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Abstract
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price discovery in a decentralized exchange economy: Traders gradually learn

about the state of the market through a sequence of multilateral bargaining

rounds. We characterize the resulting equilibrium trading patterns. We show

that equilibrium outcomes are approximately competitive when frictions are

small. Therefore, prices aggregate information about the scarcity of the traded

commodity; that is, prices correctly reflect the commodity’s economic value.

JEL Classifications: D44, D82, D83

Keywords: Dynamic Matching and Bargaining, Decentralized Markets, Foun-

dations of Competitive Equilibrium, Search Theory, Learning

∗We have benefited from helpful comments by Georg Nöldeke, Tilman Börgers, Jan Eeckhout,
Chris House, Philipp Kircher, Benny Moldovanu, Tymofiy Mylovanov, and Art Shneyerov, as well as
seminar audiences at NYU Stern, Concordia University, Michigan State, the University of Toronto,
the 2009 Canadian Economic Theory Conference, the 2009 Decentralization Conference at Washing-
ton University in St. Louis and the 2009 Midwest Theory conference at Penn State. We thank Isaac
Sorkin and Qinggong Wu for research assistance. Stephan Lauermann acknowledges the National
Science Foundation for financial support under Grant SES-1061831.
†University of Michigan, slauerma@umich.edu.
‡Deutsche Bahn AG, wolfram.merzyn@gmx.de.
§University of Toronto, gabor.virag@utoronto.ca.



1 Introduction

General equilibrium theory famously states that– under certain assumptions– there

exists a vector of prices such that all markets clear. It fails, however, to explain

how the market-clearing (“Walrasian”) price vector comes about. The literature

on dynamic matching and bargaining games, pioneered by Rubinstein and Wolin-

sky (1985) and by Gale (1987), aims to fill this gap in the foundations for general

equilibrium theory. It addresses the question of how prices are formed in decentral-

ized markets and whether these prices are Walrasian. Existing models of dynamic

matching and bargaining, however, assume that market demand and supply– and,

hence, the market-clearing price– are common knowledge among traders. This as-

sumption is restrictive because markets have been advocated over central planning

precisely on the grounds of their supposed ability to “discover” the equilibrium

prices by eliciting and aggregating information that is dispersed in the economy;

see Hayek (1945). By construction, existing models that take market-clearing prices

to be common knowledge remain silent about whether this argument is correct and

whether markets can indeed solve the price discovery problem.

We develop a dynamic matching and bargaining game to study price discovery in

a decentralized market. We relax the standard assumption that the aggregate state

of the market is common knowledge. In our model, individual traders are uncertain

about market demand and supply. No individual trader knows the relative scarcity

of the good being traded. We analyze the resulting patterns of trade and learning

that emerge in equilibrium. We ask whether traders eventually learn the relevant

aggregate characteristics and whether prices accurately reflect relative scarcity when

frictions are small.

Our model is set in discrete time. In every period, a continuum of buyers and

sellers arrives at the market. All buyers are randomly matched to the sellers, re-

sulting in a random number of buyers that are matched with each seller. Each

seller conducts a second-price sealed-bid auction. At the end of each round, suc-

cessful buyers and sellers leave the economy. Unsuccessful traders leave the market

with some exogenous exit probability; otherwise they remain in the market to be

rematched in the next period. The exogenous exit rate makes waiting costly and is

interpreted as the “friction”of trade.

The defining feature of our model is uncertainty about a binary state of nature.

The realized state is unknown to the traders and does not change over time. For

each state of nature, we consider the corresponding steady state of the market. The

state of nature determines the relative scarcity of the good. Depending on the state

of nature, the mass of incoming buyers is either large or small, whereas the mass

of incoming sellers is independent of the state of nature. The larger the mass of
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entering buyers is relative to the mass of entering sellers, the scarcer is the good.

Every buyer receives a noisy signal upon birth. Moreover, after every auction, the

losing buyers obtain additional information regarding the state, because they are

able to draw an inference from the fact that their respective bids lost; losing bidders

do not observe other buyers’bids.

Formally, our model combines elements from Satterthwaite and Shneyerov (2008)

and Wolinsky (1990). Specifically, the matching technology and the bargaining pro-

tocol are adapted from Satterthwaite and Shneyerov, and we consider an unknown

binary state of nature that does not change over time and study the resulting steady-

state outcome for each realization as in Wolinsky (1990). In our base model, buyers

and sellers are homogenous and auctions are without reserve price, so that sellers

take no actions. We relax these assumptions later when we consider an extension

with heterogeneous buyers and allow for reserve prices. In the following, we first

describe our findings for the base model and then return to the extension at the end

of the Introduction.

Our base model allows a particularly instructive analysis, because we can char-

acterize equilibrium learning and bargaining strategies explicitly. The buyers shade

their bids to account for the opportunity cost of foregone continuation payoffs. More-

over, despite the fact that the consumption value of the good is known, the fact that

continuation payoffs depend on the unknown common state of nature makes the

buyers’preferences interdependent and introduces an endogenous common value el-

ement. A resulting winner’s curse leads to further bid shading: Winning an auction

implies that on average fewer bidders are participating and that the participating

bidders are more optimistic about their continuation payoff. Both of these facts

imply a lower value of winning the good than expected prior to winning. Coun-

tervailing the winner’s curse is a “loser’s curse.” The role of the loser’s curse for

information aggregation in large double auctions was identified by Pesendorfer and

Swinkels (1997). In our model, losing an auction implies that on average more

bidders are participating and that the participating bidders are more pessimistic

about their continuation payoff. The loser’s curse implies that bidders become more

pessimistic and raise their bids after repeated losses over time.1

We are particularly interested in the characterization of the equilibrium when

the exogenous exit rate is small, which is interpreted as the frictionless limit of the

decentralized market. Our main result shows that the limit outcome approximates

the Walrasian outcome relative to the realized aggregate state of the market. If the

realized state is such that the mass of incoming buyers exceeds the mass of incoming

1Thus, the loser’s curse refers to the effect of the learning dynamics over time, whereas the
winner’s curse refers to bid shading in each period.
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sellers, the resulting limit price at which trade takes place is equal to the buyers’

willingness to pay; if the realized state is such that the mass of incoming buyers

is smaller than the mass of incoming sellers, the price is equal to the seller’s costs.

Therefore, prices aggregate information about the scarcity of the traded commodity;

that is, prices reflect the commodity’s economic value.

Our analysis reveals how the winner’s curse and the loser’s curse shape equilib-

rium outcomes and information aggregation. We show that as the exit rate vanishes,

entrants’initial bids are dominated by the winner’s curse and the buyers bid for an

increasing number of periods as if they are certain that the continuation value is

maximal. Eventually, however, the loser’s curse becomes strong enough so that those

buyers who have lost in a suffi ciently large number of periods raise their bids over

time. Specifically, the number of periods in which buyers bid the low price diverges

to infinity. However, the number of periods in which buyers bid low grows more

slowly than the rate at which the exit rate goes to zero. Therefore, bids become

high suffi ciently fast relative to the exit rate. This ascending bid pattern ensures

that actual transaction prices are equal to the sellers’costs if the realized state is

such that the buyers are on the short side of the market and actual transaction

prices are equal to the buyers’valuations if the buyers are on the long side of the

market.

We compare the trading outcome of our model to the trading outcome that

would result if the state were known. This comparison allows us to isolate the effect

of uncertainty on the trading outcome. Intuitively, uncertainty pushes prices away

from their competitive level through two mechanisms. First, buyers underestimate

their continuation payoff in the low state (and, hence, overbid relative to complete

information) and buyers overestimate their continuation payoff in the high state

(and, hence, underbid relative to complete information). Second, the winner’s curse

depresses buyer’s bids relative to complete information. Thus, it should not be sur-

prising that the prices are more distorted when there is aggregate uncertainty than

when there is not. Formally, we study the relative magnitude of the distortions of

the expected trading prices when frictions become small, by deriving the relative

rates of convergence with and without uncertainty. We find that, in the high state,

the presence of uncertainty slows down convergence considerably, whereas conver-

gence is at the same rate in the low state. Our finding indicates that competitive

equilibrium may be a (much) better approximation of markets in which demand and

supply conditions are well known than when they are not. This finding, together

with our observations about the implications of the winner’s curse and the loser’s

curse, demonstrate that uncertainty has a signifcant effect on the bidding behavior

and the trading outcome.
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In an extension of our base model, we introduce heterogeneous valuations among

buyers and allow the seller to set a reserve price. The reserve price is observed by

the buyers the seller is matched with and becomes a signal of the seller’s private

belief about the state of nature. This signaling possibility introduces a potential

multiplicity problem. To deal with this problem, we assume that buyers’beliefs are

passive following the observation of off-equilibrium reserve prices. We characterize

equilibria when the exit rate is small. We show that the equilibrium trading outcome

is competitive in each state. Our proof utilizes arguments developed in Lauermann

(2012). These arguments are significantly extended to account for the dual problem

of uncertainty and signaling. The extension demonstrates that the base model’s

simplifications are not critical to the results. Moreover, with strategic agents on

both sides of the market, the market may turn into a two-sided war of attrition, with

buyers insisting on low prices (bidding low for many periods) and sellers insisting

on high prices (setting high reserve prices). This possibility is absent in the base

model.

In the following section, we discuss our contribution to the literature. In Section

3 we introduce the base model. We provide existence and uniqueness results for

steady-state equilibria in monotone bidding strategies in Section 4. We also provide

some preliminary characterization of equilibrium. Proving the existence of equilib-

rium is a non-trivial problem in a search model with aggregate uncertainty because

of the endogeneity of the distribution of population characteristics (beliefs in our

model); see Smith (2011). We show that, in our model, the steady-state distribution

of beliefs can be constructed using an intuitive recursive algorithm. Some techniques

that we develop in this paper might be useful more generally.2 Our main result on

convergence to the competitive outcome is stated in Section 5. We discuss our ex-

tension to an economy with heterogeneous buyers and strategic sellers in Section 6.

Section 7 provides a discussion of extensions and conclusion. The Appendix contains

the proofs and especially the analysis of the model with heterogeneous buyers and

strategic sellers. A supplementary online Appendix collects some technical results

about the steady-state stock and the proof of existence of equilibrium for the base

model.3

2 Contribution to the Literature

We contribute to a body of research that studies the foundations for general equilib-

rium through the analysis of dynamic matching and bargaining games, which was

2For example, we demonstrate a failure of the monotone likelihood ratio property to aggregate
in auctions with a random number of bidders; see Section 1.3 of the online Appendix.

3At http://sites.google.com/site/slauerma/Price-Discovery-Online-Appendix.pdf
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initiated by Rubinstein and Wolinsky (1985) and Gale (1987).4 A central question

is whether a fully specified “decentralized” trading institution leads to outcomes

that are competitive when frictions of trade are small. Well-known negative results

by Diamond (1971) and Rubinstein and Wolinsky (1985) have demonstrated that

this question is not trivial. Studying foundations is important for positive theory in

order to understand under which conditions markets can and cannot be well approx-

imated by competitive analysis, and for normative theory in order to understand

what trading institutions are able to decentralize desirable allocations.5

In existing models of dynamic matching and bargaining, market demand and

supply are known. Thus, each market participant can individually compute the

market-clearing price before trading. In the early matching and bargaining lit-

erature, the preferences and endowments of each individual trader were typically

assumed to be observable. Satterthwaite and Shneyerov (2007, 2008) introduce a

model with private information. Because they assume a continuum of agents, the

realized distribution of preferences is known in their model, so there is idiosyncratic

but no aggregate uncertainty.

The absence of aggregate uncertainty from existing dynamic matching and bar-

gaining games is a substantial restriction and considering uncertainty is important

for at least two reasons. First, assuming that aggregate market conditions are

known to all participants is unrealistic in many markets. Our model allows us to

study those markets in which this assumption is not met. Second, as argued before,

price discovery has been highlighted as an integral function of markets. Our model

allows us to investigate whether and under which conditions decentralized markets

can indeed serve this function.

Modeling uncertainty about market demand and supply leads to novel concep-

tual challenges. First, we need to characterize the endogenous distribution of beliefs

in the economy. This is a key diffi culty that has blocked progress on equilibrium

learning in search models so far. Second, when buyers and sellers bargain over the

price their common outside option is to continue searching for other partners. This

introduces an endogenous common value element into the bargaining game. Bargain-

ing with common values is known to cause diffi culties because of a multiplicity-of-

equilibrium problem. In our base model, we propose a combination of assumptions

that minimizes the impact of these problems. The extension to heterogenous buyers

and strategic sellers takes these challenges head-on.

A recent contribution by Majumdar, Shneyerov and Xie (2011) is the only other

4For recent contributions, see for example Satterthwaite and Shneyerov (2008), Shneyerov and
Wong (2010), and Kunimoto and Serrano (2004) and the references therein.

5For an excellent discussion of strategic foundations for general equilibrium, see the introductory
chapter in Gale (2000).
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paper that considers a dynamic matching and bargaining game in which market

demand and supply depend on an unknown state of nature. Their key assumption

is that traders from each market side are subjectively certain that the state of nature

is in their favor. This assumption allows them to prove existence and provide a full

characterization of equilibrium even when traders are heterogenous. The assumption

is restrictive because it implies that there is in fact no uncertainty from the viewpoint

of each trader.

Our paper is also related to work on matching and bargaining with exogenously

assumed common values. In these models, preferences depend on an unknown state,

and, consequently, these models are used to study foundations for Rational Expecta-

tions Equilibria. By contrast, we study the foundations for competitive equilibrium

in a standard exchange economy.

Particularly prominent contributions to search with common values are Wolinsky

(1990) and later work by Blouin and Serrano (2001).6 These contributions provide

negative convergence results and uncover a fundamental problem of information

aggregation through search: As frictions vanish, traders can search and experiment

at lower costs. This might seem to make information aggregation simple. However,

it also implies that traders increasingly insist on favorable terms– the buyers on low

prices and the sellers on high prices– turning the search market into “a vast war of

attrition”(Blouin and Serrano (2001, p. 324)). This insistence on extreme positions

makes information aggregation diffi cult even when search frictions are small. In our

model, the winner’s curse implies a similar effect: When the exit rate vanishes, the

buyers bid low and insist on a price equal to the sellers’ cost for an increasingly

large number of periods. Yet, in our setting, this “insistence problem”is overcome

by the opposing loser’s curse, as discussed before.

Wolinsky (1990) and Blouin and Serrano (2001) assume that traders can choose

only between two price offers (bargaining postures). This assumption makes their

models tractable. It is an open question whether trading outcomes in these models

are competitive if the frictions are small and if the restriction on the set of prices is

not imposed. Golosov, Lorenzoni and Tsyvinski (2011) consider a related model of

search with common values in which the traded good is divisible. They do not impose

a restriction on the set of price offers. The friction in their model is an exogenous

probability that trading stops in any given period. They show that equilibrium

outcomes approximate ex-post effi cient outcomes in the event that the game has

not stopped for a suffi ciently large number of periods. Golosov et al. study the

6Serrano and Yosha (1993) consider a related problem with one-sided private information and
Gottardi and Serrano (2005) consider a “hybrid”model of decentralized and centralized trading.
Lauermann and Wolinsky (2011) study information aggregation if a single, privately informed buyer
searches among many sellers.
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trading outcome with a fixed, positive stopping probability and they do not study

the question whether outcomes become competitive in the “frictionless”limit when

the stopping probability is small.7

There is a large body of related work on the foundation for rational expectation

equilibrium in centralized institutions in which all traders simultaneously interact

directly (see, e.g., the work on large double auctions by Reny and Perry (2006) and

Pesendorfer and Swinkels (1997, 2000)) and on the behavior of traders in finan-

cial markets (e.g., Kyle (1989), Ostrovsky (2011) and Rostek and Weretka (2012)).

The assumption of a central price formation mechanism distinguishes this literature

from dynamic matching and bargaining games in which prices are determined in a

decentralized manner through bargaining.

Finally, our work is related to the literature on social learning (Banerjee and

Fudenberg (2004)), the recent work on information percolation in networks (Golub

and Jackson (2010)), and information percolation with random matching (Duffi e and

Manso (2007)). In the latter model, agents who are matched observe each other’s

information. In our model, the amount of information that one bidder learns from

other traders is endogenous and depends on the action (bid) that they choose.

3 The Base Model and Equilibrium

3.1 Setup

There are a continuum of buyers and a continuum of sellers present in the market.

In periods t ∈ {...,−1, 0, 1, ...}, these traders exchange an indivisible, homogeneous
good. Each buyer demands one unit, and the buyers have a common valuation v for

the good. Each seller has one unit to trade. The common cost of selling is c = 0.

Trading at price p yields payoffs v−p and p− c, respectively. The valuation exceeds
the cost, so there are gains from trade. Buyers and sellers maximize expected payoffs.

Similar to Wolinsky (1990), there are two states of nature, a high state and a

low state w ∈ {H,L}. Both states are equally likely. The realized state of nature
is fixed throughout and unknown to the traders. For each realization of the state

of nature, we consider the corresponding steady-state outcome, indexed by w. The

state of nature determines the constant and exogenous number of new traders who

enter the market (the flow), and, indirectly, it also determines the constant and

endogenous number of traders in the market (the stock). In the low state, the mass

of buyers entering each period is dL, and, in the high state, it is dH . More buyers

7As explained in Golosov et al., ex-post effi ciency of the outcome in the event that the game
does not stop does not imply that this is the rational expectations equilibrium relative to the initial
allocation.
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enter in the high state, dH > dL. The mass of sellers who enter each period is the

same in both states and is equal to one. We are most interested in the case where

dH > 1 > dL, so that buyers are on the long side of the market in high state and on

the short side of the market in the low state.

The buyers are characterized by their beliefs θ ∈ [0, 1], the probability that

they assign to the high state. In the following, we often refer to θ as the type of

a buyer. Each buyer who enters the market privately observes a noisy signal and

forms a posterior based on Bayesian updating. In state w, the posteriors of the

entering buyers are assumed to be distributed on the support [θ, θ], with cumulative

distribution functions GH and GL, respectively. The distributions are continuous

and admit continuous probability density functions, gH and gL. Notice that using

Bayes’rule the distributions must be such that θ = dHgH(θ)
dHgH(θ)+dLgL(θ)

, or, equivalently,

the likelihood ratio satisfies

θ

1− θ =
dH

dL
gH (θ)

gL (θ)
.

For a buyer, the mere fact of entering the market contains news because the inflow

is larger in the high state. Conditional on entering the market, a buyer is pessimistic

and believes that the high state is more likely than the low state. This is expressed

by the likelihood ratio dH/dL > 1.8

We assume that the lower and upper bounds of the support [θ, θ] are such that

1/2 ≤ θ < θ < 1. The assumption that 1/2 ≤ θ is needed to ensure monotonicity

of a certain posterior; see the remarks following Lemma 3. Substantively, this as-

sumption is consistent with signals being suffi ciently noisy, so that even the most

favorable signal θ is not strong enough to overturn the initial pessimism of an enter-

ing buyer.9 The assumption θ̄ < 1 implies that signals are boundedly informative.10

Each period unfolds as follows:

1. Entry occurs (the “inflow”): A mass one of sellers and a mass dw of buyers

enter the market. The buyers privately observe signals, as described before.

2. Each buyer in the market (the “stock”) is randomly matched with one seller.

A seller is matched with a random number of buyers. The probability that a
8To formally define updating based on entering the market, suppose that there is a potential

set of buyers of mass d, d ≥ dH . In state w, a mass dw of the potential buyers actually enters the
market. Alternatively, one can simply interpret dH/dL as the prior of an entering buyer. For games
with population uncertainty and updating about an unkown state of nature, see Myerson (1998)
and, especially, Milchtaich (2004).

