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Abstract. We introduce three definitions. First, we let a “base-
ment” be a set of nodes and actions that supports at least one
assessment. Second, we derive from an arbitrary basement its im-
plied “plausibility” (i.e. infinite-relative-likelihood) relation among
the game’s nodes. Third, we say that this plausibility relation is
“additive” if it has a completion represented by the nodal sums
of a mass function defined over the game’s actions. This last con-
struction is built upon Streufert (2012)’s result that nodes can be
specified as sets of actions.

Our central result is that a basement has additive plausibility
if and only if it supports at least one consistent assessment. The
result’s proof parallels the early foundations of probability the-
ory and requires only Farkas’ Lemma. The result leads to related
characterizations, to an easily tested necessary condition for con-
sistency, and to the repair of a nontrivial gap in a proof of Kreps
and Wilson (1982).

1. Introduction

Recall that an assessment for an extensive-form game lists both a

strategy and a belief for each agent (i.e. information set). The strat-

egy specifies a probability distribution over the agent’s actions, and

the belief specifies a probability distribution over the agent’s nodes
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2 1. Introduction

(i.e. the information set’s nodes). In many equilibrium concepts, the

agent chooses her1 strategy optimally, given her belief, the strategies of

subsequent agents, and her own payoffs at the game’s terminal nodes.

The assessment’s strategies determine the probability of reaching

any node in the game tree. If every strategy has full support (i.e. plays

every action with positive probability), then every node in the tree is

reached with positive probability. In this case, it is natural to assume

that every agent (i.e. every information set) calculates its belief over

its own nodes by applying the conditional-probability law (sometimes

known as Bayes Rule).

However, if some strategies do not have full support, some nodes are

reached with zero probability. In such a case, there may be agents that

consist entirely of zero-probability nodes. Then, since the conditional-

probability law cannot be applied, it is not at all obvious how to model

the reasoning by which a zero-probability agent calculates its belief.

Rather, we must awkwardly grapple with how to model the reasoning

of an agent who unexpectedly discovers that one of its unreachable

nodes has actually been reached.

This difficult issue can be usefully divided into two sub-issues: (a)

modeling how a zero-probability agent calculates the support of its

belief, and (b) modeling how the agent calculates a probability distri-

bution over this support. In this paper, we are exclusively concerned

with sub-issue (a).

Economists commonly address both of these sub-issues through the

concept of consistency that was introduced in the path-breaking work

of Kreps and Wilson (1982). Essentially, this concept imagines that

a zero-probability agent calculates its belief by a three-stage process:

(1) for each of the other agents it posits some sequence of full-support

strategies that converges to that agent’s actual strategy, (2) for each

strategy profile in this sequence, it calculates its own belief by means of

the conditional-probability law, and (3) it takes the topological limit of

this sequence of beliefs. This definition is very natural because it states

that what we do not understand (namely, how a zero-probability agent

calculates its belief) must be near to what we do understand (namely,

the conditional-probability law).

1Since we identify an agent with an information set, future paragraphs will refer
to an agent with the pronoun “it” rather than “he” or “she”.
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Although the topological definition of consistency is natural, it is

both conceptually interesting and computationally useful to under-

stand consistency without reference to a converging sequence of full-

support assessments. Indeed, most of the papers cited below contribute

to this agenda. Our paper contributes to the agenda of understanding

consistency without sequences by providing a new alternative charac-

terization of the supports of consistent assessments.

Our new characterization uses three new definitions. The first def-

inition is a small preliminary step. Recall that an assessment lists a

strategy and a belief for each agent. Since a strategy’s support consists

of actions and a belief’s support consists of nodes, it must be that an

assessment’s support consists of both actions and nodes. We define a

“basement” to be a set of actions and nodes that supports at least one

assessment. Our task is to characterize those basements that support

at least one consistent assessment.

Second, we derive from an arbitrary basement its implied “plausi-

bility” (i.e. infinite-relative-likelihood) relation <. This binary relation

compares nodes, but does so only in two circumstances. (1) Suppose

one node immediately precedes another. Then the first is more plausi-

ble (i.e. infinitely more likely) than the second if the intervening action

is outside the basement (i.e. is played with zero probability). Further

the two nodes are equally plausible (i.e. neither can be infinitely more

likely than the other) if the intervening action is in the basement (i.e.

is played with positive probability). (2) Suppose two nodes belong to

the same agent. Then the two are equally plausible if both are in the

basement (i.e. both are believed with positive probability), and the first

is more plausible than the second if the first is in the basement while

the second is not.

This second definition is a minor departure from the literature. In

the relevant literature, infinite relative likelihoods are derived indirectly

from the rich probability structures that are derived from consistent

assessments. These rich probability structures include the conditional

probability systems of Myerson (1986), the logarithmic likelihood ratios

of McLennan (1989), the lexicographic probability systems of Blume,

Brandenburger, and Dekel (1991), the nonstandard probability systems

of Hammond (1994), and the relative probability systems of Kohlberg

and Reny (1997). In contrast, our relation < is derived directly from
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an arbitrary basement, which may or may not support a consistent

assessment. Accordingly, their infinite relative likelihoods are complete

and transitive, while our relation < is neither complete nor transitive.

Third, we introduce the idea of additively representing an ordering

of the game’s nodes. Since a node can be understood as a set of actions

by Streufert (2012, Theorem 1), one can construct a representation of

an ordering of the nodes simply by (a) assigning a number to each

action and then (b) summing these numbers over the actions in each

node. The assignment of numbers to actions in step (a) is naturally

called a “mass function”, and the nodal sums in step (b) are naturally

called an “additive” representation of an ordering of the game’s nodes.

Accordingly, a basement is said to have “additive plausibility” if its

plausibility relation < has a completion with an additive representa-

tion.

This paper proves that a basement has additive plausibility if and

only if it supports at least one consistent assessment. In other words, it

shows that additive plausibility characterizes the supports of consistent

assessments. This new characterization is our main result, as reflected

in the title of our paper.

Although it involves a long chain of definitions, additive plausibility

is easy to interpret. First, one naturally calls the additive represen-

tation’s mass function a “plausibility” mass function. Then, represen-

tation and part (1) in the above definition of a plausibility relation <
together require that the plausibility mass function gives each positive-

probability action zero plausibility, and further, that it gives each zero-

probability action negative plausibility. Accordingly, a node’s plausi-

bility (that is, the sum of the plausibility numbers of a node’s actions)

is a measure of how far the node lies below the so-called “equilibrium

path”. It is slightly more sophisticated than (the negative of) the num-

ber of zero-probability actions leading to the node (i.e. the number of

zero-probability actions in the node) because the mass function can

give each zero-probability action its own negative plausibility number.

Broadly speaking, the definition of consistency has been easier shown

to hold than shown to fail. This difference has arisen because it is easier

to find an assessment sequence with certain properties than to show

that such a sequence cannot exist. Therefore, new necessary conditions

for consistency are particularly helpful.
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Accordingly, the necessity of additive plausibility is the interesting

half of our characterization of the supports of consistent assessments.

Further, our proof of its necessity is unexpectedly straightforward. It

requires nothing more than Farkas’ Lemma, and it parallels the classic

foundations of ordinary probability theory over a finite state space.

To see this parallel, think of an action as a state. Then, a node, which

is a set of actions, resembles an event, which is a set of states. Fur-

ther, our plausibility (i.e. infinite-relative-likelihood) relation <, which

conveys when one node is at least as plausible as another, resembles

a so-called “probability relation”, which conveys when one event is at

least as probable as another. Consequently, our showing that a certain

relation < has a completion with an additive representation parallels

classic results showing that a certain probability relation has a com-

pletion with an additive representation. These classic results appear in

Kraft, Pratt, and Seidenberg (1959) and Scott (1964). In this fashion,

the additivity of our plausibility representations parallels the additivity

of classic probability representations (although, as mentioned earlier,

our plausibility numbers are nonpositive, while probability numbers are

nonnegative and restricted to the unit interval).

Two less central results can now be discussed naturally. First, if the

relation < has a completion with an additive representation, then it

must necessarily have a transitive completion. Accordingly, we show

that the existence of a transitive completion for the plausibility relation

is a necessary condition for consistency which is very easily tested (but

weaker than additive plausibility). Second, classic probability theory

shows that the so-called “cancellation law” is equivalent to having a

completion with an additive representation. Similarly, we show that

this cancellation law provides a second full characterization of the sup-

ports of consistent assessments.

Finally, we discuss three other characterizations of the supports of

consistent assessments. These other characterizations do not refer to

a plausibility relation <, but instead, directly link a mass function

with a basement. These characterizations (of merely the supports of

consistent assessments) are related to the characterizations of consis-

tency developed by Kreps and Wilson (1982, Appendix) and Perea y
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Monsuwé, Jansen, and Peters (1997). We believe that their character-

izations should be much better understood and appreciated for their

insights.

Our introduction of plausibility relations and plausibility mass func-

tions serves to correct, simplify, unify, and extend this important liter-

ature. In particular, we fill a critical gap in a proof of Kreps and Wil-

son (1982), we substantially simplify the proof of Perea y Monsuwé,

Jansen, and Peters (1997), and we show how these two papers are re-

lated. In addition, we extend their analyses to accommodate arbitrary

chance players, and to allow non-absent-minded strategic players who

violate perfect recall.

