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Abstract

We study the effect of frequent trading opportunities and categorization on pricing of a risky

asset. Frequent opportunities to trade can lead to large distortions in prices if some agents

forecast future prices using a simplified model of the world that fails to distinguish between

some states. In the limit as the period length vanishes, these distortions take a particular

form: the price must be the same in any two states that a positive mass of agents categorize

together. Price distortions therefore tend to be large when different agents categorize states in

different ways, even if each individual’s categorization is not very coarse. Similar results hold

if, instead of using a simplified model of the world, some agents overestimate the likelihood of

small probability events, as in prospect theory.
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1 Introduction

Recent advances in technology have led to dramatic increases in trading speed. These changes have

generated considerable debate about the effect of high frequencies on market prices, with one side

arguing that, by providing liquidity, high frequency traders help to improve market efficiency, and

the other side claiming that high frequencies can destabilize market prices. We present a model

that lends support to the latter view and show that agents’ use of simplifying models of the world

can generate large distortions in prices at high trading frequencies.

We study pricing of a single risky asset that is traded at discrete times. The asset pays a flow

dividend that depends on the current state, which is publicly observed and evolves according to

a Markov process. In choosing prices, agents consider both the current dividend and the resale

price in the next period. A key assumption of our model is that, when forming price forecasts,

some agents employ a simplified model of the world in which they fail to distinguish among some

differing states. These agents group states into categories and form forecasts in each state that are

correct on average for the category containing that state.

If enough agents use very fine categorizations of states, then prices are typically close to ratio-

nal expectations prices when the period length is not too small. However, as trading opportunities

become frequent, distortions become large and prices collapse across states. More precisely, when-

ever two states are categorized together by a positive mass of agents, the price in those two states

becomes identical in the high-frequency limit. This result implies that prices are identical whenever

two states are connected by a chain of states along which adjacent states are categorized together

(possibly by different agents); prices may be identical even across states that no agent groups

together. Thus distortions tend to be large when categorization is heterogeneous. Moreover, if

agents’ demands take a particular simple form, limiting prices admit a characterization as rational

expectations prices associated with a coarsened process—one in which each state corresponds to a

set of states in the true process, and dividends and transition probabilities are convex combinations

of those in the true process.

Convergence of prices across large sets of states generates a particular pattern of price behavior

over time exhibiting sudden large adjustments. Much of the time, prices do not respond to new

information, but occasionally there is an overreaction to small changes in fundamentals. These
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relatively large price jumps occur when the state transitions between two sets of states with differing

prices.

Coarse prices arise from a combination of two effects. First, despite using different theories,

agents’ expectations of the asset value become identical in each state as the period length vanishes.

Second, each agent’s expectation becomes constant on each of her own categories. Together, these

two effects imply that all agents’ expectations are constant on sets of states that are larger than

each individual’s categories. More precisely, expectations are constant on each element of the finest

common coarsening of all agents’ categorizations.

Both effects arise when the trading frequency becomes high. In the limit, the per-period dividend

becomes negligible and the perceived value of the asset to each agent is based entirely on her forecast

of the resale price. This gives rise to the second effect since price forecasts are constant on individual

categories.

The first effect—the coordination of individual expectations in each state—is driven by a strong

speculative motive that arises at high trading frequency. The resale price in the next period is a

function of the market forecasts of the price in the following period, which in turn depends on

forecasts of the price in the next period, etc. Thus, in a sense, forecasting the resale price can be

thought of in terms of forecasting others’ forecasts. When agents place a great deal of weight on

the resale price, any distinction that an individual makes between two states has little effect on her

forecast unless others make the same distinction. At high frequency, this effect is so strong that a

distinction is useful for one’s forecast only if all other agents make the same distinction. A group

of agents failing to distinguish between two states tends to dampen any price difference between

those states. This in turn affects the resale price for other agents, further dampening the difference,

and thus multiplying the effect. When the period length is short, making the speculative motive

strong, this multiplication is powerful enough to drive the prices together.

The coordination of individual expectations is most transparent in our baseline model in Section

4. There, we focus on a special case in which the market price is equal to the average of all agents’

expected values of owning the asset. In that case, we can explicitly express the steady-state prices

as a sum of higher-order expectations of future dividends. At high frequencies, prices are driven by

very high orders of expectations, which depend only on those features of individuals’ theories that
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are common to all.1

Our main result holds under general conditions on the relationship between market prices and

individual forecasts. In Section 5, we require only that the market price lie between the highest and

lowest expected gain from owning one unit of the asset across all agents (so that, for example, it

cannot be that all agents receive an expected gain from buying the asset and an expected loss from

selling), and, in addition, that it be bounded away from the lowest expected gain by some fixed

convex combination of the two extremes. This assumption is satisfied in the framework of Harrison

and Kreps (1978), where all agents are risk neutral, the asset is in fixed supply, and short-selling is

limited.

