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1 Introduction

This paper considers a two-sided matching market. Agents on each side of
the market match with at most one agent from the other side of the market,
and agents cannot make transfers. Following standard practice, we refer to
such a market as a marriage market and use the corresponding terminology
(Roth and Sotomayor, 1990). The central theoretical problem in a marriage
market is to determine who will match with whom. The concept of stable
matchings provides an answer (Gale and Shapley, 1962): A matching is stable
if no matched agent prefers to be single and no pair of agents prefers each
other to their assignment in the matching.

Most of the recent literature on matching considers questions of economic
design in centralized markets. However, many of those markets that are ana-
lyzed using stability concepts, including the marriage market in its literal sense,
are decentralized. Roth and Sotomayor (1990, p.22) conjecture that even in a
decentralized market, we might expect matchings to be stable if frictions are
negligible in the sense that “the agents have a very good idea of one another’s
preferences and have easy access to each other.” The purpose of this paper is
to test this conjecture. In particular, we assume complete information about
preferences and ask whether such “easy access” to potential partners implies
the approximate stability of matchings.

To investigate this question, we embed a marriage market in a search model
with random meetings. In the underlying marriage market, men and women
have strict preferences over mates and staying single; no further restrictions
on preferences are imposed. In the search model, the rate at which men and
women meet one another is determined by the size of the population of agents
searching for a potential partner according to a continuous contact function.
If a man and a woman meet, they decide whether to accept each other. If both
accept, the agents leave as a matched pair. Otherwise, both continue searching.
The opportunity cost of rejecting a partner and waiting for a better match is
an exogenous risk that an agent will have abandon the search and remain
single. Exogenously arriving unmatched men and women keep the stock of
agents who are searching for partners from depleting. We study the matchings
that result from steady-state equilibria. Due to the randomness inherent in
the contact process and the possibility of exogenous exit from the market while
still single, the equilibrium matchings arising in our model are random, that
is, they correspond to lotteries over deterministic matchings. How difficult it
is to access potential partners depends on the speed of the contact process.
Thus, the speed of the contact process is a measure of frictions.

For any given speed of the contact process, all agents stay single with a
strictly positive probability, precluding the stability of equilibrium matchings.
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To investigate whether equilibrium matchings approximate stable matchings
when search frictions are small, we thus study the limits of equilibrium match-
ings when the contact process becomes infinitely fast. Our first proposition
provides a complete characterization of such limit matchings in terms of the
“fundamentals” of the underlying marriage market. For deterministic match-
ings, it is immediate from the characterization that such a matching is a limit
matching if and only if it is stable. This conclusion, however, does not ex-
tend to random limit matchings. Random limit matchings fail to satisfy a
weak stability requirement (implied by all existing stability notions for ran-
dom matchings) and are, in addition, Pareto dominated.

To obtain firm conclusions about the stability of limit matchings, we need,
therefore, to address the existence of random limit matchings. Our second
proposition shows that such matchings exist if and only if there is more than
one stable matching in the underlying marriage market. The lattice-structure
of the set of stable deterministic matchings is key to the proof of this result.

Taken together, our results imply a clean and somewhat unexpected di-
chotomy between those marriage markets that have a unique stable matching
and those that do not. In the first case, all equilibrium matchings are approx-
imately stable when frictions are small. In the second case, vanishing frictions
do not imply approximate stability.

Three key features differentiate our model and results from related contri-
butions investigating the limits of steady-state equilibria in search models for
vanishing frictions.

First, utility is nontransferable. This is in contrast to the literature on con-
vergence to competitive equilibria in dynamic matching and bargaining games,
surveyed in Osborne and Rubinstein (1990) and Gale (2000). This literature
may be viewed (see Lauermann, 2012) as investigating the convergence to
stable outcomes in a simple version of the assignment problem (Shapley and
Shubik, 1971) in which utility is assumed to be transferable.

The critical property of matching with nontransferable utility is that agents
may disagree about whether or not to form a match.1 This inherent potential
for disagreement implied by nontransferability plays an essential role in our
construction of sequences of equilibrium matchings converging to random limit
matchings. In particular, we exploit the fact that if, say, a woman strictly
prefers to match with the man she has met and the man is indifferent as to
either accepting the match or continuing to search, there is no inducement the

1In contrast, if transfers are possible, agents always agree whether a match should be
formed, because the available surplus from the match is either positive or not. Smith (2006)
uses the observation that disagreements about matchings in social settings are common as
an argument for the nontransferable utility model.
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woman can offer to the man to break his indifference.2

Second, the composition and size of the stock of searching agents are en-
dogenously determined by agents’ acceptance decisions and, in addition, de-
pend on the speed of the contact process. Consequently, whether an agent has
“easy access” to partners he or she finds attractive depends not only on the
search frictions per se, but also on the equilibrium behavior of all other agents
and the properties of the contact function. Taking these effects into account
is not only of technical but also of economic interest.3 Doing so also differen-
tiates our work from the two existing papers (Eeckhout, 1999; Adachi, 2003)
that investigate convergence to stable matchings in frictional search models
with nontransferable utility. Both of these papers assume that the distribu-
tion of searching agents is exogenous to simplify their analysis. Indeed, dealing
with the endogeneity of the stock is one of the main challenges in proving our
characterization of limit matchings.

Third, we consider the general version of the marriage model as introduced
in Gale and Shapley (1962), in which multiplicity of stable matchings is a
common occurrence. This is in contrast to most of the literature studying
frictional matching with nontransferable utility in which it is assumed that
agents agree on the ranking of their potential partners.4 In such models with
vertical heterogeneity, there is a unique stable matching featuring positive
assortative mating (Becker, 1973).5 Our analysis not only shows that in models
with vertical heterogeneity the convergence to a stable outcome is assured, but
also demonstrates that this result is not robust. Clearly, to reach the latter
conclusion, it is essential to consider more general preference structures.

The papers most closely related to ours are Eeckhout (1999) and Adachi
(2003), because they also consider the relationship between stable matchings
in a marriage market and the equilibrium matchings in a search model when

2Such indifferences may arise in equilibrium despite our assumption that preferences are
strict because continuation payoffs are determined endogenously to equilibrate the market.

3Burdett and Coles (1997) and Shimer and Smith (2000) discuss the importance of tak-
ing into account the feedback effect from agents’ decision to the steady-state distribution
of types. In the context of the literature on convergence to competitive equilibria, Gale
(1987) has pioneered the investigation of models in which the stock of searching agents is
endogenously determined and offers extensive discussion. See Lauermann (2012) for further
discussion.

4Burdett and Coles (1999) and Smith (2011) survey the literature. Notable contributions
include McNamara and Collins (1990); Johnstone, Reynolds, and Deutsch (1996); Burdett
and Coles (1997); Morgan (1998); Eeckhout (1999); Bloch and Ryder (2000); Smith (2006).
Burdett and Wright (1998) and Burdett, Imai, and Wright (2004) also study search models
with nontransferable utility, but consider a model with match-specific random shocks in
which all agents on one side of the market are identical ex-ante.

5See Eeckhout (2000) and Clark (2006) for more general conditions ensuring uniqueness
of stable matchings.
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frictions become negligible. Both of these papers find convergence to stable
matchings. This is consistent with our findings: The underlying marriage
market in Eeckhout (1999) has a unique stable matching, and Adachi (2003),
who considers general preferences as we do, eliminates random limit matchings
from consideration by requiring an agent to accept a partner whenever the
agent is indifferent as to accepting the partner or continuing to search. As we
have already noted, Eeckhout (1999) and Adachi (2003) assume an exogenous
stock of agents, whereas the stock is endogenous in our model.

Section 2 introduces the marriage market model, discusses stable match-
ings, and introduces the notions of coherent and regret-free matchings that
play a key role in our analysis. Section 3 embeds the marriage market in a
search model and notes some properties of equilibrium matchings. We present
our characterization of limit matchings in Section 4. Section 5 concludes.

2 Marriage Market

2.1 The Model

There are two finite, disjoint sets of agents: the set M of men and the set W of
women. Each agent has a complete, transitive, and strict preference ordering
over the set of agents on the other side of the market and the prospect of
remaining single. The extension of this preference to the set of correspond-
ing lotteries has an expected utility representation. Hence, we represent the
preferences of men by utility functions u : M × W → R and the prefer-
ences of women by utility functions v : M ×W → R with the normalization
that the utility of remaining single is 0 for each agent. As preferences are
strict, we have u(m,w) 6= 0 and v(m,w) 6= 0 for all (m,w) ∈ M × W as
well as u(m,w) 6= u(m,w′) and v(m,w) 6= v(m′, w) for all (m,w) ∈ M ×W ,
w′ 6= w ∈ W , and m′ 6= m ∈ M . To avoid trivialities, we assume that there
is at least one pair of agents (m,w) such that (m,w) find each other mutually
acceptable, that is, u(m,w) > 0 and v(m,w) > 0 holds. It is convenient to
define u(h, h) := 0 for all h ∈M ∪W .