The paper is organized as follows. Section 2 recapitulates old con-

cepts, while Section 3 defines new concepts. Section 4 contains The-

orem 1, which re-uses classic probability theory to show that additive

plausibility is necessary for consistency. Section 5 contains Theorem

2, which incorporates both Theorem 1 and its converse. The section

also discusses related characterizations of the supports of consistent as-

sessments, and repairs the gap in Kreps and Wilson (1982). Section 6

concludes.

2. Old Definitions

2.1. Reviewing set-tree games

This subsection specifies a finite game via the set-tree formulation of

Streufert (2012). We choose this formulation because it specifies nodes

as sets of actions, and because we will use the nodal sums of a mass

function defined over actions to define an additive representation of an

ordering over nodes. We follow Kreps and Wilson (1982) in restricting

ourselves to games with a finite number of actions, and thereby forgo

the full generality of the arbitrary finite-horizon games considered by

Streufert (2012).

By Streufert (2012, Theorem 1), the set-tree formulation is less gen-

eral than the standard formulation of Osborne and Rubinstein (1994,

page 200) in only one respect: it implicitly rules out agents that

are absent-minded in the sense of Piccione and Rubinstein (1997).

Streufert (2012) calls the absence of absent-minded agents “agent re-

call”, and notes that agent recall is weaker than perfect recall. Perfect
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recall has been a standard assumption in the consistency literature ever

since Kreps and Wilson (1982, pages 863 and 867).

We now recapitulate the formal definition of a set-tree game from

Streufert (2012). That paper’s Subsection 2.2 defines a set tree (A, T )

to be a set A of actions a and a collection T of subsets of A such

that (a) A =
⋃
T , (b) |T | ≥ 2 , and (c) every nonempty t∈T contains

exactly one action whose removal results in another element of T . An

element t of T is called a node. Streufert (2012) assumes that each

node t is a finite subset of A, and this paper imposes the additional

restriction that A itself is finite.

A set tree (A, T ) determines the feasibility correspondence F :T�A
by (∀t) F (t) = {a/∈t|t∪{a}∈T}, and also determines the set of terminal

nodes by Z = {t|F (t)=∅}. Note that F (t) is the set of actions that are

feasible (i.e available) from node t, and that we use the symbol F (t)

rather than the more common A(t).

Further recall that a set-tree game (A, T,H, I, ic, ρ, u) is a set tree

(A, T ) together with five additional objects. (1) H is a collection of

agents (i.e. information sets) h which partition the set TrZ of nonter-

minal nodes. (2) I is a collection of players i which prepartition2 H.

(3) ic ∈ I is a possibly empty chance player. (4) ρ :
⋃
h∈icF (h)→ (0, 1]

assigns a positive probability to each chance action a∈⋃h∈icF (h). (5)

u : (Ir{ic})×Z →R specifies a payoff ui(t) to each nonchance player

i∈Ir{ic} at each terminal node t∈Z. The agents are assumed to sat-

isfy

(∀t1, t2) [(∃h){t1, t2}⊆h] ⇒ F (t1)=F (t2) and(1a)

(∀t1, t2) [(/∃h){t1, t2}⊆h] ⇒ F (t1)∩F (t2)=∅ .(1b)

The first assumption is standard: it requires that the same actions are

feasible from any two nodes in an agent (i.e. information set). The

second requires that actions are agent-specific in the sense that nodes

from different agents have different actions. This entails no loss of gen-

erality because one can always introduce enough actions so that agents

never share actions. Further, the chance probabilities are assumed to

satisfy (∀h∈ic) Σa∈F (h)ρ(a) = 1 so that they specify a probability dis-

tribution at each chance agent h∈ic. Finally, without loss of generality,

2A prepartition of H is a collection of sets whose nonempty members partition
H. Thus ∅ can be a member of a prepartition. Admitting ∅ allows one to specify
a game “without chance” by setting ic = ∅.
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every nonchance player is assumed to be nonempty. All of the above

are discussed in Streufert (2012, Subsections 2.1 and 2.2).

2.2. Reviewing Kreps-Wilson consistency

This subsection reformulates Kreps-Wilson consistency in terms of a

set-tree game. We must provide full details because this paper is the

first to specify strategies and beliefs in terms of a set-tree game.

First, we introduce notation that divides the nodes and actions into

those of the chance player and those of the strategic (i.e. nonchance)

player(s). Assume that there is at least one strategic player. Then,

since the set H of agents is prepartitioned by the set I of players, we

can prepartition H into the possibly empty set ic of chance agents and

the necessarily nonempty set
⋃

(Ir{ic}) of strategic agents. Let Hs

denote
⋃

(Ir{ic}). Then since the set TrZ of nonterminal nodes is

partitioned by H, we can prepartition TrZ into the set T c of chance

nodes and the set T s of strategic (i.e. decision) nodes:

T c =
⋃
h∈ich and T s =

⋃
h∈Hsh .

Similarly, since the set A of actions has the indexed partition 〈F (h)〉h
by Streufert (2012, Lemma A.2), we can prepartition A into the set Ac

of chance actions and the set As of strategic actions:

Ac =
⋃
h∈icF (h) and As =

⋃
h∈HsF (h) .

Note that T c, T s, Ac, and As are derived from the given game. Further

note that the definition of Ac allows us to write the chance probabilities

as ρ:Ac→(0, 1], rather than ρ:
⋃
h∈icF (h)→(0, 1] as was done in part (4)

of the above definition of a game. As one would expect, it can be

shown that Ac =
⋃
t∈T cF (t) and As =

⋃
t∈T sF (t) (Lemma A.1 in the

appendix).

Second, we introduce notation for strategies, beliefs, and assess-

ments. A (behavioural) strategy profile is a function σ:As→[0, 1] such

that (∀h∈Hs) Σa∈F (h)σ(a)=1. Thus a strategy profile specifies a prob-

ability distribution σ|F (h) over the feasible set F (h) of each strategic

agent h. This σ|F (h) is h’s strategy. A belief system is a function

β:T s→[0, 1] such that (∀h∈Hs) Σt∈hβ(t)=1. Thus a belief system spec-

ifies a probability distribution β|h over each strategic agent h. This β|h
is h’s belief. Finally, an assessment (σ, β) consists of a strategy profile

σ and a belief system β.
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Third, an assessment (σ, β) is full-support Bayesian if σ assumes only

positive values and

(∀h∈Hs)(∀t∈h) β(t) =
Πa∈t(ρ∪σ)(a)

Σt′∈hΠa∈t′(ρ∪σ)(a)
.(2)

This equation calculates the belief β|h over any strategic agent h by

means of the conditional probability law. Here ρ∪σ is the union of the

functions ρ and σ. In particular, ρ∪σ:A→[0, 1] since (a) ρ:Ac→[0, 1],

(b) σ:As→[0, 1], and (c) {Ac, As} prepartitions A. Thus

Πa∈t(ρ∪σ)(a) = Πa∈t∩Acρ(a) × Πa∈t∩Asσ(a) ,

where the right-hand side multiplies the probabilities of the chance

actions leading to t (i.e. the actions in t∩Ac) together with the prob-

abilities of the strategic actions leading to t (i.e. the actions in t∩As).
Hence Πa∈t(ρ∪σ)(a) is the probability of reaching node t. The denom-

inator in (2) is positive because ρ has positive values by the definition

of a game, and because σ has positive values by the definition of a

full-support Bayesian assessment.

Finally, an assessment is (Kreps-Wilson) consistent if it is the limit

of a sequence of full-support Bayesian assessments.

2.3. Reviewing the Support of an Assessment

As in Kreps and Wilson (1982), let the support of an assessment

(σ, β) be the union of the support of σ:As→[0, 1] and the support of

β:T s→[0, 1]. Note that the support of an assessment is a subset of

As∪T s, and accordingly, it consists of both actions and nodes.

Figure 1 provides an example. Its game tree is essentially that of

Kreps and Ramey (1987, Figure 1). A casual interpretation of this

game tree might be that you manage two workers, that each has a

switch, and that a lamp turns on exactly when both switches are on.

You can observe the lamp but not the switches, and then if the lamp is

dark, you can choose to penalize either the first worker or the second

worker.

The figure also specifies an assessment: the strategy profile σ is given

by the numbers without boxes and the belief system β is given by the

numbers within boxes. Casually, this assessment might describe an

equilibrium-like situation in which both workers work because (a) they

think that if the light is dark, you would place probability 0.2 on both

workers dozing, probability 0.4 on only the first worker dozing, and
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Worker 1

bd1
bcw1

bc

Worker 2

bd2
bcw2 bd2

bcw2

bc

Manager

bcp1 bcp2 bcp1 bcp2 bcp1 bcp2

bc bc bc

1

0 1

0 1

0 1 0 1

.2 .4 .4

.5 .5 .5 .5 .5 .5

Figure 1. An assessment and its support.

probability 0.4 on only the second worker dozing, (b) they see that this

belief would induce you to randomize between the two punishments,

and (c) the threat of this randomized penalty motivates them both to

work.

Finally, the figure shows this assessment’s support: the actions and

nodes in the support are encircled. In particular, the actions in the

support are w1, w2, p1, and p2, and the nodes in the support are {},
{w1}, {d1, d2}, {d1, w2}, and {w1, d2}.