Throughout much of the paper, we take a reduced form approach to price formation that eschews

modelling demand and supply explicitly, and rather expresses current market price directly in terms

of forecasts of future prices. The reduced form approach is sufficient to highlight the mechanism

underlying the distortionary effect, and the main reason for taking it is tractability. In our baseline

model, the pricing equation we apply directly is similar to that in a standard CARA-Normal

overlapping generations framework. However, a key assumption of the standard framework is that

agents live for only two periods, which is seemingly incompatible with our focus on vanishingly

small period length. Accordingly, we examine robustness of our results in a model with explicit

supply and demand from risk averse agents whose expected lifespan—in terms of real time—is

fixed as the period length varies. Although such a model appears to be intractable in general, it

is tractable in some special cases. In Section 6.1, we study a simple class of examples in which

fundamentals depend on two variables but individual agents base expectations on only one of those

variables. The results are in accordance with the reduced form analysis: as the period length

vanishes, prices collapse across states, including pairs of states that no individual agent categorizes

together. Although we cannot say whether the result extends to more general settings, this class

of examples demonstrates that the effect we highlight persists even if agents face substantial risk

over their lifetimes.

The coarse pricing result in this class of examples can be understood in terms of market de-

mand. Learning using categories leads to outcomes as if agents form rational expectations based

1The setting of Section 4 is closely related to a dynamic version of a Morris and Shin (2002) beauty contest. The
role of high orders of expectations in our coarse pricing result is akin to their observation that private information
has little influence on high orders of expectations (see also Samet 1998).
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on incorrect beliefs about the process governing the evolution of states. These incorrect beliefs

take a particular form: in addition to transitions that occur under the true process, agents be-

have as if they have assigned some probability to the state changing to another state in the same

category. These beliefs are nonvanishing as the period length vanishes. At the same time, since

the current dividend is proportional to the length of time the asset is held, shortening the period

length strengthens the speculative motive in the sense that more weight is placed on changes in

price relative to dividends. To mitigate this effect and allow markets to clear, prices must become

closer together within each category.

Results similar to our main result hold if, instead of categorizing states together, some agents

overweight the likelihood of small probability events, as in prospect theory. Standard weighting

functions used in the prospect theory literature (see, e.g., Prelec 1998, Gonzalez and Wu 1999)

have the property that, relative to the true probabilities, weighted probabilities grow large as the

probability vanishes. By increasing the weight placed on other states when forming price forecasts,

this property has essentially the same effect as the use of categorization. Thus we obtain a similar

result exhibiting coarse prices.

Our main result is stark and should not be taken too literally; the main goal of the paper is

simply to elucidate a mechanism by which high frequencies may amplify distortions resulting from

imperfect rationality. Section 7 describes some variations on the model that may go against the

constant price result (although the effect remains).

2 Related Literature

Our focus on categorization places this paper within the burgeoning literature on analogical and

similarity-based reasoning (Gilboa and Schmeidler 1995, Jehiel 2005, Jehiel and Samet 2007, Mul-

lainathan, Schwartzstein, and Shleifer 2008, Al-Najjar and Pai 2009). In particular, the starting

point of our analysis is a characterization of steady-state outcomes that is closely related to the

characterization in Steiner and Stewart (2008); although the setting is different, both papers char-

acterize behavior in terms of equilibrium play in a model with distorted beliefs.

Several other papers have studied the use of coarse theories in asset pricing. Each of those papers

considers a fixed trading frequency and therefore has a quite different focus from that of our paper.
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Most closely related is Eyster and Piccione (2012), who model coarse theories as categorizations

of the state space in a very general setting, with steady-state price forecasts formed in the same

way as in our paper. They focus on how the composition of theories in the market affects prices

and agents’ individual performance at a fixed trading frequency. The style investing of Barberis

and Shleifer (2003) is related to the categorization in our model. They consider a case with a

large fraction of investors who divide assets into a common set of styles over a fixed time horizon,

while we focus on the effect of shortening horizons when agents use a variety of categorizations.

Another key difference is that Barberis and Shleifer assume that demands are based on relative

past performance, while in our model they are based on absolute prices. Similar comments apply

to Bianchi and Jehiel (2010), who show that bubbles and crashes can arise when some agents

form expectations about price movements that are incorrect but consistent with the average across

multiple periods.

A number of earlier papers have highlighted the role of strategic complementarities in amplifying

the effect of irrational agents (e.g. Haltiwanger and Waldman 1985, Haltiwanger andWaldman 1989,

Fehr and Tyran 2005). Our main result is driven in part by this effect, which is compounded in

our model because high frequencies strengthen strategic complementarities.

Our results can be understood in terms of higher order expectations about future prices. Among

others, Allen, Morris, and Shin (2006) and Bacchetta and Van Wincoop (2008) have highlighted

the role of higher order expectations in financial markets with asymmetric information. Since our

model is one of complete information, the main thrust of those papers is somewhat orthogonal to

the present one.