We refer to a tuple (M,W ;u, v) satisfying the above assumptions as a
marriage market.

A deterministic matching is given by a matching function µ : M ∪W →
M ∪ W satisfying µ(m) ∈ W ∪ {m}, µ(w) ∈ M ∪ {w}, and µ2(h) = h for
all m ∈ M , w ∈ W , and h ∈ M ∪ W . A matching (without the qualifi-
cation) is a probability distribution over deterministic matchings. That is,
matchings correspond to lotteries over deterministic matchings. We refer to
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non-deterministic matchings as random matchings.6 Random Matchings play
a key role in our analysis because search frictions naturally imply that random
events play a decisive role in the process of partnership formation.

Throughout the following we identify each matching with its assignment
matrix x ∈ R|M |×|W |, where x(m,w) is the probability that a match between
man m and woman w is formed. The Birkhoff-von Neumann theorem7 shows
that x represents a matching if and only if it satisfies∑

w∈W

x(m,w) ≤ 1 for all m ∈M, (1)∑
m∈M

x(m,w) ≤ 1 for all w ∈ W, (2)

x(m,w) ≥ 0 for all (m,w) ∈M ×W. (3)

We use x(m,m) := 1−
∑

w∈W x(m,w) to denote the probability that man m
remains single in a matching; x(w,w) := 1−

∑
m∈M x(m,w) is the probability

that woman w remains unmatched. Observe that a matching is deterministic if
and only if x(m,w) ∈ {0, 1} holds for all (m,w) ∈M×W ; all other matchings
are random. Given any matching x we say that h ∈M ∪W is fully matched if
x(h, h) = 0, partially matched if 0 < x(h, h) < 1, and unmatched if x(h, h) = 1
holds. Types (m,w) ∈M ×W are partners if x(m,w) > 0 holds.

With every matching we associate the payoff vectors U(x) ∈ R|M | and
V (x) ∈ R|W | given by

U(m;x) =
∑
w∈W

x(m,w)u(m,w), (4)

V (w;x) =
∑
m∈M

x(m,w)v(m,w). (5)

Recall that we have normalized the utility from staying single to zero. Hence,
these payoffs correspond to the expected utility of the matching x.

2.2 Stable Matchings

A deterministic matching is individually rational if u(m,µ(m)) ≥ 0 holds for all
m and v(µ(w), w) ≥ 0 holds for all w. It is pairwise stable if there does not exist
(m,w) ∈ M ×W such that u(m,w) > u(m,µ(m)) and v(m,w) > v(µ(w), w)

6Random matchings are studied by Vande Vate (1989); Rothblum (1992); Roth, Roth-
blum, and Vande Vate (1993); Kesten and Ünver (2013); Echenique, Lee, Shum, and Yenmez
(2013).

7See Budish, Che, Kojima, and Milgrom (2011) for an extensive discussion in the context
of assignment problems.
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holds. It is stable if it is individually rational and pairwise stable. Every
marriage market has a stable deterministic matching (Gale and Shapley, 1962).
Our assumption that there is a mutually acceptable pair implies that in every
stable deterministic matching µ(h) 6= h holds for some h ∈M ∪W .

We extend stability to random matchings following Vande Vate (1989). A
matching x is stable if and only if there exist stable deterministic matchings
x1, . . . , xk such that x is a convex combination of x1, . . . , xk.8 That is, stable
matchings can be obtained as lotteries over stable deterministic matchings.

Although this may be the most common extension used in the literature,
other definitions of stability for random matchings have been suggested.9 For-
tunately, the exact definition of stability for random matchings does not to
matter for our results, as will become clear later.

2.3 Coherent and Regret-Free Matchings

We extend the definitions of individual rationality and pairwise stability from
deterministic to all matchings by saying that a matching x is individually
rational if

x(m,w) > 0⇒ u(m,w) ≥ 0 and v(m,w) ≥ 0 (6)

holds and that it is pairwise stable if there does not exist (m,w) ∈ M ×W
such that

u(m,w) > U(m;x) and v(m,w) > V (w;x) (7)

holds. We refer to a matching satisfying both (6) and (7) as coherent.
Observe that for deterministic matchings x we have U(m;x) = u(m,µ(m))

and V (w;x) = v(µ(w), w), so that for deterministic matchings the above def-
initions of individual rationality and pairwise stability are equivalent to the
ones given previously. In particular, a deterministic matching is stable if and
only if it is coherent.10

We say that a matching is regret-free if any pair of agents who are matched
with a strictly positive probability in x weakly prefer to match with each other,
rather than participating in the lottery resulting in the matching x:

x(m,w) > 0⇒ u(m,w) ≥ U(m;x) and v(m,w) ≥ V (m;x). (8)

8See Roth, Rothblum, and Vande Vate (1993) for the equivalence between this definition
and the one given in Vande Vate (1989).

9The stability notion by Vande Vate (1989) used here has a natural interpretation as
an ex-post stability requirement. As argued in Echenique, Lee, Shum, and Yenmez (2013),
from an ex-ante perspective the notion of a strongly-stable matching from Roth, Rothblum,
and Vande Vate (1993) is more appealing. Our results continue to hold when using this
alternative definition for the stability of matchings.

10Stability of a random matching is, however, not equivalent to (6) and (7) being satisfied.
Coherency is neither necessary nor sufficient for stability of a random matching.
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Obviously, every deterministic matching is regret-free because the two in-
equalities in (8) hold as equalities if x(m,w) = 1. For random matchings, the
situation is rather different, and the property of regret-free random matchings
identified in the following lemma plays an important role in our subsequent
analysis.

Lemma 1. Let x be a regret-free matching. Then every fully matched agent
has a unique partner. In particular, 0 < x(m,w) < 1 implies that m and w
are partially matched.

Proof. Suppose x satisfies (8). Assume m ∈ M is fully matched. Using
x(m,m) = 0 and (4) we have∑

w∈W

x(m,w) [u(m,w)− U(m;x)] = 0.

Because x satisfies (8), all the summands on the left side of this equality are
positive. Hence, all summands are equal to zero. Consequently, x(m,w) = 0
holds for all w satisfying u(m,w)−U(m;x) 6= 0. Because preferences are strict,
it follows that there is w ∈ W satisfying x(m,w) = 1. Hence, m has a unique
partner. An analogous argument shows that every fully matched w ∈ W has
a unique partner. Consequently, 0 < x(m,w) < 1 implies 0 < x(m,m) < 1 as
well as 0 < x(w,w) < 1 (because neither m nor w can be unmatched or fully
matched if 0 < x(m,w) < 1 holds).

The intuition behind the result in Lemma 1 is simple: if every partner of an
agent provides a payoff at least as high as the average payoff an agent receives,
then it must either be the case that the agent only has one partner or it must
be the case that there is a strictly positive probability that the agent remains
unmatched. After all, in contrast to the children in Lake Wobegon, not all
partners can be better than average.

3 Search

3.1 The Model

We embed a marriage market (M,W ;u, v) in a continuous-time search model
with a continuum of agents, similar to the search model studied by Burdett
and Coles (1997).11 We interpret M and W as the set of possible types for

11In particular, our model of entry and exit is the one from Burdett and Coles (1997). As
noted by Eeckhout (1999), assuming that there is (i) a fixed population of infinitely lived
agents who (ii) exit the search process only if they have found a partner and (iii) enter the
search process when their partnership dissolves due to exogenous separation, yields identical
steady-state conditions (cf. Shimer and Smith, 2000; Smith, 2006).
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men and women, respectively. For each m ∈ M and w ∈ W , new agents
of the corresponding type are born at a constant flow rate that is equal to
η > 0. Newborn agents start searching for partners and continue doing so
until they either match with an agent of the opposite sex or exit the search
process without having found a partner. Agents exit as unmatched singles at
an exogenous rate δ > 0.12 There is no explicit discounting. Therefore, the
expected payoff of an agent of type m ∈ M is given as specified in (4) when
x(m,w) is the probability that he exits the search process in a match with
an agent of type w. Similarly, (5) is the expected payoff of an agent of type
w ∈ W when x(m,w) is the probability that she exits in a match with an
agent of type m.

Let f(m) > 0 denote the mass of men of type m searching for a partner
and let f denote the corresponding vector of masses. Define f̄ =

∑
m∈M f(m).