This paper focuses on the support of an assessment. In particular,

it focuses on what the consistency of a given assessment implies about

the support of that assessment. Accordingly, it is unconcerned with

the magnitudes of that assessment’s positive probabilities.3

3To be clear, this paper considers the magnitudes of positive probabilities only
when referring to the full-support assessments in the above definition of consistency.
This occurs only in the proofs of Lemmas 4.2 and A.7 (the proof of Lemma 4.2
incorporates Lemma A.6).
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3. New Definitions

3.1. Basements

As we have seen, the support of an assessment is a subset of As∪T s.
Let a basement 4 b be a subset of As∪T s such that

(∀h∈Hs) F (h)∩b 6= ∅ and h∩b 6= ∅ .

Lemma A.2 in the appendix shows that a subset of As∩T s supports

at least one assessment iff it is a basement. It does this by noting

that an arbitrary subset b̄ of As∩T s supports (σ, β) iff, for every agent

h∈Hs, F (h)∩b̄ supports the agent’s strategy σ|F (h), and h∩b̄ supports

the agent’s belief β|h.
For example, the encircled actions and nodes in Figure 2 constitute

a basement. That basement supports many assessments, including the

assessment of Figure 1.

3.2. The Plausibility Relation < of a Basement b

This paragraph mechanically defines the plausibility relation < of an

arbitrary basement b. We will interpret< immediately after Lemma 3.1.

Accordingly, for any basement b, define the five binary relations

�As = { (t, t∪{a}) | a∈F (t) and a∈Asrb } ,
≈As = { (t, t∪{a}) | a∈F (t) and a∈As∩b }

∪ { (t∪{a}, t) | a∈F (t) and a∈As∩b } ,
≈Ac = { (t, t∪{a}) | a∈F (t) and a∈Ac }

∪ { (t∪{a}, t) | a∈F (t) and a∈Ac } ,
�Ts = { (t1, t2) | (∃h∈Hs) t1∈h∩b and t2∈hrb } , and

≈Ts = { (t1, t2) | (∃h∈Hs) {t1, t2}⊆h∩b and t1 6=t2 } .
Let � be the union of �As and �Ts . Let ≈ be the union of ≈As , ≈Ac ,
and ≈Ts . And finally, let < be the union of � and ≈. We call this <
the plausibility relation of b.

Lemma 3.1. Take any basement b, and derive �As, ≈As, ≈Ac, �Ts,
≈Ts, �, ≈, and <. Then � is the asymmetric part of <, and � is

4Closely related is the Kreps and Wilson (1982, page 880) concept of “basis”,
which is defined to be an arbitrary subset of As∪T s.
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Worker 1

bd1
bcw1

bc

Worker 2

bd2
bcw2 bd2

bcw2

bc

Manager

bcp1 bcp2 bcp1 bcp2 bcp1 bcp2

bc bc bc

≺ ≈

≺
≺ ≈ ≺ ≈

≈ ≈

{d1, d2}≈{w1, d2} is not shown.

≈≈ ≈≈ ≈≈

Figure 2. A basement b and its plausibility relation <.
This < does not have a transitive completion.

partitioned by { �As ,�Ts }. Similarly, ≈ is the symmetric part of <,

and ≈ is partitioned by { ≈As ,≈Ac ,≈Ts }. (Proof A.3 in the appendix.)

We now begin to interpret <. This paragraph makes a few initial

observations. Each of the above relations compares nodes. The defi-

nitions of �As and ≈As concern whether certain actions belong to the

basement b. The definitions of �Ts and ≈Ts concern whether certain

nodes belong to the basement b. The definition of ≈Ac is unconcerned

with b.

The gist of <’s interpretation is this. The asymmetric relation �
contains a given pair of nodes precisely when the basement dictates

that the first node is more plausible (i.e. infinitely more likely) than

the second. Meanwhile, the symmetric relation ≈ contains a given pair

of nodes precisely when the basement dictates that neither of the nodes

can be more plausible (i.e. infinitely more likely) than the other. We

have introduced the word “plausibility” in lieu of the familiar phrase
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“infinite relative likelihood” only because it is grammatically more con-

venient.

This and the next four paragraphs discuss each of the five compo-

nents of < in detail. First consider �As . As with any relation, the

notations (t1, t2) ∈ �As and t1 �As t2 are equivalent. Thus t1 �As t2 iff

node t1 immediately precedes node t2 and the strategic action leading

from t1 to t2 is not in b (i.e. is played by b with zero probability). For

example, Figure 2 shows that {} �As {d1}, that is, that the origin {}
is more plausible than the node {d1} following action d1. This holds

because the intervening action d1 is not in b (i.e. is played by b with

zero probability). Similarly, {d1} �As {d1, d2} and {w1} �As {w1, d2}
(as in any set tree, a node is identified with the set of actions leading

to it).

Second, consider ≈As . Both t1 ≈As t2 and t2 ≈As t1 hold if t1 imme-

diately precedes t2 and the strategic action leading from t1 to t2 is in

b (i.e. is played by b with positive probability). In such a case, we say

that t1 and t2 are “equally plausible” in the sense that neither can be

infinitely more likely than the other. For example, Figure 2 shows

that {} ≈As {w1}, that {w1} ≈As {w1, w2}, that {d1} ≈As {d1, w2}, that

{d1, d2} ≈As {d1, d2, p1}, and that ≈As contains five other pairs which

end in terminal nodes like the last one listed. (The converses of these

nine pairs are also in ≈As because ≈As was defined to be symmetric.)

Third, this notion of being “equally plausible” applies not only to

strategic actions, but also to chance actions, which are played with

positive probability by assumption. Accordingly, the definition of ≈Ac
states that both t1 ≈Ac t2 and t2 ≈Ac t1 hold if a chance action leads

from t1 to t2. Unlike the other four components of <, this ≈Ac depends

only on the game tree and not on the basement. (Figure 2’s game tree

has no chance actions, and hence ≈Ac is empty.)

Fourth, the definition of �Ts states that a node in the support of an

agent’s belief is more plausible than any node of the agent outside the

support. For example, Figure 2 shows {w1} �Ts {d1}.
Fifth, the definition of ≈Ts states that a node in the support of

an agent’s belief is tied in plausibility with any other node inside

that support. For example, Figure 2 shows {d1, d2} ≈Ts {d1, w2} and

{d1, w2} ≈Ts {w1, d2}. (≈Ts also contains ({d1, d2}, {w1, d2}), and be-

cause the relation is symmetric, the converses of the three pairs already

mentioned.)
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The typical < is pervasively incomplete in the sense that it fails to

compare many pairs of nodes. For instance, in Figure 2’s example, nei-

ther {} < {d1, d2} nor {d1, d2} < {}. In general, if |T |≥3, there must

be two (distinct) nodes that cannot be compared by the plausibility

relation < of any basement. To see this, note that if |T |≥3, then there

must be two nodes such that (a) neither is an immediate predecessor

of the other, and (b) the two are not in the same agent. By (a) the

two nodes cannot be ordered into a pair belonging to �As , ≈As , or ≈Ac .
By (b) the two nodes cannot be ordered into a pair belonging to �Ts
or ≈Ts . Hence the two cannot be ordered into a pair belonging to <.

Further, the typical < is also intransitive. This accords with its

incompleteness. For instance, in Figure 2’s example, transitivity is

violated by the lack of {} < {d1, d2}. In general, such an intransitiv-

ity must occur whenever one agent follows another, regardless of the

basement under consideration.

As mentioned in the introduction, our relation < is a minor depar-

ture from the literature. There, infinite relative likelihoods are derived

indirectly from the rich probability structures that are derived from

consistent assessments. Such rich probability structures include (1)

the conditional probability systems of Myerson (1986), which are built

on the mathematical foundations of Rényi (1955); (2) the logarithmic

likelihood ratios of McLennan (1989); (3) the lexicographic probabil-

ity systems of Blume, Brandenburger, and Dekel (1991); (4) the non-

standard probability systems of Hammond (1994) and Halpern (2010),

which are built on the mathematical foundations of Robinson (1973);

and (5) the relative probability systems of Kohlberg and Reny (1997).

In contrast, our < is derived directly from an arbitrary basement,

which may or may not be the support of a consistent assessment. Ac-

cordingly, there are at least three differences. (a) Our < does not

assume consistency while their constructions do. (b) Our < is easier

to derive because its definition does not require their rich probability

structures. (c) Our < is incomplete and intransitive while their infinite

relative likelihoods are complete and transitive.5

5 A further difference is that our (incomplete) < is uniquely determined by the
assessment, while in their frameworks, one assessment can lead to several prob-
ability systems, each with its own (complete) infinite relative likelihoods. This
multiplicity of probability systems appears to correspond with the possibility of
our plausibility relation having multiple completions.
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3.3. Introducing mass functions µ

As we have seen, a typical plausibility relation < is incomplete. A

completion of < is a complete extension of <. In other words, a com-

plete <∗ is a completion of < if for all t1 and t2

t1 � t2 ⇒ t1 �∗ t2 and

t1 ≈ t2 ⇒ t1 ≈∗ t2 ,
where �∗ and ≈∗ are the asymmetric and symmetric parts of <∗. Any

< has at least one (possibly intransitive) completion.

Since T is finite, the existence of a transitive completion is equivalent

to the existence of a function ϕ:T→R which represents6 a completion

of < in the sense that for all t1 and t2

t1 � t2 ⇒ ϕ(t1) > ϕ(t2) and

t1 ≈ t2 ⇒ ϕ(t1) = ϕ(t2) .
(3)

For example, Figure 2’s plausibility relation does not have a transitive

completion because {d1} � {d1, d2} and yet {d1} ≈ {d1, w2} ≈ {d1, d2}.
Accordingly, that figure’s plausibility relation does not have a comple-

tion that can be represented by a ϕ.