De Long, Shleifer, Summers, and Waldmann (1990b) show that irrational traders can induce

rational agents to behave in a way that destabilizes prices: if irrational traders chase trends, rational

traders’ demands increase ahead of an upturn in anticipation of greater demand from irrational

traders. Our model does not have this feature. Rational traders act as a stabilizing influence, but

do not fully stabilize prices. Similarly, in De Long, Shleifer, Summers, and Waldmann (1990a)

the same authors study how noise trader risk can distort prices, and show that risk aversion, by

limiting the size of positions, can cause rational traders to receive lower expected returns than do

noise traders. These papers are related in spirit to our point that irrationality can drive prices

away from rational expectations, but the mechanisms are very different.
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Figure 1: State space and categorizations for Section 3 when S = 3.

3 Example

We begin with a simple example to illustrate how categorization can lead to large distortions in

prices when trading is frequent.

A continuum of investors i ∈ [0, 1] trade a single risky asset with fixed positive supply at times

t = 0,∆, 2∆ . . . . The asset pays a flow dividend of d(ωk) per unit of time that depends on the

current state ωk ∈ Ω in period k = t/∆, where

Ω =
{
(x, y) : x ∈ {0, . . . , S} and y ∈ {x, x+ 1}

}
,

as depicted in Figure 1. The state follows a continuous-time Markov process with transition rates

q(ω, ω′) = 1/(2S + 2) from state ω to state ω′ 6= ω. This process can be thought of as drawing a

new state at times that are distributed according to a Poisson process with arrival rate one, with

the new state drawn uniformly from the entire state space. Let q∆(ω, ω
′) denote the single-period

transition probability, that is, the probability that ω′ is the state at time t+∆ given that ω is the

state at time t. The flow dividend in state ω = (x, y) is

d(x, y) = (x+ y)/(2S + 1).
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Thus flow dividends range from 0 to 1. The state is publicly observed prior to trade in each period.

For the purpose of this example, the price of the asset is determined as in Harrison and Kreps

(1978). All agents are risk neutral and short selling is not possible. In each period, each agent

chooses her demand to maximize her expected gains from buying the asset and reselling it in the

following period. Risk neutrality ensures that the optimal demand is independent of the agent’s

lifespan; the demand of an agent with a long horizon is identical to that of an agent who maximizes

single-period gains.

Agents are divided into a finite number of groups that differ in their forecasts of future prices;

all agents within a group are identical. Agent i’s willingness to pay for the asset is

∫ (k+1)∆

k∆
d(ωk)e

−(t−k∆)dt+ e−∆Ei
k [Pk+1] = (1− e−∆)d(ωk) + e−∆Ei

k [Pk+1] ,

where Ei
k [Pk+1] denotes agent i’s forecast in period k of the price in period k+1, and agents have

a common discount factor normalized to 1/e. For markets to clear in period k, the price Pk must

be equal to the maximal willingness to pay across agents, that is,

Pk = max
i

{
(1− e−∆)d(ωk) + e−∆Ei

k [Pk+1]
}
.

At any higher price, aggregate demand for the asset would be 0, and at any lower price aggregate

demand would be infinite. We focus on steady-state prices P∆(ω) that, for each ∆, depend only

on the current state ω.

Steady-state prices are determined by agents’ forecasts of future prices. As a benchmark,

suppose that all agents’ forecasts are based on the true process q∆, so that steady-state prices

satisfy

P∆(ω) = (1− e−∆)d(ω) + e−∆Eq∆(ω,ω′)

[
P∆(ω

′)
]
. (1)

The solution to this system of linear equations is given by

P∆(ω) =
2d(ω) + e−∆

2(1 + e−∆)
.

In this case, as usual, the price in each state is equal to the sum of the expected discounted future
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dividends.2

Consider two variations in which agents categorize some states together. First, suppose that

each agent does not understand that the variable y is relevant for forecasting future prices; forecasts

depend only on the current value of x. This coarse theory, which we call theX-theory, is represented

by a partition ΠX of Ω into sets {(x, x), (x, x + 1)} for x = 0, . . . , S, as depicted in Figure 1. We

refer to the elements of ΠX as categories. Agents’ beliefs are coarse but unbiased: their forecasts

are measurable with respect to ΠX , but are correct on average within each category. In other

words, agents form expectations as if they believe transition probabilities between states are given

by

qX∆
(
(x, y), ω′

)
=

q∆
(
(x, x), ω′

)
+ q∆

(
(x, x+ 1), ω′

)

2
.

The two states within the category are given equal weight because the stationary distribution of

the true process q is uniform.

As in the benchmark case, the prices PX
∆ (ω) given these coarse forecasts satisfy (1) except with

the true process q∆ replaced by qX∆ . When S is large, making states within each category similar

in terms of fundamentals, the use of a coarse theory has only a small effect on prices: one can show

that, in each state ω,

∣
∣PX

∆ (ω)− P∆(ω)
∣
∣ =

e−2∆

2(1 + e−∆)(2S + 1)
<

1

4(2S + 1)
.

When all agents use the same theory, the magnitude of price distortions corresponds to the precision

of the theory.