9When signals are very uninformative, most buyers’beliefs are close to their prior conditional
on being born, which is dH/(dH + dL) > 1/2.
10We endow buyers with initial signals to ensure existence of a pure strategy equilibrium. The in-

terval
[
θ, θ̄
]
can be arbitrarily small. Our results also hold if the initial signal is fully uninformative.

In this case, bidders will mix over bids in their first auction.
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seller is matched with k = 0, 1, 2, ... buyers is Poisson distributed11 and equal

to e−µµk/k!, where µ is the endogenous ratio of the mass of buyers to the

mass of sellers in the stock. We sometimes refer to µ as a measure of market

“tightness.”The expected number of buyers who are matched with each seller

is equal to µ, of course.

3. Each seller runs a sealed-bid second-price auction with no reserve price. The

buyers do not observe how many other buyers are matched with the same

seller. The bids are not revealed ex post, so bidders learn only whether they

have won with their submitted bid.

4. A seller leaves the market if its good is sold; otherwise, the seller stays in the

stock with probability δ ∈ [0, 1) to offer its good in the next period. A winning

buyer pays the second highest bid, obtains the good, and leaves the market. A

losing buyer stays in the stock with probability δ and is matched with another

seller in the next period. Those who do not stay exit the market permanently.

A trader who exits the market without trading has a payoff of zero.

5. Upon losing, the remaining buyers update their beliefs based on the informa-

tion gained from losing with their submitted bids. The remaining buyers and

sellers who neither traded nor exited stay in the market. Together with the

inflow, these traders make up the stock for the next period.

On the individual level, the exit rate 1 − δ acts similar to a discount rate: Not
trading today creates a risk of losing trading opportunities with probability 1−δ. On
the aggregate level, the exit rate ensures that a steady state exists for all strategy

profiles; see Nöldeke and Tröger (2009). Traders do not discount future payoffs

beyond the implicit discounting of the exit rate. The matching technology and

the bargaining protocol is adapted from Satterthwaite and Shneyerov (2008). The

main difference is that they assume that buyers and sellers are heterogeneous and

that sellers can set an ex-post reserve price. In Section 6, we introduce buyer

heterogeneity and we allow sellers to set an ex-ante (and observable to the buyers)

reserve price.

3.2 Steady-State Equilibrium

We study steady-state equilibria in stationary strategies so that the distribution of

bids depends only on the state and not on (calendar) time. An immediate conse-

11This distribution is consistent with the idea that there are a large number of buyers who are
independently matched with sellers. The resulting distribution of the number of buyers matched
with a seller is binomial. When the number of buyers and sellers is large, the binomial distribution
is approximated by the Poisson distribution.
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quence is that in any period the set of optimal bids of a buyer depends only on the

current belief about the likelihood of being in the high state.

We restrict attention to symmetric and pure strategy equilibria where the bid is

a strictly increasing function of the belief of the buyer and where the distribution

of beliefs is suffi ciently “smooth,”as defined below. A symmetric steady-state equi-

librium is a vector (ΓH ,ΓL, SH , DH , SL, DL, β, θ+). Next, we describe each of these

components. First, the distributions of beliefs are given by atomless cumulative dis-

tribution functions Γw. We assume that each function Γw is absolutely continuous

and nondecreasing.12 Furthermore, we assume that Γw is piecewise twice contin-

uously differentiable.13 These assumptions ensure that we can choose a density,

denoted γw, that is right continuous on [0, 1).14

The masses of buyers and sellers in the stock are Dw and Sw. The bidding

strategy β is a strictly increasing function and maps beliefs from [0, 1] to nonnegative

bids. We often use the generalized inverse of β, given by β−1 (b) = inf {θ|β (θ) ≥ b},
where β−1 (b) = 1 if β (θ) < b for all θ. Finally, θ+(x, θ) is the posterior of a buyer

with initial belief θ conditional on losing against buyers with beliefs above x.

We characterize the equilibrium requirements for these objects; a formal defini-

tion of equilibrium follows at the end of this section. Let θ(1) denote the first-order

statistic of beliefs in any given match. We set θ(1) = 0 if there is no bidder present.

Γw(1) denotes the c.d.f. of the first-order statistic in state w; that is, Γw(1) (x) is the

probability that the highest belief in the auction is below x. The event in which all

the buyers have a belief below x includes the event in which there are no buyers

present at all. The probability of this event is Γw(1) (0) by our assumption that there

is no atom in the distribution of beliefs at zero. The Poisson distribution implies

Γw(1) (0) = e−µ
w
, where µw = Dw/Sw as defined before. The fact that this probabil-

ity is positive implies that the buyers must have positive expected payoffs because

any buyer has some probability of being the sole bidder and receiving the good at

a price of zero. In general, the first-order statistic of the distribution of beliefs is

given by

Γw(1) (θ) = e−µ
w(1−Γw(θ)). (1)

Intuitively, µw(1 − Γw(θ)) is the ratio of the mass of buyers having belief above θ

12Note that this is a restriction on the kind of steady-state equilibria that we study.
13A function is piecewise twice continuously differentiable on [0, 1] if there is a partition of [0, 1]

into a countable collection of open intervals and points such that the function is twice continuously
differentiable on each open interval. Moreover, we require that the set of non-differentiable points
has no accumulation point except at one. Smoothness ensures that we can work conveniently with
densities.
14We believe that these restrictions are without loss of generality. The restriction to symmetric

and pure strategies is without loss of generality by the uniqueness of the optimal bids, whenever
belief distributions are atomless and bidding strategies are strictly increasing. However, we have
not been able to show that all equilibria have these latter properties.
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to the mass of sellers, and e−µ
w(1−Γw(θ)) is the probability that the seller is matched

with no buyer having such belief. Let Γθ(1) (x) = θΓH(1) (x) + (1 − θ)ΓL(1) (x) be the

unconditional probability that the highest belief is below x if the probability of the

high state is θ.

We derive the posterior upon losing. Given the assumption that bidding strate-

gies are strictly increasing, losing with a bid b implies that there was some bidder in

the match with a belief above x = β−1 (b). Bayes’rule for the posterior θ+ requires

that

θ+ (x, θ) =
θ(1− ΓH(1) (x))

1− Γθ(1) (x)
(2)

if 1−Γθ(1) (x) > 0. Otherwise, we set θ+ (x, θ) ≡ sup{
(
θ+ (x′, θ)

)
| x′ : 1−Γθ(1) (x′) >

0}, which is well defined by monotonicity of Γw(1). This particular choice of the

“off-equilibrium”belief does not affect our analysis.15

To derive the steady-state conditions for the stock, suppose that the mass of

sellers is Sw today. A seller trades if and only if matched with at least one buyer.

Tomorrow’s population of sellers therefore consists of the union of those sellers who

were not matched with any buyer and the newly entering sellers. In steady state,

these two populations must be identical, requiring

Sw = 1 + δΓw(1) (0)Sw. (3)

The inflow of buyers having type less than θ is dwGw(θ). The stationarity condition

is

DwΓw (θ) = dwGw(θ) + δDw

∫
{τ :θ+(τ ,τ)≤θ}

(
1− Γw(1) (τ)

)
dΓw (τ) . (4)

The steady-state mass of buyers in the stock having a type below θ is equal to

DwΓw (θ). This mass has to be equal to the mass of the buyers in the inflow with

type less than θ (the first term on the right-hand side) plus the mass of buyers who

lose, survive, and update to some type less than θ (the second term).16

Let V (θ) denote the value function, which is equal to

max
b

vΓθ(1) (0) +

∫ β−1(b)

0+

(v − β (τ)) dΓθ(1) (τ) + δ(1− Γθ(1)

(
β−1 (b)

)
)V
(
θ+
)
, (5)

15When restricting beliefs to the two states of nature, we implicitly assume that following an
off-equilibrium event– the only such event is losing with a bid above the highest equilibrium bid– a
buyer continues to believe that all other buyers play according to their equilibrium strategies.
16For the purpose of this paper, the steady-state model is defined by (3) and (4). Formally, these

equations are taken as the primitives of our analysis and they are not derived from some stochastic
matching process. This allows us to avoid well-known measure theoretic problems with a continuum
of random variables. These problems can be solved, however, at the cost of additional complexity;
see Duffi e and Sun (2007).
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where θ+ = θ+
(
β−1 (b) , θ

)
. A bidding strategy β is optimal if b = β (θ) solves the

maximization problem (5) for every θ.

A steady-state equilibrium in symmetric, strictly increasing bidding strategies

with an atomless distribution of types (an equilibrium from now on) consists of (i)

masses of buyers and sellers, SH , DH , SL, DL, and distribution functions ΓH , ΓL

such that the steady-state conditions (3) and (4) hold for all θ; (ii) an updating

function θ+ that is consistent with Bayes’rule (2); (iii) a strictly increasing bidding

function β that is optimal (maximizes (5)).

4 Characterization and Existence of Equilibrium

4.1 The Equilibrium Stock

The following lemmas establish necessary implications of equilibrium for the steady-

state stock. Generally, characterizing stocks in equilibrium search models is diffi cult

because of an intricate feedback between stocks and strategies, which requires deter-

mining these two objects simultaneously. In our model, however, we can “decouple”

the stock from the strategies. This is because the bidding strategy is strictly in-

creasing: The identity of the winning bidder as well as the updated belief is the

same for all strictly increasing bidding strategies. We now describe properties of the

stock, assuming (and verifying later) that a monotone equilibrium exists. All proofs

of the results from this section are in the supplementary online Appendix, with the

exception of the proof of the following lemma.

Lemma 1 (Unique Masses.) For each state w, there are unique masses of buyers
Dw and sellers Sw that satisfy the steady-state conditions. The market is tighter in

the high state; that is, D
H

SH
> DL

SL
.

The lemma is intuitive: The larger mass of buyers in the high state implies that

more buyers stay in the market because each buyer has a smaller chance to transact.

Moreover, each seller has a higher chance to transact in the high state, so the sellers

leave the market more quickly, and there are fewer sellers on the market in the high

state.

A distribution of beliefs is said to have the no-introspection property if

θ

1− θ =
DH

DL

γH (θ)

γL (θ)
(6)

for all θ < 1 with γL (θ) > 0. The condition implies that a buyer does not update

based merely on observing its own belief (“introspection”). The following lemma

follows from the steady-state conditions.

12



Lemma 2 (No-Introspection.) If Γw is an atomless and piecewise twice continu-

ously differentiable c.d.f. and if Γw satisfies the steady-state conditions given the

steady-state masses Sw, Dw, then Γw and Dw have the no-introspection property.

The distribution of beliefs satisfies the “monotone likelihood ratio property”

(MLRP) if γH
(
θ′′
)
γL
(
θ′
)
≥ γH

(
θ′
)
γL
(
θ′′
)
whenever θ′′ ≥ θ′. The no-introspection

condition implies the MLRP. Intuitively, observing a buyer with a higher belief

makes the high state more likely. The no-introspection condition also implies that

the distributions ΓH and ΓL have identical support, given that there are no atoms

at zero or one.

We use the MLRP to characterize updating. Suppose that 0 < ΓL (θ) < 1. The

MLRP implies that 1 − ΓH (θ) > 1 − ΓL (θ). By Lemma 1, µH > µL. Therefore,

µH
(
1− ΓH (θ)

)
> µL

(
1− ΓL (θ)

)
, the expected number of buyers with belief above

θ who are matched with a seller is higher in the high state. From the definition of

Γw(1), 1−ΓH(1) (θ) > 1−ΓL(1) (θ), the likelihood of losing is higher in the high state for

any θ. Hence, “losing is bad news,”and the posterior conditional on losing satisfies

θ+ (x, θ) > θ whenever 0 ≤ ΓL (x) < 1; see Definition (2). An implication is that

all the buyers in the stock must have beliefs above the most optimistic type in the

inflow θ: All of those buyers who have just entered hold beliefs above the cutoff

θ. For all other buyers in the stock who have entered at least one period before,

the finding that θ+ (x, θ) > θ for all θ implies that their beliefs are above θ as well.

Therefore, all beliefs in the stock are above the cutoff θ.17

We also need the posterior conditional on being tied when characterizing optimal

bidding. Conditional on state w, the density of the first-order statistic is γw(1) =
Dw

Sw γ
wΓw(1). The unconditional density is γ

θ
(1) (x) = θγH(1) (x) + (1 − θ)γL(1) (x). The

posterior of type θ after tying with a buyer with belief x at the top spot is

θ0 (x, θ) =
θγH(1) (x)

γθ(1) (x)
(7)

if γθ(1) (x) > 0.18 The next lemma establishes that updating is monotone.

Lemma 3 (Monotonicity of Posteriors.) Suppose that Γw is an atomless and piece-

wise twice continuously differentiable c.d.f., (i) the monotone likelihood ratio prop-

erty holds, and (ii) µH ≥ µL > 0. Then, the posterior upon losing, θ+ (x, θ), is

17This informal argument is verified in the proof of Lemma 4.
18We extend the definition of the posterior to all types: If min

{
ΓL (x) ,ΓH (x)

}
< 1, we set

θ0 (x, θ) = inf{
(
θ0 (x′, θ)

)
|x′ ≥ x and γθ(1) (x) > 0} and if ΓL (x) = ΓH (x) = 1, we set θ0 (x, θ) =

sup{
(
θ0 (x′, θ)

)
|x′ ≤ x and γθ(1) (x) > 0}. Bidders do not observe whether they are tied, and the

particular choice of the extension of Bayes’formula does not affect our analysis.
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nondecreasing in x. If, in addition, (iii) γH (θ) ≥ γL (θ) µL

µH
for all θ, then the

posterior upon being tied, θ0 (x, θ), is nondecreasing in x on [0, 1].

A standard suffi cient condition for monotonicity of the posteriors would be that

the first-order statistic θ(1) inherits the monotone likelihood ratio property of the

parent distribution of θ; see, for example, Krishna (2009). However, in contrast to

standard auction settings, the MLRP is not inherited here because the first-order

statistic is taken from a random number of random variables.19

Given a symmetric equilibrium, the posterior conditional on losing is θ+ (θ, θ).

An implication of Lemma 3 is that this posterior is strictly increasing in θ. The

same holds for the posterior conditional on tying, θ0 (θ, θ). This follows from the

fact that conditions (i)– (iii) hold in equilibrium: Conditions (i) and (ii) follow from

Lemma 2 and Lemma 1, respectively. For Condition (iii), note the following: The

support of Γw is a subset of [θ, 1]; see the previous remark following θ+ (x, θ) > θ.

Therefore, the no-introspection property from Lemma 2 and SH ≤ SL from Lemma

1 together imply γH(θ)
γL(θ)

µH

µL
≥ γH(θ)

γL(θ)
DH

DL
≥ θ

1−θ . Finally, the assumption that θ ≥ 1/2

implies θ
1−θ ≥ 1; that is, (iii) holds.

We show that the distribution of beliefs of buyers in the stock is unique. Together

with the previous finding that the mass of buyers and sellers is unique, the lemma

implies that there exists a unique steady-state stock.

Lemma 4 (Uniqueness of the Steady-State Distributions.) There exists a unique
absolutely continuous and piecewise twice continuously differentiable distribution Γw

that satisfies the steady-state conditions.

We describe the basic idea of the proof and some of the complications here. To

illustrate the construction and the uniqueness argument, let us suppose momentarily

that we have found some stock Γw, Dw, Sw that satisfies the steady-state conditions

and suppose further that the interval of initial beliefs [θ, θ] is suffi ciently small such

that upon updating, θ+ (θ, θ) > θ̄. Therefore, the set of beliefs of buyers who

have lost once is above the interval of the initial beliefs. Consequently, the mass

of buyers with beliefs below any θ′ ∈ [θ, θ] is just the mass of such buyers in the

inflow; that is, DwΓ
(
θ′
)

= dwGw
(
θ′
)
. Moreover, the mass of buyers with beliefs

above θ′ is Dw − dwGw
(
θ′
)
. Therefore, the probability that a buyer with belief

θ′ loses is e−(Dw−dwGw(θ′))/Sw in each state w. This determines the posterior of θ′

after losing once, θ+
(
θ′, θ′

)
. Conversely, for any θ′′ from the set of beliefs who lost

once–
[
θ+ (θ, θ) , θ+

(
θ, θ
)]
– we can find the prior θ̂ such that θ+(θ̂, θ̂) = θ′′. Taking

19We provide a detailed discussion of the failure of the MLRP of the first-order statistic with a
random number of bidders in our supplementary online appendix in Section 1.3.
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our observations together, the distribution of beliefs of buyers who have lost once is

given by

DwΓw
(
θ′′
)

= dw + δdw
∫ θ̂

θ
e−(Dw−Gw(τ))/SwdGw (τ) ∀θ′′ ∈

[
θ+ (θ, θ) , θ+

(
θ, θ
)]
.

The above reasoning suggests that we can construct the population of buyers in-

ductively, starting with the distribution of initial beliefs and then proceeding to

the distribution of beliefs of buyers who have lost once, twice, ... and so on. Fur-

thermore, the above arguments suggest that the construction would yield a unique

candidate for an equilibrium steady-state stock.

The existence proof is based on induction, following the line of reasoning laid

out before. There are two diffi culties with the argument, however. First, we have

assumed that intervals of beliefs of successive generations of buyers do not overlap.

This does not need to be the case. To take care of this problem, we use the fact

that the losing probabilities of the lowest type θ are determined by the total masses

Dw and Sw, which are unique by Lemma 1. This determines the posterior θ+ (θ, θ)

and implies that the set of buyers with beliefs in
[
θ,min

{
θ+ (θ, θ) , θ̄

}]
is given by

the inflow. We then apply similar arguments successively. Second, the construction

above uses the fact that posteriors after losing are monotone in priors. However, the

argument following Lemma 3 for monotonicity of θ+ presupposes the steady-state

conditions to conclude that no-introspection holds. When we prove the existence

of a steady-state stock, we need to directly ensure that the conditions of Lemma 3

hold, which is done in the main technical lemma of the proof, Lemma 15.

4.2 Characterization of Bidding and Existence of Equilibrium

We characterize the equilibrium bidding strategy. Let

EU(θ, β|w) = vΓw(1) (0)+

∫ θ

θ
(v − β (τ)) dΓw(1) (τ)+δ

(
1− Γw(1) (θ)

)
EU(θ+ (θ, θ) , β|w)

denote the expected utility of a bidder with belief θ given a symmetric bidding strat-

egy β, conditional on state w. The unconditional expected payoff is EU(θ, β|θ̂) =

θ̂EU(θ, β|H) + (1 − θ̂)EU(θ, β|L). The function EU(θ, β|θ̂) can be interpreted as
type θ̂’s expected (off-equilibrium) payoff from bidding like type θ.

We prove that equilibrium bids must be

β(θ) = v − δEU
(
θ+ (θ, θ) , β|θ0 (θ, θ)

)
. (8)

An intuition for this bidding strategy is as follows. By standard reasoning about
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bidding in second-price auctions, the bid must be “truthful” and equal to the ex-

pected payoff from winning conditional on being tied. Here, the expected payoff

from winning is equal to the valuation v minus the relevant continuation payoff.

For the relevant continuation payoff, note that the strategy adopted from tomor-

row onwards is the optimal strategy given the updated belief conditional on having

lost, θ+ (θ, θ). We need to evaluate the expected value of that strategy using the

posterior conditional on being tied (the “pivotal event”). Therefore, the expected

continuation payoff is calculated by evaluating the utility derived from the future

bidding sequence of a bidder with belief θ+ (θ, θ), given the posterior probability of

the high state conditional on being tied, θ0 (θ, θ). Thus, the relevant continuation

payoff is δEU
(
θ+ (θ, θ) , β|θ0 (θ, θ)

)
, and buyers optimally “shade”their bids by this

amount.