Stronger than the existence of a transitive completion would be the

existence of a function µ:A→R whose nodal sums represent a comple-

tion of < in the sense that for all t1 and t2

t1 � t2 ⇒ Σa∈t1µ(a) > Σa∈t2µ(a) and

t1 ≈ t2 ⇒ Σa∈t1µ(a) = Σa∈t2µ(a) .
(4)

This is stronger than the existence of a transitive completion because

(4) implies that (3) holds with the special functional form ϕ(t) =

Σa∈tµ(a). For brevity, we will often omit mentioning the nodal sums

Σa∈tµ(a) and simply say that such a µ additively represents a comple-

tion of <.

For example, Figure 3’s plausibility relation < has a completion that

is represented by the nodal sums of a function µ. Such a function

µ:A→R is given by the numbers without boxes that appear over the

6We use the term “represent” as it is used in standard consumer theory. In
contrast, much of the bibliography’s non-economics literature would use “represent”
to mean our “represent a completion of”. If we were studying complete relations,
these two meanings of “represent” would be equivalent since the only completion of
a complete relation is the relation itself. Interestingly, a typical plausibility relation
is incomplete, and thus our choice of terminology is substantial.
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Worker 1

bd1
bcw1

bc

Worker 2

bd2
bcw2 bd2

bcw2

bc

Manager

bp1 bcp2 bp1 bcp2 bp1 bcp2

bc

≺

≺

{d1, d2}≺{w1, d2} is not shown.

≈

≈ ≈

≈ ≈ ≈
≺

≺ ≺

≺ ≺ ≺

0

-2 0

-3 -2 -1

-2 0

-1 0 -1 0

-1 0 -1 0 -1 0

0

-4 -3 -3 -2 -2 -1

Figure 3. A basement b, its plausibility relation <, and
a mass function µ whose nodal sums (which appear in the
boxes) represent a completion of <.

actions, and its nodal sums Σa∈tµ(a) are given by the numbers within

boxes that appear over the nodes. If brevity were important, as it often

is, we would omit mentioning the nodal sums, and simply say that the

figure’s µ additively represents a completion of the figure’s <.

Because of its resemblance to a probability mass function, we call

a function µ:A→R a mass function. To explore this resemblance in

detail, suppose that p:Ω→[0, 1] is a probability mass function defined

on a finite set Ω of states ω (sometimes p is called a discrete probability

“density” function). Then, as we all know, the probability of any event

e⊆Ω can be calculated by the sum Σω∈ep(ω). Analogously, (1) an

action a∈A is like a state ω ∈Ω, (2) a mass function µ:A→R is like a

probability mass function p:Ω→[0, 1], (3) a node t⊆A is like an event

e⊆Ω, and (4) a nodal sum Σa∈tµ(a) is like a sum of the form Σω∈ep(ω).

Although this analogy is quite useful, it is imperfect in the sense that
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we do not require that the values of a mass function µ be nonnegative

or that they sum to one.

It is natural to call µ a plausibility mass function, to call µ(a) the

plausibility of the action a, and to call Σa∈tµ(a) the plausibility of the

node t. Further, it is natural to say that a basement has additive

plausibility if its plausibility relation has a completion with an additive

representation.

4. The Necessity of Additive Plausibility

4.1. Re-using classic probability theory

Theorem 1. Suppose an assessment is consistent. Then its sup-

port’s plausibility relation < has a completion represented additively

by a mass function µ. Further, the mass function µ can be made to

assume integer values. (Proof 4.3 below.)

This theorem closely resembles a well-known result from classic prob-

ability theory. From an abstract perspective, < is a binary relation

comparing sets t of actions a∈A. Similarly, Kraft, Pratt, and Seiden-

berg (1959) and Scott (1964) consider a binary relation % comparing

sets e of states ω ∈Ω. There, the statement e1� e2 means that the

event e1 is regarded as “more probable” than e2, and the statement

e1≈ e2 means that the events e1 and e2 are regarded as “equally proba-

ble”. Kraft, Pratt, and Seidenberg (1959, Theorem 2) and Scott (1964,

Theorem 4.1) then state conditions on % which imply the existence of

a probability mass function p:Ω→[0, 1] such that for all e1 and e2

e1 � e2 ⇒ Σω∈e1p(ω) > Σω∈e2p(ω) and

e1 ≈ e2 ⇒ Σω∈e1p(ω) = Σω∈e2p(ω) .

In the terminology of the previous subsection, they state conditions

on % which imply that % has a completion represented additively by

a probability mass function p:Ω→[0, 1]. Theorem 1 is unexpectedly

similar.

In accord with this similarity, the remainder of this subsection will

derive Theorem 1 from a well-known result in the non-economics lit-

erature. To begin, consider an arbitrary finite set A and an arbitrary

binary relation % comparing subsets of A, which are denoted here by
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s⊆A and t⊆A. In this abstract setting, % is said to have a completion

represented additively by a mass function µ:A→R if for all s and t

s � t ⇒ Σa∈sµ(a) > Σa∈tµ(a) and

s ≈ t ⇒ Σa∈sµ(a) = Σa∈tµ(a) ,

where � and ≈ are the asymmetric and symmetric parts of <.

Now let a cancelling sample from % be a finite indexed collection

〈(sm, tm)〉Mm=1 of pairs (sm, tm) taken from % such that

(∀a) |{m|a∈sm}| = |{m|a∈tm}| .
Note that the sample is taken “with replacement” in the sense that

a pair can appear more than once. Further, by the equation, every

action appearing on the left side of some pair is “cancelled” by the

identical action appearing on the right side of that or some other pair.

For example, if {a, a′} % {a, a′}, then a cancelling sample from % is

given by M=1 and (s1, t1) = ({a, a′}, {a, a′}). The relation % is said

to satisfy the cancellation law if every cancelling sample from % must

be taken from the symmetric part of %.

The cancellation law is equivalent to the existence of a completion

represented additively by a mass function.7 This result undergirds

the foundations for probability in Kraft, Pratt, and Seidenberg (1959,

Theorem 2) and Scott (1964, Theorem 4.1). It also undergirds the

abstract representation theory in Krantz, Luce, Suppes, and Tversky

(1971, Sections 2.3 and 9.2) and Narens (1985, pages 263-265).8

The following lemma is a very minor adaptation of that well-known

result. Its proof requires nothing more than Farkas’ Lemma (which

can be derived from undergraduate linear algebra as in Vohra (2005,

pages 16-18)). The lemma obtains an integer-valued mass function by

employing a version of Farkas’ Lemma for rational matrices.

7This result can be regarded as a generalization of Suzumura (1976, Theorem 3)
in the social-choice literature. There it is shown that a relation on a finite set has
a transitive completion iff every cycle in the relation contains no pairs from the
asymmetric part of the relation. That result follows from the general result here
by identifying every a∈A with the singleton {a} that contains it. In the realm of
such singletons, the cancellation law is equivalent to Suzumura’s rule on cycles, and
a mass function µ reduces to Subsection 3.2’s representation ϕ (which is in turn
equivalent to the existence of a transitive extension).

8These classic results over discrete spaces complement Debreu (1960)’s deriva-
tion of an additive representation over continuum product spaces. Debreu imposes
weaker cancellation assumptions (e.g., Debreu (1960, Assumption 1.3)) and com-
pensates with topological assumptions.
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Lemma 4.1. Let A be a finite set, and let % be a relation comparing

subsets of A. Then % satisfies the cancellation law iff it has a comple-

tion represented additively by a mass function µ:A→Z. (Proof A.5 in

the appendix.)

We now use this abstract framework to prove Theorem 1.

Lemma 4.2. Suppose an assessment is consistent. Then its sup-

port’s plausibility relation < satisfies the cancellation law.

Proof. Let (σ, β) be a consistent assessment, let < be its plausibility

relation, and let 〈(sm, tm)〉Mm=1 be cancelling sample from <. By the

definition of a cancelling sample,

(∀n) ΠM
m=1Πa∈sm(ρ∪σn)(a) = ΠM

m=1Πa∈tm(ρ∪σn)(a) .

Thus

(∀n) ΠM
m=1

Πa∈tm(ρ∪σn)(a)

Πa∈sm(ρ∪σn)(a)
= 1 ,

which obviously implies

lim
n

ΠM
m=1

Πa∈tm(ρ∪σn)(a)

Πa∈sm(ρ∪σn)(a)
= 1 .(5)

By consistency, there is a sequence 〈(σn, βn)〉∞n=1 of Bayesian full-support

assessments that converge to (σ, β). Thus by applying Lemma A.6 at

(t1, t2) = (sm, tm), we have (note sm is in the denominator)

(∀ sm� tm) lim
n

Πa∈tm(ρ∪σn)(a)

Πa∈sm(ρ∪σn)(a)
= 0 and

(∀ sm≈ tm) lim
n

Πa∈tm(ρ∪σn)(a)

Πa∈sm(ρ∪σn)(a)
∈ (0,∞) .

(6)

If 〈(sm, tm)〉Mm=1 has a pair from �, equations (5) and (6) contradict

the product rule for limits. Hence no such pair exists. 2

Proof 4.3 (for Theorem 1). Consider a consistent assessment. By

Lemma 4.2, its support’s plausibility relation satisfies the cancellation

law. Thus by Lemma 4.1, its support’s plausibility relation has a com-

pletion represented additively by an integer-valued mass function. 2
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4.2. A Useful Digression

As discussed in Subsection 3.3, having a completion with an ad-

ditive representation implies having a transitive completion. Hence

Corollary 1 follows easily from Theorem 1 (and does not use the full

force of the theorem).