Now suppose that agents are heterogenous in the theories on which they base their forecasts.

One group uses the X-theory while the remaining agents use the Y -theory corresponding to the

partition ΠY of Ω into categories {(x, y′) ∈ Ω | y′ = y} for y = 0, . . . , S + 1, as depicted in Figure

1.3 For Z ∈ {X,Y }, agents using the Z-theory form expectations as if they believe the process

has transition probabilities qZ∆(ω, ω
′) equal to the average of q∆(ω̃, ω

′) over all ω̃ lying in the same

element of ΠZ as ω.

2Prices depend on ∆ only because of the simplifying assumption that the flow dividend does not change between
trading periods.

3Prices in this case would be exactly the same if there was a third group forming rational expectations, since
agents in that group would always have a lower willingness to pay than members of one of the two coarse groups.
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Figure 2: Prices as a function of the period length for S = 5 when both the X-theory and the
Y -theory are present in the market. Each curve depicts the price in a particular state.

One can show that, for any ∆, the steady-state prices PX,Y
∆ (ω) when both theories are present

in the market are increasing with the dividend d(ω). It follows that agents using the X-theory

have a higher willingness to pay in states (x, y) along the diagonal (i.e. those with y = x), while

those using the Y -theory have a higher willingness to pay in the off-diagonal states (those with

y = x + 1). Hence the prices PX,Y
∆ (ω) satisfy (1) except with the true process q∆ replaced by qX∆

if ω lies on the diagonal, and replaced by qY∆ if ω is off the diagonal.

Figure 2 depicts, for each state ω, the price PX,Y
∆ (ω) as a function of ∆ when S = 5. When

the period length is not too short, prices are similar to the benchmark prices P∆(ω) because both

theories are fairly precise in the way they partition the state space. However, as ∆ vanishes, prices

collapse across states, generating large distortions relative to fundamental values.

Why do high-frequency prices fail to respond to changes in the state even though all agents

use theories that are not very coarse? When the trading period is short, reservation prices place

little weight on the current dividend relative to the expected resale price. Since any given agent’s

expectation of the resale price is constant within any of that agent’s categories, it must be the

case that, in the limit, prices are constant within those categories. To see this, consider a state

ω = (x, x) and let ω′ = (x, x + 1). The price in state ω is equal to the reservation price of agents

using the X-theory. In the limit, with vanishing weight placed on the dividend, this reservation

price is equal to the average of the prices in states ω and ω′. This implies that the prices in the

two states must be equal. Since the same argument applies to every agent and category, prices in
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the limit must be measurable with respect to both individual categorizations, and therefore with

respect to the meet—the finest common coarsening—of the two individual categorizations (in this

case, the entire state space).

High frequency pricing is coarse in much more general settings, including settings in which

market prices are not determined according to the Harrison and Kreps (1978) framework. We

prove that under a mild condition relating market prices to individual reservation prices, agents

perfectly coordinate their reservation prices in the limit.

To summarize, as the period length vanishes, agents place increasing weight on the resale price

and diminishing weight on the dividend. As a result, in the limit, reservation prices end up being

perfectly coordinated across agents. Since agents’ actions can only be coordinated if they condition

only on information used by all agents, their actions must be measurable with respect to the finest

common coarsening of all theories.

4 Baseline model

4.1 Model setup

We consider a single asset whose dividend depends on a state ω(t) drawn from a finite set Ω. The

state evolves according to an ergodic continuous-time stationary Markov process with transition

rates q(ω, ω′) from ω to ω′. Trading occurs at discrete times t = 0,∆, 2∆, . . . . We refer to time k∆

as period k, and write ωk for the state ω(k∆) in period k. Sampling the continuous-time process

q at times k∆ gives rise to a discrete-time Markov process (sometimes called the discrete skeleton

of q at scale ∆) with transition probabilities q∆(ω, ω
′). The state affects the flow dividend d(ωk)

of the asset, which is paid at a constant rate from time k∆ to (k + 1)∆.4

A continuum of agents of measure one trades the asset in each trading period k. We focus on

steady-state prices P : Ω −→ R that depend only on the current state. The market price P (ω)

is determined by the current dividend and by agents’ forecasts of prices in the following period.

Agents’ form these forecasts as follows. Each agent i categorizes states according to a partition of Ω

that is fixed across all periods. Letting Π1, . . . ,ΠN denote those partitions belonging to a positive

4The assumption that the dividend remains constant between periods instead of changing according to the
continuous-time Markov process simplifies the notation but makes no difference for our results.
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measure of agents, we write πn for the measure of agents using partition Πn, and refer to the set

of agents using this partition as group n. The group of which agent i is a member is denoted n(i).

For each state ω, Π(ω) denotes the element of the partition Π containing ω.