We provide some auxiliary observations. First, the value function is convex in

beliefs: Optimal bidding is a decision problem under uncertainty, implying a convex

value function by standard arguments from information economics. Second, the

envelope theorem dictates a simple relation between EU, V , and the derivative V ′.

Lemma 5 (Characterizing the Value Function.) The value function V (θ) is convex.

At all interior differentiable points of the value function, V ′ (θ) = ∂
∂θ̂
EU(θ, β|θ̂)|θ̂=θ,

and

EU(θ, β|θ̂) = V (θ) + (θ̂ − θ)V ′ (θ) . (9)

The following Lemma establishes a unique candidate for the equilibrium bidding

function for given continuation payoffs. The lemma follows from rewriting the nec-

essary first-order condition for optimal bids; that is, we determine the derivative of

the objective function (5) with respect to b and set it equal to zero.

Lemma 6 (Equilibrium Candidate.) For almost all types in the support of the

distribution of beliefs, in equilibrium

β(θ) = v − δV
(
θ+ (θ, θ)

)
+ δV ′

(
θ+ (θ, θ)

)
(θ+ (θ, θ)− θ0 (θ, θ)). (10)

We can use Lemma 5 to substitute EU for V ′ and V in equation (10). After the

substitution, the expression for the bidding strategy is as claimed in the equation

(8).

We have identified a unique candidate for the equilibrium bidding strategy for

given continuation payoffs in this section. We have also proven that there exists a

unique steady-state stock in Section 4.1. The following proposition shows that there

exists an equilibrium. The exogenous parameters– δ, dH , and dL– determine the

market outcome in an essentially unique way. The proof is in the online Appendix.
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Proposition 1 (Existence and Uniqueness of Equilibrium.) There exists a steady-
state equilibrium in strictly increasing strategies. The equilibrium distribution of

beliefs and the value function V (θ) are unique. For almost all types in the support of

the distribution of beliefs, the bidding function is β = v−δEU
(
θ+ (θ, θ) , β|θ0 (θ, θ)

)
.

5 Price Discovery with Small Frictions

We state and prove our main result: as the exit rate becomes small, the equilibrium

trading outcome becomes competitive in each state. In particular, all trade between

buyers and sellers takes place at the “correct,”market-clearing prices.

We define trading outcomes. For buyers, the trading outcome in state w consists

of the equilibrium probability of winning in an auction (instead of being forced to

exit) and the expected price paid conditional on winning, denotedQw (θ) and Pw (θ),

respectively. For a seller, the trading outcome consists of a probability of being able

to sell the good and the expected price received, denoted Qw (S) and Pw (S). The

inflow defines a large quasilinear economy, where the mass of buyers is dw and the

mass of sellers is independent of w and equal to one. A trading outcome is said to be

a (perfectly) competitive outcome (or Walrasian outcome) relative to the economy

defined by the inflow if prices and trading probabilities are as follows. If dw < 1

(i.e., if buyers are on the short side of the market), then Pw (θ) = Pw (S) = 0,

Qw (θ) = 1, and Qw (S) = dw. If dw > 1 (i.e., if buyers are on the long side of

the market), then Pw (θ) = Pw (S) = v, Qw (θ) = 1/dw, and Qw (S) = 1. We do

not characterize the competitive outcome in the case in which both market sides

have equal size, dw = 1. If an outcome is competitive, it is necessarily an effi cient

outcome relative to the economy defined by the inflow.

We consider the trading outcome when the exit rate is small. Let {δk}∞k=1 be

a sequence such that the exit rate converges to zero, lim (1− δk) = 0. Intuitively,

a smaller exit rate corresponds to a smaller cost of searching. To interpret our

results, it might be helpful to observe that decreasing the exit rate is equivalent to

increasing the speed of matching.20 We know that an equilibrium exists for each δk.

Pick any such equilibrium and denote the corresponding equilibrium magnitudes by

βk,Γ
H
k ,Γ

L
k , D

H
k ,P

w
k , Q

w
k , and so on. A sequence of trading outcomes converges to the

competitive outcome relative to the economy defined by the inflow in state w if the

sequence of outcomes converges pointwise for all θ and for S.

20Let ∆k denote the length between time periods and let d denote the (fixed) exit probability per
unit of time. With 1− δk = ∆kd, one can interpret a decrease in the exit rate 1− δk as a decrease
in ∆k. In this interpretation, the market friction 1 − δk arises because it takes time ∆k to come
back to the market after a loss. As this time lag ∆k goes to zero, the friction vanishes.
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Proposition 2 (Price Discovery with Small Frictions.) For any sequence of vanish-
ing exit rates and for any sequence of corresponding steady-state equilibria in strictly

increasing strategies, the sequence of trading outcomes converges to the competitive

outcome for each state of nature.

We illustrate the proposition through a few observations. First, we restate the

implications of the proposition in terms of the limit of the value function.

Corollary 1 (Limit Payoffs.) For any sequence of equilibria for lim
k→∞

(1− δk) = 0:

lim
k→∞

Vk (θ) ≡ v if dL < dH < 1; lim
k→∞

Vk (θ) ≡ 0 if 1 < dL < dH ; and lim
k→∞

Vk (θ) =

(1− θ) v + θ0 if dL < 1 < dH .

The corollary is immediate and the proof is omitted. Intuitively, the short side

of the market captures the surplus from trading. Moreover, the corollary states that

the value function is no longer convex but linear in the limit. Information loses its

value when the friction of trade is small.

The following result is the main intermediate step towards proving the Proposi-

tion. The lemma illustrates some of the main forces at work.

Lemma 7 (Limit Market Population.) For any sequence of equilibria for lim
k→∞

(1− δk) =

0 the following statements hold: (i)

lim
k→∞

Dw
k

Swk
=

{
0 if dw < 1

∞ if dw > 1.

(iia) If dw < 1, the probability of being the sole bidder becomes one, lim
k→∞

e−D
w
k /S

w
k =

1.

(iib) If dw > 1, the probability of being the sole bidder converges to zero and it

converges to zero faster than the exit probability, lim
k→∞

e−D
w
k /S

w
k

1−δk = 0.

In the following, we describe equilibrium when the exit rate is small. We consider

the case in which dL < 1 < dH . In that case, buyers are on the short side in the

low state and on the long side in the high state. The cases in which dH < 1 or

dL > 1 are less interesting because in these cases it is known whether the buyers or

the sellers are on the short side of the market.

As stated in the previous lemma, the difference between the sizes of the market

sides in the inflow is magnified in the stock. Therefore, in the low state, the number

of buyers per seller vanishes to zero, and a buyer is almost sure to be the sole bidder.

In the high state, the number of buyers per seller diverges to infinity, and there is

almost never only a single bidder.
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The fact that a buyer becomes sure to be the sole bidder in the low state has

an immediate implication: If a buyer is the sole bidder, the buyer wins and pays

nothing. Therefore, in the low state, payoffs must converge to v for all buyers. Con-

sequently, the characterization of the limit trading outcome conditional on the low

state is straightforward. The corresponding fact for the high state has no immediate

implication, however. Even though a bidder becomes less and less likely to be the

sole bidder, the bidder also becomes more and more patient. If the bidder becomes

patient fast enough, the bidder could just wait to be the sole bidder and receive the

good for free too. In the second part of (iib), we show that this is not the case.

Relative to the buyer’s increasing patience, the probability of being the sole bidder

converges to zero even faster. Therefore, in the limit, a buyer who uses the strategy

of always bidding zero would almost surely have to exit the market before being

able to trade.21

Let us discuss equilibrium bid patterns. Lemma 7 implies that, conditional on

the high state, buyers learn that the state is high quickly after entry, after losing

only once. This is because losing is very unlikely in the low state, but it is very likely

in the high state. However, optimal bids depend on the buyer’s belief conditional

on being pivotal (tied at the top). Therefore, we characterize beliefs conditional on

being pivotal. As the next result shows, being pivotal is very good news, indicating

that the low state is very likely. Intuitively, the growing imbalance of the two sides

of the market implies a very strong winner’s curse.

Let θtk (θ) denote the posterior of a buyer who has entered the market with a prior

θ and who has lost t times. The following proposition characterizes θ0
k

(
θtk (θ) , θtk (θ)

)
,

the posterior conditional on being pivotal (tied at the top) after having lost t times

before.

Proposition 3 (Time Pattern on Bids.) Suppose that dL < 1 < dH and suppose

that lim
k→∞

(1− δk) = 0. Let θtk = θtk (θ) for some θ ∈ [θ, θ].

(i) For any t, (a) lim
k→∞

θ0
k

(
θtk, θ

t
k

)
= 0, and (b) lim

k→∞
βk(θ

t
k) = 0.

(ii) Let tk ≡ −0.5
(1−δk) ln(1−δk) . Then, (a) lim

k→∞
θ0
k(θ

tk
k , θ

tk
k ) = 1, and (b) lim

k→∞
βk(θ

tk
k ) = v.

The proposition is not part of the proof of Proposition 2. In fact, we use findings

from the proof of Proposition 2 to prove it. We state the proposition because we

believe it provides some interesting insights into bidding when the exit rate is small.

As discussed previously, lim θtk (θ) = 1 as k →∞ for all θ ∈ [θ, θ] and for all t ≥ 1;

that is, bidders who have lost at least once have a posterior that puts probability

21The Lemma 7 may suggest that learning from the differential matching probabilities is critical
for price discovery. In our extension, we allow for the number of buyers and sellers to be the same
in both states and show that the possibility of price discovery is not affected.
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close to one on w = H. The first part of the proposition states that, nevertheless, the

event of being tied conditional on having belief θtk is suffi ciently “good news”such

that the posterior switches to putting probability zero on the high state. Therefore,

conditional on being tied, a buyer believes that the continuation payoff is close to

v and, consequently, bids zero. Two related and immediate consequences of Part

(i) of Proposition 3 are that when (1− δk) → 0, (a), fixing any time t, the bid of

a buyer who has entered t periods ago decreases to zero when (1− δk) decreases,
and, (b), buyers bid close to zero for an increasingly long time. This observation

illustrates why proving convergence to the competitive outcome is not immediate

from the fact that the imbalance of the masses of buyers and sellers in the stock

explodes in the high state.

Of course, the finding from Proposition 2 requires that buyers stop bidding zero

at some time and bid close to v eventually. This is reflected in Part (ii) of Proposition

3. The significance of that part is that the number tk is chosen so that lim (δk)
tk = 1

as k → ∞: the probability of exogenous exit within tk periods is vanishing to

zero. Part (ii) states that after at most tk periods buyers are eventually suffi ciently

pessimistic that they bid high. The fact that lim (δk)
tk = 1 can be interpreted as

saying that buyers start bidding high “quickly”relative to the exit rate (1− δk).

Proposition 3 illustrates the combined effect of the winner’s and the loser’s curse.

Initial bids are predominantly shaped by the winner’s curse (buyers bid cautiously

low to avoid winning in the low state). Eventually, however, the loser’s curse is

suffi ciently strong so that after losing at most tk number of periods, buyers bid close

to their maximum willingness to pay.

Rates of Convergence. The presence of aggregate uncertainty affects bidding,
and, consequently, expected prices, as illustrated by Proposition 3. In general, the

presence of aggregate uncertainty may imply that prices are further away from

market-clearing, that is, further below v in the high state and higher above zero

in the low state than prices would if the state were known. To isolate the “price

distortion”that results from aggregate uncertainty, we compare the expected prices

from our model with aggregate uncertainty to the equilibrium prices when the state

is known, keeping the trading environment unchanged otherwise. We then study

the effect of aggregate uncertainty on the level of price distortions by comparing the

rate of convergence with and without uncertainty.

The model without uncertainty is introduced in the online Appendix. We char-

acterize the equilibrium outcome for a sequence of survival rates {δk}, δk → 1, for

each state. Without uncertainty, all buyers have the same continuation payoffs in

our model, and, hence, bid the same. This makes it straightforward to solve the

equilibrium explicitly and to derive the expected trading price, which we denote by
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PwC,k. The subscript C indicates the complete information variant. We then compare

the price without uncertainty to the expected price from our base model, defined as

PwI,k ≡
∫ θ̄

θ
Pwk (θ)dGw (θ) ,

where the subscript I indicates the (original) incomplete information variant. For

the following proposition, note that limk→∞ (1− δk) e(d
H−1)(1−δk)−1

=∞.

Proposition 4 (Rates of Convergence.) Suppose dH > 1 > dL. Then,

lim
k→∞

v−PHI,k
v−PHC,k

(1− δk) e(dH−1)(1−δk)−1 > 0,

lim
k→∞

PLI,k

PLC,k
= 1.

To interpret the proposition, recall that the competitive price is v if w = H

and that the competitive price is zero if w = L. Proposition 2 and our analysis

in the Appendix imply that the expected price converges to the competitive price

in either state. However, when 1 − δk is close to zero, the proposition implies that
the expected price is “infinitely”further away from v in the high state when there

is aggregate uncertainty than when there is no uncertainty. In the low state, the

expected price is essentially the same whether or not there is aggregate uncertainty

when 1− δk is close to zero.

The first part of the proposition illustrates the price impact of the bid-shading

identified in Proposition 3. Common bid-shading decreases the rate of convergence

substantially in the high state. In the low state, bid-shading does not create price

distortions, and convergence is at the same rate.

The asymmetric finding for the states is likely due to the asymmetric treatment of

buyers and sellers in our base model. In the following Section, we allow sellers to set

reserve prices. There, sellers may resist trading at low prices by setting high reserve

prices for a long time, introducing a problem that is symmetric to the bid-shading

of the buyers. However, we cannot characterize equilibrium bidding explicitly in

the following model, and we do not know the effect of aggregate uncertainty on the

relative rate of convergence in that model.

6 Heterogeneous Buyers and Strategic Sellers

Two assumptions make our base model tractable: buyers have one-dimensional types

(beliefs) and sellers do not take actions. We now lift these restrictions. Buyers have
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heterogeneous valuations and sellers can set a reserve price for their auctions. This

extension gives rise to a richer economic environment. First, with heterogeneous

preferences, whether trade takes place at the correct prices is consequential for

effi ciency.22 Second, with strategic agents on both sides of the market, the market

may turn into a two-sided war of attrition, with buyers insisting on low prices

(bidding low for many periods) and sellers insisting on high prices (setting high

reserve prices).

However, without the simplifying assumption from the base model, buyers’types

are now multidimensional, so that we can no longer use standard techniques from

auction theory to characterize bidding. In addition, with both market sides tak-

ing actions, we can no longer avoid the multiplicity problem that commonly plague

models of bargaining with two-sided asymmetric information with interdependent

preferences. Because of these problems, we cannot characterize equilibrium explic-

itly or prove its existence.

We now extend our base model. The mass of buyers who enter the market is

either dL or dH , where dL ≤ dH , so that we allow the number of buyers to be

the same. Buyers’ valuations are now drawn from the unit interval [0, 1]. The

cumulative distribution function of the valuations of entering buyers in state w is

Fw (v). The functions FH and FL are absolutely continuous and have full support.

The mass of the entering sellers is one in either state. We consider only the case

where dH ≥ dL > 1.

The market-clearing price in state w, denoted pw∗ , satisfies

1 = dw (1− Fw (pw∗ )) .

We assume that pH∗ > pL∗ . Since F
L has full support, pL∗ > 0. In the competitive

outcome relative to the quasilinear economy defined by the population of entering

buyers and sellers, buyers with valuations above pw∗ receive the good and pay p
w
∗ ,

while buyers with valuations below do not. All sellers trade their good at pw∗ .

Each entering buyer privately observes a signal about the state. We call the

combination of signals and valuations, (θ, v) ∈ [0, 1]2, a buyer’s type. We assume

that valuations and signals are independently and identically distributed conditional

on the state. The joint distribution of the Bayesian posteriors and values induced

by the signal is given by the cumulative distribution function GwB. Sellers, too,

receive signals. The cumulative distribution of posteriors for sellers is GwS . We

assume that GwB and G
w
S are absolutely continuous. Thus, almost no trader knows

22 In our base model, whether or not prices aggregate information has no consequence for welfare.
Our base model shares this feature with many of the standard models of information aggregation
in large common value auctions; see, e.g., Milgrom (1979) and Pesendorfer and Swinkels (1997).
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the state initially and we allow the initial distribution of beliefs to have arbitrarily

small support. Bayesian updating requires that the distribution of beliefs satisfies

no-introspection.23

As before, buyers are matched to sellers according to a Poisson distribution with

a parameter equal to the ratio of the number of buyers to sellers. Each seller runs

a second-price auction among the matched buyers. Different from before, sellers

set a reserve price before buyers bid. The reserve price is observable to the buyers

the seller is matched with. The buyers and the seller do not observe the number of

bidders at an auction (neither when they choose their bids and the reserve price, nor

afterwards) and the bids are not observed afterwards by the losing bidders. A buyer

who bids strictly below the reserve price is said to not participate in the auction

and the seller does not observe buyers who do not participate. If there is at least

one participating buyer, then the seller exchanges the good with the highest bidder

for a price that is equal to either the second highest bid among participating buyers

or the reserve price if only one buyer participates. Ties among buyers are broken

randomly.

We consider steady-state equilibria. Equilibria consist of a (Markovian and pure)

bidding strategy β (θ, v) and a (Markovian and pure) reserve price strategy ρ (θ).

There is a steady-state population, characterized by the mass of buyers and sellers,

Dw and Sw, and a probability measure on buyers’ types (valuations and beliefs)

and sellers’types (beliefs), denoted by ΓwB and ΓwS , respectively. The interim belief

of a buyer who observes a reserve price r with prior θ is denoted θI (θ, r). The

updated belief of a buyer with interim belief θI , conditional on losing with bid b

given a reserve price r is denoted by θ+
B

(
θI , r, b

)
. The updated belief of a seller

with prior belief θ conditional on not selling with reserve price r is denoted by

θ+
S (θ, r). The Appendix states the previous requirements explicitly and provides

further formalization.

Let QwB (θ, v) denote the lifetime trading probability in state w of a buyer having

type (θ, v) and let PwB (θ, v) denote its expected price conditional on trading. Let

QwS (θ) and PwS (θ) denote the trading probability and trading price for a seller

having type θ. In the competitive outcome for the high state, the buyers’trading

probabilities are QHB (θ, v) = 1 for v > pH∗ and θ > 0, and QHB (θ, v) = 0 for v < pH∗
and θ > 0, the sellers’trading probabilities are QHS (θ) = 1 for θ > 0, and the price is

PHB (θ, v) = pH∗ for v ≥ pH∗ and θ > 0, and PHS (θ) = pH∗ for θ > 0. The competitive

outcome for a trader who is mistakenly convinced of the low state is not defined,

as is the outcome for a marginal buyer with valuation v = pH∗ . The competitive

23That is, θ/ (1− θ) = gHS (θ) /gLS (θ) for all θ and θ/ (1− θ) = dHgHB (θ, v) /dLgLB (θ, v) for all
(θ, v).
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outcome for the low state is defined analogously.

We restrict attention to equilibria in monotone strategies, by which we mean that

the reserve price ρ (θ) is weakly increasing in the prior and that the bid β
(
θI , v, r

)
is

weakly increasing in the interim belief, the valuation, and the observed reserve price.

Furthermore, we assume that the endogenous probability measures ΓwB and ΓwS are

absolutely continuous and that its densities γwB and γ
w
S satisfy no-introspection.

24

Because the reserve price is observable to the buyers, it becomes a signal of the

seller’s beliefs about the state of the market, and there is freedom in assigning beliefs

following off-equilibrium reserve prices. This freedom can then be used to support

multiple equilibria.25 To deal with this multiplicity, we assume that buyer’s beliefs

are passive. Specifically, θI (θ, r) = θ whenever r 6= ρ
(
θ′
)
for any θ′: After observing

a reserve price that is off the equilibrium path, the buyer’s interim belief is equal to

its prior. We return to a discussion of passive beliefs at the end of this section.