Corollary 1. If an assessment is consistent, then its support’s plau-

sibility relation has a transitive completion.

Corollary 1 provides a weak but easily-tested necessary condition

for consistency. For example, consider Figure 2’s basement. Subsec-

tion 3.3 showed that this basement’s plausibility relation does not have

a transitive completion. Thus Corollary 1 implies the inconsistency of

any assessment that is supported by this basement. One of many such

assessments is the assessment of Figure 1.

4.3. Plausibility numbers “count steps below path”

In probability theory, an event e is at least as probable as any of its

subsets, and thus, a probability mass function is nonnegative-valued. In

contrast, a node t is at most as plausible as any of its subnodes (i.e. pre-

decessors), and thus, a plausibility mass function is nonpositive-valued.

The following lemma provides details. Its proof is uncomplicated.

Lemma 4.4. Suppose b’s plausibility relation has a completion rep-

resented additively by µ. Then (a) µ(Ac) = {0} , (b) µ(As∩b) = {0} ,

(c) µ(Asrb) ⊆ R++ , and (d) µ is nonpositive-valued.

Proof. (a) Take any a∈Ac. By Lemma A.1(a), there is some t such

that a∈F (t). Then t≈ t∪{a} by the definition of ≈Ac , which implies

Σa′∈tµ(a′) = Σa′∈t∪{a}µ(a′) by representation (4), which implies µ(a) =

0 since a/∈t by a∈F (t) and the definition of F .

(b) Take any a∈As∩b. By Lemma A.1(b), there is some t such

that a∈F (t). Then t≈ t∪{a} by the definition of ≈As , which implies

Σa′∈tµ(a′) = Σa′∈t∪{a}µ(a′) by representation (4), which implies µ(a)=0

since a/∈t by a∈F (t) and the definition of F .

(c) Take any a∈Asrb. By Lemma A.1(b), there is some t such

that a∈F (t). Thus t� t∪{a} by the definition of �As , which implies

Σa′∈tµ(a′) > Σa′∈t∪{a}µ(a′) by representation (4), which implies µ(a)<0.

(d) Because the domain of µ is A = Ac∪As, parts (a)–(c) imply that

µ is nonpositive-valued. 2
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In brief, parts (a) and (b) show that zero plausibilities are assigned

to actions played with positive probability, and part (c) shows that

negative plausibilities are assigned to actions played with zero prob-

ability. Thus a node’s plausibility Σa∈tµ(a) is a measure of how far

the node t is below the so-called “equilibrium path”. This measure is

slightly more sophisticated than (the negative of) the number of zero-

probability actions in the node (i.e. leading to the node) because each

zero-probability action can be assigned its own negative plausibility

number.

To sharpen these ideas, we could refer to the “equilibrium path” as

the “basement’s path” since we are considering a basement which may

or may not be the support of an equilibrium of some sort. Further,

Theorem 1 suggests that we can “count steps” rather than “measure

distance” below the basement’s path because a plausibility mass func-

tion can be made to assume integer values.

5. Characterizations of the Supports

of Consistent Assessments

5.1. Characterizations using <

Theorem 1 shows that a basement has additive plausibility if it sup-

ports at least one consistent assessment. The converse of this result

can be proved by applying the Kreps-Wilson definition of consistency.

Accordingly, Theorem 2(a⇔d) (below) states that a basement has ad-

ditive plausibility iff it supports at least one consistent assessment. In

other words, it shows that additive plausibility characterizes the sup-

ports of consistent assessments. This equivalence is our main result, as

reflected in the title of the paper.

In addition, Theorem 2(a⇔b) (below) shows that the supports of

consistent assessments can be characterized by the cancellation law.

And finally, Theorem 2(c⇔d) (below) shows that the integer-valuedness

of a mass function is inconsequential. All of the above characterizations

are new.
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5.2. Characterizations without <

It can also be useful to characterize the supports of consistent as-

sessments without reference to a plausibility relation <. Toward that

end, say that a mass function µ indicates a basement b if

µ(Ac) = {0} ,(7a)

µ(As∩b) = {0} ,(7b)

µ(Asrb) ⊆ R−− , and(7c)

(∀h∈Hs) h∩b = argmaxt∈h Σa∈tµ(a) .(7d)

Lemma 5.1. µ indicates b iff µ additively represents a completion

of the plausibility relation of b. (Proof A.8 in the appendix.)

Theorem 2(a⇔g) (below) shows that indication characterizes the

supports of consistent assessments. This characterization is related to

a portion of the characterizations of consistency in Kreps and Wilson

(1982, Lemmas A1 and A2) and Perea y Monsuwé, Jansen, and Peters

(1997, Theorem 3.1). Note that these two papers characterize not

merely the supports of consistent assessments, as we do here, but more

substantially, the consistent assessments themselves. We believe that

their important results have been largely overlooked, and that they

deserve much more recognition.

The remainder of this subsection (a) reviews the relevant concepts

from these two papers, (b) states and proves Theorem 2, and (c) com-

pares portions of Theorem 2 to these two papers.

First consider Kreps and Wilson (1982).9 As in their equation (A.1)

on page 887, say that a function K:As→Z+ labels a basement b if

(∀a∈As) a∈ b iff K(a) = 0 , and(8a)

(∀h∈Hs)(∀t∈h) t∈ b iff t∈ argmint′∈h Σa∈t′K(a) .(8b)

9Let Ac be their W , let T c be {{w}|w∈W}, let As be their A, let t∈T s be their
x∈X, and let (σ, β) be their (π, µ). Further, note that our concept of a basement
is a restriction of their concept of a “basis”, which they define on page 880 to
be an arbitrary subset of As∪T s. Although this restriction is inconsequential by
Lemma A.2, it conveniently allows us to omit one condition of their definition of
labelling. In particular, we can omit their condition (∀h∈Hs)(∃a∈F (h))K(a)=0
because it is implied by (8a) and the definition of basement. To see this, take any
h∈Hs. The definition of a basement b implies that there is an a ∈ F (h)∩b, and
thus (8a) implies that this a satisfies K(a)=0. Finally, in a separate matter, note
that their JK(t) is equal to Σa∈tK(a) in our set-tree formulation.
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The following lemma relates a labelling K to a mass function µ.

Lemma 5.2. The following are equivalent.

(a) µ(A) ⊆ Z and µ indicates b.

(b) µ(Ac) = {0} and −µ|As is a K that labels b.

(Proof A.9 in the appendix.)

Second consider Perea y Monsuwé, Jansen, and Peters (1997).10 For

our purposes, say that a basement b is justified if there exists ε:Asrb→
(0, 1) such that

(∀h∈Hs)(∀t∈h) t∈ b iff t∈ argmaxt′∈h Πa∈t′∩(Asrb)ε(a) ,

where the product over the empty set is defined to be one. If b is the

support of (σ, β), then b is justified iff there exists ε:A0(σ)→(0, 1) such

that

(∀h∈Hs)(∀t∈h) β(t)> 0 iff t∈ argmaxt′∈h Πa∈t′∩A0(σ)ε(a) ,

where A0(σ) = {a∈As|σ(a)=0} is the set of strategic actions that are

played by σ with zero probability. This latter condition is equivalent to

condition (1) of Perea y Monsuwé, Jansen, and Peters (1997, Theorem

3.1). The values of ε can usefully be called “error likelihoods”, for as

Perea (2001, page 75) points out, they measure the relative likelihoods

of different errors (i.e., zero-probability actions).

The following lemma relates an error-likelihood function ε to a plau-

sibility mass function µ. Note that eµ|Asrb is the restriction of the com-

position eµ = exp ◦µ to Asrb. Thus, for all a∈Asrb, a plausibility mass

function µ is related to an error-likelihood function ε by eµ(a) = ε(a),

or in other words, by µ(a) = ln(ε(a)).

Lemma 5.3. µ indicates b iff (a) µ(Ac) = {0} , (b) µ(As∩b) = {0} ,

(c) µ(Asrb) ⊆ R++ , and (d) eµ|Asrb is an ε that justifies b. (Proof A.10

in the appendix.)

The following theorem subsumes Theorem 1 and incorporates all of

the above concepts.

Theorem 2. The following are equivalent for any basement b.

(a) b is the support of at least one consistent assessment.

10Let As be their A, and let t∈T s be their x∈X. Note that their Ax (the set of
actions leading to a node) is identical to the node itself in our set-tree formulation.
Finally note that if b supports (σ, β), then their A0(σ) equals our Asrb.
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(a)
consistency

4.2

A.7(b)
cancellation

4.1 ↑

(c)
integer-valued

additive
representation

5.1
(e)

integer-valued
indication

5.2
(g)

labelling

(d)
additive

representation

5.1
← (f)

indication

5.3
(h)

justification

Figure 4. The solid arrows down the left side show
Theorem 1’s proof. Altogether the solid arrows show
Theorem 2’s proof’s first paragraph. The dotted arrows
show its second paragraph. (The tiny arrows show where
converses can be proved directly.)

(b) b’s plausibility relation obeys the cancellation law.

(c) b’s plausibility relation has a completion represented additively by

an integer-valued mass function.

(d) b’s plausibility relation has a completion represented additively

by a (real-valued) mass function.