Similarly, let g(w) > 0 denote the mass of women of type w searching for a
partner, let g be the corresponding vector, and define ḡ =

∑
w∈W g(w). We

suppress time indices because we consider steady states.
The mass of meetings between men and women that occur per unit time is

given by λ · C(f̄ , ḡ). We refer to C : R2
+ → R+ as the contact function and to

the parameter λ > 0 as the speed of the contact process. We assume that the
contact process is random in the sense that the fraction of meetings involving
a man of type m and a woman of type w is given by f(m) · g(w)/(f̄ · ḡ), so
that all men in the market meet women of type w at rate

γ(w; f, g) = λ · c(f̄ , ḡ) · g(w) > 0, (9)

and all women in the market meet men of type m at rate

φ(m; f, g) = λ · c(f̄ , ḡ) · f(m) > 0. (10)

The function c : R2
++ → R++ appearing in these expressions is defined by

c(f̄ , ḡ) =
C(f̄ , ḡ)

f̄ · ḡ
. (11)

Only minimal assumptions are imposed on the contact function: (i) C is con-
tinuous and (ii) C is strictly positive if and only if both of its arguments are
strictly positive. This general specification of the contact process contains the

12On an individual level, the exit rate δ acts like a discount rate and is a convenient way
to model the opportunity costs of waiting for a better match. On the aggregate level, a
strictly positive exit rate ensures that for every stationary strategy profile (as modeled by
the matching probabilities that we introduce below) there is a corresponding steady-state.
Therefore, the restriction to a steady-state does not by itself introduce restrictions on the
set of admissible strategy profiles beyond stationary.
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matching functions commonly considered in the labor market search literature
(Petrongolo and Pissarides, 2001; Stevens, 2007) as special cases, except for
the linear matching function (Diamond and Maskin, 1979).13

If two agents meet, they observe each other’s type and simultaneously
decide whether to accept each other or not. If both accept, the agents leave
the search process as a matched pair. If at least one agent rejects the match,
both return to search. Let α(m,w) denote the probability that a meeting
between a man of type m and a woman of type w results in a match. Let
α ∈ [0, 1]|M |×|W | denote the corresponding matrix of matching probabilities.

A steady state is described by a tuple (f, g, α) satisfying

η = f(m)

[
δ +

∑
w∈W

α(m,w)γ(w; f, g)

]
for all m ∈M, (12)

η = g(w)

[
δ +

∑
m∈M

α(m,w)φ(m; f, g)

]
for all w ∈ W. (13)

The left side of these equations represents the inflow of newborn agents of a
given type. The right side is the corresponding outflow of single and matched
agents.

We say that the steady state (f, g, α) induces the matching x given by

x(m,w) =
λ

η
α(m,w)c(f̄ , ḡ)f(m)g(w) ≥ 0. (14)

The right side of (14) is the probability that a man of type m exits from search
in a match with a woman of type w in the steady state (f, g, α).14 A matching
is a steady-state matching if it is induced by some steady state.

13We refer to C as a contact function rather than as a matching function, because in our
model not every meeting between agents needs to result in a match.

14To see that, observe that (9) and (12) imply

λ

η
α(m,w)c(f̄ , ḡ)f(m)g(w) =

α(m,w)γ(w; f, g)

δ +
∑

w′∈W α(m,w′)γ(w′; f, g)
.

As δ+
∑

w′∈W α(m,w′)γ(w′; f, g) is the exit rate for a man of type m and α(m,w)γ(w; f, g)
is the rate at which such an agent exits in a match with w, the desired conclusion follows.
Of course, an analogous observation can be made for the probability that a woman of type
w exits in a match with a man of type m. Using (10) and (13) we have

λ

η
α(m,w)c(f̄ , ḡ)f(m)g(w) =

α(m,w)φ(m; f, g)

δ +
∑

m′∈M α(m′, w)φ(m′, f, g)
.
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Let x be a steady-state matching. Summing (14) over all w and using (9),
we obtain x(m,m) = 1 − f(m)

∑
w∈W α(m,w)γ(w; f, g)/η. Using (12), this

can be rewritten as

x(m,m) =
δ

η
f(m) > 0. (15)

Similarly, we obtain

x(w,w) =
δ

η
g(w) > 0. (16)

The strict inequalities in (15) and (16) indicate that due to the frictions inher-
ent in the matching process there are no fully matched agents in a steady-state
matching.

3.2 Equilibrium

We now turn to the determination of the matching probabilities α, which so
far we have treated as exogenous. As the consent of both agents in a meeting
is needed to form a match, we require that α(m,w) = 0 holds whenever one of
the partners obtains a strictly higher expected payoff from continuing to search
rather than matching. For equilibrium, we also require that α(m,w) = 1 holds
if the match provides both partners with a utility strictly higher than the utility
from continued search.

Definition 1. A steady state (f, g, α) is an equilibrium if

α(m,w) =

{
0 if u(m,w) < U(m;x) or v(m,w) < V (w;x),

1 if u(m,w) > U(m;x) and v(m,w) > V (w;x)
(17)

holds for all (m,w) ∈M ×W where x is the matching induced by (f, g, α). A
matching x is an equilibrium matching if it is induced by some equilibrium.

Observe that any specification of α(m,w) ∈ [0, 1] is consistent with equi-
librium in the case that the inequalities u(m,w) ≥ U(m;x) and v(m,w) ≥
V (w;x) are both satisfied and (at least) one of them holds with equality. This
may be interpreted as allowing an agent to randomize the acceptance decision
when indifferent as to whether to accept the current match.

The following lemma characterizes equilibrium matchings in terms of the
parameters (M,W ;u, v) of the marriage market and the parameters (η, δ, λ, C)
of the search model. The result is a straightforward implication of the “ac-
counting identities” linking steady states and their induced matchings. Despite
its simplicity, the result is useful because we can conduct the subsequent for-
mal analysis without any explicit reference to the underlying steady states
or equilibria. Instead, we can focus directly on the induced matchings. To
simplify notation we let x̄M =

∑
m x(m,m) and x̄W =

∑
w x(w,w).
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Lemma 2. A matching x is a steady-state matching if and only if

x(m,w) ≤ ηλ

δ2
c(
η

δ
x̄M ,

η

δ
x̄W )x(m,m)x(w,w) (18)

holds for all (m,w) ∈M ×W . It is an equilibrium matching if and only if, in
addition,

x(m,w) =

{
0 if u(m,w) < U(m;x) or v(m,w) < V (w;x),
λη
δ2
c(ηδ x̄

M , ηδ x̄
W )x(m,m)x(w,w) if u(m,w) > U(m;x) and v(m,w) > V (w;x)

(19)

holds.

Proof. See Appendix A.

The motivation for the equilibrium condition (17) suggests that every equi-
librium matching is individually rational and regret-free. The proof of the fol-
lowing lemma (in Appendix A) shows how to obtain this result directly from
the characterization of equilibrium matchings in Lemma 2.

Lemma 3. Every equilibrium matching is individually rational and regret-free.

4 Limit Matchings

In this section, we consider a fixed marriage market (M,W ;u, v) and inves-
tigate the limit as the search process becomes frictionless, in the sense that
the speed of the contact process λ converges to infinity. Throughout, the
parameters δ > 0, η > 0 and the contact function C are kept fixed.

Definition 2. A matching x∗ is a limit matching if there exists a sequence
(λk) converging to infinity and a sequence of matchings (xk) converging to x∗
such that for all k the matching xk is an equilibrium matching for the search
model with parameters (η, δ, λk, C).

It is easy to see that the individual rationality and regret-freeness of equilib-
rium matchings is preserved in the limit. The following proposition establishes
that strengthening individual rationality to coherency yields a necessary and
sufficient condition for a matching to be a limit matching.

Proposition 1. A matching is a limit matching if and only if it is coherent
and regret-free.
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The proof of Proposition 1 is relegated to Appendix B. The intuition for
the coherency of limit matchings is straightforward if the rate at which agents
meet every type of potential partner converges to infinity: In the limit each
type of agent will then only match with the best possible type of potential
partner for whom he or she is strictly acceptable, implying that no pair of
types satisfies (7). However, it is not obvious that meeting rates converge to
infinity as the speed of the matching technology converges to infinity.15

The difficulty is that an increase in the speed at which agents match (and
thus exit from search) implies a reduction in the steady-state masses of agents.
Furthermore, if some types of agents match faster than others do, their share
in the stock decreases as the speed of the contact processes increases. This
generates the possibility that the meeting rate for some type of agent may
converge to a finite limit. Indeed, sequences of steady-state matchings with this
property are easily constructed. The main subtlety in proving the coherency
of limit matchings is to exclude this possibility for sequences of equilibrium
matchings. In doing so, we exploit the continuity of the contact function C
and make use of the characterization of regret-free matchings in Lemma 1.

The main difficulty in proving the sufficiency of the conditions in Propo-
sition 1 is in showing that every random matching x∗ with the stated prop-
erties can be obtained as a limit matching. In essence, we must construct
a sequence of equilibria such that, for every pair of types (m,w) satisfying
0 < x∗(m,w) < 1, the associated sequence of matching probabilities converges
to an interior limit. This in turn requires that along the sequence at least one
of the types m and w is indifferent between accepting the match with his or
her designated partner (whereas the other type (weakly) prefers to accept the
match).

As a deterministic matching is stable if and only if it is coherent and ev-
ery deterministic matching is regret-free, the following result is an immediate
implication of Proposition 1.