Taken together, a list (β, ρ, Sw, Dw, ΓwS , ΓwB, θ
+
S , θ

+
B, θ

I) is a monotone steady-

state equilibrium with passive beliefs if the stock (Sw, Dw, ΓwS , ΓwB) constitutes a

steady-state given the bargaining strategies, strategies β and ρ are sequentially

rational and monotone, beliefs θ+
S , θ

+
B, and θ

I are consistent with Bayes’rule and

off-equilibrium beliefs are passive. We refer to such a list as an equilibrium in what

follows.

Given a sequence of vanishing exit rates {1− δk} → 0, suppose there is a se-

quence of equilibria that gives rise to a sequence of outcomes, that is, trading prob-

abilities and prices. We say that the sequence of outcomes converges to the com-

petitive outcome if the trading probabilities and prices converge to the competitive

outcome.

Proposition 5 Consider an economy with heterogeneous buyers and strategic sell-
ers. For every sequence of vanishing exit rates and for every sequence of monotone

steady-state equilibria with passive beliefs, the sequence of trading outcomes con-

verges to the competitive outcome for each state of nature.

The proposition is proven in the Appendix in Section 9. The proof builds on

methods from Lauermann (2012). In the following, we discuss the diffi culties posed

by signaling and the role of passive beliefs in overcoming those diffi culties.

The proof method suggested in Lauermann (2012) is to show that there are no

unrealized gains from trade in the limit between types of buyers and sellers that are

24That is, θ/ (1− θ) = SHγHS (θ) /SLγLS (θ) for all θ and θ/ (1− θ) = DHγHB (θ, v) /DLγLB (θ, v)
for all (θ, v).
25Note that we cannot avoid this problem by assuming that the reserve price is secret or set only

after the bids are made. With these assumptions, the buyers’ bids would become signals about
their beliefs, leading to similar problems.
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matched frequently. Otherwise, a seller could keep offering a price at which exchange

is mutually beneficial and be sure to be matched eventually to a buyer who accepts

the offer (or vice versa). This observation is then used to establish that trading

outcomes are pairwise effi cient, and, hence, competitive. In the current context, this

method of proof can be upset by the freedom in assigning off-equilibrium beliefs:

Suppose that there is a set of types of buyers and sellers who make up a positive

share of the stock even in the limit, and, hence, continue to be matched with positive

probability. Suppose also that there is a price such that, at their current beliefs,

trading at this price would be profitable for all these types of buyers and sellers.

The problem is that the mutually agreeable price might be off the equilibrium path.

Specifically, if a seller deviates from the equilibrium and offers the price nevertheless,

the buyers interpret this price as information about the seller’s belief about the state

of nature. In particular, buyers may interpret the price offer as signaling that the

seller is sure that the state of nature is such that the buyers can receive even better

prices in the future. Consequently, the buyers refuse to trade. Thus, it may not

be possible for the seller to profit from offering the price and gains from trade may

remain unrealized in the limit. The assumption that beliefs are passive prevents this

possibility.26

If beliefs are not passive, we believe that it is possible to construct non-competitive

limit outcomes using the freedom in assigning off-equilbrium beliefs. However, we

have not been able to construct such a non-competitive equilibrium. Constructing a

non-competitive equilibrium would be useful because it would illustrate a particular

problem that is introduced by aggregate uncertainty and that makes it harder for a

market to reach the competitive outcome.

7 Discussion and Conclusion

Bid Disclosure.– In our model, learning is “minimal”: losing buyers learn nothing

except that they lost. In our companion paper, Lauermann and Virag (2012), we

ask whether such nontransparent auctions would arise if each seller could individ-

ually choose the auction format. We show that sellers have an incentive to hide

information from the buyers because of a “continuation value effect”: If bidders re-

ceive information when losing, then they can refine their future bids, which raises

the expected value of their outside options. This leads to less aggressive bidding

and lower revenues for the seller. Countervailing the continuation value effect is

the well-known linkage principle effect for common value auctions. We study how

26 In our proof, the central application of passive beliefs is in Step 7 of Claim 6 on Page 53. There,
we use this assumption to argue that the seller can profitably lower the reservation price. Trading
at the lower price implies strictly higher profits than continued search for all types of sellers.
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these two effects determine the sellers’preferences for information disclosure. For

example, we show that the sellers do not have an incentive to reveal any information

about the submitted bids after the auction.

Costly Reserve Prices in Base Model.– In our base model, the sellers do not

set a reserve price. However, observe that individual sellers do not have a strong

incentive to set reserve prices when the exit rate is small, in the sense that the

expected winning bid is already close to the buyers’maximum willingness to pay

in each state, given the continuation payoffs. We can formalize this observation:

Suppose sellers in the base model have the option to set a reserve price at a small

cost. Then, for a suffi ciently small exit rate, it would be an equilibrium for sellers

to not use that option. Given that no seller sets a positive reserve price, the re-

sulting equilibrium outcome would then be equivalent to the equilibrium outcome

of our original model.27 In fact, we have verified that with costly reserve prices, all

equilibria are competitive in the limit. Thus, adding a small cost of using a reserve

price can substitute for the refinement of passive beliefs. Such a cost may not be

unreasonable, as they may represent general hassle costs connected with using a

reserve price.

Conclusion.–We have introduced a new framework to study price discovery through

trading in a decentralized market. In our model, buyers learn about the relative

scarcity of a good through repeated bidding in auctions. In particular, individual

traders never observe the whole market and they directly interact only with small

groups of traders. We characterized the resulting distribution of beliefs in the pop-

ulation, the learning process, and the bidding behavior of buyers in our base model.

Despite the fact that there is no centralized price formation mechanism, we found

that the equilibrium trading outcome is approximately Walrasian when the exit rate

is small and search becomes cheap. Thus, prices reveal aggregate scarcity and cor-

rectly reflect economic value. However, comparing the outcome with and without

uncertainty, we found that the Walrasian outcome is a better approximation when

aggregate scarcity is known. This demonstrates the specific diffi culties for markets

to clear when demand and supply are unknown. We also demonstrated in an exten-

sion that convergence does not depend on the simplifications introduced in the base

models. In particular, the trading outcomes converge even if there is heterogeneity

and sellers choose their reserve prices strategically.

In this paper, we have used our model to study the possibility of price discovery.

However, our model has broader applicability because it provides a tractable equi-

librium framework for studying the search behavior of agents who learn about the

27This argument depends, of course, on the cost of setting a reservation price being large relative
to the exit rate.
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economy.28 Search theory has been remarkably successful over the last decades but

little progress has been made in incorporating the possibility of learning. Instead,

models of search usually assume that the searching agents know the distribution of

prices (wages, interest rates, etc.) that they are sampling from.29 Our model may

be a first step toward relaxing this assumption. Incorporating learning into models

of search promises new insights into a broad range of economic phenomena.

28 In the base model, equilibrium is explicitly computable and amenable to comparative static
exercises.
29Rothschild (1974) already argued that “the results [from search theory] depend on the untenable

assumption that searchers know the probability distribution from which they are searching,” (p.
689) and “it seems absurd to suppose that consumers know them [the price distributions] with any
reasonable degree of accuracy”(p692).
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8 Appendix A

The first part of the Appendix contains the proofs of our main results from Section

5 (Price Discovery with Small Frictions). The second part of the Appendix contains

the proof of our result from Section 6 (Heterogeneous Buyers and Strategic Sellers).

Most proofs of results from Section 4 (Characterization and Existence of Equi-

librium) are contained in an Online Appendix.30 Exceptions are the proofs of

Lemma 1 (Unique Masses), Lemma 5 (Envelope Theorem) and Lemma 6 (Char-

acterizing the Equilibrium Bidding) which we give here, too. We keep these three

proofs in the regular Appendix because we use elements from these proofs when

showing convergence and because the characterization of the equilibrium bids is

a cornerstone of our convergence proof. The Online Appendix contains also the

characterization of the speed of convergence.

8.1 Proof of Lemma 1 (Uniqueness of Masses)

We show that the steady-state conditions for the stocks can be written as:

dw = (1− δ)Dw + δSw
(

1− e−Dw/Sw
)

(11)

1 = (1− δ)Sw + δSw
(

1− e−Dw/Sw
)
. (12)

These conditions have a simple interpretation: the left-hand side is the inflow for

each market side. The right-hand side is outflow from each market side, that is, the

sum of the number of traders who exit through discouragement and the number of

traders who exit through trade. The number of traders who exit through trade is

Sw
(
1− e−Dw/Sw

)
, which is equal for both market sides.

Rewriting the steady-state condition for buyers, (4),

Dw = dw + δDw

∫ 1

0

(
1− e−Dw(1−Γw(θ))/Sw

)
dΓw (θ)

= dw + δDw − δ
∫ 1

0

∂

∂θ

(
Swe−D

w(1−Γw(θ))/Sw
)
dθ

= dw + δDw − δSw
(

1− e−Dw/Sw
)
.

Recall the steady-state condition for sellers, (3), Sw = 1 + δSwe−D
w/Sw . Rewriting

the steady-state conditions further yields (11) and (12).

A solution to the steady-state conditions exists, and the solution is unique. The

30At http://sites.google.com/site/slauerma/Price-Discovery-Online-Appendix.pdf
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difference of (11) and (12),

dw − 1 = (1− δ) (Dw − Sw) , (13)

defines Dw as a function of Sw, J (Sw). We can write (12) as a function of Sw only,

1 = (1− δ)Sw + δSw
(

1− e−J(Sw)/Sw
)
.

This equation has a solution by the intermediate value theorem. At Sw → 0, the

right-hand side becomes zero, while for Sw → ∞, the right-hand side becomes
infinite (recall that

(
1− e−J(Sw)/Sw

)
∈ [0, 1]). A solution exists in between.

The solution is unique. Let S′w, D′w and S′′w,D′′w be two solutions, and suppose

that D′′w ≥ D′w. Then, by (13), S′′w ≥ S′w. We can show that (12) and S′′w > S′w

leads to a contradiction. Hence, it must be that S′′w = S′w, which implies D′′w =

D′w by (13). The contradiction arises as follows. The first term of (12) is trivially

strictly increasing in Sw. The second term (12) is also increasing in Sw and in Dw,

which can be seen by inspection of the derivatives,31

∂

∂Sw

(
Sw
(

1− e−Dw/Sw
))

=
(

1− e−Dw/Sw
)
− Dw

Sw
e−D

w/Sw ≥ 0

∂

∂Dw

(
Sw
(

1− e−Dw/Sw
))

= e−D
w/Sw > 0.

Thus, if (12) holds for S′w, it cannot also hold for S′′w > S′w. Intuitively, if the

number of buyers and sellers is higher, then (i) more sellers exit due to discourage-

ment (the first term) and (ii) more sellers trade (the second term) because there

are simply more sellers (the first derivative is positive) and, in addition, the num-

ber of buyers increases and so less sellers have no bidders (the second derivative is

positive).

By assumption, dH > dL. We show that this implies DH > DL and SL < SH .

First, it cannot be that both the number of sellers and the number of buyers increases

(or decreases) when the state is changed from L to H. By our earlier observation,

if both, the number of sellers and buyers increases, then the right-hand side of (12)

would strictly increase, leading to a failure of the equation. Similarly, the right-hand

side of (12) would strictly decrease if both market sides shrink. Because dH > dL,

inspection of (13) shows that the difference
(
DH − SH

)
>
(
DL − SL

)
. Hence, it

cannot be that the buyers’market side weakly decreases while the sellers’market

side weakly increases. Therefore, DH > DL and SL < SH , as claimed. �
31Let x = Dw/Sw. The first inequality follows if 1

x

(
1− e−x

)
≥ e−x. This inequality holds if

ex − 1 ≥ x, which is true, since, at zero, e0 − 1 ≥ 0, and for x > 0, (ex − 1− x)′ = ex − 1 ≥ 0.
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8.2 Proof of Lemma 5 (Envelope Theorem)

Convexity follows from a standard argument. By definition, V (θ) = EU (θ, β|θ).
With θα = (αθ′ + (1− α) θ′′),

V (αθ′ + (1− α) θ′′) = αEU
(
θα, β|θ′

)
+ (1− α)EU

(
θα, β|θ′′

)
≤ αEU

(
θ′, β|θ′

)
+ (1− α)EU

(
θ′′, β|θ′′

)
= αV

(
θ′
)

+ (1− α)V
(
θ′′
)
.

The equalities follow by definition of EU and V and linearity of EU . The inequality

follows from optimality of β.

The envelope formula follows from standard arguments as well: (i) optimality

requires EU(θ, β|θ̂) ≤ EU(θ̂, β|θ̂) for all θ, θ̂ and (ii) EU(θ, β|θ̂) is differentiable
everywhere in θ̂. Hence, Theorem 1 by Milgrom and Segal (2002) implies V ′ (θ) =
∂
∂θ̂
EU(θ, β|θ̂)|θ̂=θ at interior differentiable points of V . Linearity of EU(θ, β|θ̂) in θ̂

implies that EU(θ, β|θ̂) = EU(θ, β|θ) + (θ̂ − θ)∂EU(θ,β|θ̂)
∂θ̂

|θ̂=θ. Together, (9) follows.
QED.

8.3 Proof of Lemma 6 (Equilibrium Candidate).

The derivative of the objective function (5) is

β−1′(β(x))(γθ(1)(v− β(x)− δV
(
θ+ (x, θ)

)
) + δ(1−Γθ(1) (x))V ′

(
θ+ (x, θ)

) ∂θ+ (x, θ)

∂x
).

(14)

The derivative exists for almost every type in the support of Γw. The optimal bid

for almost all types is characterized by the first-order condition (14)= 0.

Note that

∂θ+ (x, θ)

∂x
=
−θγH(1) (x) (1− Γθ(1) (x)) + γθ(1) (x) θ(1− ΓH(1) (x))

(1− Γθ(1) (x))2
. (15)

Further,

γθ(1) (x) θ(1− ΓH(1) (x))

1− Γθ(1) (x)
− θγH(1) (x) = γθ(1) (x) (θ+ (x, θ)− θ0 (x, θ)) (16)

by the definitions of θ+ and θ0 (x, θ). Using (15) and (16), the necessary first-order

condition (14)= 0 can be rewritten as (10). QED
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8.4 Proof of Proposition 2: Price Discovery

The proposition follows from a sequence of lemmas. We start by proving Lemma
7. Recall Equation (13),

Swk = Dw
k −

dw − 1

1− δk
. (17)

Substituting (17) into (12) yields

1− e−Dwk /Swk =
1− (1− δk)Swk

δkS
w
k

= 1 +
1− Swk
δkS

w
k

. (18)

We can solve this equation for Dw
k to obtain

Dw
k = −Swk ln

Swk − 1

δkS
w
k

. (19)

Case 1: dw < 1. In this case, lim dw−1
1−δk = −∞, so that (17) implies lim(Swk −

Dw
k ) = ∞; hence, limSwk = ∞. This implies that the right—most side of (18)

converges to 0. Therefore, the limit of the left-most side lim
(
1− e−Dwk /Swk

)
= 0,

that is,

lim
k→∞

µwk = lim
k→∞

Dw
k /S

w
k = 0,

as claimed. From the steady-state condition for buyers, (4), Dw
k ≥ dw. Reordering

terms and evaluating the integral on the right-hand side of (4) at zero,

dw ≥ (1− δk)Dw
k + δkD

w
k Γwk,(1) (0) = (1− δk)Dw

k + δkD
w
k e
−µk .

Taking limits on the last two inequalities implies

lim
k→∞

Dw
k ≥ dw ≥ lim

k→∞
Dw
k e
−µk = lim

k→∞
Dw
k .

Hence, limDw
k = dw, as claimed. Therefore, from (17) it follows that

lim
k→∞

(1− δk)Swk = 1− dw. (20)

Letting µwk = Dw
k /S

w
k , it follows from (19) and (20) that

lim
k→∞

µwk
1− δk

=
dw

1− dw . (21)

Case 2: dw > 1. From (17), it follows that limDw
k − Swk = ∞; thus, limDw

k = ∞.
Then, (19) implies that limSwk = 1.32 This implies that µwk → ∞. The rest of the
32To see this, note that if limSwk > 1, but finite was true, then (19) would imply that limDw

k <∞,
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proof establishes that lim 1−δk
e
−µw

k
=∞. Using (17) and limSwk = 1 yields that

lim
k→∞

(1− δk)Dw
k = dw − 1. (22)

Formula (22) and limSwk = 1 imply that

lim
k→∞

(1− δk)µwk = dw − 1. (23)

Finally, using (23) implies that lim 1−δk
e
−µw

k
= lim(1− δk)eµ

w
k = (dw − 1) lim eµ

w
k

µw
k

=∞.
�

Let Qwk (θ) denote the lifetime trading probability of a buyer having type θ,

Qwk (θ) = (1− ξwk (θ))+δkξ
w
k (θ)

(
1− ξwk

(
θ1
k (θ)

))
+δ2

kξ
w
k (θ) ξwk

(
θ1
k (θ)

) (
1− ξwk

(
θ2
k (θ)

))
+···

where 1 − ξwk (θ) denotes the probability that a buyer with type θ trades in any

given period, and θtk (θ) denotes the posterior of a buyer with a prior θ who has lost

t times. The steady-state conditions imply a bound on the average expected trading

probability:

Lemma 8 The average expected lifetime trading probability is bounded by the ratio
of the number of entering sellers to the number of entering buyers,

∫ θ
θ Q

w
k (θ) dGw (θ) ≤

1/dw. Moreover, if 1 < dw, then the average expected trading probability lim
k→∞

∫ θ
θ Q

w
k (θ) dGw (θ) =

1/dw.

Proof: Let
(
θtk
)−1 (

θ′
)
be the generalized inverse,

(
θtk
)−1 (

θ′
)

= sup
{
θ|θtk (θ) ≤ θ′

}
.

The steady-state conditions require that for every θ

Dw
k Γwk (θ) = dw(

∫ θ

0
dGw (τ) + δk

∫ (θ1
k)
−1

(θ)

0
ξwk (τ) dGw (τ)

+δ2
k

∫ (θ2
k)
−1

(θ)

0
ξwk (τ) ξwk

(
θ1
k (τ)

)
dGw (τ) + · · ·. (24)

By the fundamental theorem of calculus for Lebesgue integration, we can multiply

the above identity with 1− ξwk (τ) point-by-point, which yields

a contradiction with what we have already established above. If limSwk = ∞, then log
Swk −1

δkS
w
k
→ 0,

and therefore, by (19), limµwk = limDw
k /S

w
k = 0, which contradicts limDw

k − Swk = ∞ > 0.
Therefore, limSwk = 1 must hold.
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Dw
k

∫ θ

0
(1− ξwk (τ)) dΓwk (τ)

= dw(

∫ θ

0
(1− ξwk (τ)) dGw (τ) + δk

∫ (θ1
k)
−1

(θ)

0

(
1− ξwk

(
θ1
k (τ)

))
ξwk (τ) dGw (τ) + ...

