 44 L
(
1− ql

2

)
R
(
ql
2

)
T (0)

B (1)

The levels of ql that maximize the fit in the two ‘contradictions’ are, respectively, ql = .32 for

x = 320 and ql = .40 for x = 4. Both these levels are consistent with the restriction ql ∈ (1/8, 1/2).
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The predicted distributions in the three treatments for these parameters are summarized next:

Data ql = .32 ql = .4

x = 80 L (48) R (52) x = 80 L (50) R (50) x = 80 L (50) R (50)

T (48) T (50) T (50)

B (52) B (50) B (50)

x = 320 L (20) R (80) x = 320 L (16) R (84) x = 320 L (20) R (80)

T (96) T (100) T (100)

B (4) B (0) B (0)

x = 44 L (80) R (20) x = 44 L (84) R (16) x = 44 L (80) R (20)

T (2) T (0) T (0)

B (98) B (100) B (100)

Clearly, any particular choice is somewhat arbitrary, but all ql ∈ [0.32, 0.40] perform remarkably

well.across all three treatments.

Coordination Game with a Secure Outside Option. This game has two pure-strategy Nash

equilibria, (L,L) and (H,H), which are not affected by the value of x. Hence, anchors equal to

(L,L) or (H,H) would generate a path of reasoning in which respectively L or H is repeated.

Anchors (L,H) or (H,L) determine a cycle alternating between H and L, also independent on

the value of x. The paths generated by anchors that involve S instead vary with the value of x.

Consider anchor a0 = (L, S) first: Given a0
2 = S player 1 is indifferent between L and H if x = 0,

hence a1
1 is distributed uniformly over L and H; L instead is the only best response to a0

1 = L,

hence a1
2 = L. Given that a1

1 is the uniform distribution over H and L, player 2 best responds

with a2
2 = H, while the best response to a1

2 = L is a2
1 = L. Hence a2 = (L,H). Given this, further

iterations determine a cycle that alternates between H and L. When x = 400 instead the best

response to S is L, hence a1 = (L,L) and the rest of the path of reasoning yields L at every step.

The case in which the anchor is a0 = (H,S) is symmetric: the path yields a cycle for x = 400, and

H for all k ≥ 2 for x = 0.

Applying equation (13) to this game, with payoffs parameterized by x, we obtain the following

value of reasoning functions:

W1 (k) =

{
180 if ak−1

1 = L

max {90, x} if ak−1
1 = H

(15)

W2 (k) =


90 if ak−1

2 = H

180 if ak−1
2 = L

140 if ak−1
2 = S

(16)

Note that, being dominated, action S is never part of any path of reasoning (for any k > 0).

Nonetheless, it shapes player 1’s incentives to reason, as an increase in x changes the value of

doing a step of reasoning when player 1 is in a state in which action H is regarded as the most

sophisticated. Also, similar to the asymmetric matching pennies games discussed above, any path

in which agents cycle between action L and action H induce a W function that alternates between

90 and 180. Whether the spikes are associated to odd or even k’s depends on the anchor. When
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x = 400, the incentives to reason do not change for player 2, but W1 changes alternating between

180 and 400: the ‘spikes’ at 400 replace what would be ‘troughs’ at 90 with x = 0.

The experimental results showed that 96 percent of player 1 and 84 percent of player 2 played

H when x = 0. One possible explanation is that in the baseline coordination game the efficient

equilibrium is sufficiently focal that most individuals approach the game with a0 = (H,H) as an

anchor. The change in behavior observed when x = 400 could then only be explained by arguing

that this payoff transformation changes the way the agents approach the game. While we think this

is a plausible explanation, we maintain the assumptions that anchors are uniformly distributed,

and explore to what extent the mere change in incentives may explain the observed variation in

behavior, independent of the possible change in the anchors.