Each agent i forms expectations that are measurable with respect to her categorization Πn(i) and

are correct on average within each category; that is, given prices P (ω) and any category C ∈ Πn(i),

the forecasts Ei satisfy

∑

ω∈C

φ(ω)Ei [P (ωk+1) | ωk = ω] =
∑

ω∈C

φ(ω)Eq∆(ωk ,ωk+1) [P (ωk+1)] ,

where φ denotes the stationary distribution of states with respect to the true process q.5 It follows

that Ei is identical to the expectation with respect to the modified process m
n(i)
∆ given by

mn
∆(ω, ω

′) =
∑

ω′′∈Πn(ω)

φ
(
ω′′ |Πn(ω)

)
q∆(ω

′′, ω′). (2)

In this section, we focus on a simple reduced-form setting in which market prices directly

aggregate individual reservation prices. Section 5 extends the analysis to more general pricing

rules. Focusing on this simple model offers two advantages: first, because of its relative simplicity,

we believe the main insights are more transparent in this case, and second, we can fully characterize

high-frequency prices in a way that clearly illustrates exactly how prices reflect a coarse model of

the market.

Market prices are determined as follows. Given a price vector P , each agent in group n forms

demand αn(ω) proportional to her net expected profit from holding one unit of the asset for one

period; that is, in each state ω, her demand is

αn(ω) = (1− e−∆)d(ω) + e−∆Eω
n

[
P (ω′)

]
− P (ω),

where Eω
n [P (ω′)] denotes the expected resale price Emn

∆(ω,·) [P (·)] in the next period given that the

5Thus φ solves the global balance equations
∑

ω′ 6=ω
φ(ω)q(ω,ω′) =

∑
ω′ 6=ω

φ(ω′)q(ω′, ω).
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current state is ω. Assuming zero net supply, the market-clearing price is

P (ω) = (1− e−∆)d(ω) + e−∆
∑

n

πnE
ω
n

[
P (ω′)

]
. (3)

In the online supplement, we show that the steady-state prices defined by (18) and (3) arise

almost surely as the long-run outcome of a process in which agents forecast future prices using past

data from all states that they categorize together with the current state. In period k, each agent i

forms a forecast Ei [Pk+1] of the price in period k + 1 according to

Ei [Pk+1] =

∑

s<k−1:ωs∈Πn(i)(ωk)
ps+1

∑

s<k−1:ωs∈Πn(i)(ωk)
1

whenever the denominator is nonzero (otherwise the forecast is some arbitrary fixed number),

where ps denotes the market price in period s. Thus the price forecast Ei [Pk+1] is formed by

averaging all prices that occurred in periods immediately following those in which the state was

in the same category as the current one (according to Πn(i)). In addition, the supplement extends

the framework in two directions. First, we allow for the presence of rational agents who know all

parameters of the model, including other agents’ forecasting rules. As in the steady-state analysis,

the long-run behavior of these rational agents is identical to that of agents who forecast using the

finest partition of the state space. Second, we extend the price forecasting rule to a general class of

similarity-based rules in which the weights assigned to different states may vary according to the

perceived degree of similarity. Our main result extends in both cases.

4.2 High frequency

Focusing on high frequencies (i.e. vanishing ∆) leads to a striking result: prices generally fail to

distinguish among states that may differ substantially in terms of fundamentals.

Let Π denote the meet of Π1, . . . ,ΠN .6 We refer to the elements of Π as aggregate categories.

Two states ω and ω′ lie in the same aggregate category if and only if there exists a sequence

ω1, . . . , ωr of states such that ω = ω1, ω
′ = ωr, and for each ℓ = 1, . . . , r − 1, ωℓ+1 ∈ Πn(ωℓ) for

some n ∈ {1, . . . , N}. In particular, given two states in different aggregate categories, every agent

6The meet of a collection of partitions is their finest common coarsening.
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distinguishes between those two states, but the converse is not true in general: two states in the

same aggregate category may be distinguished by all agents.

The main result of this paper shows that, in the limit as ∆ vanishes, prices are constant on

aggregate categories. Moreover, prices approach rational expectations prices with respect to a

process that is coarser than the true process, with each aggregate category playing the role of an

individual state.

Define the rational expectations prices with respect to a continuous-time Markov process q̃ and

a dividend function d̃ to be the unique solution P to the system of equations

P (ω) =
d̃(ω) +

∑

ω′ 6=ω q̃(ω, ω
′)P (ω′)

1 +
∑

ω′ 6=ω q̃(ω, ω′)
.

Define the coarse dividend function d : Π −→ R by

d(C) =
∑

ω∈C

φ(ω|C)d(ω)

for each C ∈ Π. That is, the coarse dividend is obtained by averaging dividends on each aggregate

category with weights determined by the stationary distribution φ. Similarly, define the coarse

process q to be the continuous-time Markov process on the state space Π with transition rates

q(C,C ′) =
∑

ω∈C

φ(ω|C)
∑

ω′∈C′

q(ω, ω′)

for all distinct states C,C ′ ∈ Π. That is, the coarse process q is obtained by averaging the true

process q across each category with weights determined by the stationary distribution φ.