Evaluating at θ = 1 and using the definition of Qwk (θ) to simplify the right-hand

side

Dw
k

∫ 1

0
(1− ξwk (τ)) dΓwk (τ) = dw(

∫ 1

0
((1− ξwk (τ)) + δk

(
1− ξwk

(
θ1
k (τ)

))
ξwk (τ) +(25)

+δ2
k

(
1− ξwk

(
θ2
k (τ)

))
ξwk (τ) ξwk

(
θ1
k (τ)

)
+ ...)dGw (τ)

= dw
∫ 1

0
Qwk (θ) dGw (θ) .

As shown in the proof of Lemma 1, Dw
k

∫ 1
0 (1− ξwk (τ)) dΓwk (τ) = Swk

(
1− e−Dwk /Swk

)
,

the total mass of buyers who trade in any period is equal to the total mass of

sellers who trade. Rewriting the steady-state condition for the sellers, (3), implies

1 = Swk
(
1− δke−D

w
k /S

w
k

)
. Because 1 ≥ δk, 1 ≥ Swk

(
1− e−Dwk /Swk

)
. Taken together,

we have shown the following chain of (in-)equalities, which proves the first claim of

the lemma:

1 ≥ Swk
(

1− e−Dwk /Swk
)

= Dw
k

∫ 1

0
(1− ξwk (τ)) dΓwk (τ) = dw

∫ 1

0
Qwk (θ) dGw (θ) .

(26)

Equation (12) implies that if dw > 1, then Swk
(
1− e−Dwk /Swk

)
→ 1. Taking limits on

the last three equalities in (26) implies the second claim of the lemma,

1 = lim
k→∞

Swk

(
1− e−Dwk /Swk

)
= lim

k→∞
dw
∫ 1

0
Qwk (θ) dGw (θ) .

�
The following Lemma strengthens the finding of Lemma 8 for a special case.

Lemma 9 Suppose that dH > 1 and dL < 1. Then, for all θ ∈ [θ, θ]

lim
k→∞

QHk (θ) = 1/dH .

Proof: First, the trading probability is monotone in the type: Let θl < θh and let{
θtl
}∞
t=0

and
{
θth
}∞
t=0

be the sequence of updated beliefs after losing t times. By

monotonicity of θ+
k , θ

t
l < θth for all t; hence, βk

(
θtl
)
< β

(
θth
)
for all t. Therefore, the

probability of winning in any given period after having lost t times, 1 − ξwk
(
θtl
)
<
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1− ξwk
(
θth
)
for all t; hence,

Qwk (θl) =
(
1− ξwk

(
θ0
l

))
+ δkξ

w
k

(
θ0
l

) (
1− ξwk

(
θ1
l

))
+ δ2

kξ
w
k

(
θ1
l

)
ξwk
((
θ0
l

))
....

< Qwk (θh) =
(
1− ξwk

(
θ0
h

))
+ δkξ

w
k

(
θ0
h

) (
1− ξwk

(
θ1
h

))
+ δ2

kξ
w
k

(
θ1
h

)
ξwk
((
θ0
h

))
.... .

The posterior of the most optimistic new buyer after losing once becomes one,

θ1
k (θ) = θ+

k (θ, θ) → 1, since the likelihood ratio of losing 1−e−D
H
k /S

H
k

1−e−D
L
k
/SL
k
→ ∞ by

Lemma 7. This implies that lim θ+
k (θ, θ) > θ. Hence, by the monotonicity of the

trading probability, we can “sandwich”the trading probability of all θ ∈
[
θ, θ
]
for

suffi ciently large k,

QHk
(
θ+
k (θ, θ)

)
≥ QHk (θ) ≥ QHk (θ) ∀ θ ∈ [θ, θ], k large. (27)

Using (27) and Lemma 8,

lim inf
k→∞

∫ θ

θ
QHk

(
θ+
k (θ, θ)

)
dGH (θ) (28)

≥ lim
k→∞

∫ θ

θ
QHk (θ) dGH (θ) = 1/dH ≥ lim sup

k→∞

∫ θ

θ
QHk (θ) dGH (θ) .

By construction, QHk (θ) ≥ δkQHk
(
θ+
k (θ, θ)

)
. By monotonicity of θ+ and monotonic-

ity of QHk , Q
H
k (θ) ≤ QHk

(
θ+
k (θ, θ)

)
. Therefore, the difference QHk

(
θ+
k (θ, θ)

)
−

QHk (θ) ∈ [0, 1− δk]. When δk → 1, lim
(
QHk

(
θ+
k (θ, θ)

)
−QHk (θ)

)
= 0 (the expected

trading probability with the initial type θ and the expected trading probability after

updating once become the same). Hence, lim inf
k→∞

QHk
(
θ+
k (θ, θ)

)
≤ lim sup QHk (θ).

This inequality together with the inequalities (28) implies

lim
k→∞

QHk
(
θ+
k (θ, θ)

)
= 1/dH = lim

k→∞
QHk (θ);

(recall,
∫ θ
θ dG

H (θ) = 1). Hence, (27) implies limQHk (θ) = 1/dH for all θ ∈
[
θ, θ
]
.

�
We prove that trading probabilities satisfy the conditions of Proposition 2.

Lemma 10 Trading probabilities satisfy:

lim
k→∞

Qwk (θ) =

{
1 if dw < 1
1
dw if dw > 1

and lim
k→∞

Qwk (S) =

{
dw if dw < 1

1 if dw > 1.

Proof: For buyers: If dw < 1, then lim
k→∞

Qwk (θ) = 1 is immediate from Lemma 7.

We have argued that lim
k→∞

Qwk (θ) = 1
dw if d

w > 1 for the case w = H and dL < 1 in
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Lemma 9. The case in which in both states dw > 1 follows from the steady-state

conditions along similar lines. We omit the proof of that case.

For sellers: The trading probability is recursively defined as Qwk (S) = 1 −
e−D

w
k /S

w
k +δke

−Dwk /Swk Qwk (S). If dw > 1, then lim
k→∞

Qwk (S) = 1 follows fromDw
k /S

w
k →

∞, shown in Lemma 7.
If dw < 1, then (20) implies (1−δk)Swk = 1−dw. From the steady-state condition,

(12),

1 = (1− δk)Swk + δkS
w
k

(
1− e−Dwk /Swk

)
.

Rewriting the definition of Qwk (S), 1−e−Dwk /Swk =
(1−δk)Qwk (S)

1−δkQwk (S) , substituting into the

steady-state condition, and taking limits,

1 = lim (1− δk)Swk + lim δkS
w
k

(1− δk)Qwk (S)

1− δkQwk (S)
= 1− dw + (1− dw) lim

Qwk (S)

1−Qwk (S)
,

from which limQwk (S) = dw follows, as claimed. QED.

Let Qwk (θ, b′) denote the probability that a type θ eventually ends up trading at

a price p ≤ b′, and let θk denote the highest type in the stock who bids below b′,

θk = sup {θ|βk ≤ b′, θ ∈ suppΓwk } (if there is no such type, θk = 0). The probability

Qwk (θ, b′) is defined as

Qwk
(
θ, b′

)
= (1− ξwk (min {θk, θ})) + δk (1− ξwk (θ)) ξwk

(
min

{
θk, θ

1
k (θ)

})
+δ2

k (1− ξwk (θ))
(
1− ξwk

(
θ1
k (θ)

))
ξwk
(
min

{
θk, θ

2
k (θ)

})
+ ...,

where we need to use (min {θk, θ}) because βk (θ) might be below b′; that is, θ < θk.

Let V = limVk(1). We show that the expected price conditional on winning

becomes equal to v − V̄ . To show this, we want to prove that if a bidder wins with
some bid with positive probability, the second highest bidder bids almost surely

β = v − V̄ (no bidder would bid higher). The proof works as follows: If there is

a positive chance to win against a buyer with a belief θ′, then the posterior of this

buyer conditional on being tied must converge to one; formally,

∀
{
θ′k
}

: limQHk
(
θ, βk

(
θ′k
))
> 0⇒ lim θ0

k

(
θ′k, θ

′
k

)
= 1.

Because θ0
k

(
θ′k, θ

′
k

)
→ 1, the bid βk

(
θ′k
)
is shown to converge to limVk(1) = V̄ .

Lemma 11 Suppose that dH > 1 and dL < 1. Let V = lim
k→∞

Vk(1). For any type

θ ∈ [θ, θ] the expected price conditional on winning in the high state converges to

v − V̄ , lim
k→∞

Ek [p, θ|H] = v − V .

Proof: Suppose that there are some b′ and θ∗ ∈
[
θ, θ̄
]
such thatQHk (θ∗, b′) converges
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to some positive number along some subsequence,

dH lim inf
k→∞

QHk
(
θ∗, b′

)
= ε > 0. (29)

We prove that this implies b′ ≥ v − V̄ . This implies the claim.

Let θk ≡ sup {θ|βk (θ) ≤ b′}. We prove that (29) implies

lim inf
k→∞

(1− ξHk (θk))D
H
k ≥ ε. (30)

We are done if lim inf
k→∞

ξHk (θk) < 1. So, suppose that ξHk (θk) → 1. The inequality

now follows from the following chain of equations. For k suffi ciently large,

ε ≤ dH(1− ξHk (θk)) + δkd
H
(
1− ξHk (θk)

)
ξHk
(
θ1
k (θ)

)
+ δ2

k

(
1− ξHk (θk)

)
....

= dH(1− ξHk (θk)) + δkd
H
(
1− ξHk (θk)

) [
ξHk
(
θ1
k (θ)

)
+ δkξ

H
k

(
θ1
k (θ)

)
ξHk
(
θ2
k (θ)

)
+ ....

]
≤ dH(1− ξHk (θk)) + δkd

H
(
1− ξHk (θk)

) [
ξHk
(
θ̄
)

+ δkξ
H
k

(
θ1
k

(
θ̄
))
ξHk
(
θ̄
)

+ ....
]
,

where the first inequality comes from the definition of QHk and the second inequality

comes from θ1
k (θ)→ 1 > θ and ξHk being nonincreasing. Integrating both sides with

respect to GH , taking limits with k →∞, and noting that ξHk (θk)→ 1, we rewrite

further

lim inf
k→∞

(
1− ξHk (θk)

)
dH
∫ 1

0

[
ξHk
(
θ̄
)

+ δkξ
H
k

(
θ1
k

(
θ̄
))
ξHk
(
θ̄
)

+ ....
]
dGH

≤ lim inf
k→∞

(
1− ξHk (θk)

)
dH
∫ 1

0

[
1 + δkξ

H
k (τ) + ....

]
dGH (τ)

= lim
(
1− ξHk (θk)

)
DH
k .

where we used that ξHk is nonincreasing, ξ
H
k

(
θ̄
)
→ 1, and the steady-state conditions.

Together, the two displayed chains of equations imply the desired inequality (30).

We expand (30) using the definition of ξwk ,

lim inf
k→∞

DH
k e
−DHk (1−ΓHk (θk))/SHk ≥ ε. (31)

Equation (31) implies that lim
k→∞

ΓHk (θk) = 1: Otherwise, if lim supΓHk (θk) < 1 were

true, SHk → 1 and DH
k →∞ would imply that lim inf

k→∞
DH
k e
−DHk (1−ΓHk (θk))/SHk = 0 by
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l’Hospital’s rule,33 contradicting (31). Using DL
k → dL < 1, we obtain that

lim supDL
k ΓLk (θk) e

−DLk (1−ΓLk (θk)/SLk ≤ 1.

Hence,

lim inf
k→∞

DH
k ΓHk (θk) e

−DHk (1−ΓHk (θk)/SHk

DL
k ΓLk (θk) e

−DLk (1−ΓLk (θk)/SLk
≥ ε. (32)

The likelihood ratio of tying satisfies

θ0
k (θk)

1− θ0
k (θk)

=
θk

1− θk
γHk (θk)

γLk (θk)

DH
k

DL
k

SLk
SHk

e−D
H
k (1−ΓHk (θk)/SHk

e−D
L
k (1−ΓLk (θk))/SLk

≥ θk
1− θk

ΓHk (θk)

ΓLk (θk)

DH
k

DL
k

SLk
SHk

e−D
H
k (1−ΓHk (θk))/SHk

e−D
L
k (1−ΓLk (θk))/SLk

.

The inequality follows from the MLRP of Γw, γ
H
k (θk)

γLk (θk)
≥ ΓHk (θk)

ΓLk (θk)
. Using (32) (for the

first inequality) and using SLk
SHk
→∞ (for the second equality),

lim inf
k→∞

θ0
k (θk)

1− θ0
k (θk)

≥ εlim inf
k→∞

θk
1− θk

SLk
SHk

=∞. (33)

Therefore, the posterior θ0
k (θk, θk)→ 1.

We show that θ0
k (θk, θk)→ 1 implies that βk (θk)→ v− V̄ ; that is, b′ = v− V̄ , as

claimed in the beginning. From Lemma 18, βk (θk) = v−δkEU
(
θ+
k (θk, θk) , βk|θ0

k (θk, θk)
)
.

By θ+
k (θk, θk) → 1 and because the sequence of payoffs EU

(
θ, βk|θ′

)
is Lipschitz

continuous in θ′ with a uniform Lipschitz constant, we can pass the limit through;

that is limEU
(
θ+
k (θk, θk) , βk|H

)
= limEU (1, βk|H) = V̄ . Hence,

limβk (θk)

= v − lim δkEU
(
θ+
k (θk, θk) , βk|θ0

k (θk, θk)
)

= v − lim θ0
k (θk, θk)︸ ︷︷ ︸
→1

EU
(
θ+
k (θk, θk) , βk|H

)︸ ︷︷ ︸
→V̄

−
(
1− θ0

k (θk, θk)
)︸ ︷︷ ︸

→0

EU
(
θ+
k (θk, θk) , βk|L

)
= v − V̄ = b′.

Thus, limQHk (θ, p) = 0 for all p < v−V̄ , θ ∈ [θ, θ]: If not, then lim inf QHk
(
θ′, p′

)
> 0

for some p′ < v− V̄ and θ′. As we have shown before, lim inf QHk
(
θ′, p′

)
> 0 implies

p′ = v − V̄ , a contradiction.

From βk (θ) ≤ βk (1) = v− δVk (1) for all θ and k, it follows that limQHk (θ, p) =

33Let xk = DH
k and ck = (1 − ΓHk (θk))/SHk . Using l’Hospital’s rule, lim inf xke

−xkck = 0 if
xk → ∞ and lim inf ck > 0. Hence, ck = (1 − ΓHk (θk))/SHk must converge to 0. From before,
SHk → 1, so this requires ΓHk (θk)→ 1.
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1/dH for all p > v − V̄ , θ ∈ [θ, θ]. Hence,

lim
k→∞

Ek [p, θ|H] = lim

∫ 1

0

(
1− QHk (θ, b)

QHk (θ)

)
db = v − V̄ .

�
Proof of Proposition 2.

We have shown that the trading probabilities become competitive in Lemma 10.

We now show that prices become competitive, too.

Case 1: dL < dH < 1. By Lemma 1, in both states, the probability of being

the sole bidder becomes one, e−D
w
k /S

w
k → 1, which implies Vk (θ) → v for all θ by

inspection of the payoffs. In particular, Vk (1) → v. Hence, the bidding strategy

βk (θ)→ 0 for all θ. Because the expected price is smaller than βk (1) by definition

and the monotonicity of βk and because βk (1)→ 0, lim
k→∞

Pwk (θ) = lim
k→∞

Pwk (S) = 0

follows.

Case 2: dL > 1 and dH > 1. We show EUk [βk, θ = 0|L] → 0. By monotonicity

of the bidding strategy, βk (0) ≤ βk (θ) for all θ; hence, a buyer with belief θ = 0

wins only as the sole bidder,

EUk [βk, θ = 0|L] = e−D
L
k /S

L
k (v) + δk

(
1− e−DLk /SLk

)
EUk [βk, θ = 0|L]

⇔ EUk [βk, θ = 0|L] =
e−D

L
k /S

L
k

1−δk
e
−DL

k
/SL
k

+ δk
v.

From Lemma 1, 1−δk
e
−DL

k
/SL
k
→∞, while e−DLk /SLk → 0. Therefore,

lim
k→∞

EUk [βk, θ = 0|L] = 0.

Since EUk [βk, θ = 0|L] = Vk (0) and Vk (0) → 0, we have limβk (θ) = v for all θ.

Because a bidder is never a sole bidder in the limit, lim
k→∞

Pwk (θ) = lim
k→∞

Pwk (S) = v

follows.

Case 3: dH > 1 and dL < 1.

As in Case 1, by Lemma 1, lim
k→∞

PLk (θ) = lim
k→∞

PLk (S) = 0. We now argue

w = H. From before, θ1
k (θ) → 1. Since, in the high state, the first cohort has

a vanishing winning probability, and since there is no exogenous exit in the limit

either, it follows that

lim
k→∞

V H
k (θ) = lim

k→∞
V H
k (θ1

k (θ)) = V̄ .
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From Lemma 9, QHk (θ)→ 1/dH . From Lemma 11 PHk (θ) = v − V̄ . Together,

lim
k→∞

V H
k (θ) =

v − (v − V̄ )

dH
=

V̄

dH
.

Since dH > 1, V̄ = V̄
dH
implies that V̄ = 0. Thus, the expected price lim

k→∞
PHk (θ) =

lim
k→∞

PHk (S) = v − V̄ = v. �

8.5 Proof of Proposition 3: Time Pattern of Bids

Proof. Step 1: We derive some auxiliary observations. By definition, θtk (θ)

satisfies
θtk (θ)

1− θtk (θ)
=

θt−1
k (θ)

1− θt−1
k (θ)

1− ΓH(1),k(θ
t−1
k (θ))

1− ΓL(1),k(θ
t−1
k (θ))

.

The belief θtk (θ) is strictly increasing in t. From the proof of Proposition 2, lim
k→∞

ΓH(1),k(θ) =

lim
k→∞

1−ΓL(1),k(θ) = 0 for all θ ∈ [θ, θ]. Therefore, lim
k→∞

θ1
k (θ) = 1; thus, by monotonic-

ity, lim
k→∞

θtk (θ) = 1. The posterior after losing t times and then being tied satisfies

(if densities are positive)

θ0
k

(
θtk (θ) , θtk (θ)

)
1− θ0

k

(
θtk (θ) , θtk (θ)

) =
θtk (θ)

1− θtk (θ)

γH(1),k(θ
t
k (θ))

γL(1),k(θ
t
k (θ))

. (34)

By definition, γw(1),k = µwk γ
w
k Γw(1),k. Using the no-introspection condition to substi-

tute for γwk ,
γH(1),k(θ)

γL(1),k(θ)
=

θ

1− θ
SLk
SHk

ΓH(1),k(θ)

ΓL(1),k(θ)
. (35)

Substituting iteratively into (34),

θ0
k

(
θtk (θ) , θtk (θ)

)
1− θ0

k

(
θtk (θ) , θtk (θ)

) =
θt−1
k

1− θt−1
k

1− ΓH(1),k(θ
t−1
k )

1− ΓL(1),k(θ
t−1
k )

θtk
1− θtk

SLk
SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)

=

= (
θt−1
k

1− θt−1
k

1− ΓH(1),k(θ
t−1
k )

1− ΓL(1),k(θ
t−1
k )

)2 S
L
k

SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)

=

= (
θt−2
k

1− θt−2
k

1− ΓH(1),k(θ
t−2
k )

1− ΓL(1),k(θ
t−2
k )

1− ΓH(1),k(θ
t−1
k )

1− ΓL(1),k(θ
t−1
k )

)2 S
L
k

SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)

= (
θ

1− θ
1− ΓH(1),k(θ)

1− ΓL(1),k(θ)
· · ·

1− ΓH(1),k(θ
t−1
k )

1− ΓL(1),k(θ
t−1
k )

)2 S
L
k

SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)
.(36)
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Recall from the proof of Proposition 2 that

lim
k→∞

µLk = 0 and lim
k→∞

µLk
1− δk

=
dL

1− dL . (37)

L’Hospital’s rule implies that limx→0
1−e−x
x = 1. Hence,

lim
k→∞

1− e−µLk
1− δk

=
dL

1− dL . (38)

Step 2: Proof of Statement (i) of Proposition 3.
From the previous step, lim θ1

k (θ) > θ for all θ ∈ [θ, θ]. Thus, monotonicity of

beliefs implies that for suffi ciently large k,

θ0
k

(
θtk(θ), θ

t
k(θ)

)
≥ θ0

k

(
θt−1
k (θ), θt−1

k (θ)
)

for all θ ∈ [θ, θ].34 Therefore, it is suffi cient to prove statement (i) at θ = θ. In the

following, we simplify

θtk ≡ θtk (θ) .