Under the assumption that anchors are uniformly distributed, the only way that such a strong

coordination on H can be explained is by assuming that the ‘spikes’ and ‘troughs’ determined

alternating between 180 and 90 are already sufficiently pronounced that the low types involved

in a reasoning process that determines a cycle stop their reasoning at H. Hence, with x = 0,

agents that approach the game with anchors a0 = (L,L) play L, all others play H (because

they either settle on a constant H, as in a0 = (H,S) , (H,H), or they determine a cycle, as in

a0 = (H,L) , (L,H) , (L, S)):

x = 0 L (1/6) H (5/6) S (0)

L (1/6)

H (5/6)

x = 0 L H (84) S

L

H (96)

We next consider the case x = 400, maintaining the assumption that the anchors are uniformly

distributed. For the same reasons discussed above, for any pair of (increasing) cost functions cl, ch,

there is x sufficiently high that all low types of population 1 with a reasoning process that involves

a cycle stop at L. If ql < 2/3, however, this is not enough to induce the high types of population

2 to play L as well. Hence, if we insist on the interval [0.32, 0.40] calibrated above, both the low

and the high types in population 2 play according to their cognitive bound. Since the incentives

to reason were not affected by the change in x for these individuals, the assumptions above entail

that they play H. Hence, in population 2, all individuals with anchors a0 6= (L,L) , (L, S) play H,

the others play L. It remains to consider the high types of population 1. Since with x = 400 they

have stronger incentives to reason than the high types of population 2, any of these types involved

in a cycle anticipates that both types of population 2 would play H, hence they respond with H.

Thus, in population 1, only the individuals whose anchor is a0 = (H,H) and the high types with

anchors a0 6= (L,L) , (L, S) play H, that is a total of 1/6 + (1−ql)
2 , or 2/3− ql/2. The others play

L. To determine the percentages of coordination in (L,L) and (H,H), we assume independence

in the distributions of play between the row and the column players.
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Summarizing:

x = 400 L (1/3) H (2/3) S (0)

L (1/3 + ql/2)

H (2/3− ql/2)

with ql = .32 calibrated from the matching pennies game:

x = 400 L (33) H (67) S (0)

L (49) 16

H (51) 34

x = 400 L H S

L (16)

H (32)

with ql = .40 calibrated from the matching pennies game:

x = 400 L (33) H (67) S (0)

L (53) 17

H (47) 30

x = 400 L H S

L (16)

H (32)
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Appendix

A Proofs From Section 2

Theorem 1 Under Axioms 1-6, for any cognitive equivalence class C ∈ C, there exist functions

W : Ui×N→ R and c : N→ R+∪{∞} such that for any game u ∈ C and for any k ∈ N, u1
i %k u

0
i

if and only if W (ui, k) ≥ c (k). Furthermore, for any k ∈ N:

1. The cost of reasoning is non-negative: c (k) ≥ 0.

2. For each ui ∈ C, W (ui, k) ≥ 0, and W (ui, k) = 0 whenever D
(
ui, a

k
i

)
= 0.

3. For each u, u′ ∈ C, D
(
ui, a

k
i

)
≥ D

(
u′i, a

k
i

)
implies W (ui, k) ≥W (u′i, k).

Proof of Theorem 1:

Step 1: Fix C ∈ C. For any k, let W (·, k) : Ui → R represent preferences %∗ defined as ui %∗ vi
if and only if ui−uki %1

k vi−vki . Preferences%∗ inherit the weak order and archimedean properties of

%1
k, hence such a representation W (·, k) exists. For some vi, we normalize W so that W

(
vki , k

)
= 0.