Corollary 1. A deterministic matching is a limit matching if and only if
it is stable. In particular, limit matchings exist because stable deterministic
matchings exist.16

15This is in contrast to a “cloning model”, such as the one studied by Adachi (2003). In a
cloning model, the steady-state masses (f, g) are taken as given so that the population share
of each type is strictly positive and constant along the sequence. Therefore, the matching
rate necessarily converges to infinity as the speed of the contact process does so. Hence, in
such a model, the counterpart to the necessary conditions for limit matchings in Proposition
1 is straightforward.

16Observe that the existence of a limit matching implies that for sufficiently high λ an
equilibrium in the search model exists. Hence, for high contact speeds, Corollary 1 implies
the existence of equilibria in the search model.
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If one restricts attention to deterministic matchings, Corollary 1 indicates
that the sets of limit matchings and stable matchings are identical. For random
matchings, however, this equivalence breaks down, because regret-free random
matchings are not stable.

Corollary 2. Random limit matchings are unstable.

Proof. Let x be a random limit matching. By the definition of a random
matching, there exists a pair (m,w) ∈M×W such that 0 < x(m,w) < 1 holds.
Because x is also regret-free, Lemma 1 implies that m and w are partially
matched in x. However, in a stable matching there are no partially matched
agents. This is because the set of agents who are unmatched is the same for all
stable deterministic matches (Roth and Sotomayor, 1990, Theorem 2.22). As
stable matchings are convex combinations of stable deterministic matchings,
every stable matching thus satisfies x(h, h) ∈ {0, 1} for all h ∈M ∪W .

As the definition of a stable random matching given in Section 2 may appear
somewhat technical, we point out that the result in Corollary 2 does not hinge
on this particular definition. Rather, the problem is more fundamental: In a
random limit matching, there exists a pair (m,w) such that both m and w stay
single with strictly positive probability even though man m and woman w find
each other acceptable. The existence of such a pair not only indicates that
random limit matchings are unstable in a rather strong sense, it also implies
that random limit matchings are (weakly) ex-ante Pareto dominated. To state
this more precisely, define a matching x to be Pareto dominated if there exists
a matching x′ such that U(m;x′) ≥ U(m;x) as well as V (m;x′) ≥ V (m;x)
hold for all m and w and at least one of the inequalities is strict.

Corollary 3. Random limit matchings are Pareto dominated.

Proof. Let x be a random limit matching. As in the proof of Corollary 2, we
obtain the existence of a pair (m,w) such that 0 < x(m,w) < 1, x(m,m) >
0, and x(w,w) > 0 holds. Consider the matching x′ that is identical to x
except that x′(m,w) = x(m,w) + min{x(m,m), x(w,w)} holds. Because x
is individually rational, we then have U(m;x′) > U(m;x) and U(w;x′) >
U(w;x), whereas the payoffs of all other men and women remain unchanged.17

We illustrate these Corollaries with an example.

17A slight variation of this argument yields a stronger result, namely, that a strict increase
in payoff can be achieved for all agents that are partially matched in x. Building on the
constructions in the proof of Proposition 2, it can also be shown that every random limit
matching is Pareto dominated by a stable deterministic matching.
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Example: Consider a marriage market with two men, M = {m1,m2}, and
two women, W = {w1, w2}. Preferences are described by the bi-matrix

w1 w2

m1 2, 1 1, 2
m2 1, 2 2, 1

where the first entry in the cell corresponding to (mi, wj) is the payoff u(mi, wj)
and the second entry is the payoff v(mi, wj). In this example, all matchings
are individually rational. There are two stable deterministic matchings given
by the assignment matrices

x1 =

[
1 0
0 1

]
and x2 =

[
0 1
1 0

]
.

Note that the random matching

x∗ =

[
1
3

1
3

1
3

1
3

]
is coherent. As U(mi;x∗) = V (wj;x∗) = 1 holds for i, j = 1, 2, it is also regret-
free and thus a random limit matching. As implied by Corollary 2, x∗ is not
stable as each type of agent stays unmatched with probability 1/3, whereas in
a stable matching all types are matched for sure. x∗ is Pareto dominated by
the two stable deterministic matchings and strictly Pareto dominated by the
matching

x′ =

[
1
2

1
2

1
2

1
2

]
.

The proof of Proposition 2 shows x∗ is the unique random limit matching. �

Corollary 2 implies that the stability of limit matchings can only be taken
for granted if no random limit matchings exist. The example indicates that
it is easy to construct cases in which random limit matchings exist. This
prompts our next result, which states a necessary and sufficient condition for
the existence of random limit matchings.

Proposition 2. Random limit matchings exist if and only if there exists more
than one stable matching.

The proof of Proposition 2 is given in Appendix C. The key observation
underlying the proof is the following: Given a random matching that is coher-
ent and regret-free, it is possible to construct two distinct stable deterministic
matchings. These two matchings support the original random matching, in the
sense that the union of any agent’s partners in the two deterministic matchings

15



coincides with his or her set of partners in the random matching. Because we
can construct two distinct stable deterministic matchings from any random
limit matching, there is no random limit matching if there is a unique stable
deterministic matching. Proving the other direction of the equivalence in the
statement of the proposition is harder and relies on the lattice-structure of the
set of stable deterministic matchings (see Roth and Sotomayor, 1990, Chap-
ter 3). The difficulty is that not any pair of stable deterministic matchings
supports a random limit matching. (For instance, in Example 2 there is no
random limit matching supported by x1 and x3.) As we show in the proof of
Proposition 2, any two stable deterministic matchings, which have the prop-
erty that all men have the same preferences over these two matchings and that
there is no stable matching “between” those two in the men’s preference order-
ing, support a random limit matching. In fact, our proof shows more: namely,
that for every pair of such consecutive stable deterministic matchings there is
exactly one random limit matching supported by this pair. (This implies, in
particular, that there are no further random limit matchings in Examples 1
and 2.) The proof of Proposition 2 is then completed by the observation that
consecutive stable deterministic matchings exist whenever there is more than
one stable deterministic matching.

As an immediate consequence of the preceding results, we have the re-
sult advertised in the Introduction, namely that uniqueness is necessary and
sufficient to ensure the equivalence of stable matchings and limit matchings.

Corollary 4. All limit matchings are stable if and only if there is a unique limit
matching which then coincides with the unique stable deterministic matching.

Proof. Suppose there is a unique stable deterministic matching. From Corol-
lary 1 this matching is a limit matchings and there are no other deterministic
limit matchings. Because of Proposition 2, there is no random limit matching.
Therefore, the unique stable deterministic matching is also the unique limit
matching.

Suppose that there is more than one stable deterministic matching. From
Proposition 2, this implies that a random limit matching exists. From Corol-
lary 2, it follows that an unstable limit matching exists.

This covers all cases that are possible because stable deterministic match-
ings exist.

5 Concluding Remarks

In this paper, we have revisited the classical marriage problem and its solu-
tion concept, namely, stability, in a frictional decentralized environment. We
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have demonstrated that when frictions vanish, the set of equilibrium matchings
converges to the set of stable matchings if and only if there is a unique sta-
ble matching. Otherwise, additional, unstable and Pareto dominated random
matchings arise in the limit.

Many of the marriage markets considered in the economic literature possess
a unique stable matching, as discussed in the Introduction. It is thus an
important class of marriage markets for which our Corollary 4 confirms the
conjecture by Roth and Sotomayor (1990) that stable matchings approximate
equilibrium matchings in marriage markets with negligible frictions. However,
our analysis reveals that the uniqueness of stable matchings plays an essential
role in obtaining this conclusion.

Appendix A

Proof of Lemma 2: Suppose that x is a steady-state matching, and let
(f, g, α) be a steady state that induces the matching. Using (15) and (16), we
have

f(m) =
η

δ
x(m,m), g(w) =

η

δ
x(w,w). (20)

Substitution of these expressions for f(m) and g(w) into (14) and observing
that α(m,w) ≤ 1 for all (m,w), immediately implies (18), as claimed.

Suppose the matching x satisfies (18) for all (m,w) ∈ M ×W . Observe
that (18) implies x(m,m) > 0 and x(w,w) > 0 for all m and w.18 We may
thus use (20) to define (f, g) and set

α(m,w) =
δ2x(m,w)

ηλc(η
δ
x̄M , η

δ
x̄W )x(m,m)x(w,w)

. (21)

We show that the so constructed (f, g, α) is a steady state and (f, g, α) induces
x. Clearly, we have f(m) > 0 and g(w) > 0, and (18) implies 0 ≤ α(m,w) ≤ 1.
From (20) and (21)

f(m)

η

[
δ + λc(f̄ , ḡ)

∑
w∈W

α(m,w)g(w)

]
= x(m,m) +

∑
w∈W x(m,w),

g(w)

η

[
δ + λc(f̄ , ḡ)

∑
m∈M

α(m,w)f(m)

]
= x(w,w) +

∑
m∈M x(m,w),

holds for all m ∈ M and w ∈ W . Because the right sides of these equations
are equal to 1, it follows that (12) and (13) are satisfied. Hence, (f, g, α) is a

18Suppose, for instance, x(m,m) = 0. Then (18) implies x(m,w) = 0 for all w and, thus,
x(m,m) = 1−

∑
w x(m,w) = 1, a contradiction.
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steady state. Furthermore, using (20) and (21), it is easy to see that (14) is
satisfied, so that x is the steady-state matching induced by (f, g, α).