Proposition 1. As ∆ vanishes, prices in the baseline model become constant on each aggregate

category; that is, for any ω, ω′ such that Π(ω) = Π(ω′),

lim
∆→0

(
P∆(ω)− P∆(ω

′)
)
= 0.

Moreover, for each ω, lim∆→0 P∆(ω) is equal to the rational expectations price with respect to q

and d in state Π(ω).
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The proof is in the appendix.

For high trading frequencies, this result indicates that whenever a positive mass of agents fail

to distinguish between two states the market price will be the same in those states. However, that

is not all: prices may often be the same in two states even if no agent categorizes them together.

This is the case if there is an overlapping chain of categories connecting these states. Indeed, if

agents do not use the same categories, aggregate categories can be large—potentially leading to

large distortions in prices—even if all individual categories are small. Put differently, market prices

represent a coarser view of the world than that held by individual market participants.

4.3 Discussion

Our baseline model can be interpreted as a dynamic version of a Morris and Shin (2002) beauty

contest in which each agent i chooses an action P i ∈ R in each period. Agent i’s flow payoff from

choosing P i in period k is

−(1− e−∆)(P i − d(ωk))
2 − e−∆(P i − Pk+1)

2,

where Pk+1 is the average action in period k + 1. Thus each agent wants to match her action to

both the current dividend and the average action in the next period, with increasing weight on

the average action term as the period length vanishes. Steady-state prices in our baseline model

correspond to average actions in a stationary equilibrium of this game.

The connection to Morris and Shin (2002) helps for understanding the role of higher order

expectations, which are central to the proof of Proposition 1.

Given prices P , define the reservation price of agent i in state ω to be

P i(ω) = (1− e−∆)d(ω) + e−∆Eω
n(i)

[
P (ω′)

]
. (4)

Thus the reservation price is the expected value from holding one unit of the asset for one period

given the current state. In our baseline model, this is the price at which agent i has zero demand.
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Equation (3) can be rewritten as

P (ω) =

∫ 1

0
P i(ω)di;

that is, the market price is the population average of the reservation prices. Substituting for

P i(ω) from (4) and iterating yields an expression for the reservation price as a sum of higher order

expectations of dividends, namely,

P i(ω) =
(
1− e−∆

)
d(ω) +

(
1− e−∆

)
∞∑

k=0

e−(k+1)∆Ei
(
E

ω)k
[d(·)] , (5)

where E
ω
=
∑

n πnE
ω
n is the population average expectation and

(
E

ω)k
is its k-fold iteration. As

the period length ∆ vanishes, increasing weight in (5) is placed on higher order expectations (i.e.

on higher values of k).

Whereas first-order expectations are based on agents’ individual beliefs about the dividend in

the next period, high order expectations are based on a common understanding of the underlying

process shared by the whole population. Just as in Morris and Shin (2002) the high order expecta-

tions converge to the expectation conditional only on public information, high order expectations

in our model converge to the expectation conditional only on aggregate categories. Since low order

expectations receive little weight when trade is frequent, it follows that reservation prices converge

across groups.

The proof of Proposition 1 explicitly characterizes high order expectations in the baseline model.

In more general settings, such a characterization is not feasible; however, convergence of reservation

prices holds under much weaker conditions. When combined with the observation that, as ∆

vanishes, a group’s reservation prices become constant within each of its own categories, this result

implies that reservation prices are constant on aggregate categories.

5 General model

The constant price result of the preceding section extends to a much more general class of pricing

equations. All elements of the model are the same except for the way in which individual forecasts

are aggregated to determine market prices.
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Assume that there exists µ ∈ (0, 1] such that for all ω and ∆, the steady-state price P∆(ω)

satisfies

(1− µ)min
n

Pn
∆(ω) + µmax

n
Pn
∆(ω) ≤ P∆(ω) ≤ max

n
Pn
∆(ω), (6)

where Pn
∆(ω) denotes the reservation price of agents from group n defined by (4). Roughly speaking,

this assumption states that the price is never so high as to make every agent receive an expected

loss from buying the asset, and if agents differ in their expectations of the asset’s value, the price

is higher than the lowest of the expected values (by at least some fixed amount relative to the

difference in expectations). This assumption is satisfied with µ = minn πn by the pricing rule in

the previous section, and with µ = 1 by the Harrison and Kreps (1978) pricing rule used in the

example in Section 3. In particular, like Section 3, the current section allows for investors with

long horizons.

Proposition 2. As ∆ vanishes, prices become constant on each aggregate category; that is,

lim
∆→0

(
P∆(ω)− P∆(ω

′)
)
= 0

whenever Π(ω) = Π(ω′).

Lemma 1. As ∆ → 0, all agents’ reservation prices become identical in each state; that is,

lim
∆→0

(Pn
∆(ω)− Pm

∆ (ω)) = 0

for all ω, m, and n.