By construction, and by monotonicity of %1
k, W (·, k) is increasing in D

(
ui, a

k
i

)
and W (ui, k) = 0

whenever D
(
ui, a

k
i

)
= 0. (This is so because ui − uki = 0 = vki − vki whenever D

(
ui, a

k
i

)
= 0,

hence W (ui, k) = W
(
vki , k

)
= 0.) Furthermore, for any u ∈ C, W (ui, k) ≥W

(
uki , k

)
= W

(
vki , k

)
:

This follows from Axiom 5 which implies that ui %1
s u

k
i for all u ∈ C, and since u ∈ C implies(

u− uki
)
∈ C (by condition 2.1) Axiom 5 implies that ui − uki %

1
k uki − uki (this is because

uki − uki =
(
ui − uki

)k ∈ Λ
(
ui − uki

)
) that is ui %∗ uki . Hence W (ui, k) ≥ W

(
uki , k

)
= 0 for all

u ∈ C.

Step 2: If for all ui ∈ Ui, u0
i %k u

1
i , then set c (k) = ∞, and the rest of the theorem holds

trivially. If not, let ûi ∈ Ui be such that û1
i �k û0

i .

Step 3: If u1
i %k u0

i , Axiom 6 implies u0
i ∼k uk,0i and 2(part S.1) uk,0i %k uk,1i , hence (by

transitivity, Axiom 1), u1
i %k u

k,1
i .

Step 4: We show next that there exists c ∈ R+ such that
(
uki + c, 1

)
�k uk,0i : Suppose not,

then u1 %k u0
i ∼k uk,0i %k

(
uki + c, 1

)
for all c ∈ R+, hence u1 %k

(
uki + c, 1

)
for all c. The

latter contradicts Axiom 4.M. Hence, overall
(
uki + c, 1

)
�k uk,0i %k u

k,1
i . This implies (by Axiom

4.C.2) that there exists c (k) ∈ [0, c) such that uk,0i ∼k
(
uki + c (k) , 1

)
. Hence we have u1

i %k(
uki + c (k) , 1

)
, equivalently written ui %1

k u
k
i + c (k). Furthermore, since D (ui) = D

(
ui − uki

)
,

Axiom 2 (S.2) implies:

u1
i %k u

0
i if and only if

(
ui − uki , 1

)
%k
(
ui − uki , 0

)
. (17)

Step 5: Replacing u1
i %k u

0
i with

(
ui − uki , 1

)
%k

(
ui − uki , 0

)
in Steps 3-4, it follows that

u1
i %k u

0
i if and only if

(
ui − uki , 1

)
%k
((
ui − uki

)k
+ c (k) , 1

)
, where

(
ui − uki

)k
denotes the game

with payoffs
(
ui − uki

)k
(ai, a−i) := ui

(
aki , a−i

)
− uki (ai, a−i) ≡ 0 for every (ai, a−i) ∈ A. Hence,

we conclude that u1
i %k u

0
i if and only if ui − uki %1

k c (k).

Step 6: For each ui, let tui ∈ R be such that (ui + tui , 1) ∼k u0
i . Notice that tui ≥ 0 if

and only if u0
i %k u

1. Furthermore, by axiom 2.2, tui = tui−uk
i , because D (ui) = D

(
ui − uki

)
.

Consider the following specification of the W function: for each ui, let W (ui, k) = c (k) − tui .

We need to show that this specification actually represents the %∗ preference system, and that,
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consistent with Step 1, W
(
uki , k

)
= 0 for all ui. The latter property is immediate. Next, notice

that W (ui, k) ≥ W (vi, k) if and only if tui ≤ tvi , but since tui = tui−uk
i , tui ≤ tvi if and only if

tui−uk
i ≤ tvi−vki if and only if ui − uki %1

k vi − vki , that is ui %∗ vi.�

Theorem 2 Under Axioms 1-6 and 7, for any cognitive equivalence class C ∈ C, there exists

c : N→ R+ and for any k ∈ N a simple probability distribution pk ∈ ∆ (Mi (C)) such that for any

game u ∈ C, u1
i %k u

0
i if and only if∑

µ∈∆(A−i)

pk (µ)
∑
a−i

µ (a−i)
[
ui (a∗i (µ) , a−i)− ui

(
aki , a−i

)]
≥ c (k) , (18)

where a∗i (µ) ∈ BRui (µ) for any µ ∈Mi (C).