The above argument has established that (21) holds whenever a matching
x is induced by the steady state (f, g, α). Therefore, (17) implies that every
equilibrium matching satisfies (19). Conversely, if a steady-state matching x
satisfies (19), then the steady state that induces it satisfies (17). Thus, x is an
equilibrium matching. �

Proof of Lemma 3: Let x be an equilibrium matching. The first half of (19)
can be rewritten as

x(m,w) > 0⇒ u(m,w) ≥ U(m;x) and v(m,w) ≥ V (m;x),

coinciding with (8). Hence, x is regret-free.
Using (4) and (5) we have

x(m,m)U(m;x) =
∑
w∈W

x(m,w) [u(m,w)− U(m;x)] ,

x(w,w)V (w;x) =
∑
m∈M

x(m,w) [v(m,w)− V (w;x)] .

Using (19) to infer

x(m,w) [u(m,w)− U(m;x)] = x(m,w) max [0, u(m,w)− U(m;x)] ,

x(m,w) [v(m,w)− V (w;x)] = x(m,w) max [0, v(m,w)− V (w;x)] .

We have

x(m,m)U(m;x) =
∑
w∈W

x(m,w) max [0, u(m,w)− U(m;x)] ≥ 0,

x(w,w)V (w;x) =
∑
m∈M

x(m,w) max [0, v(m,w)− V (w;x)] ≥ 0.

The strict inequalities in (15) and (16) imply that x(m,m) > 0 and x(w,w) > 0
holds for all m and w. Therefore, the above equations imply U(m;x) ≥ 0
and V (m;x) ≥ 0. Using (19) again, x(m,w) > 0 implies u(m,w) ≥ 0 and
v(m,w) ≥ 0. Consequently, (6) holds, that is, x is individually rational. �

Appendix B: Proof of Proposition 1

The following two lemmas establish Proposition 1. Throughout the proofs,
we set δ = 1 and η = 1 to simplify notation. Doing so is without loss of
generality. First, setting δ = 1 just amounts to choosing the units in which
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time is measured in such a way that the rate of exogenous exit is equal to
1. Second, we may set η = 1 by subsuming the effect of η in the contact
function.19

Lemma 4. Every limit matching is coherent and regret-free.

Proof. Let x∗ be a limit matching, and let (λk) and (xk) be the corresponding
sequences satisfying the properties in Definition 2. For all m ∈M and w ∈ W
define the corresponding sequences of meeting rates (φk(m)) and (γk(w)) by 20

φk(m) := λkc(x̄
M
k , x̄

W
k )xk(m,m), (22)

γk(w) := λkc(x̄
M
k , x̄

W
k )xk(w,w). (23)

Throughout we assume that φk(m) and γk(w) converge to φ∗(m) ∈ R ∪ {∞},
and γ∗(w) ∈ R ∪ {∞} for all m and w, respectively.21

We first show that x∗ is individually rational and regret free. Suppose
that x∗(m,w) > 0 holds. As xk converges to x∗, there exists some number
K, such that for all k > K we have xk(m,w) > 0. As xk is an equilibrium
matching, Lemma 3 implies u(m,w) ≥ 0 and v(m,w) ≥ 0. Therefore, x∗ is
individually rational. Similarly, Lemma 3 implies u(m,w) ≥ U(m;xk) and
v(m,w) ≥ V (w;xk) for all k > K. As U(m; ·) and V (w, ·) are continuous in x,
it follows that u(m,w) ≥ U(m;x∗) and v(m,w) ≥ V (w;x∗) hold. Hence, x∗ is
regret-free.

It remains to show that x∗ is pairwise stable. Suppose not. Then there
exists a pair (m,w) for which

u(m,w) > U(m;x∗) and v(m,w) > V (m;x∗). (24)

Because xk converges to x∗, there exists a number K such that u(m,w) >
U(m;xk) and v(m,w) > V (m;xk) holds for all k > K. From (19), this implies

xk(m,w) = λkc(x̄
M
k , x̄

W
k )xk(m,m)xk(w,w), (25)

19If the original contact function is Ĉ, define the new contact function as C(f̄ , ḡ) =
Ĉ(ηf̄ , ηḡ)/η. Then,

ηĉ(ηf̄ , ηḡ) =
Ĉ(ηf̄ , ηḡ)

ηf̄ ḡ
=
C(f̄ , ḡ)

f̄ ḡ
= c(f̄ , ḡ),

so that η disappears from the conditions describing steady-state and equilibrium matchings.
20Let (fk, gk, αk) be an equilibrium inducing xk. Recall that we have set δ = η = 1. From

(15) and (16), we thus have fk(m) = xk(m,m) and gk(w) = xk(w,w). Substituting into
(9) and (10), shows that the interpretation of the following expressions as meeting rates is
appropriate.

21This assumption is without loss of generality: If x∗ is a limit matching with the sequence
xk converging to it, then there exists a subsequence of xk such that the limits φ∗(m) and
γ∗(w) are well-defined.
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for such k. As in the proof of Lemma 3, we have

xk(m,m)U(m;xk) =
∑
w′∈W

xk(m,w
′) max [0, u(m,w′)− U(m;xk)] ,

xk(w,w)V (w;xk) =
∑
m′∈M

xk(m
′, w) max [0, v(m′, w)− V (w;xk)] ,

and, thus,

xk(m,m)U(m;xk) ≥ xk(m,w) [u(m,w)− U(m;xk)] ,

xk(w,w)V (w;xk) ≥ xk(m,w) [v(m,w)− V (w;xk)] .

Using (25), xk(h, h) > 0 for all h ∈ M ∪ W (cf. (15) and (16)), and the
definitions of φk(m) and γk(w) in (22) and (23), this implies

U(m;xk) ≥ γk(w) [u(m,w)− U(m;xk)] ,

V (w;xk) ≥ φk(m) [v(m,w)− V (w;xk)] .

Because U(m;xk) and V (w;xk) converges to the finite limits satisfying (24),
these inequalities imply

φ∗(m) <∞ and γ∗(w) <∞. (26)

It is immediate from (26) that either it is true that x∗(m,m) = x∗(w,w) = 0
or that z∗ = limk→∞ λkc(x̄

M
k , x̄

W
k ) exists and is finite. The following argument

excludes the second possibility. Finiteness of z∗ implies that φ∗(m
′) <∞ and

γ∗(w
′) < ∞ holds for all m′ ∈ M and w′ ∈ W . Using (18), this implies

x∗(m
′, w′) = 0 whenever x∗(m

′,m′) = 0 or x∗(w
′, w′) = 0 holds (because

x∗(m
′, w′) ≤ φ∗(m

′)x∗(w
′, w′) and x∗(m

′, w′) ≤ γ∗(w
′)x∗(m

′,m′)). Conse-
quently, x∗(m

′,m′) = 0 implies x∗(m
′,m′) = 1−

∑
w′∈W x∗(m

′, w′) = 1, which
is a contradiction. Hence, finiteness of z∗ implies that x∗(m

′,m′) > 0 holds
for all m′ ∈ M . Similarly, we obtain x∗(w

′, w′) > 0 for all w′ ∈ W . In par-
ticular, we have x̄M∗ =

∑
m′∈M x∗(m,m) > 0 and x̄W∗ =

∑
w′∈W x∗(w

′, w′) > 0.
Because the contact function C is strictly positive whenever both of its ar-
guments are strictly positive, we obtain c(x̄M∗ , x̄

W
∗ ) > 0 from (11). Hence,

z∗ = limk→∞ λkc(x̄
M
k , x̄

W
k ) =∞, which is a contradiction.

Hence, (26) implies x∗(m,m) = 0 and x∗(w,w) = 0. The same argument
as in the preceding paragraph implies x∗(m,w) = 0. From Lemma 1, as
x∗ is regret-free, x∗(m,m) = 0 and x∗(w,w) = 0 imply that there exist w′

and m′ such that x∗(m,w
′) = 1 and x∗(m

′, w) = 1. Using (18), we have
xk(m,w

′) ≤ φk(m)xk(w
′, w′) for all k, so that x∗(m,w

′) = 1 and x∗(w
′, w′) = 0

(which is implied by x∗(m,w
′) = 1) implies φ∗(m) = ∞. (An analogous

argument implies γ∗(w) = ∞.) This is a contradiction to (26). Hence, x∗ is
pairwise stable.
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Lemma 5. Every coherent and regret-free matching is a limit matching.