The idea of the proof can be illustrated by considering a simple beauty contest in which each

agent chooses a real number with the goal of matching the average of all agents’ choices. In

equilibrium, agents must perfectly coordinate on the same number, for otherwise, the agent with

the minimal action would rather increase her action toward the average action. Similarly, in our

setting, if agents differ in their reservation prices, then there exists a state-agent pair such that

the agent’s reservation price is minimal. The proof establishes that the agent would increase her

reservation price in that state, establishing a contradiction.

Proof of Lemma 1. Suppose for contradiction that the lemma does not hold. Then we can find a
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sequence ∆ℓ converging to 0 such that the limits Pn(ω) = limℓ P
n
∆ℓ

(ω), and P (ω) = limℓ P∆ℓ
(ω)

exist for all ω and n, and Pn(ω) 6= Pm(ω) for some n, m, and ω.

Let R be the set of (ω, n) for which there exists m such that Pn(ω) 6= Pm(ω). Consider a pair

(ω∗, n∗) ∈ argmin
(ω,n)∈R

Pn(ω). (7)

By (6), we have

P (ω∗) ≥ (1− µ)Pn∗

(ω∗) + µmax
n

Pn (ω∗) > Pn∗

(ω∗) .

The strict inequality follows from the fact that (ω∗, n∗) ∈ R.

Notice that Pn∗
(ω) = Pn∗

(ω∗) for all ω ∈ Πn∗(ω∗) since, for a given group, the reservation

prices differ between two states in the same category only through the difference in dividends,

which is of order ∆.

In addition, we have

Pn(ω) ≥ Pn∗

(ω∗) (8)

for all ω ∈ Πn∗(ω∗) and all n because either (ω, n) /∈ R, in which case Pn(ω) = Pn∗
(ω) = Pn∗

(ω∗),

or (ω, n) ∈ R, in which case Pn(ω) ≥ Pn∗
(ω∗) by (7).

Inequalities (6) and (8) together imply that the market price P (ω) is at least Pn∗
(ω∗) in all

states ω ∈ Πn∗(ω∗). We have shown that P (ω∗) > Pn∗
(ω∗). Finally, in state ω∗, the probability

mn∗

∆ (ω∗, ω∗) that agents in group n∗ assign to the state in the next period being ω∗ converges to a

positive limit φ (ω∗ | Πn∗(ω∗)). Therefore, the limit reservation price of group n∗ at ω∗ must exceed

Pn∗
(ω∗), which establishes the desired contradiction.

Proof of Proposition 2. From (4), limit reservation prices are constant on individual categories, that

is, Pn(ω) = Pn(ω′) whenever Πn(ω) = Πn(ω
′). Lemma 1 establishes that limit reservation prices

are also constant across groups in each state. Hence the limit reservation prices are measurable

with respect to the aggregate categorization Π. Since P∆(ω) ∈ [minn P
n
∆(ω),maxn P

n
∆(ω)], the limit

market price is itself measurable with respect to Π.
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6 Extensions

6.1 Risk averse agents with long horizons

For the sake of tractability, we have, for much of the paper, taken a reduced form approach to price

formation. Solving for market-clearing prices in a model with long-lived risk averse agents appears

to be intractable in general; we can, however, solve some special cases. Our basic insight extends to

these cases: prices collapse across any two states that a positive mass of agents categorize together.

In this section, we return to the setting of Section 3, except that instead of Harrison and Kreps

(1978) pricing, prices are determined by market clearing given demands of risk averse agents with

short-selling allowed. The state space, dividends, and Markov process are the same as in Section 3.

There are two groups X and Y of equal size; group X categorizes states according to the X-theory,

group Y according to the Y -theory (see Figure 1). Each agent enters the market at some time and

remains in the market for an exponentially distributed length of time with a common probability

parameter (in particular, the expected lifespan is independent of ∆, and as ∆ vanishes, each agent

trades in the market for a number of periods that grows on the order of 1/∆). Agents learn their

time of exit only upon exiting. The rate of entry and exit in the market is the same, so that the

size of the population is constant.

All agents have constant absolute risk aversion with Bernoulli utility −e−w, where w is their

wealth at the time of exit from the market. Agents enter the market with zero wealth and can

freely borrow or save at a constant (continuous-time) interest rate normalized to 1.

In this setting, each agent’s demand depends on her belief about her future change in wealth,

which in turn may depend on her belief about the entire future path of states and her level of

sophistication regarding her own future trading behavior. We do not specify a particular form for

these beliefs; instead, we allow them to depend on prices and period length in a general way. For

Z ∈ {X,Y }, given steady-state prices P∆, we introduce a random variable WZ
∆ . The distribution

of WZ
∆ is the subjective belief of each agent using theory Z in any period k about the present value

of her future change in wealth from period k + 1 until she exits the market.
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An agent using theory Z chooses her demand αZ
∆(ω) to maximize

Eω
Z

[
− exp

(
−WZ

∆ − αZ
∆(ω)R∆(ω, ω

′)
)]

= −
∑

ω′

mZ
∆(ω, ω

′)V Z
∆ (ω′) exp

(
−αZ

∆(ω)R∆(ω, ω
′)
)
,

where

R∆(ω, ω
′) = −P∆(ω) + (1− e−∆)d(ω) + e−∆P∆(ω

′)

is the gain from holding one unit of the asset for one period, and

V Z
∆ (ω′) = E[exp(−WZ

∆) | ω′],

with ω′ denoting the state in the following period.