Proof: Given Theorem 1, we only need to show that for any k, the function W (·, k) : Ui → R
in that representation has the form of the left-hand side in eq. 18. To this end, notice that with

the addition of the independence axiom the preference system %1
k satisfies the conditions for the

mixture space theorem for every s. Hence, for any k ∈ N, there exists a function V ′ (·, k) : Ui → R
that represents �1

s and satisfies V ′ (αui + (1− α) vi, k) = αV ′ (ui, k) + (1− α)V ′ (vi, k) for all

α ∈ [0, 1] and ui, vi ∈ Ui. Moreover, V ′ (·, k) is unique up to positive affine transformations. Because

V ′ (·, k) is linear in ui ∈ Ui = R|A|, there exist (ρ′ (a))a∈A ∈ R|A| s.t. V ′ (ui, k) =
∑
a∈A ρ

′ (a)·ui (a).

By monotonicity, ρ′ (a) ≥ 0 for each a, and we define ρk normalizing such weights in the unit

simplex, so that ρk (a) = ρ′ (a) /
∑
a′∈A ρ

′ (a′). Since this is a positive affine transformation,

V (ui, k) =
∑
a∈A ρ

k (a) · ui (a) also represents �1
k by the uniqueness part of the mixture space

theorem. For any such ρk, define pk ∈ ∆ (Ai) and µ = (µai)ai ∈ ∆ (A−i)
Ai as follows: for any

ai ∈ Ai, let pk (ai) =
∑
a−i

ρk (ai, a−i) and define µai ∈ ∆ (A−i) such that, for any a−i,

µai (a−i) =

{
ρk(ai,a−i)
pk(ai)

if pk (ai) > 0
1
|A−i| otherwise

.

It is immediate to see that, for any (ai, a−i) ∈ A, ρk (ai, a−i) = pk (ai) · µai (a−i). Hence, without

loss of generality we can represent V1
s as follows:

V (ui, k) =
∑
ai

pk (ai)
∑
a−i

µai (a−i) · ui (ai, a−i) . (19)

We show next that u∗i ∈ C, ai ∈ BRi (µai ;u∗i ) whenever there exists a−i ∈ A−i such that

ρ (ai, a−i) > 0.

Suppose not. Then ∃âi s.t. ρ (âi, a−i) > 0 for some a−i s.t. âi /∈ BRi
(
µâi ;u∗i

)
. Then, let

a∗i ∈ BRi
(
µâi ;u∗i

)
and define the relabeling λ : Ai → Ai so that

λ (ai) =

{
a∗i if ai = âi

ai otherwise
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Furthermore, let uλi : A → R be such that, for any (ai, a−i) ∈ Ai, uλi (ai, a−i) = u∗i (λ (ai) , a−i).

Then,

V
(
uλi , k

)
=
∑
a∈A

ρk (a) · uλi (a)

=
∑

(ai,a−i):ai 6=âi
ρk (ai, a−i) · u∗i (ai, a−i) +

∑
a−i∈A−i

ρk (âi, a−i) · u∗i (a∗i , a−i)

>
∑

(ai,a−i):ai 6=âi
ρk (ai, a−i) · u∗i (ai, a−i) +

∑
a−i∈A−i

ρk (âi, a−i) · u∗i (âi, a−i)

= V (u∗i , k) .

Since, by construction, uλi ∈ Λ (u∗i ), this conclusion contradicts Axiom 5.