Proof. Let x∗ be a coherent and regret-free matching. We begin by construct-
ing a sequence of matchings (xk) converging to x∗ and then show that we can
find a sequence (λk) converging to infinity such that for all sufficiently large k
the matching xk is an equilibrium matching for the search model with parame-
ters (1, 1, λk, C). This suffices to establish that x∗ is a limit matching, because
we may then take a subsequence of (xk, λk) that satisfies the conditions in
Definition 2.

For k ∈ N define xk by

xk(m,w) =

{
x∗(m,w) if x∗(m,w) < 1,

(1− 1
k+1

) if x∗(m,w) = 1.
(27)

Because x∗ is a matching, xk satisfies (1) – (3). Thus, xk is a matching. Clearly,
the sequence of matchings (xk) converges to x∗.

To construct the sequence (λk), define hk : R+ → R by

hk(λ) = λ

(
1

k + 1

)2

c(x̄Mk , x̄
W
k )−

(
1− 1

k + 1

)
. (28)

As x∗ is regret-free, Lemma 1 ensures that x̄Mk > 0 and x̄Wk > 0 holds for all
k,22 ensuring that hk is well-defined for all k. In addition, hk is continuous in
λ and satisfies hk(0) < 0, as well as limλ→∞ hk(λ) =∞. Hence, we may choose
a sequence (λk) satisfying

hk(λk) = 0, λk > 0 (29)

for all k. We now show that (λk) converges to infinity. From (28) and (29),
this follows if (

1

k + 1

)2

c(x̄Mk , x̄
W
k )→ 0. (30)

Suppose x̄M∗ · x̄W∗ > 0 holds, ensuring that c(x̄M∗ , x̄
W
∗ ) is well-defined. As (xk)

converges to x∗ and c is continuous, this implies (30). Suppose x̄M∗ = 0. As
x∗ is regret-free, Lemma 1 then implies that x∗ is deterministic. From (27), it
then follows that xk(m,m) = 1/(k + 1) holds for all m ∈ M and xk(w,w) ∈

22If there exists (m,w) such that x∗(m,w) = 1 holds, then we have xk(m,w) = 1 −
1/(k + 1), xk(m,w′) = 0, and xk(m′, w) = 0 for all w′ 6= w and m′ 6= m. Consequently,
xk(m,m) = xk(w,w) = 1/(k + 1) > 0 holds, implying x̄Mk > 0 and x̄Wk > 0. If there exists
no (m,w) such that x∗(m,w) = 1 holds, then (27) implies xk = x∗. In addition, Lemma 1
implies that no agent is fully matched in x∗. Consequently, x̄M∗ = x̄Mk > 0 and x̄W∗ = x̄Wk > 0
hold.
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{1/(k + 1), 1} holds for all w ∈ W . Hence, we have x̄Mk = |M | /(k + 1) and
x̄Wk ≥ |W | /(k + 1), implying(

1

k + 1

)2

c(x̄Mk , x̄
W
k ) =

(
1

k + 1

)2
C(x̄Mk , x̄

W
k )

x̄Mk · x̄Wk
≤ 1

|M | |W |
C(x̄Mk , x̄

W
k ),

where we have used (11) for the equality. As the contact function C is con-
tinuous, satisfies C(0, x̄W∗ ) = 0, and xk converges to x∗, this implies (30).
An analogous argument establishes (30) for the case x̄W∗ = 0, finishing the
demonstration that (λk) converges to infinity.

Let K be such that x∗(h, h) > 1/(K+1) holds for all h ∈M ∪W for which
x∗(h, h) > 0. We now show that for all k > K the matching xk is a steady-state
matching for the search model with parameters (1, 1, λk, C). Using Lemma 2,
we have to show

xk(m,w) ≤ λkc(x̄
M
k , x̄

W
k )xk(m,m)xk(w,w) (31)

for all (m,w) ∈M ×W . Consider (m,w) satisfying x∗(m,w) = 1. Then

xk(m,w)

λk · c(x̄Mk , x̄Wk )xk(m,m)xk(w,w)
=

1− 1
k+1

λk · c(x̄Mk , x̄Wk )
(

1
k+1

)2 = 1, (32)

where the first equality uses (27) to infer xk(m,w) = 1 − 1/(k + 1) as well
as xk(m,m) = xk(w,w) = 1/(k + 1) from x∗(m,w) = 1, and the second
equality is from (29). It follows that (31) holds with equality. Consider (m,w)
satisfying 0 < x∗(m,w) < 1. As x∗ is regret-free, Lemma 1 and (27) then
imply x∗(m,m) = xk(m,m) > 0 and x∗(w,w) = xk(w,w) > 0. Hence,

xk(m,w)

λk · c(x̄Mk , x̄Wk )xk(m,m)xk(w,w)
=

x∗(m,w)

λk · c(x̄Mk , x̄Wk )x∗(m,m)x∗(w,w)

<
1− 1

k+1

λk · c(x̄Mk , x̄Wk )
(

1
k+1

)2
= 1,

where the inequality uses that k > K implies x∗(m,m) > 1/(k+1), x∗(w,w) >
1/(k + 1), and x∗(m,w) < 1− 1/(k + 1). It follows that (31) holds with strict
inequality. Finally, from (27), x∗(m,w) = 0 implies xk(m,w) = 0, so that (31)
trivially holds for all (m,w) satisfying x∗(m,w) = 0.

Using Lemma 2 it remains to show that the condition

xk(m,w) =

{
0 if u(m,w) < U(m;xk) or v(m,w) < V (w;xk),

λkc(x̄
M
k , x̄

W
k )xk(m,m)xk(w,w) if u(m,w) > U(m;xk) and v(m,w) > V (w;xk)

(33)
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is satisfied for sufficiently large k. From (27) the payoffs associated with xk
are given by

U(m;xk) =

{(
1− 1

k+1

)
U(m;x∗) if x∗(m,m) = 0,

U(m;x∗) if x∗(m,m) > 0,
(34)

and by

V (w;xk) =

{(
1− 1

k+1

)
V (w;xk) if x∗(w,w) = 0,

V (w;x∗) if x∗(w,w) > 0.
(35)

In both cases, Lemma 1 is used to exclude the possibility that x∗(h, h) = 0
holds when h has more than one partner in x∗.

Consider m satisfying x∗(m,m) = 1, so that x∗(m,w) = xk(m,w) = 0
holds for all w ∈ W and we have U(m;x∗) = U(m;xk) = 0. If u(m,w) < 0,
it is immediate that (33) holds. Hence, assume u(m,w) > 0. We have to
show that v(m,w) ≤ V (w;xk) holds for sufficiently large k as this implies that
xk(m,w) = 0 is consistent with (33). If x∗(w,w) > 0, then the inequality
v(m,w) ≤ V (w;xk) is immediate from V (w;xk) = V (w;x∗) and the pairwise
stability of x∗. If x∗(w,w) = 0, the pairwise stability of x∗ implies v(m,w) <
V (w;x∗). (To obtain the strict inequality here, we use the strictness of prefer-
ences together with the implication from Lemma 1 that there exists m′ 6= m
such that x∗(m

′, w) = 1, implying V (w;x∗) = v(m′, w) for some m′ 6= m.)
As V (w;xk) converges to V (w;x∗), the inequality v(m,w) < V (w;x∗) implies
v(m,w) < V (w;xk) for sufficiently large k, yielding the desired result. An anal-
ogous argument shows that (33) holds for all (m,w) satisfying x∗(w,w) = 1.

Consider m satisfying x∗(m,m) = 0. Lemma 1 then implies that there
exists w′ ∈ W such that x∗(m,w

′) = 1 and, thus, U(m;x∗) = u(m,w′). and
V (w′;x∗) = v(m,w′). By the individual rationality of x∗ and the strictness
of preferences, we have u(m,w′) > 0 and v(m,w′) > 0. Hence, (34) im-
plies u(m,w′) > U(m,xk) for all k, and (35) implies v(m,w′) > V (w′;xk)
for all k. Consequently, (33) requires that (31) holds with equality for the
pair (m,w′), which is ensured by construction of λk, cf. (32). Consider now
w 6= w′. Because x∗(m,w

′) = 1 we have x∗(m,w) = 0. If u(m,w) < U(m;x∗),
then u(m,w) < U(m;xk) holds for all k sufficiently large, implying that
xk(m,w) = 0 is consistent with (33). Hence, assume u(m,w) > U(m;x∗).
(The case of equality cannot arise because U(m;x∗) = u(m,w′), w 6= w′ and
because preferences are strict.) We have to show that v(m,w) ≤ V (w;xk)
holds for sufficiently large k. This follows by the same argument as in the case
x∗(m,m) = 1 discussed in the preceding paragraph. Hence, we conclude that
(33) holds for all (m,w) with x∗(m,m) = 0. An analogous argument shows
that (33) holds for all (m,w) satisfying x∗(w,w) = 0.
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It remains to establish (33) for pairs (m,w) for which 0 < x∗(m,m) < 1
and 0 < x∗(w,w) < 1. Using (27), (34), and (35), we have xk(m,w) =
x∗(m,w), U(m;xk) = U(m,x∗), and V (w;xk) = V (w;x∗) for all such pairs.
Pairwise stability of x∗ then implies that there does not exist such (m,w)
satisfying u(m,w) > U(m;xk) and v(m,w) > V (m;xk). Because x∗ is regret-
free, xk(m,w) > 0 also implies u(m,w) ≥ U(m;xk) as well as v(m,w) ≥
V (w;xk). Therefore, xk satisfies (33).