For suffi ciently large k such that θ1
k > θ, the steady-state conditions imply

Dw
k Γwk (θtk) = dw+

∫ θ̄

θ
δkξ

w
k (τ) dGw (τ)+...+

∫ θ̄

θ
δt−1
k ξwk (τ) ...ξwk

(
θt−1
k (τ)

)
dGw (τ) ≤ tdw.

From the proof of Proposition 2, DH
k →∞. Hence,

lim
k→∞

ΓH(1),k(θ
t
k)

e−µ
H
k

= lim
k→∞

e
−µHk

(
1− td

H

DH
k

)

e−µ
H
k

= 1. (39)

Moreover, the steady-state conditions imply that

Dw
k

(
1− Γwk (θtk)

)
≤
dL
(

1− e−µLk
)t

1− δk + e−µ
L
k

(40)

34The tying posterior θ0
k is defined at θ by definition of γ

w
k and gwk (θ) > 0, which ensure

γw(1)

(
θtk (θ)

)
> 0 for all t.
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because ξwk (θ) ≤ ξwk (θ) = 1− e−µLk for all θ ≥ θ and

Dw
k

(
1− Γwk (θtk)

)
=

∫ θ̄

θ
δtkξ

w
k (τ) ...ξwk

(
θtk (τ)

)
dGw (τ)

+

∫ θ̄

θ
δt+1
k ξwk (τ) ...ξwk

(
θt+1
k (τ)

)
dGw (τ) + ....

≤ δtk

(
1− e−µLk

)t
dL + δt+1

k

(
1− e−µLk

)t+1
dL + ....

=
1

1− δk + e−µ
L
k

δtk

(
1− e−µLk

)t
dL.

From (38) and (39),

lim
k→∞

1− ΓL(1),k(θ)

1− δk
= lim

k→∞

1− e−µLk
1− δk

=
dL

1− dL .

Hence, (40) implies

lim sup
k→∞

DL
k

(
1− ΓLk (θtk)

)
(1− δk)t

≤ dL
(

dL

1− dL

)t
.

This implies

lim sup
k→∞

1− ΓL(1),k(θ
t
k)

(1− δk)t+1 = lim sup
k→∞

1− e−µLk (1−ΓLk (θtk))

(1− δk)t+1 ≤
(

dL

1− dL

)t+1

, (41)

since,

lim sup
k→∞

µLk
(
1− ΓLk (θtk)

)
(1− δk)t+1 ≤ lim sup

k→∞

1

(1− δk)SLk

(
DL
k

(
1− ΓLk (θtk)

)
(1− δk)t

)
=

dL

1− dL

(
dL

1− dL

)t
.

Note that (20), (23), and (39) imply

limSLk ΓH(1),k(θ
t
k) = lim

1− dL
1− δk

e
− 1−dH

1−δk . (42)

Taking limits on (36) and ignoring all terms that are finite and non-zero,

lim
k→∞

θ0
k

(
θtk
(
θ̄
)
, θtk
(
θ̄
))

1− θ0
k

(
θtk
(
θ̄
)
, θtk
(
θ̄
))

= lim
k→∞

(
1

1− ΓL(1),k(θ)
...

1

1− ΓL(1),k(θ
t−2
k )

1

1− ΓL(1),k(θ
t−1
k )

)2SLk ΓH(1),k(θ
t
k)

= lim
k→∞

1
1−δk e

−(1−dH)/(1−δk)

(1− δk)(1− δk)2...(1− δk)t
= 0,
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where we used (42) and (41) for the second and l’Hospital’s rule for the final equality.

From the proof of Proposition 2, limEU (θ, βk|0) = v for all θ. Because the se-

quence of payoffs EU
(
θ, βk|θ′

)
is Lipschitz continuous in θ′ with a uniform Lipschitz

constant, we can pass the limit through:

lim
k→∞

βk(θ
t
k) = v − lim

k→∞
δkEU

(
θ+
k

(
θtk, θ

t
k

)
, βk|θ0

k

(
θtk, θ

t
k

))
= v − lim

k→∞
EU (1, βk|0) = 0.

This concludes the proof of statement (i).

Step 3: Proof of Statement (ii) of Proposition 3.
Let tk ≡ −(0.5)

(1−δ) ln(1−δ) . Note that Lemma 3 implies that the likelihood ratio of

losing,
1−ΓH

(1),k
(θ)

1−ΓL
(1),k

(θ)
, is a nondecreasing function of θ on the support of Γw(1),k. Therefore,

(36) implies for θ ∈
[
θ, θ̄
]
:

θ0
k

(
θtk (θ) , θtk (θ)

)
1− θ0

k

(
θtk (θ) , θtk (θ)

) ≥ ( θ

1− θ

)2
(

1− ΓH(1),k(θ)

1− ΓL(1),k(θ)

)2tk
SLk
SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)
.

Evaluating the limit of terms on the right-hand side:

lim inf
k→∞

(
1− ΓH(1),k(θ)

1− ΓL(1),k(θ)

)2tk

SLk ΓH(1),k(θ
t
k)

= lim inf
k→∞

(
1

1− ΓL(1),k(θ)

)2tk
1− dL
1− δk

e
− 1−dH

1−δk

= lim inf
k→∞

(
dL

1− dL (1− δk)
)−2tk 1− dL

1− δk
e
− 1−dH

1−δk =∞,

where we used ΓH(1),k(θ)→ 0 and (42) for the second line, (38) for the first equality

of the third line, and the following observation for the second equality of the third

line:

lim
(1−δ)→0

1−dL
1−δ e

− 1−dH
1−δ(

dL
1−dL (1− δ)

)− 1
(1−δ) ln(1−δ)

= lim
(1−δ)→0

1− dL
1− δ

(
(

dL
1− dL

)
1

ln(1−δ)
e1−dH

e

) −1
1−δ

=∞.

This follows from lim( dL
1−dL )

1
ln(1−δ) = 1 and lim( dL

1−dL )
1

ln(1−δ) e
1−dH
e = e−dH < 1, so

that lim
(1−δ)→0

(
( dL

1−dL )
1

ln(1−δ) e
1−dH
e

) −1
1−δ

=∞.

Thus, lim
k→∞

θ0
k

(
θtk (θ) , θtk (θ)

)
= 1, as claimed. From the proof of Proposition 2,
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limEU (1, βk|1) = 0. Together,

lim
k→∞

βk(θ
tk
k ) = v − lim

k→∞
δkEU

(
θ+
k

(
θtkk , θ

tk
k

)
, βk|θ0

k

(
θtkk , θ

tk
k

))
= v − lim

k→∞
δkEU (1, βk|1) = v.

�

9 Heterogeneous Buyers and Strategic Sellers

9.1 The Setup

We start by developing some helpful notation. Let qwS (θ, ρ) be the trading probabil-

ity of a seller with belief θ in the current period who follows strategy ρ, conditional on

state w. Similarly, QwS (θ, ρ) and PwS (θ, ρ) are the lifetime trading probability and the

expected price conditional on trading some time during the lifetime of a seller who

follows strategy ρ with belief θ if the state is w. EΠ [(θ, ρ) |w] = QwS (θ, ρ)PwS (θ, ρ)

is the expected profit. We extend the definition of qwS (θ, ρ) to

qθS
(
θ′, ρ

)
= θqHS

(
θ′, ρ

)
+ (1− θ) qLS

(
θ′, ρ

)
,

and define EΠ
[(
θ′, ρ

)
|θ
]
, QθS , and P

θ
S similarly. Equilibrium payoffs are VS (θ) =

EΠ [(θ, ρ) |θ]. For buyers, we define the current trading probability qwB (θ, v, β), the

expected payoff EU
[
θ′, v, β|w

]
, and equilibrium payoffs VB (θ, v). These definitions

are extended to EU
[
θ′, v, β|θ

]
, QθB and P

θ
B.

We now state the equilibrium requirements formally.

Sequential Rationality.– A (Markovian and pure) bidding strategy β : [0, 1]2 →
[0, 1] is sequentially rational if

β (θ, v, r) ∈ arg max
b
qθB (b, r)

(
v − pθB (b, r)

)
+
(

1− qθB (b, r)
)
δEU

[(
θ+
B (θ, r, b) , v, β

)
|θ+
B (θ, r, b)

]
,

for all (θ, v, r), where qθB (b, r) and pθB (b, r) are the expected trading probability with

bid b and the expected price, respectively. A (Markovian and pure) reserve price

strategy ρ : [0, 1]→ [0, 1] is sequentially rational if, for all θ,

ρ (θ) ∈ arg max
r
qθS (r) pθS (r) +

(
1− qθS (r)

)
δEΠ

[(
θ+
S (θ, r) , ρ

)
|θ+
S (θ, r)

]
,

where qθS (r) and pθS (r) are the expected trading probability and price given r.

Recall that a strategy profile is monotone if β and ρ are weakly increasing in all

their arguments.

Steady-State Conditions.– First, for all sets A ⊂ [0, 1], the mass of the sellers
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with types in A at the beginning of a period equals the mass of sellers with types

in A at the end of a period,

SwΓwS (A) = GwS (A) + Swδ

∫
{θ:θ+

S (θ,ρ(θ))∈A}
(1− qwS (θ, ρ (θ))) dΓwS .

Second, for buyers, for every X ⊂ [0, 1]2, the mass DwΓwB (X) is equal to

dwGwB (X)+Dwδ

∫ ((
ΓwS
(
XI (θ, v)

))
+

∫
θ′∈X+(θ,v)

(
1− qwB

(
β
(
θ, v, ρ

(
θ′
))
, ρ
(
θ′
)))

dΓwS

)
dΓwB

where XI (θ, v) is the set of sellers’beliefs such that a buyer of type (θ, v) does not

participate given the sellers’reserve price and updates to a type in X, and X+ (θ, v)

is the set of sellers’beliefs such that a buyer of type (θ, v) participates and updates

to a type in X after losing,35 and qwB
(
β
(
θ, v, ρ

(
θ′
))
, ρ
(
θ′
))
is the probability to win

with a bid β
(
θ, v, ρ

(
θ′
))
if the reserve price is ρ

(
θ′
)
. As for the base model, we take

the steady-state conditions above as fundamentals; see the footnote on Page 11.

Bayesian Updating.– Suppose that the bidding strategy and the reserve price

strategy are strictly increasing in all their arguments. If r = ρ
(
θ′
)
, then Bayes’

formula and no-introspection require that the interim belief satisfies36

θI (θ, r)

1− θI (θ, r)
=

θ

1− θ
SHγHS

(
θ′
)

SLγLS
(
θ′
) =

θ

1− θ
θ′

1− θ′ . (43)

Let A (r, b) = {(θ, v) : β (θ, v, r) ≥ b}, the set of buyers bidding above b. Then,

e−µ
wΓwB(Ak(r,b)))

is the probability that the seller is matched with no buyer having a type in A (r, b);

recall (1). A buyer’s posterior conditional on losing with a bid b ≥ r is37

θ+
B (θ, r, b) =

θ(1− e−µHk ΓHB (A(r,b)))

θ(1− e−µHk ΓHB (A(r,b))) + (1− θ) (1− e−µLΓLB(A(r,b)))
.

A seller’s posterior conditional on no participation at a reserve price r is

θ+
S (θ, r) =

θe−µ
H(1−ΓHB (A(r,r))

θe−µ
HΓHB (A(r,r)) + (1− θ) e−µLΓLB(Ak(r,r))

.

35Thus, XI (θ, v) =
{
θ′|β (θ, v, ρ (θ′)) < ρ (θ′) and θI (θ, v) ∈ X

}
and X+ (θ, v) ={

θ′|β (θ, v, ρ (θ′)) ≥ ρ (θ′) and θ+
(
θI , ρ (θ′) , β

((
θI , v

)))
∈ X

}
, with θI = θI (θ, ρ (θ′)).

36 If θ′ is not in the support of the distribution of sellers’beliefs, then the second equality in (43)
is a definitional extension of Bayesian updating.
37We extend the posterior as in the base model; see the remarks following the statement of Bayes’

rule in equation (2).
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The above requirements extend to strategy profiles that are weakly increasing, by

taking the possibility of ties appropriately into account. Finally, recall that beliefs

are passive if θI (θ, r) = θ whenever r 6= ρ
(
θ′
)
for all θ′.

Equilibrium Definition.– A list (β, ρ, Sw, Dw,ΓwS ,Γ
w
B, θ

+
S , θ

+
B, θ

I) is a monotone

steady-state equilibrium with passive beliefs if the stock (Sw, Dw, ΓwS , ΓwB) satis-

fies the steady-state conditions, if strategies β and ρ are sequentially rational and

monotone, and if beliefs θ+
S , θ

+
B, and θ

I are consistent with Bayesian updating and

off-equilibrium beliefs are passive.

9.2 Steady-State Implications and Auxiliary Results

Take a sequence of survival rates {δk}∞k=1 with

lim
k→∞

(1− δk) = 0.

Suppose a sequence of equilibria exist. Denote the equilibrium magnitudes cor-

responding to δk by subscripts k, such as βk, ρk,Γ
w
S,k, θ

I
k, etc. Each equilibrium

gives rise to an outcome. As in the benchmark model, let QwB,k (θ, v), QwS,k (θ) and

PwB,k (θ, v), PwS,k (θ) be the equilibrium trading probability and price, respectively. A

sequence of outcomes (QwB,k, Q
w
S,k, P

w
B,k, P

w
S,k) converges to the competitive outcome

if it converges pointwise everywhere, except possibly for buyer types who have the

marginal valuation v = pw∗ and types who are convinced of the “wrong”state (θ = 1

for w = L and θ = 0 for w = H).

Steady-State Implications.– Steady state requires that the mass of buyers and

sellers who enter and expect to trade is equal, so that

dw
∫

[0,1]2
QwB,k (θ, v) dGwB =

∫
[0,1]

QwS,k (θ) dGwS . (44)

Similarly, the total transfer made by buyers is equal to the total transfers received

by sellers, so that

dw
∫

[0,1]2
PwB,k (θ, v)QwB,k (θ, v) dGwB =

∫
[0,1]

PwS,k (θ)QwS,k (θ) dGwS . (45)

An outcome
(
QwB,k, Q

w
S,k, P

w
B,k, P

w
S,k

)
that satisfies the above conditions is feasible.

A feasible outcome corresponds to an allocation in the quasilinear economy defined

by the population of entering buyers and sellers.

In a steady-state, given any set Zk ⊂ [0, 1], the mass of buyers having valuations

v ∈ Zk who trade in any given period equals the mass of buyers having valuations
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v ∈ Zk who enter the market, that is,

Dw
k

∫
[0,1]×Zk

qwB,k (θ, v) dΓwB,k = dw
∫

[0,1]×Zk
QwB,k (θ, v) dGwB. (46)

Similarly, the mass of buyers who exit without trading equals the mass of buyers

who enter and expect to exit without trading,

Dw
k

∫
[0,1]×Zk

(
1− qwB,k (θ, v)

)
(1− δk) dΓwB,k = dw

∫
[0,1]×Zk

(
1−QwB,k (θ, v)

)
dGwB.

(47)

Proving that the above are indeed implications of the steady-state conditions is

tedious and therefore omitted. For the special case of homogeneous buyers in the

base model, we have proven the analogue to the feasibility condition (44) as part of

the Proof of Lemma 1, see the remark following Equations (11) and (12) on Page

28. We have verified the analogues to (46) and (47) in the base model as part of the

proof of Lemma 8, see Equation (25) and the subsequent remark on Page 33.

The proof of Proposition 5 utilizes arguments from Lauermann (2012), stated in

the following three lemmas. First, proving that the outcomes become competitive is

equivalent to proving that limit outcomes are pairwise effi cient. This is an immediate

extension of the classical characterization result by Shapley and Shubik (1971) for

a simple version of the assignment game with transferable utility.

Lemma 12 Shapley and Shubik (1971). A sequence of feasible outcomes converges
to the competitive outcome if it becomes pairwise effi cient, that is, if for all v,

lim inf
k→∞

EUk [θ, v, βk|L] + EΠk

[
θ′, ρk|L

]
≥ v for all θ, θ′ < 1,

lim inf
k→∞

EUk [θ, v, βk|H] + EΠk

[
θ′, ρk|H

]
≥ v for all θ, θ′ > 0.

The following lemma uses standard incentive compatibility implications to char-

acterize payoffs.38 Note that this characterization applies to traders who share the

same belief.

Lemma 13 For all k, v, v′, and θ,

QθB,k (θ, v)
(
v − v′

)
≥ VB,k (θ, v)− VB,k

(
θ, v′

)
≥ QθB,k

(
θ, v′

) (
v − v′

)
. (48)

Proof: Optimality requires that a buyer having valuation v does not have an in-
38See, for instance, the characterization of Bayesian incentive compatibility by Mas-Colell, Whin-

ston, and Green (1995), p. 888, Equation 23.D.13.
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centive to mimic a buyer having valuation v′. Thus,

VB,k (θ, v) ≥ QθB,k
(
θ, v′

) (
v − P θB,k

(
θ, v′

))
.

Interchanging v and v′ proves (48). �
Note that Lemma 13 implies thatQθB,k (θ, v) is weakly increasing in v. Payoffs are

weakly increasing and Lipschitz-continuous in v, with a slope bounded between zero

and one. A useful implication is that v − δkVB,k (θ, v) is continuous and strictly in-

creasing in v, with a slope between (1− δk) and one. The expression v−δkVB,k (θ, v)

can be interpreted as a buyer’s reservation price or as a buyer’s “dynamic type,”see

Satterthwaite and Shneyerov (2007).

The following Lemma uses the steady-state implications and the no-introspection

condition to provide a characterization of the distribution of types in the stock.

Lemma 14 Take any sequence of sets {Zk}∞k=1, with Zk ⊂ [0, 1]. If

lim inf
k→∞

dL
∫

[0,1]×Zk

(
1−QLB,k (θ, v)

)
dGLB > 0 (49)

then lim inf
k→∞

DL
k ΓLB,k([0, 1]× Zk)/SLk > 0. In addition, there is some θ̂ < 1 such that

lim inf
k→∞

ΓLB,k([0, θ̂]× Zk)/ΓLB,k([0, 1]× Zk) > 0. If, in addition to (49),

lim
k→∞

dH
∫

[0,1]×Zk

(
1−QHB,k (θ, v)

)
dGHB = 0, (50)

then limk→∞ ΓLB,k([0, θ̂]× Zk)/ΓLB,k([0, 1]× Zk) = 1 for all θ̂ ∈ (0, 1).

Note that the lemma holds analogously with H and L interchanged. In that

case, [0, θ̂] is replaced by [θ̂, 1] in the last two implications.

The first part of the lemma extends an observation from Lauermann (2012, Claim

1): If Zk is a sequence of non-trivial sets of buyers’valuations such that buyers with

such valuations do not trade with probability one in the limit, then the share of

these sets in the stock does not vanish. Intuitively, traders who do not trade with

probability one in the limit stay in the stock for a long time, and, therefore, these

traders make up a positive share of the total stock. The second part of the lemma

establishes bounds on the beliefs of these buyers. This part uses the no-introspection

condition to capture implications of Bayesian updating. Specifically, if buyers from

the set Zk do not trade with probability one in the low state, then it cannot be

the case that most of the buyers in the stock who have such valuations become

convinced that the state is high even though it is not. Conversely, if buyers with

valuations from the set Zk would have been able to trade with probability one in
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the high state but not in the low state, then most of the buyers with such valuations

in the stock must be certain that the state is low if the state is indeed low.