Hence, whenever u∗i ∈ C,

V (u∗i , k) =
∑
ai

pk (ai)
∑
a−i

µai (a−i) · u∗i (a∗i (µ) , a−i) . (20)

Now, notice that functional W in Theorem 1 represented the preference ordering %∗ defined as

ui %∗ vi if and only if ui−uki %1
k vi−vki . Hence, since V (·, k) represents %1

k, we have that ui %∗ vi
if and only if V

(
ui − uki , k

)
≥ V

(
vi − vki , k

)
. That is, thanks to the introduction of Axiom 7 we

can set W (ui, k) = V
(
ui − uki , k

)
. Since

V
(
ui − uki , k

)
=
∑
ai

p (ai)
∑
a−i

µai (a−i) ·
[
ui (a∗i (µai) , a−i)− ui

(
aki , a−i

)]
,

the representation follows from Theorem 1, noticing that V
(
uki − uki , k

)
= 0, and that (by Theorem

1) u1
i %k u

0
i if and only if ui − uki %1

k c (k), and noticing that V (c (k) , k) = c (k).�

Proposition 1 Under Axioms 1-7 and 8, the representation in Theorem 2 is such that, for

each C ∈ C, for each u ∈ C and for each k, aki ∈ BRu
(
µ̂k
)
.

Proof: Suppose not, i.e. there exists a′i s.t.
∑
a−i

µ̂k (a−i)ui (a′i, a−i) >
∑
a−i

µ̂k (a−i)ui
(
aki , a−i

)
.

Then, substituting the definition of µ̂k, we obtain∑
µ∈∆(A−i)

pk (µ)
∑
a−i

µ (a−i)
[
ui (a′i, a−i)− ui

(
aki , a−i

)]
> 0

hence v′i %
1
k u

k
i where v′i ∈ Λ (ui) is such that vi (ai, a−i) = ui (a′i, a−i) for all (ai, a−i) ∈ A.�

Lemma 1 Under Axioms 1-6, ui − uki %1
s vi − vki if and only if v1

i %s v
0
i implies u1

i %s u
0
i .

Proof:

(⇒) Suppose that ui−uki %1
s vi− vki and that v1

i %s v
0
i . Then, eq. (17) implies that vi− vki %1

s

c (k), hence ui − uki %1
s c (k) by transitivity, and u1

i %s u
0
i follows from eq. (17).

(⇐) Suppose that v1
i %s v

0
i (if not, the statement holds vacuously) and (as contrapositive) that

u0
i �s u1

i . Then eq. (17) implies vi−vki %1
s c (k) �1

s ui−uki , which contradicts ui−uki %1
s vi−vki .�

Theorem 3: Under Axioms 1-6 and 9, for any cognitive equivalence class C ∈ C, there exist

a function c : N→ R+ ∪ {∞} such that for any game u ∈ C and for any k ∈ N, u1
i %k u

0
i if and
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only if

max
a−i∈A−i

ui (a∗i (a−i) , a−i)− ui
(
aki , a−i

)
≥ c (k) .

Proof: Given Theorem 1 and Lemma 1, we only need to show that D∗ : Ui → R defined

as D∗ (ui) = maxa−i∈A−i
ui (a∗i (a−i) , a−i) − ui

(
aki , a−i

)
represents the preference system %∗s.

Suppose not, then there exist ui, vi ∈ Ui such that D∗ (ui) > D∗ (vi) but vi %∗s ui, that is

vi − vki %1
s ui − uki . Now,

â−i ∈ arg max
a−i∈A−i

ui (a∗i (a−i) , a−i)− ui
(
aki , a−i

)
and let ûi be such that

ûi (ai, a−i) =

{
ui
(
aki , â−i

)
if ai = aki

ui (a∗i (â−i) , â−i) otherwise
.

Notice that ûi ∈ Γ (ui), and that
(
ûi − ûki

)
(a) = D∗ (ui) for all a ∈ A, hence

(
ûi − ûki

)
>>(

vi − vki
)
. Monotonicity of %1

s thus implies that ûi − ûki �1
s vi − vki , that is ûi �∗s vi, whereas

Axiom 9 implies that ui %∗s ûi. Overall, ûi �∗s vi %∗s ui %∗s ûi, a contradiction.�
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