(e) b is indicated by an integer-valued mass function.

(f) b is indicated by a (real-valued) mass function.

(g) b can be labelled (a la Kreps and Wilson (1982)).

(h) b can be justified (a la Perea y Monsuwé, Jansen, and Peters

(1997)).

Proof. (See Figure 4.) (a) implies (b) by Lemma 4.2, (b) implies (c)

by Lemma 4.1, and (c) implies (d) obviously. (Theorem 1 was proved

by this chain of reasoning.) Conversely, (d) implies (f) by Lemma 5.1,

and (f) implies (a) by Lemma A.7. Hence (a), (b), (c), (d), and (f) are

equivalent.

(c) is equivalent to (e) and (g) by Lemmas 5.1 and 5.2. (f) is equiv-

alent to (h) by Lemma 5.3. 2
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The equivalence of (a) and (g) extends Kreps and Wilson (1982,

Lemma A1) to the extent that (1) it relaxes perfect recall to agent

recall and (2) it accommodates arbitrary chance agents. In addition,

we correct their proof: Streufert (2006, Subsection 3.2) shows by coun-

terexample that their proof has a significant gap. This is important

because their Lemma A1 undergirds all of their paper’s theorems.

The equivalence of (a) and (h) extends a portion of Perea y Mon-

suwé, Jansen, and Peters (1997, Theorem 3.1): it is more general to the

extent that (1) it relaxes perfect recall to agent recall, (2) it accommo-

dates arbitrary chance agents, and (3) it derives a mass function with

integer rather than real values. In addition, our mathematics is at a

lower level: while their proof uses the separating hyperplane theorem,

ours uses algebra alone.

Finally, the equivalence of (g) and (h) unifies Kreps and Wilson

(1982) and Perea y Monsuwé, Jansen, and Peters (1997). Only a su-

perficial similarity has been noted earlier.

In this manner the last two characterizations of Theorem 2 extend,

correct, simplify, and unify an important literature which we believe

deserves much greater recognition.

6. Conclusion

Theorem 1 shows that a consistent assessment’s support must have

additive plausibility. It does this by combining classic probability the-

ory’s use of Farkas’ Lemma with Streufert (2012)’s result that a node

can be identified with the set of actions leading to it. Corollary 1 then

provides a weaker necessary condition for consistency: the plausibil-

ity relation of a consistent assessment’s support must have a transitive

extension.

Theorem 2 incorporates Theorem 1 and its converse. Thus additive

plausibility characterizes the supports of consistent assessments. This

is our main result. Theorem 2 also shows that additive plausibility is

equivalent to classic probability theory’s cancellation law, and that it

is equivalent to an algebraic condition defined without reference to a

plausibility relation. This last characterization allows us to fill a gap

in a proof of Kreps and Wilson (1982).



Appendix

A.1. Preliminaries

Lemma A.1. (a) Ac =
⋃
t∈T cF (t). (b) As =

⋃
t∈T sF (t).

Proof. (a) First take any a∈Ac. By the definition of Ac there exists

some h∈ic such that a∈F (h). Take any t∈h. By h∈ic and the definition

of T c, we have t∈T c. Hence a ∈ F (h) = F (t) ⊆ ⋃t′∈T cF (t′). Second

take any a∈⋃t′∈T cF (t′). Then let t∈T c be such that a∈F (t). By the

definition of T c there exists h∈ic such that t∈h. Hence a ∈ F (t) = F (h)

⊆ ⋃h′∈icF (h′) = Ac, where the last equality is the definition of Ac.

(b) A symmetric argument holds with As replacing Ac, T s replacing

T c, and h∈Hs replacing h∈ic. 2

Lemma A.2. A subset of As∩T s supports at least one assessment

iff it is a basement.

Proof. Let b̄ be an arbitrary subset of As∪T s.
Consider any assessment (σ, β). Note that b̄ supports (σ, β) iff b̄∩As

supports σ:As→[0, 1] and b̄∩T s supports β:T s→[0, 1]. Since As =⋃
h∈HsF (h), b̄∩As supports σ:As→[0, 1] iff (∀h∈Hs) F (h)∩b̄ supports

σ|F (h). Similarly, since T s =
⋃
h∈Hsh, b̄∩T s supports β:T s→[0, 1] iff

(∀h∈Hs) h∩b̄ supports β|h. Thus b̄ supports (σ, β) iff, for every agent

h∈Hs, F (h)∩b̄ supports the agent’s strategy σ|F (h) and h∩b̄ supports

the agent’s belief β|h.
Therefore, if b̄ supports an assessment, it must be that every F (h)∩b̄

and every h∩b̄ is nonempty. Conversely, if every F (h)∩b̄ and every

h∩b̄ is nonempty, then b̄ supports the assessment (σ, β) defined at each

h∈Hs by

(∀a∈F (h)) σ(a) =

(
1

|F (h)∩b̄| if a∈F (h)∩b̄
0 if a∈F (h)rb̄

)
and

(∀t∈h) β(t) =

(
1
|h∩b̄| if a∈h∩b̄
0 if a∈hrb̄

)
.

By the definition of basement, the last two sentences imply that b̄

supports at least one assessment iff it is a basement. 2

Proof A.3 (for Lemma 3.1). Note ≈Ac is symmetric and equal to

{ (t, t∪{a}) | a∈F (t) and a∈Ac }
∪ { (t∪{a}, t) | a∈F (t) and a∈Ac } .(9)
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Further, ≈As is symmetric, �As is asymmetric, and the two are disjoint

subsets of

{ (t, t∪{a}) | a∈F (t) and a∈As }
∪ { (t∪{a}, t) | a∈F (t) and a∈As } .(10)

Similarly, ≈Ts is symmetric, �Ts is asymmetric, and the two are disjoint

subsets of

{ (t1, t2) | (∃h∈Hs) {t1, t2}∈h } .(11)

This paragraph observes that these three sets are pairwise disjoint.

(9) and (10) are disjoint because A is partitioned by {Ac, As}. Further,

the union of (9) and (10) is disjoint from (11). If this were not the case,

there would be t, a, and h such that a∈F (t) and {t, t∪{a}}∈h. Since

a∈F (t) and t and t∪{a} share an agent, assumption (1a) would imply

that a∈F (t∪{a}). However, this would contradict the definition of F ,

which would require that a/∈t∪{a}.
Since the sets (9), (10), and (11) are pairwise disjoint, the disjoint-

edness observed in the first paragraph implies that < is partitioned

by { ≈Ac ,≈As ,�As ,≈Ts ,�Ts }. Thus the symmetries and asymme-

tries observed in the first paragraph imply that ≈ is partitioned by

{ ≈Ac ,≈As ,≈Ts } and that � is partitioned by { �As ,�Ts }. 2

A.2. For Theorem 1’s proof

Fact A.4 (Farkas Lemma for Rational Matrices). Let D ∈ Qdp and

E ∈ Qep be two rational matrices. Then the following are equivalent

(Dµ�0 means every element of Dµ is positive and δT means the trans-

pose of δ).

(∃µ∈Zp) Dµ� 0 and Eµ = 0 .(a)

Not (∃δ∈Zd
+

r{0})(∃ε∈Ze) δTD + εTE = 0 .(b)

(From Krantz, Luce, Suppes, and Tversky (1971, pages 62–63) with D

replacing [αi]
m′
i=1 and E replacing [βi]

m′′
i=1.)

Proof A.5 (for Lemma 4.1). Sufficiency of the Cancellation Law.

First take any relation%. For any t, define the row vector 1t ∈ {0, 1}|A|
by 1ta = 1 if a ∈ t and 1ta = 0 if a 6∈ t. Then define the matrices

D = [1s−1t]s�t and E = [1s−1t]s≈t whose rows are indexed by the

pairs of the relations � and ≈.
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Now suppose % satisfies the cancellation law. This paragraph will

argue that there cannot be column vectors δ ∈ Z|�|+
r{0} and ε ∈ Z|≈|

such that δTD + εTE = 0. To see this, suppose that there were such δ

and ε. By the symmetry of ≈, we may define ε+ ∈ Z|≈|+ by

(∀s≈t) (ε+)(s,t) =

(
ε(s,t)−ε(t,s) if ε(s,t)−ε(t,s) ≥ 0

0 otherwise

)
so that εTE = εT+E. Thus we have δ ∈ Z|�|+

r{0} and ε+ ∈ Z|≈|+ such

that δTD + εT+E = 0. Now define the sequence 〈(sm, tm)〉Mm=1 of pairs

from % in such a way that every pair from � appears λ(s,t) times and

every pair from ≈ appears (µ+)(s,t) times. The equality δTD+εT+E = 0

yields that this sequence satisfies (∀a) |{m|a∈sm}| = |{m|a∈tm}|, and

δ ∈ Z|≺|+
r{0} yields that it contains at least one pair from �. By the

cancellation law, this is impossible.

Since the result of the previous paragraph is equivalent to condition

(b) of Lemma A.4, there is a vector µ ∈ Z|A| such that Dµ � 0 and

Eµ = 0. By the definitions of D and E, this is equivalent to µ being a

mass function representing a completion of <.

Necessity of the Cancellation Law.11 Suppose µ represents an com-

pletion of % and that 〈(sm, tm)〉Mm=1 is a cancelling sample from %. By

the definition of a cancelling sample,

ΣM
m=1Σa∈smµ(a) = ΣM

m=1Σa∈tmµ(a) .