Proof: Adding (46) and (47) provides a bound on the mass of buyers,

Dw
k ΓwB,k([0, 1]× Zk) (1− δk) ≤ dwGwB([0, 1]× Zk), (51)

where the left side corresponds roughly to the number of buyers with values v ∈ Zk
who die each period and the right side corresponds to the number of such buyers

who enter the market. A similar bound is implied for sellers,

Swk (1− δk) ≤ 1. (52)

Now, suppose that (along some convergent subsequence),

lim
k→∞

dL
∫

[0,1]×Zk

(
1−QLB,k (θ, v)

)
dGLB = K > 0.

Then, (46) and (47) imply that39

lim inf
k→∞

DL
k ΓLB,k([0, 1]× Zk) (1− δk) = K. (53)

Now, (52) and (53) imply lim inf
k→∞

DL
k ΓLB,k([0, 1] × Zk)/SLk ≥ K > 0. The first claim

of the lemma follows.

For the second claim, pick any θ̂ ∈ (0, 1) and suppose that (along some conver-

gent subsequence),

lim
k→∞

ΓLB,k([0, θ̂]× Zk)
ΓLB,k([0, 1]× Zk)

= Rθ̂.

Thus, combined with (53),

lim inf
k→∞

DL
k ΓLB,k([θ̂, 1]× Zk) (1− δk) =

(
1−Rθ̂

)
K.

The second part of the Lemma holds if
(
1−Rθ̂

)
K = 0. So, suppose that

(
1−Rθ̂

)
K >

0. From no-introspection,

DH
k ΓHB,k([θ̂, 1]× Zk)

DL
k ΓLB,k([θ̂, 1]× Zk)

≥ θ̂

1− θ̂
.

39Equation (46) implies that Dw
k

∫
[0,1]×Zk

qwB,k (θ, v) dΓwB,k is bounded, and, hence,

lim (1− δk)Dw
k

∫
[0,1]×Zk

qwB,k (θ, v) dΓwB,k = 0. Now, (53) follows from (47).
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Hence,

lim inf
k→∞

DH
k ΓHB,k([θ̂, 1]× Zk) (1− δk) ≥

θ̂

1− θ̂
(
1−Rθ̂

)
K. (54)

Choose θ̂ such that θ̂
1−θ̂K > dLGLB([0, θ̂] × Zk). Then, (51) implies Rθ̂ > 0. Thus,

the second part of the Lemma holds. Finally, suppose that (50) holds. Then, (46)

and (47) require that

lim
k→∞

DH
k ΓHB,k([θ̂, 1]× Zk) (1− δk) = 0.

Thus, (54) requires that for all θ̂ > 0, Rθ̂ = 1, as claimed. �

9.3 Proof of Proposition 5

To simplify the exposition, we will consider a subsequence for which some key objects

converge pointwise. Specifically, Lemma 13 implies that VB,k (θ, v) is monotone in v

for θ ∈ {0, 1}. Thus, there exists a subsequence such that VB,k (0, v) and VB,k (1, v)

converge pointwise everywhere by Helly’s selection theorem. There exists a further

subsequence such that the numbers ρk (0), ρk (1), VS,k (0), VS,k (1), and PHS,k (1)

converge as well. We show that the limits are independent of the choice of the

subsequence. Hence, the sequence itself converges. We identify the convergent

subsequence with itself for notational convenience. We indicate the limits using

bars over the variables, for instance, limk→∞ VB,k (0, v) = V̄B (0, v) and, similarly,

V̄B (1, v), ρ̄ (0), ρ̄ (1), P̄HS (1), V̄S (0), and V̄S (1).

The proof proceeds through a sequence of claims, which are combined to prove

the proposition at the end.

The first claim states conditions under which traders essentially learn the true

state, as reflected by the linearity of limit payoffs in beliefs.

Claim 1 If V̄B (0, v′) = v′ − ρ̄ (0) for some v′ > ρ̄ (0), then V̄B (0, v) = v − ρ̄ (0) for

all v > ρ̄ (0) and

lim
k→∞

VB,k (θ, v) = (1− θ) V̄B (0, v) + θV̄B (1, v) ∀ (θ, v) . (55)

If V̄S (1) = P̄HS (1) and V̄S (0) = ρ̄ (0), then

lim
k→∞

VS,k (θ) = (1− θ) V̄S (0) + θV̄S (1) ∀θ. (56)

Proof: We consider the buyers’side first. By the monotonicity of ρk, limk→∞ VB,k (θ, v) =

0 for all v ≤ ρ̄ (0). We therefore consider v > ρ̄ (0).
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The hypothesis implies ρ̄ (0) < 1 and V̄B (0, v′) > 0. Therefore, V̄B (0, v′) =

v′ − ρ̄ (0) and PLB,k (0, v) ≥ ρk (0) together requires limk→∞Q
L
B,k (0, v) = 1.

The claim holds for θ = 1 by definition. For θ = 0, limk→∞Q
L
B,k (0, v′) = 1 and

Lemma 13 together imply that V̄B (0, v) = v − ρ̄ (0) for all v > ρ̄ (0), as claimed.

We now consider θ ∈ (0, 1). Take any v > ρ̄ (0). From the convexity of value

functions in beliefs (see the proof of Lemma 5),

VB,k (θ, v) ≤ (1− θ)VB,k (0, v) + θVB,k (1, v) .

We show that the equation holds with equality in the limit, observing that the

payoffs from the following strategy provide a lower bound on VB,k (θ, v): Given

some ε > 0 and k large enough, bid ρk (0) + ε for Tk periods, where (δk)
Tk ≥

1 − ε ≥ (δk)
Tk+1. Then, bid according to βk (1, v) forever after. We consider

the expected payoffs in the low state in the limit. From limk→∞Q
L
B,k (0, v) = 1,

limk→∞ ρk (0) = ρ̄ (0), and V̄B (0, v) = v− ρ̄ (0), the buyer’s payoff from this strategy

is at least (1− ε) (v − ρ̄ (0)− ε) in the limit. Now, we consider the high state.

With probability (1− ε) the buyer either trades within the first Tk periods for a
payoff of at least v − ρ̄ (0) − ε in the limit or the buyer stays in the market for

Tk periods and then expects a payoff of V̄B (1, v). The monotonicity of ρk implies

V̄B (1, v) ≤ v − ρ̄ (0). Therefore, the payoff from the described strategy in the limit

is at least (1− ε)
(
V̄B (1, v)− ε

)
. Since ε is arbitrary, the claim follows.

Similar reasoning applies to the sellers. If P̄HS (1) = 0, then the claim is immedi-

ate from PHS,k (1) ≥ ρk (1) ≥ ρk (0). So, suppose P̄HS (1) > 0. From V̄S (1) = P̄HS (1),

it must be that limk→∞Q
H
S,k (1) = 1. Consider the profit from the following strat-

egy. Given ε > 0, set ρk (1) for T k periods, followed by setting ρk (0) forever after,

with T k defined as before. In the high state, the strategy ensures the seller a payoff

of V̄S (1) in the limit. In the low state, with probability (1− ε), the seller either
trades within the first T k periods at a price at least ρk (1) or stays in the market

for all periods and then expects VS,k (0). Thus, the payoff is at least ρ̄ (0) − 2ε in

the low state, proving the claim. �
If the hypothesis of Claim 1 and, thus, (55) are true, then for all v,

lim
k→∞

EUk [θ, v, βk|L] = V̄B (0, v) = max {0, v − ρ̄ (0)} ∀ θ < 1, (57)

lim
k→∞

EUk [θ, v, βk|H] = V̄B (1, v) ∀ θ > 0. (58)

This follows immediately from the combination of (55) and the optimality implica-

tions EUk [θ, v, βk|L] ≤ VB,k (0, v) and EUk [θ, v, βk|H] ≤ VB,k (1, v).

Claim 2 V̄S (0) = ρ̄ (0).
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Proof: We first show V̄S (0) ≤ ρ̄ (0) by observing that

δkEΠk [0, ρk (0) |L] ≤ ρk (0) ∀k.

By contradiction. Suppose δkEΠk [0, ρk (0) |L] > ρk (0). We show that it is a

profitable deviation to set rk = δkEΠk [0, ρk (0) |L] instead of ρk (0).

Step 1: When setting ρk (0), there is a strictly positive chance to trade at a

price strictly below δkEΠk [0, ρk (0) |L].

Proof: The monotonicity of ρk and the sequential rationality of bids imply

δkEΠk [0, ρk (0) |L] > βk (θ, v, ρk (0)) ≥ ρk (0) for all v for which ρk (0) < v <

δkEΠk [0, ρk (0) |L].

Step 2: If βk
(
θIk (ρk (0) , θ) , v, ρk (0)

)
≥ rk for some type (θ, v), then βk

(
θIk (rk, θ) , v, rk

)
≥

rk.

Proof: First, note that for all rk > ρk (0), the interim belief θIk (rk, θ) ≥ θIk (ρk (0) , θ)

for all θ. This follows from the monotonicity of ρk if rk = ρk (θ) for some θ. If rk
is off the equilibrium path, then θIk (rk, θ) = θ while θIk (ρk (0) , θ) ≤ θ. Thus, if

βk
(
θIk (ρk (0) , θ) , v, ρk (0)

)
≥ rk for some type (θ, v), then the monotonicity of βk

in interim believe and in the reserve price implies βk
(
θIk (rk, θ) , v, rk

)
≥ rk.

Step 1 and 2 imply that setting rk = δkEΠk [0, ρk (0) |L] strictly dominates

setting ρk (0). This is because either (i) there is trade under ρk (0) at a price strictly

below δkEΠk [0, ρk (0) |L] (so that it would be strictly better to continue), or, (ii),

there is trade under ρk (0) at a price weakly above δkEΠk [0, ρk (0) |L] (and then the

price-setting highest bid would be weakly higher under rk by Step 2), or, (iii), there

is no trade under ρk (0) (and then there is either no trade under rk as well, or there

is trade at a price higher than δkEΠk [0, ρk (0) |L].) By Step 1, there is a strictly

positive probability of case (i), which implies that bidding rk yields indeed strictly

higher payoffs.

We now show V̄S (0) ≥ ρ̄ (0). Given any ε > 0, let rεk = ρk (0) − ε. When

setting rεk, all buyers with values v ≥ rεk bid b ≥ rεk by the sequential ratio-

nality of bids and by EUk [θ, v, βk|θ] ≤ v − rεk from ρk (θ) > rεk for all θ. Let

Ak = {(θ, v) : v ∈ (rεk, ρk (0))}. By the definition of ρk (0) and the individual ra-

tionality of bids,
(

1−QLB,k (θ, v)
)

= 1 for all (θ, v) ∈ Ak. From Lemma 14,

lim inf
k→∞

DL
k ΓLB,k (Ak) /S

L
k > 0. Hence, when setting rεk, the per-period trading proba-

bility lim inf
k→∞

qS,k [rεk|L] > 0, and, so, limk→∞QS,k [rεk|L] = 1. Thus, the limit payoff

from setting rεk is at least ρk (0)− ε. From ε being chosen arbitrarily, it follows that

equilibrium payoffs are at least ρk (0), as claimed. �

Claim 3 limk→∞
∫

[0,1]×[ρ̄(0),1]

(
1−QLB,k (θ, v)

)
dGLB = 0.
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Proof: By contradiction. Suppose
∫

[0,1]×[ρ̄(0),1]

(
1−QLB,k (θ, v)

)
dGLB > 0 along

some converging subsequence (without loss of generality, the sequence itself).

Step1. There are v′, v′′, ρ̄ (0) < v′ < v′′ and some sequence {Zk}∞k=1, Zk ⊂
[v′, v′′], such that lim inf

k→∞
FL (Zk) > 0 and for some Q̄ < 1 and K, QLB,k (θ, v) ≤ Q̄

for all v ∈ Zk and k ≥ K.
Proof: This follows from the hypothesis.

Step 2. There is some ε1 > 0 such that V̄B (0, v) < v − ρ̄ (0) − ε1 for all

v ∈ [v′, v′′].

Proof: This follows from Claim 1 and Lemma 13. Otherwise, if V̄B (0, v′) =

v′− ρ̄ (0) for some v′ > ρ̄ (0), then Lemma 13 implies V̄B (0, v) = max {0, v − ρ̄ (0)}.
Hence, Claim 1 requires limk→∞EUk [θ, v, βk|L] = max {0, v − ρ̄ (0)}, from where

limk→∞Q
L
B,k (θ, v) = 1 for all v > ρ̄ (0), which is a contradiction to the starting

hypothesis.

Case 1: Suppose ρ̄ (0) < ρ̄ (1).

Pick ε2 such that 0 < ε2 < min {ε1, ρ̄ (1)− ρ̄ (0)}.
Step 3 (Case 1). limk→∞ supEU [θ, v, βk|θ] < v − ρ̄ (0)− ε2 for all v ∈ [v′, v′′]

and for all θ.

Proof: This follows from EU [θ, v, βk|θ] ≤ (1− θ)VB,k (0, v)+θVB,k (1, v), limk→∞ VB,k (1, v) ≤
v − ρ̄ (1), Step 2, and the definition of ε2.

Step 4 (Case 1). Let rεk = ρk (0)+ε2. Then, the per-period trading probability

lim inf
k→∞

qLS,k (rεk) > 0.

Proof: First, from Step 3 and from the sequential rationality of bids, βk
(
θIr (θ, rεk) , v, r

ε
k

)
≥

rεk for all θ and all v ∈ [v′, v′′]. Thus,

qLS,k (rεk) ≥ 1− eD
L
k ΓLB,k([0,1]×[v′,v′′])/SLk .

Second, from Lemma 14,

lim inf
k→∞

DL
k ΓLB,k

(
[0, 1]×

[
v′, v′′

])
/SLk > 0.

Hence, lim inf
k→∞

qLS,k (rεk) > 0, as claimed.

Step 4 implies that limk→∞Q
L
S,k (rεk) = 1. Thus, the limit payoff from offering rεk

is larger than ρ̄ (0)+ε2 and so must be the equilibrium payoff. This is in contradiction

to Claim 2.

Case 2: Suppose ρ̄ (0) = ρ̄ (1).

Pick some θ̂ such that the second part from Lemma 14 holds.

Step 5 (Case 2). There is some ε′ > 0 such that limk→∞ supEUk [θ, v, βk|θ] <
v − (ρk (0) + ε′) for all θ < θ̂.
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Proof: This follows from limk→∞ supEUk [θ, v, βk|L] < v − ρ̄ (0) − ε1 (Step 2)

and limk→∞ supEUk [θ, v, βk|H] ≤ v − ρ̄ (0) (by the monotonicity of ρk).
40

Step 6 (Case 2). Let rε
′
k = ρk (0) + ε′. Then, lim inf

k→∞
qLS,k(r

ε′
k ) > 0.

Proof: Suppose not. First, suffi ciently deep into the sequence, rε
′
k > ρk (1).

Hence, passive beliefs implies θI(θ, rε
′
k ) = θ for all θ. Second, lim inf

k→∞
qLS,k(r

ε′
k ) = 0

implies that the probability that a buyer faces a competing bid b ≥ rε′k converges to
zero. Hence, suffi ciently deep into the sequence, bidding b = rε

′
k dominates not par-

ticipating because lim inf
k→∞

v − rε′k > limk→∞ supEU [θ, v, βk|θ] by Step 5. Therefore,

sequential rationality requires βk(θ
I(θ, rε

′
k ), v, rε

′
k ) ≥ rε′k for all v ∈ [v′, v′′] and θ < θ̂.

Now, lim inf
k→∞

qLS,k(r
ε′
k ) > 0 follows from the choice of θ̂ and Lemma 14, analogously

to Step 4.

Step 6 implies that the limit payoff from offering rεk is larger than ρ̄ (0) + ε′

yielding again a contradiction to Claim 2. Thus, Claim 3 must be true. �

Claim 4 Equations (57) and (58) hold. In addition, ρ̄ (0) > 0.

Proof: Claim 3 and Lemma 13 together imply that V̄B (0, v) = v − ρ̄ (0) for all

v > ρ̄ (0). Claim 1 and the subsequent remarks imply that (57) and (58) hold.

Furthermore, from Claim 3, the mass of buyers who enter in the low state and

trade is equal to 1 − FL (ρ̄ (0)) in the limit. Thus, feasibility of the steady state

requires that a mass 1 − FL (ρ̄ (0)) of sellers enters and trade; see (44). Since the

mass of sellers is one, this requires 1 − FL (ρ̄ (0)) ≤ 1. By definition of pw∗ and the

full support assumption on FL, 1 − FL (ρ̄ (0)) ≤ 1 requires ρ̄ (0) ≥ pw∗ . The claim

follows from pw∗ > 0. �

Claim 5 limk→∞EUk [θ, v, βk|H] ≥ v − P̄HS (1) for all θ > 0 and v.

Proof: Fix any ε > 0.

Step 1. For every reserve price r, there must be a positive probability in the
limit that there is either no bid or that the highest bid is below P̄HS (1) + ε.

Proof: From optimality of ρk (1) and from V̄S (1) ≤ P̄HS (1), it follows that there

is no rk such that when setting reserve price rk, with probability converging to one

the second highest bid is above P̄HS (1) + ε. This and the Poisson distribution of

bids implies Step 1.

Step 2. V̄B (1, v) ≥ v − P̄HS (1)− ε for all v.
40Note that ε′ < ε1 may hold if V̄B (0, v) < V̄B (1, v).
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Proof: The strategy of always bidding b = P̄HS (1) + ε ensures that the bidder

will eventually win an auction and pay at most P̄HS (1) + ε. This is because ρk (θ) ≤
P̄HS (1) for all θ (by the monotonicity of ρk), and, by Step 1, with positive probability,

there is either no competing bid at all or the highest competing bid is below P̄HS (1)+

ε.

Because ε is arbitrary, Step 2 implies V̄B (1, v) ≥ v − P̄HS (1). Now the claim

follows from implication (58) of Claim 1 . �

Claim 6 V̄S (1) = P̄HS (1)

Proof: Step 1 V̄S (1) ≥ ρ̄ (0)

Proof: Analogously to the last part of the proof of Claim 2, the seller could

lower its price to ρk (0)− ε and trade with probability one in the limit for all ε > 0.

Hence, V̄S (1) ≥ ρ̄ (0).

Step 1 implies the claim if P̄HS (1) = ρ̄ (0). So, suppose P̄HS (1) > ρ̄ (0) in the

following. We prove the claim by contradiction and assume ρ̄ (0) ≤ V̄S (1) < P̄HS (1).

Step 2. V̄S (1) < P̄HS (1) implies limk→∞ supQHS,k (1) < 1 and P̄HS (1) = ρ̄ (1)

Proof: Throughout the proof, we abbreviate P̄HS (1) = P̄HS .

(i) limk→∞ supQHS,k (1) < 1 follows from P̄HS > 0.

(ii) limk→∞ supQHS,k (1) < 1 implies that limk→∞ q
H
S,k (1) = 0, that is, the prob-

ability that at least one buyer bids above ρk (1) converges to zero. The Poisson-

distribution implies that the probability that two buyers bid above ρk (1) is infi-

nitely smaller than the probability that a single buyer bids above ρk (1) in the limit.

Therefore, P̄HS = ρ̄ (1), as claimed.

Pick any p′ such that

V̄S (1) < p′ < P̄HS .