Appendix C: Proof of Proposition 2

In the following, it is often more convenient to identify deterministic matchings
with their matchings functions, instead of using the assignment matrices.

Lemma 6. If there exists a random matching x that is coherent and pairwise
stable, then there exist two distinct stable deterministic matchings µ1 6= µ2.

Proof. Let x be a random matching that is coherent and regret-free. Let

Px(m) = {w ∈ W : x(m,w) > 0} and Px(w) = {m ∈M : x(m,w) > 0}

denote the sets of partners. We now construct µ1 and µ2. Let µ1(h) = h
if x(h, h) = 1. For all other agents, let µ1(m) = argmaxw∈Px(m) u(m,w) and
µ1(w) = argminm∈Px(w) v(m,w), respectively. By the strictness of preferences,
the function µ1 : M∪W →M∪W is uniquely defined. Similarly, let µ2(h) = h
if x(h, h) = 1. For all other agents, let µ2(m) = argminw∈Px(m) u(m,w) and
µ2(w) = argmaxm∈Px(w) v(m,w), respectively. We show in the following that
µ1 and µ2 are stable deterministic matchings that satisfy µ1 6= µ2.

We begin by verifying that µ1 and µ2 are deterministic matchings. It
is immediate from the definitions that for i = 1, 2 the conditions µi(m) ∈
W ∪{m} and µi(w) ∈M∪{w} are satisfied for all m and w. Hence, our task is
to verify that for i = 1, 2 the condition µ2

i (h) = h holds for all h ∈M ∪W . For
h satisfying x(h, h) = 1 this is immediate. Consider h satisfying x(h, h) = 0.
Because x is regret-free, Lemma 1 implies that every such agent has a unique
partner h′ 6= h and h′ is in turn the unique partner of h. Consequently, we
have µ2

1(h) = µ2
2(h) = h for all such agents. It remains to consider h satisfying

0 < x(h, h) < 1, that is, the set of partially matched agents.
Let Mx and Wx denote the sets of partially matched men and women,

respectively, in the matching x. As x is regret-free, Lemma 1 implies that
these sets are not empty. Because every agent in Mx ∪Wx has at least one
partner (otherwise the agent would be unmatched), the set of partners Px(h)
is not empty for all h ∈ Mx ∪Wx. Furthermore, for all h ∈ Mx ∪Wx we have
Px(h) ⊂ Mx ∪ Wx. (If, say, m ∈ Mx has a partner w′ ∈ W \ Wx, then w′
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must be fully matched. From Lemma 1, this implies x(m,w′) = 1, implying
m 6∈Mx.) Hence, for i = 1, 2 we have µi(Mx) ⊆ Wx and µi(Wx) ⊆Mx.

We use the individual rationality of x for the first inequalities in the fol-
lowing displayed expressions,

u(m,µ1(m)) > (1− x(m,m))u(m,µ1(m)) ≥
∑

w∈Px(m)

x(m,w)u(m,w) = U(m;x),

v(µ2(w), w) > (1− x(w,w)v(µ2(w), w) ≥
∑

m∈Px(w)

x(m,w)v(m,w) = V (w;x),

for all m ∈Mx and w ∈ Wx. Hence, we have

u(m,µ1(m)) > U(m;x) and v(µ2(w), w) > V (w;x), (36)

for all m ∈Mx and w ∈ Wx.
Because x is pairwise stable, (36) implies

v(m,µ1(m)) ≤ V (µ1(m);x) and u(µ2(w), w) ≤ U(µ2(w);x)

for all m ∈Mx, respectively for all w ∈ Wx.
Because x is regret free, these inequalities must, in fact, hold with equality,

so that we obtain

v(m,µ1(m)) = V (µ1(m);x) and u(µ2(w), w) = U(µ2(w);x), (37)

for all m ∈Mx and w ∈ Wx. From the first equality in (37), µ1(m) = µ1(m
′) =

w implies v(m′, w) = v(m,w) and thus, from strictness of preferences, m = m′.
Hence, the restriction of µ1 toMx, denoted by η1 in the following, is an injection
into Wx. An analogous argument using the second equality in (37) shows that
the restriction of µ2 to Wx, denoted by η2, is an injection into Mx. Because
the sets Mx and Wx are finite it follows (as a trivial application of the Cantor-
Bernstein-Schröder theorem) that η1 and η2 are bijections. Let η−11 : Wx →Mx

and η−12 : Mx → Wx denote the corresponding inverses. To establish that µ1

and µ2 are deterministic matchings, it remains to show that η−11 (w) = µ1(w)
and η−12 (m) = µ2(m) holds for all w ∈ Wx and m ∈ MX . Consider w ∈ Wx.
From the first equality in (37), we have v(η−11 (w), w) = V (w;x). Observing
that η−11 (w) is a partner of w and that (because x is regret-free and preferences
are strict) all other partners m of w satisfy v(m,w) > V (w;x), the desired
conclusion η−11 (w) = µ1(w) follows. An analogous argument yields η−12 (m) =
µ2(m) for all m ∈Mx.

Consider any m ∈Mx. Substituting w = µ1(m) into the second inequality
in (36), we have v(µ2(µ1(m)), µ1(m)) > V (µ1(m);x). From the first equality in
(37), this implies µ2(µ1(m)) 6= m. Because Mx is not empty, it follows that µ1
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and µ2 are different. To complete the proof of the lemma, it remains to show
that µ1 and µ2 are stable. Let xi denote the assignment matrix corresponding
to µi. By construction, xi(m,w) = 1 implies that (m,w) are partners in x,
that is, we have x(m,w) > 0. Because x is individually rational, it follows that
µi is individually rational. Next, by the construction of µ1 and µ2 we have

U(m;x1) = U(m;x2) = U(m;x) for all m 6∈Mx,

V (w;x1) = V (w;x2) = V (w;x) for all w 6∈ Wx.

From (36) and (37) we have:

U(m;x1) > U(m;x2) = U(m;x) for all m ∈Mx,

V (w;x2) > V (w;x1) = V (w;x) for all w ∈ Wx.

In particular, for i = 1, 2 we have U(m;xi) ≥ U(m;x) for all m ∈ M and
V (w;xi) ≥ V (w;x) for all w ∈ W . As x satisfies (7) it follows that x1 and x2
satisfy (7). Hence, µ1 and µ2 are stable.

To prove the converse of Lemma 6 and, thus, to finish the proof of Propo-
sition 2, we rely on some well-known results about the structure of the set
of stable deterministic matchings. Given any two deterministic matchings µ1

and µ2, define µ1 >M µ2 if u(m,µ1(m)) ≥ u(m,µ2(m)) holds for all m ∈ M
and u(m,µ1(m)) > u(m,µ2(m)) for at least one m. Define µ1 >W µ2 in an
analogous way. If µ1 and µ2 are both stable, then (Roth and Sotomayor, 1990,
Theorem 2.13)

µ1 >M µ2 ⇔ µ2 >W µ1. (38)

Two stable deterministic matchings µ1 and µ2 are consecutive (Roth and So-
tomayor, 1990, p. 61) if µ1 >M µ2 holds and there does not exist a sta-
ble deterministic matching µ3 between µ1 and µ2, that is, satisfying µ1 >M

µ3 >M µ2. Consecutive stable deterministic matchings exist if and only if
there is more than one stable deterministic matching: If there is more than
one stable deterministic matching, the M-optimal stable matching µM and the
W-optimal stable matching µW (Roth and Sotomayor, 1990, Definition 2.11)
satisfy µM >M µW . The set of deterministic matchings is finite, therefore
there exists a matching µ′ such that µM and µ′ are consecutive. To finish the
proof of Proposition 2, it thus suffices to show random limit matchings exist if
consecutive stable deterministic matchings exist. We do so through a sequence
of lemmas.

Lemma 7. Let µ1 and µ2 be consecutive stable deterministic matchings. Then
there does not exist (m,w) ∈M ×W satisfying

u(m,µ1(m)) > u(m,w) > u(m,µ2(m)) and v(µ2(w), w) > v(m,w) > v(µ1(w), w).
(39)
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Proof. Let µ1 and µ2 be stable deterministic matchings satisfying µ1 >M µ2.
Let (m,w) ∈M ×W satisfy (39). Because µ1 and µ2 are individually rational,
it follows that m and w are mutually acceptable in the sense that u(m,w) > 0
and v(m,w) > 0 holds. In addition, it is immediate from (39) that for µ = µ1

none of the conditions in property (5) on page 62 of Roth and Sotomayor (1990)
is satisfied. Hence, m and w are on each other’s lists under the profile of reduced
lists P (µ1) (Roth and Sotomayor, 1990, p. 61–62). Using the observation after
the proof of Theorem 3.17 in Roth and Sotomayor (1990, p. 66), it follows that
u(m,µ′(m)) ≥ u(m,w) holds if µ1 and µ′ are consecutive stable deterministic
matchings. As (39) yields u(m,w) > u(m,µ2(m)), the matchings µ1 and µ2

are not consecutive. Hence, if µ1 and µ2 are consecutive stable deterministic
matchings, then there does not exist a pair (m,w) ∈ M × W that satisfies
(39).