Yet by representation,

(∀ sm� tm) Σa∈smµ(a) > Σa∈tmµ(a) and

(∀ sm≈ tm) Σa∈smµ(a) = Σa∈tmµ(a) .

The last two sentences contradict if 〈(sm, tm)〉Mm=1 has a pair from �.

Hence no such pair exists. 2

Lemma A.6. Suppose that 〈(σn, βn)〉n is a sequence of full-support

Bayesian assessments that converges to (σ, β), and that (σ, β)’s sup-

port’s plausibility relation is <. Then

(∀ t1� t2) lim
n

Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)
= 0 and

11This half is easy and is included only to round out the picture. It is a good
place to begin if the cancellation law is unfamiliar.
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(∀ t1≈ t2) lim
n

Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)
∈ (0,∞)

(where Πa∈{}(ρ∪σn)(a) is defined to be one).

Proof. Take any such 〈(σn, βn)〉n and (σ, β), let (σ, β)’s support be

b, and let b’s plausibility relation be <.

This paragraph shows

(∀ t1�As t2) lim
n

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= 0 .(12)

Suppose t1�As t2. By the definition of �As , there exists a∈Asrb such

that a∈F (t1) and t1∪{a} = t2. Thus,

lim
n

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= lim

n
σn(a) = σ(a) = 0 .

where the first equality holds since a/∈t1 by the definition of F , and the

third equality holds because a∈Asrb.

This paragraph shows

(∀ t1≈As t2) lim
n

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
∈ (0,∞) .(13)

Suppose t1≈As t2. By the definition of ≈As , there exists a∈As∩b such

that either [a] a∈F (t1) and t1∪{a}=t2, or symmetrically [b] a∈F (t2)

and t2∪{a}=t1. In case [a],

lim
n

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= lim

n
σn(a) = σ(a) ∈ (0, 1] ,

where the first equality holds since a/∈t1 by the definition of F , and the

set inclusion holds since a∈As∩b. In case [b],

lim
n

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= lim

n

1

σn(a)
=

1

σ(a)
∈ [1,∞) .

where the first equality holds since a/∈t2 by the definition of F , and the

set inclusion holds since a∈As∩b.
In a similar fashion, this paragraph shows

(∀ t1≈Ac t2) lim
n

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
∈ (0,∞) .(14)

Suppose t1≈Ac t2. By the definition of ≈Ac , there exists a∈Ac such that

either, [a] a∈F (t1) and t1∪{a}=t2, or symmetrically [b] a∈F (t2) and
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t2∪{a}=t1. In case [a], a/∈t1 and thus

lim
n

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= lim

n
ρ(a) ∈ (0, 1] .

In case [b], a/∈t2 and thus

lim
n

Πa′∈t2(ρ∪σn)(a′)

Πa′∈t1(ρ∪σn)(a′)
= lim

n

1

ρ(a)
∈ [1,∞) .

This paragraph notes that if t1 and t2 belong to the same h∈Hs, and

if β(t1) > 0, then

lim
n

Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)

= lim
n

Πa∈t2(ρ∪σn)(a)/Σt∈hΠa∈t(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)/Σt∈hΠa∈t(ρ∪σn)(a)

= lim
n

βn(t2)

βn(t1)
=
β(t2)

β(t1)
.

The second equality follows from the conditional-probability law (2),

which applies over h because each (σn, βn) was assumed to be Bayesian.

The third follows from this paragraph’s assumption that β(t1) > 0.

This paragraph shows

(∀ t1�Ts t2) lim
n

Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)
=
β(t2)

β(t1)
= 0 .(15)

Suppose t1�Ts t2. By the definition of �Ts , we have that (a) t1 and

t2 belong to the same h∈Hs, (b) t1∈T s∩b, and (c) t2∈T 2rb. The first

equality in (15) holds by the last paragraph, (a), and (b), because (b)

implies β(t1) > 0. The second equality follows from (c), because (c)

implies β(t2) = 0.

Similarly, this paragraph shows

(∀ t1≈Ts t2) lim
n

Πa∈t2(ρ∪σn)(a)

Πa∈t1(ρ∪σn)(a)
=
β(t2)

β(t1)
∈ (0,∞) .(16)

Suppose t1≈Ts t2. By the definition of ≈Ts , we have that (a) t1 and t2

belong to the same h∈Hs, and (b) {t1, t2}⊆T 2∩b. The first equality

in (16) holds by the next-to-last paragraph, (a), and (b), because (b)

implies β(t1) > 0. The inequality also follows from (b), because (b)

also implies β(t2) > 0.

The lemma’s conclusion follows from (12)–(16) and from the defini-

tions of � and ≈. 2
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A.3. For Theorem 2’s Proof

Lemma A.7. If a basement is indicated by a mass function, then it

supports a consistent assessment.

Proof. Suppose that µ indicates b.

This and the next paragraph define an assessment (σ, β). Since As =⋃
h∈HsF (h), define σ:As→[0, 1] at each h∈Hs and each a∈F (h) by

σ(a) =

(
1

|F (h)∩b| if a∈F (h)∩b
0 if a∈F (h)rb

)
.

Every σ(a) is a well-defined number in [0, 1] because the definition of

a basement states that |F (h)∩b|≥1 at each h∈Hs. Further, at each

h∈Hs, the restriction σ|F (h):F (h)→[0, 1] is a probability distribution

over F (h) because Σa∈F (h)σ(a) = Σa∈F (h)∩b
1

|F (h)∩b| = 1.

The definition of β requires two steps. First, since As =
⋃
h∈HsF (h),

define λ:As→(0, 1] at each h∈Hs and each a∈F (h) by

λ(a) =

(
σ(a) if a∈F (h)∩b

1 if a∈F (h)rb

)
.

Then, since T s =
⋃
h∈Hsh, define β:T s→[0, 1] at each h∈Hs and each

t∈h by

β(t) =

 Πa∈t (ρ∪λ)(a)

Σt′∈Tµ(h) Πa∈t′ (ρ∪λ)(a)
if t ∈ T µ(h)

0 if t ∈ hrT µ(h)

 ,

where T µ(h) = argmaxt′∈h Σa∈t′∩Asµ(a), and where ρ∪λ:A→(0, 1] is

the union of ρ:Ac→(0, 1) and λ:As→(0, 1]. Every β(t) is a well-defined

number in [0, 1] because ρ∪λ is positive-valued. Further, at each h∈Hs,

the restriction β|h:h→[0, 1] is a probability distribution because Σt∈hβ(t)

= Σt∈Tµ(h)β(t) = 1.

This paragraph shows that b supports (σ, β). This is equivalent

to showing that (a) the support of each σ|h is F (h)∩b and (b) the

support of each β|h is h∩b. Statement (a) holds by the definition of

σ. Statement (b) holds since the support of each βh is defined to be

T µ(h) = argmaxt′∈hΣa∈t′∩Asµ(a), and since this equals h∩b by the as-

sumption that µ indicates b.
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It remains to show that (σ, β) is consistent. Accordingly, this para-

graph defines a sequence 〈(σn, βn)〉n of full-support Bayesian assess-

ments. Take any n. First define σn by

(∀a∈As) σn(a) =
λ(a)nµ(a)

Σa′∈F (F−1(a)) λ(a′)nµ(a′) ,

where F−1(a) denotes the agent that plays a (this F−1(a) is well-defined

because actions are assumed to be agent-specific by assumption (1b)).

Note that σn is positive-valued because λ is positive-valued. Then

derive βn by the conditional-probability rule. In other words, define βn
by

(∀h∈Hs)(∀t∈h) βn(t) =
Πa∈t(ρ∪σn)(a)

Σt′∈hΠa∈t′(ρ∪σn)(a)
.

This βn is well-defined because σn is positive-valued.

It remains to show that 〈(σn, βn)〉n converges to (σ, β). As a first

step, this paragraph shows

(∀a∈As) lim
n
λ(a)nµ(a) = σ(a) .(17)

On the one hand, consider a∈As∩b. Here we have

lim
n
λ(a)nµ(a) = lim

n
σ(a)n0 = σ(a)

since λ(a) = σ(a) by the definition of λ, and since µ(As∩b) = {0} by

the assumption that µ indicates b. On the other hand, consider any

a∈Asrb. Here we have

lim
n
λ(a)nµ(a) = lim

n
nµ(a) = 0 = σ(a) ,

where the first equality holds since λ(a) = 1 by the definition of λ, the

second holds since µ(Asrb)⊆R−− by the assumption that µ indicates

b, and the third holds because a/∈b by assumption.

This paragraph merely notes that

(∀h∈Hs) lim
n

Σa∈F (h)λ(a)nµ(a) = Σa∈F (h)σ(a) = 1 .(18)

The first equality follows from (17). The second follows from σ|h being

a probability distribution, as shown in the paragraph defining σ.

We now show that 〈σn〉n converges to σ. In particular, we argue that

for any a,

lim
n
σn(a) = lim

n

λ(a)nµ(a)

Σa′∈F (F−1(a)) λ(a′)nµ(a′) = σ(a) .
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The first equality holds by the definition of σn. The second equality is

an application of the quotient rule for limits: the limit of the numerator

is σ(a) by (17) and the limit of the denominator is one by (18) applied

at h = F−1(a).