In the following, we show that setting p′ is a profitable deviation. We are done if

limk→∞ sup qHS,k (p′) > 0. So, suppose that

lim
k→∞

qHS,k
(
p′
)

= 0. (59)

Step 3. There are v′′ > v′ > ρ̄ (0) such that limk→∞EUk [θ, v, βk|θ] > v − P̄HS
for all v ∈ [v′, v′′] and all θ. In addition, there is a θ̂ < 1 such that v − p′ >

limk→∞EUk [θ, v, βk|θ] for all v ∈ [v′, v′′] and θ̂ < 1.

Proof: (i) V̄B (1, 1) ≤ 1−P̄HS . Otherwise, V̄B (1, 1) > 1−P̄HS and Lemma 13 imply

V̄B (1, v) > v − P̄HS for all v. Therefore, Claim 1 implies limk→∞EU [θ, v, βk|θ] >
v− P̄HS for all v and all θ, from where βk (θ, v) < ρk (1)for all k large enough implies

V̄S (1) = 0. But V̄ (1) ≥ ρ̄ (0) > 0 by Step 1 and Claim 4.
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(ii) Pick pl and ph such that P̄HS > ph > pl > p′. By V̄B (1, 1) > 1 − P̄HS ,

V̄B (1, 0) = 0, and the continuity of payoffs implied by Lemma 13, the intermediate

value theorem implies that there are v′k and v
′′
k such that δkEU [1, v′k, βk|H] = v′k−pl

and δkEU [1, v′′k , βk|H] = v′′k − ph for all k large enough. Let v′ = limk→∞ v
′
k and

v′′ = limk→∞ v
′′
k be the limits. By Lemma 13 and the following remark, the limits

v′′ > v′. By Lemma 13, v − ph ≤ limk→∞EUk [1, v, βk|H] for all v ∈ [v′, v′′]. From

P̄HS > ρ̄ (0) and Claim 4, limk→∞EUk [θ, v, βk|θ] ≥ (1− θ) (v − ρ̄ (0)) + θ (v − ph) >

v − P̄HS for all θ, proving the first part.

In addition, by Lemma 13, v − pl ≥ limk→∞EUk [1, v, βk|H] for all v ∈ [v′, v′′].

From Claim 4 limk→∞EUk [θ, v, βk|θ] ≤ (1− θ) (v − p′) + θ (v − ph). Thus, pl > p′

implies that second part holds by choosing θ̂ suffi ciently close to one.

Step 4. There is some Q̂ < 1 such that limk→∞Q
H
B,k (θ, v, βk) ≤ Q̂ for all

v ∈ [v′, v′′].

Proof: Suppose not. Then there is some sequence vk ∈ [v′, v′′] and θk such

that limk→∞Q
H
B,k (θk, vk) = 1. Let v̄ = limk→∞ vk. From Step 3 and Claim 4 (and

continuity of limit payoffs), limk→∞EUk [θk, vk, βk|H] = limk→∞ V̄B (1, v̄) > v̄−P̄HS .
Hence, limk→∞ P

H
B,k (θk, vk) < P̄HS . Thus, if v = 1 uses the same sequence of bids

as (θk, vk), the buyer trades with probability one at a price strictly below P̄HS .

Hence, equilibrium payoffs must be bounded below, V̄B (1, 1) > 1 − P̄HS . This is in
contradiction to the upper bound derived in proof of Step 3, part (i).

Step 5. lim inf
k→∞

DH
k ΓHB,k ([θ, 1]× [v′, v′′]) /SHk > 0 for all θ < 1.

Proof: From Claim 3 and Step 4, buyers with values v ∈ [v′, v′′] trade with

probability one in the low state, but they trade with probability less than one in

the high state. The step now follows from Lemma 14.

Step 6. limk→∞ θ
I
k (θ, p′) = 0 for all θ < 1.

Proof: Suppose, by way of contradiction, that limk→∞ θ
I
k

(
θ′, p′

)
> 0 for some

θ′ < 1.

(i) There is some θ′′ < 1 such that limk→∞ θ
I
k (θ, p′) > θ̂ for all θ ≥ θ′′, with θ̂

chosen as in Step 3. This follows from the definition of interim beliefs.

(ii) For k suffi ciently large, all buyers with types (θ, v) ∈
[
θ′′, 1

]
× [v′, v′′] bid

βk (θ, v, p′) ≥ p′. This is because not participating is dominated by bidding b = 1:

The payoff from bidding b = 1 converges to v− p′, by (59). The continuation payoff
from not participating is δkEU

[
θIk (θ, p′) , v|θIk (θ, p′)

]
. From Step 3 and choice of

θ′′, the continuation payoff limk→∞ sup δkEU
[
θIk (θ, p′) , v|θIk (θ, p′)

]
< v − p′ for all

θ ≥ θ′′.
(iii) Combining (ii) and Step 5 implies lim inf

k→∞
qHS,k (p′) > 0, a contradiction to

(59).

Step 7. There is some sequence {θk} such that ρk (θk) = p′ for all k large
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enough and limk→∞ θk = 0.

Proof: (i) If there is no sequence {θk} such that ρk (θk) = p′ for all k large

enough, then the assumption that beliefs are passive implies that θIk (p′, θ) = θ, in

contradiction to Step 6.

(ii) Suppose limk→∞ θk 6= 0. Then there is some θ′ > 0 such that θk ≥ θ′ for all
k suffi ciently large (along some subsequence). From the definition of interim beliefs

(43),

θIk
(
p′, θ

)
≥ θ

1− θ
SHk

(
1− ΓHS,k

(
θ′
))

SLk

(
1− ΓLS,k

(
θ′
)) ≥ θ

1− θ
θ′

1− θ′ > 0,

where the inequalities follow from the no-introspection condition. This is in contra-

diction to Step 6.

Remark: The proof of Step 7 is the critical application of passive beliefs.

Step 8. limk→∞Q
L
k,S (p′) > 0.

Proof: The payoff to a seller with belief θk from offering ρk (θk) = p′ is

(1− θk)
(
qLk p

L
k +

(
1− qLk

)
δkEΠk

(
θ+
S , ρk|L

))
+θk

(
qHk p

H
k +

(
1− qHk

)
δkEΠk

(
θ+
S , ρk|H

))
,

where pwk is the expected price conditional on trading when setting p
′, qwk is the

(per-period) trading probability, and θ+
S = θ+

S,k (θk, p
′) is the updated belief. Since

ρk (θk) = p′, it must not be optimal to ’skip’offering p′. Skipping p′ and setting

ρk
(
θ+
S

)
immediately (and then continuing according to the equilibrium sequence of

bids) yields payoffs

(1− θk)EΠk

(
θ+
S , ρk|L

)
+ θkEΠk

(
θ+
S , ρk|H

)
.

Comparing payoffs, rearranging terms, and dividing by 1−δk shows that optimality
of p′ requires

(1− θk)
qLk

1− δk
pLk + θk

qHk
1− δk

pHk ≥ (1− θk)EΠk

(
θ+
S |L

)
+ θkEΠk

(
θ+
S |H

)
. (60)

From limk→∞ θk = 0, it must be that lim inf
k→∞

EΠk

(
θ+
S , ρk|L

)
= VS (0).41 Using

Claims 2 and 4, VS (1) ≥ ρ̄ (1) > 0. Thus, the limit of the right side (60) must be

strictly positive. Hence, the limit of the left side must be strictly positive, too. This

implies that either

lim inf
k→∞

qLk
1− δk

pLk > 0, (61)

41From lim qwS,k (p′) = 0, and lim θk = 0, lim θ+
S,k (θk, p

′) = 0.
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and/or

lim
k→∞

qHk
1− δk

=∞. (62)

Suppose (61). Then, the claim follows from

lim inf
k→∞

QLk,S
(
p′
)

= lim inf
k→∞

qLk
1−δk
qLk

1−δk + 1
> 0. (63)

Suppose (62). Then, limk→∞Q
H
k,S (p′) = 1, analogous to (63). Hence, V̄S (1) ≥ p′,

in contradiction to the choice of p′.

We now prove the final step, which implies that setting p′ is a profitable deviation.

Thus, this step establishes the claim.

Step 9. limk→∞Q
H
k,S (p′) = 1.

Proof: Let Ak = {(θ, v) |βk (θ, v) ≥ p′}. From p′ > ρ̄ (0), for all (θk, vk) ∈ Ak,
the interim belief must be such that lim inf

k→∞
θIk (θk, p

′) > 0. Combined with Step 6,

this requires limk→∞ θk = 1. No introspection requires

DH
k

(
ΓHB,k (Ak)

)
DL
k

(
ΓLB,k (Ak)

) ≥ inf
θ|(θ,v)∈Ak

θ

1− θ .

Hence,

lim
k→∞

DH
k

(
ΓHB,k (Ak)

)
DL
k

(
ΓLB,k (Ak)

) =∞. (64)

Case 1: SHk ≤ SLk .

From qwk (p′) = 1−e−D
w
k (ΓwB,k(Ak))/Swk , limk→∞

SHk D
H
k (ΓHB,k(Ak))

SHk D
L
k (ΓLB,k(Ak))

=∞ and lim inf
k→∞

qLk
1−δk >

0 together imply limk→∞
qHk

1−δk =∞. Thus, limk→∞Q
H
k,S (p′) = 1, proving Step 9.

Case 2: SHk > SLk .
42 We prove that

lim
k→∞

supSHk /S
L
k <∞. (65)

The bound (65) and (64) imply Step 9.

The main observation is the following:

Step 9b. For every θ∗ > 0 there is some Q̄ < 1 such that limk→∞ supQHS,k (θ) <

Q̄ and limk→∞ supQLS,k (θ) < Q̄ for all θ ≥ θ∗.
Given θ∗, pick any sequence {θk} with θk ≥ θ∗ for each element. We show that

limk→∞ supQHS,k (θk) < 1 and limk→∞ supQLS,k (θk) < 1, which implies the Step.

42We believe that the case SHk > SLk is impossible in equilibrium but we have been unable to
verify this conjecture.

57



Given θk, let
{
rtk
}∞
t=1

be the sequence of reserve price implied by ρk and θ
+
S,k, and

let
{
θtk
}
be the implied posteriors, for example, r1

k = ρk (θk), r2
k = ρk

(
θ+
S,k

(
θk, r

1
k

))
,

and θ1
k = θk, θ2

k = θ+
S,k

(
θk, r

t
k

)
. Let T k be the first period after entry in which a

reserve price below p′ is offered, that is rtk ≥ p′ for all t < T k and rT
k
< p′.

If the seller trades before T k, the price conditional on trading is larger than p′.

Thus, the seller must not be able to trade with probability one before T k in the

limit, that is,
Tk−1∑
t=1

qHS,k
(
rtk
) i=t−1∏

i=1

(
1− qHS,k

(
rik
))
δk (66)

does not converge to one. Otherwise, the reserve price strategy
{
rtk
}∞
t=1

implies

payoffs of at least p′ in the limit. Hence, limk→∞ V
S
k (1) ≥ p′, in contradiction to

the construction of p′. The probability that the seller dies without trading before

reaching period T k is

Tk−1∑
t=1

(1− δk)
(
1− qHS,k

(
rtk
)) i=t−1∏

i=1

(
1− qHS,k

(
rik
))
δk, (67)

and the probability that the seller reaches period T k, neither trading nor dieing

before is
Tk−1∏
i=1

(
1− qHS,k

(
rik
))
δk. (68)

Step 7 requires that the belief of the seller in period T k must converge to zero.

Bayes’formula implies that the ratio of the posterior conditional on staying for T k

periods satisfies

θT
k

k

1− θTkk
=

θk
1− θk

Tk−1∏
i=1

(
1− qHS,k

(
rik
))
δk

Tk−1∏
i=1

(
1− qLS,k

(
rik
))
δk

.

Thus, limk→∞ θ
Tk

k = 0 and θk ≥ θ∗ > 0 require that limk→∞(68) = 0. Since

(66), (67), and (68) add up to one, and limk→∞ sup(66) < 1, it must be that

lim inf
k→∞

(67) > 0. Now, lim inf
k→∞

(67) > 0 implies that the seller trades with probabil-

ity less than one, limk→∞ supQHS,k (θk) < 1. This argument also establishes that

limk→∞ supQLS,k (θk) < 1. Thus, Step 9b holds.

We now show (65). First, the steady-state conditions imply the following: If

lim
k→∞

∫
θ∈[θ∗,1]

(
1−QLS,k (θ)

)
dGLS = K > 0
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then lim inf
k→∞

SLk (1− δk) ≥ K. This follows analogously to Lemma 14. Similarly, in

every steady state, limk→∞ supSHk (1− δk) ≤ 1. Thus, by Step 10 and the absolute

continuity of GwS , there is θ∗ such that lim inf
k→∞

SLk (1− δk) ≥
(
1− Q̄

) (
1−GLS (θ∗)

)
>

0. Hence, the desired bound (65) follows,

lim inf
k→∞

SHk
SLk

= lim inf
k→∞

SHk (1− δk)
SLk (1− δk)

≤ 1(
1− Q̄

) (
1−GLS (θ∗)

) <∞.
This proves the claim. �

Proof of Proposition 5: Claims 5 and 6, combined with Claims 1 and 2 imply
that

lim inf
k→∞

EUk [θ, v, βk|H] +EΠk

[
θ′, ρk|H

]
≥ v − P̄HS (1) + P̄HS (1) for all θ, θ′ > 0.

Likewise, Claims 1, 2, 4, and 6 imply

lim inf
k→∞

EUk [θ, v, βk|L] + EΠk

[
θ′, ρk|L

]
≥ v − ρ̄ (0) + ρ̄ (0) for all θ, θ′ < 1.

Thus, the conditions of Lemma 12 hold and Proposition 5 follows. �

References

Bajari, Patrick and Ali Hortacsu, “The Winner’s Curse, Reserve Prices, and
Endogenous Entry: Empirical Insights from eBay Auctions,”RAND Journal of

Economics, 2003, 34 (2), 329—55.

Banerjee, Abhijit and Drew Fudenberg, “Word-of-mouth learning,” Games
and Economic Behavior, 2004, 46 (1), 1—22.

Blouin, Max R and Roberto Serrano, “A Decentralized Market with Common
Values Uncertainty: Non-Steady States,”Review of Economic Studies, 2001, 68

(2), 323—46.

Diamond, Peter A., “A Model of Price Adjustment,”Journal of Economic The-
ory, 1971, 3 (2), 156—168.

Duffi e, Darrell and Gustavo Manso, “Information Percolation in Large Mar-
kets,”American Economic Review, 2007, 97 (2), 203—209.

and Yeneng. Sun, “Existence of independent random matching,”The Annals

of Applied Probability, 2007, 17 (1), 386—419.

59



Gale, Douglas, “Limit Theorems for Markets with Sequential Bargaining,”Journal
of Economic Theory, 1987, 43 (1), 20—54.

, Strategic Foundations of General Equilibrium, Cambridge University Press, 2000.

Golosov, Michael, Guido Lorenzoni, and Aleh Tsyvinski, “Decentralized
Trading with Private Information,”February 2011. Mimeo.

Golub, Benjamin and Matthew O. Jackson, “Naïve Learning in Social Net-
works and the Wisdom of Crowds,” American Economic Journal: Microeco-

nomics, 2010, 2 (1), 112—49.

Gottardi, Piero and Roberto Serrano, “Market Power And Information Rev-
elation In Dynamic Trading,” Journal of the European Economic Association,

2005, 3 (6), 1279—1317.

Hayek, Friedrich A., “The Use of Knowledge in Society,”The American Economic
Review, 1945, 35 (4), pp. 519—530.

Krishna, Vijay, Auction Theory, Academic Press, 2009.

Kunimoto, Takashi and Roberto Serrano, “Bargaining and Competition Re-
visited,”Journal of Economic Theory, 2004, 115 (1), 78—88.

Kyle, Albert S., “Informed Speculation with Imperfect Competition,”Review of
Economic Studies, 1989, 56 (3), 317—55.

Lauermann, Stephan, “Dynamic Matching and Bargaining Games: A General

Approach,”2012. Forthcoming: American Economic Review.

and Asher Wolinsky, “Search with Adverse Selection,”April 2011. Mimeo.

and Gabor Virag, “Auctions in Markets: Common Outside Options and the
Continuation Value Effect,”May 2012. Forthcoming: American Economic Jour-

nal: Microeconomics.

Majumdar, Dip, Artyom Shneyerov, and Huan Xie, “An Optimistic Search
Equililbrium,”May 2011. Mimeo.

Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green, Micro-
economic Theory, Oxford University Press, 1995.

Milchtaich, Igal, “Random-player games,”Games and Economic Behavior, 2004,
47 (2), 353—388.

60



Milgrom, Paul, “A Convergence Theorem for Competitive Bidding with Differen-

tial Information,”Econometrica, 1979, 47 (3), 679—88.

and Ilya Segal, “Envelope Theorems for Arbitrary Choice Sets,”Econometrica,
2002, 70 (2), 583—601.

Milgrom, Paul R. and Robert J. Weber, “A Theory of Auctions and Compet-
itive Bidding,”Econometrica, 1982, 50 (5), pp. 1089—1122.

Myerson, Roger B., “Extended Poisson Games and the Condorcet Jury Theo-
rem,”Games and Economic Behavior, 1998, 25 (1), 111—131.

Nöldeke, Georg and Thomas Tröger, “Matching Heterogeneous Agents with a
Linear Search Technology,”2009. Mimeo.

Ostrovsky, Michael, “Information Aggregation in Dynamic Markets with Strate-
gic Traders,”March 2011. Forthcoming: Econometrica.

Pesendorfer, Wolfgang and Jeroen Swinkels, “The Loser’s Curse and Infor-
mation Aggregation in Common Value Auctions,” Econometrica, 1997, 65 (6),

1247—1282.

and , “Effi ciency and Information Aggregation in Auctions,”American Eco-

nomic Review, 2000, 90 (3), 499—525.

Reny, Philip J and Motty Perry, “Toward a Strategic Foundation for Rational
Expectations Equilibrium,”Econometrica, 2006, 74 (5), 1231—1269.

Rostek, Marzena and Marek Weretka, “Price Inference in Small Markets,”
Econometrica, 2012, 80 (2), 687—711.

Rothschild, Michael, “Searching for the Lowest Price When the Distribution of
Prices Is Unknown,”Journal of Political Economy, 1974, 82 (4), 689—711.

Rubinstein, Ariel and Asher Wolinsky, “Equilibrium in a Market with Sequen-
tial Bargaining,”Econometrica, 1985, 53 (5), 1133—50.

Satterthwaite, Mark and Artyom Shneyerov, “Dynamic Matching, Two-Sided
Incomplete Information, and Participation Costs: Existence and Convergence to

Perfect Competition,”Econometrica, 2007, 75 (1), 155—200.

and , “Convergence to Perfect Competition of a Dynamic Matching and

Bargaining Market with Two-sided Incomplete Information and Exogenous Exit

Rate,”Games and Economic Behavior, 2008, 63 (2), 435—467.

61



Serrano, Roberto and Oved Yosha, “Information Revelation in a Market with
Pairwise Meetings: The One Sided Information Case,”Economic Theory, 1993, 3

(3), 481—99.

Shapley, Lloyd. S. and Martin Shubik, “The assignment game I: The core,”
International Journal of Game Theory, 1971, 1, 111—130.

Shneyerov, Artyom and Chi Leung Wong, “The Rate of Convergence to Per-
fect Competition of Matching and Bargaining Mechanisms,”Journal of Economic

Theory, 2010, 145 (3), 1164—1187.

Smith, Lones, “Frictional Matching Models,”Annual Review of Economics, 2011,
3 (1), 319—38.

Wolinsky, Asher, “Information Revelation in a Market with Pairwise Meetings,”
Econometrica, January 1990, 58 (1), 1—23.

62