We say that the deterministic matchings µ1 and µ2 support the random
matching x if the assignment matrices x1 and x2 associated with µ1 and µ2

satisfy

x(m,w) = 0⇔ [x1(m,w) = 0 and x2(m,w) = 0], (40)

x(m,w) = 1⇔ [x1(m,w) = 1 and x2(m,w) = 1], (41)

for all (m,w) ∈M ×W .

Lemma 8. Suppose the random matching x is supported by the consecutive
stable deterministic matchings µ1 and µ2. If

U(m;x) = u(m,µ2(m)) and V (w;x) = v(µ1(w), w) (42)

holds for all m ∈M and w ∈ W , then x is coherent and regret-free.

Proof. Let x, µ1 and µ2 satisfy the conditions in the statement of the lemma,
and let x1 6= x2 denote the assignment matrices associated with µ1 and µ2.

Because µ1 and µ2 support x, (40) implies that x(m,w) > 0 only holds if
either x1(m,w) = 1 or x2(m,w) = 1 (or both) hold. As x1 and x2 are individ-
ually rational this implies u(m,w) > 0. Hence, x is individually rational.

From (41) for any pair (m,w) that satisfies x(m,w) = 1, it must be that
U(m;x) = u(m,w) and V (w;x) = v(m,w). Hence, condition (8) holds for
such pairs. To verify that x is regret-free, it remains to consider pairs (m,w)
for which 0 < x(m,w) < 1. From (40) and (41), either x1(m,w) = 1 or
x2(m,w) = 1 (but not both) hold. Consider the first of these cases. In this case,
u(m,w) = u(m,µ1(m)) ≥ u(m,µ2(m)) and v(m,w) = v(µ1(w), w), where the
inequality is from µ1 >M µ2. Condition (42) then implies u(m,w) ≥ U(m;x)
and v(m,w) = V (w;x), establishing that (8) holds. In the second case, it must
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be that u(m,w) = u(m,µ2(m)) and v(m,w) = v(µ2(w), w) ≥ v(µ1(w), w),
where the inequality is from µ1 >M µ2 and (38). As in the previous case, (42)
then implies (8). Hence, x is regret-free.

It remains to show the pairwise stability of x, that is, to show there is no
pair (m,w) such that (7) holds. Suppose there is such a pair. Condition (42)
then implies

u(m,w) > u(m,µ2(m)) and v(m,w) > v(µ1(w), w). (43)

By the stability of µ2, the first of these inequalities implies v(µ2(w), w) ≥
v(m,w), whereas from stability of µ1 the second inequality implies u(m,µ1(m)) ≥
u(m,w). From Lemma 7, one, at the most, one of the inequalities v(µ2(w), w) ≥
v(m,w) and u(m,µ1(m)) ≥ u(m,w) can be strict. Suppose the first in-
equality holds with equality. Because of the strictness of preferences, this
requires µ2(w) = m, and, therefore, U(m,µ2(m)) = u(m,w), which contra-
dicts the first inequality in (43). Similarly, if u(m,µ1(m)) = u(m,w) holds,
then v(m,w) = v(µ1(w), w), which contradicts the second inequality in (43).
Therefore, there is no pair (m,w) satisfying (43), proving that x is pairwise
stable.

To conclude the proof of Proposition 2, it remains to show that if µ1 and
µ2 are consecutive stable deterministic matchings, then there exists a random
matching x that is supported by µ1 and µ2 and satisfies (42). This is implied
by the following lemma, which proves the stronger result that such a random
matching x exists whenever µ1 >M µ2 holds.

Lemma 9. Let µ1 and µ2 be stable deterministic matchings such that µ1 >M

µ2. Then there exists a feasible random matching x that is supported by µ1

and µ2 and satisfies conditions (42).

Proof. Let M̃ = {m ∈ M | µ1(m) 6= µ2(m)} and W̃ = {w ∈ W | µ1(w) 6=
µ2(w)}. As µ1 6= µ2, we have M̃ 6= ∅ and W̃ 6= ∅. As µ1 and µ2 are both
stable, the set of unmatched agents in these matchings is the same (cf. Roth
and Sotomayor, 1990, Theorem 2.22). Therefore, µi(M̃) = W̃ and µi(W̃ ) = M̃
hold for i = 1, 2. Define an oriented graph whose nodes are M̃ ∪ W̃ as follows:
(i) there is an arc from m ∈ M̃ to w ∈ W̃ if µ1(m) = w, and (ii) there is
an arc from w ∈ W̃ to m ∈ M̃ if µ2(w) = m. Because every node in this
finite graph has a unique direct successor and a unique direct predecessor, it
follows that the graph is the union of a set of disjoint directed cycles. Let
m1w1m2w2 . . .m`w`m`+1 with m`+1 = m1 be such a cycle and consider the set
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of equations

u(m1, w`) = x(m1, w`)u(m1, w`) + x(m1, w1)u(m1, w1)

v(m1, w1) = x(m1, w1)v(m1, w1) + x(m2, w1)v(m2, w1)

u(m2, w1) = x(m2, w1)u(m2, w1) + x(m2, w2)u(m2, w2)

v(m2, w2) = x(m2, w2)v(m2, w2) + x(m3, w2)v(m3, w2)

. . . . . .

v(m`, w`) = x(m`, w`)v(m`, w`) + x(m`+1, w`)v(m`+1, w`).

Because the direct predecessor of each node is distinct from its direct successor,
it must be that ` > 1. For i = 1, · · · , ` the following inequalities are satisfied:

u(mi, wi) > u(mi, wi−1) > 0, (44)

v(mi+1, wi) > v(mi, wi) > 0, (45)

where we set w0 = w`, and where the first inequality in (44) is from µ1 >M µ2,
the second inequality from the individual rationality of µ2, and in both cases
the strictness of the inequality is from the strictness of preferences. Because
of (38), an analogous argument yields (45). Using these properties, we now
argue that the above systems of equations has a solution that satisfies

x∗(mi, wi) > 0, x∗(mi+1, wi) > 0, (46)

x∗(mi, wi) + x∗(mi+1, wi) < 1, x∗(mi, wi−1) + x(m1, wi) < 1 (47)

for all i = 1, · · · , `.
We construct a solution as follows. For any c ∈ [0, 1], let x(m1, w`) = c. Us-

ing (44), the first equation determines x(m1, w1) ∈ [0, 1) as a strictly decreas-
ing, affine function h1 of c, which satisfies h1(1) = 0. Substitute x(m1, w1) =
h1(c) into the next equation, and note that (45) determines x(m2, w1) ∈ (0, 1)
as a strictly increasing affine function h2 of c. Proceeding in this fashion until
the last equation is reached, this iterative procedure defines a strictly increas-
ing and affine mapping from [0, 1] into (0, 1). Obviously, this function has
a unique fixed point 0 < c∗ < 1. Let x∗(m`+1, w`) = x∗(m1, w`) = c∗ and
use h1, h2, · · · to determine the remaining values. This yields a solution that
satisfies (46). The inequalities in (47) are then implied by (44) and (45).

Apply this argument to all cycles; and complete the specification of x∗ by
setting x∗(m,w) = 0 for (m,w) satisfying x1(m,w) = x2(m,w) = 0 and by
setting x∗(m,w) = 1 for (m,w) satisfying x1(m,w) = x2(m,w) = 1, where x1
and x2 are the assignment matrices corresponding to µ1 and µ2. Because of its
construction, x∗ satisfies (1) – (3) as well as (40) and (41). Thus, x∗ is a random
matching supported by µ1 and µ2. For m 6∈ M̃ the matching x∗ satisfies
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U(m;x∗) = u(m,µ1(m)) = u(m,µ2(m)) so that (42) is satisfied. Similarly,
(42) holds for w 6∈ W̃ . For m ∈ M̃ we have (by the above construction of x∗):

u(m,µ2(m)) = x∗(m,µ1(m))u(m,µ1(m)) + x∗(m,µ2(m))u(m,µ2(m)).

As U(m;x∗) is given by the right side of this equation, (42) holds. Similarly,
for w ∈ W̃ we have

V (w;x) = v(µ1(w), w) = x∗(µ1(w), w)v(µ1(w)), w) + x∗(µ2(w), w)v(µ2(w), w),

yielding (42) for those types.
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