It remains to show that 〈βn〉n converges to β. To do this, fix h∈Hs

and define m = maxt∈h Σa∈t∩Asµ(a).12 As a first step, the remainder of

this paragraph argues that

(∀t∈h) lim
n
n−m×Πa∈t∩Asσn(a)

= lim
n
n−m×Πa∈t∩As

λ(a)nµ(a)

Σa′∈F (F−1(a)) λ(a′)nµ(a′)(19a)

= lim
n

n−m×Πa∈t∩Asλ(a)nµ(a)

Πa∈t∩AsΣa′∈F (F−1(a))λ(a′)nµ(a′)(19b)

= lim
n

Πa∈t∩Asλ(a)×n−m+Σa∈t∩Asµ(a)

Πa∈t∩AsΣa′∈F (F−1(a))λ(a′)nµ(a′)(19c)

= Πa∈t∩Asλ(a)× lim
n
n−m+Σa∈t∩Asµ(a) .(19d)

(19a) holds by the definition of each σn. (19b) and (19c) hold by

algebraic manipulation. (19d) is an application of the quotient rule

for limits: the limit of the numerator is finite by the constancy of

Πa∈t∩Asλ(a) and by definition of m, and in the denominator, at each

a∈t∩As, the limit of the sum is one by (18) applied at the agent F−1(a).

Finally we argue that

(∀t∈h) lim
n
βn(t)

= lim
n

Πa∈t(ρ∪σn)(a)

Σt′∈hΠa∈t′(ρ∪σn)(a)
(20a)

= lim
n

Πa∈t∩Acρ(a)×Πa∈t∩Asσn(a)

Σt′∈h Πa∈t′∩Acρ(a)×Πa∈t′∩Asσn(a)
(20b)

= lim
n

Πa∈t∩Acρ(a)×n−m×Πa∈t∩Asσn(a)

Σt′∈h Πa∈t′∩Acρ(a)×n−m×Πa∈t′∩Asσn(a)
(20c)

=
Πa∈t∩Acρ(a)×Πa∈t∩Asλ(a)× limn n

−m+Σa∈t∩Asµ(a)

Σt′∈h Πa∈t′∩Acρ(a)×Πa∈t′∩Asλ(a)× limn n−m+Σa∈t′∩Asµ(a)
(20d)

12This m is the maximized value of the maximization problem defining Tµ(h).
Although it would have been natural to denote it by mµ(h), we chose the shorter
notation because both µ and h are fixed for the remainder of this proof.
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=
Πa∈t(ρ∪λ)(a)× limn n

−m+Σa∈t∩Asµ(a)

Σt′∈h Πa∈t′(ρ∪λ)(a)× limn n−m+Σa∈t′∩Asµ(a)
(20e)

=
Πa∈t(ρ∪λ)(a)× limn n

−m+Σa∈t∩Asµ(a)

Σt′∈Tµ(h) Πa∈t′(ρ∪λ)(a)
(20f)

=

 Πa∈t (ρ∪λ)(a)

Σt′∈Tµ(h) Πa∈t′ (ρ∪λ)(a)
if t ∈ T µ(h)

0 if t 6∈ T µ(h)

(20g)

= β(t) .(20h)

(20a) holds by the definition of σn. (20b) and (20c) hold by algebraic

manipulation. (20d) is an application of the quotient rule for limits.

In particular, the limit of the numerator is

Πa∈t∩Acρ(a)×Πa∈t∩Asλ(a)× lim
n
n−m+Σa∈t∩Asµ(a)

by the constancy of Πa∈t∩Acρ(a) and by (19). This limit is finite by

the definition of m. Similarly, the limit of each of the |h| terms in the

denominator is

Πa∈t′∩Acρ(a)×Πa∈t′∩Asλ(a)× lim
n
n−m+Σa∈t′∩Asµ(a)

by the constancy of Πa∈t∩Acρ(a) and by (19) applied at t = t′. By

the definition of m, this limit is finite for every t′∈h and positive for

at least one t′∈h. (20e) holds by algebraic manipulation. (20f) holds

because −m+Σa∈t′∩Asµ(a) is zero for every t′∈T µ(h) and negative for

every t′∈hrT µ(h). Similarly, (20g) holds because −m+Σa∈t∩Asµ(a) is

zero if t∈T µ(h) and negative if t∈hrT µ(h). (20h) is the definition of

β. 2

Proof A.8 (for Lemma 5.1). Take any b and µ, and let < be the

plausibility relation of b. We will show that representation (4) is equiv-

alent to indication (7).

Necessity of (7). (7a), (7b), and (7c) follow from Lemma 4.4. To

see (7d), take any h∈Hs and any to∈h. On the one hand, suppose

to∈hrb. Since b is a basement, there is some t∗∈h∩b. This implies

t∗� to by the definition of �Ts , which implies Σa∈t∗µ(a) > Σa∈toµ(a)

by representation (4), which implies to /∈ argmaxt′∈h Σa∈t′µ(a). On the

other hand, suppose to∈h∩b. Then consider any other t∈h. By the

definitions of �Ts and ≈Ts , either to �Ts t or to ≈Ts t, and thus in

either event we have to< t. Hence by representation (4), Σa∈toµ(a) ≥
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Σa∈tµ(a). Since this has been demonstrated for any t∈h, we have that

to ∈ argmaxt∈h Σa∈tµ(a).

Sufficiency of (7). (a) Take any t1 and t2 such that t1� t2. By the

definition of �, we have t1 �As t2 or t1 �Ts t2.

In the first case, there is an a∈F (t1) such that t1∪{a}=t2 and a∈Asrb.

Note that {a} = t2rt1 because t1∩{a}=t2 and because a/∈t1 by a∈F (t1)

and the definition of F . Therefore Σa′∈t1µ(a′) > Σa′∈t2µ(a′) because

µ(a)<0 by a∈Asrb and (7c).

In the second case, there is an h∈Hs such that t1∈h∩b and t2∈hrb.

Thus Σa∈t1µ(a) = maxt′∈hΣa∈t′µ(a) > Σa∈t2µ(a) by two applications of

(7d).

(b) Take any t1 and t2 such that t1≈ t2. By the definition of ≈, we

have t1 ≈As t2, or t1 ≈Ac t2, or t1 ≈Ts t2.

In the first case, there is an a∈As∩b such that either [a] a∈F (t1)

and t1∩{a}=t2, or symmetrically [b] a∈F (t2) and t2∩{a}=t1. In sub-

case [a], Σa∈t1µ(a) = Σa∈t1∪{a}µ(a) = Σa∈t2µ(a), where the first equal-

ity holds because µ(a)=0 by a∈As∩b and (7b), and where the second

equality holds by t1∪{a}=t2. Subcase [b] can be treated symmetrically.

In the second case, there is an a∈Ac such that either [a] a∈F (t1)

and t1∩{a}=t2, or symmetrically [b] a∈F (t2) and t2∩{a}=t1. In sub-

case [a], Σa∈t1µ(a) = Σa∈t1∪{a}µ(a) = Σa∈t2µ(a), where the first equality

holds because µ(a)=0 by a∈Ac and (7a), and where the first equality

holds by t1∪{a}=t2. Subcase [b] can be treated symmetrically.

In the third case, there is an h∈Hs such that t1 6=t2 and {t1, t2}⊆h∩b.
Thus Σa∈t1µ(a) = maxt′∈hΣa∈t′µ(a) = Σa∈t2µ(a) by two applications of

(7d). 2

Proof A.9 (for Lemma 5.2). Take any b and µ. By the definitions

of indication and labelling, we are to show that the combination of

µ(A)⊆Z and (7) is equivalent to the combination of

µ(Ac) = {0} ,(21a)

−µ|As :As→Z+ ,(21b)

(∀a∈As) a∈ b iff −µ(a) = 0 , and(21c)

(∀h∈Hs)(∀t∈h) t∈ b iff t∈ argmint′∈h Σa∈t′−µ(a) .(21d)

Necessity of (21). Assume µ(A)⊆Z and (7). (21a) follows from (7a).

(21b) follows from µ(A)⊆Z and (7b&c). (21c) follows from (7b&c).

(21d) follows from (7d).
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Sufficiency of (21). Assume (1). µ(A)⊆Z follows from (7a&b). (7a)

follows from (21a). (7b) follows from (21c). (7c) follows from (21b&c).

(7d) follows from (21d). 2

Proof A.10 (for Lemma 5.3). Take b and µ. By the definitions of

indication and justification, we are to show that (7) is equivalent to the

combination of

µ(Ac) = {0} ,(22a)

µ(As∩b) = {0} ,(22b)

µ(Asrb) ⊆ R++ , and(22c)

(∀h∈Hs)(∀t∈h) t∈ b iff t∈ argmaxt′∈h Πa∈t′∩(Asrb)e
µ(a) .(22d)

(7a–c) is identical to (22a–c). Further, (7d) is equivalent to (22d)

because for any h∈Hs

argmaxt′∈h Πa∈t′∩(Asrb)e
µ(a)

= argmaxt′∈h ln
(

Πa∈t′∩(Asrb)e
µ(a)
)

= argmaxt′∈h Σa∈t′∩(Asrb)µ(a)

= argmaxt′∈h
(

Σa∈t′∩Acµ(a) + Σa∈t′∩(As∩b)µ(a) + Σa∈t′∩(Asrb)µ(a)
)

= argmaxt′∈h Σa∈t′µ(a) .

The first equality holds by monotonicity and the second by algebraic

manipulation. The third holds because both µ(Ac) and µ(As∩b) are

{0} by (22a&b) (which is identical to (7a&b) by the first sentence of

this paragraph). Finally, the fourth holds because {Ac, As∩b, Asrb}
partitions A. 2
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