Prices P∆ are equilibrium prices if there are optimal demands αZ
∆ given P∆ that satisfy the

market-clearing conditions

αX
∆(ω) + αY

∆(ω) = 0 (9)

for each ω.

We assume that, for each Z, V Z
∆ depends continuously on P∆ and, given any equilibrium prices

P∆ ∈ [0, 1]Ω, V Z
∆ is bounded and bounded away from 0 as ∆ vanishes. This assumption effectively

means that agents do not expect arbitrarily large future losses, or, with probability approaching

one, arbitrarily large future gains at high frequency.

Proposition 3. As ∆ vanishes, equilibrium prices become constant across states; that is, for any

equilibrium prices P∆,

lim
∆→0

(
P∆(ω)− P∆(ω

′)
)
= 0

for all ω, ω′ ∈ Ω.

Intuitively, one can think of the effect as follows. Suppose for contradiction that prices differ

within a category used by some agents. Consider the state within that category at which the price

is minimal (and suppose that there are no other agents categorizing that state together with one

where the price is even lower). Then agents using this category act as if they believe the state is

likely to transition to another state within the category, meaning they act as if the price is likely
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to go up very soon. Consequently, those agents will demand a large quantity at the current price.

This demand drives up the price, causing agents who do not expect a price increase to view the

asset as overpriced, and hence to sell. Note, however, that as the trading frequency shrinks, so

do the per-period dividend and the true transition probabilities, causing the incentive to sell the

asset to decrease in proportion to the period length. This means that, when trading is frequent,

agents using the given categorization expect a much larger gain from buying than do other agents

from selling, causing them to demand more and drive the price up further. As the period length

vanishes, these two pressures on the market price will be balanced only if the differences in prices

within the category also vanish.

6.2 Weighted probabilities

The preceding section indicates that coarsening of steady-state prices arises because agents who

categorize two given states together effectively overestimate the probabilities of transitions between

them. In this section we analyze a setting in which a similar result arises not from coarse thinking

but from the use of weighted probabilities, as in prospect theory. In particular, we assume here

that some agents overweight the likelihood of small probability events.

The sets of agents, the discount rate, and the Markov process are the same as in the previous

sections. Reservation and market prices are determined as in Section 5. The key difference is in

agents’ forecasts of future prices. Agents from group n form forecasts using weighted transition

probabilities

mn
∆(ω, ω

′) =
λn (q∆(ω, ω

′))
∑

ω̃ λn (q∆(ω, ω̃))
,

where the weighting function λn : [0, 1] −→ R+ is increasing and bounded. In particular, λn may

be the identity function, in which case agents in group n form correct forecasts.

We make the following assumptions:

A1: For some group n, limp→0+
λn(p)

p = ∞.

A2: The underlying process is fully connected: q(ω, ω′) > 0 for all distinct states ω and ω′.

Assumption A1 holds for most weighting functions commonly used in prospect theory (e.g.,

Prelec 1998, Gonzalez and Wu 1999). For small ∆, A1 allows for smaller distortions of transition

probabilities than those introduced by the use of categorization. While categorization makes the
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weighted transition probabilities mn
∆(ω, ω

′) bounded away from 0 for any pair of states in the same

category, A1 allows for transition probabilities that converge to 0 as ∆ → 0.

Assumption A2 is made for simplicity. Without this assumption, the same result holds under

more restrictive conditions on λ. For example, Proposition 4 holds without A2 for weighting

functions of the form λ(p) = exp
(
−ζ(− ln p)ξ

)
with ζ > 0 and ξ ∈ (0, 1), as axiomatized by Prelec

(1998).

Proposition 4. Assume (6), A1, and A2. Then as ∆ vanishes, prices become constant across

states; that is,

lim
∆→0

(
P∆(ω)− P∆(ω

′)
)
= 0

for all ω, ω′ ∈ Ω.

The outline of the proof is simple. Suppose that prices do not collapse across states. To establish

a contradiction, consider a state ω∗ with the minimal price. Since some agents overweight small

probabilities, the probability they assign to a discrete price increase has order exceeding ∆, while

the dividend is of order ∆. Therefore, their reservation price exceeds the market price at ω∗ by

order exceeding ∆, driving the market price up above its actual value.

7 Concluding remarks

In order to highlight the effect of high frequencies, we have focused on a simple tractable model

in which the resulting prices take a stark form. A number of natural modifications of the model

may moderate the effect while retaining significant price distortions with high frequencies. In this

section, we speculate about the consequences of various extensions and modifications to the main

model.

Traders in our model live forever and have no limits on losses. Since traders using coarse models

tend to lose money against traders using refinements of those models, forcing traders to exit once

reaching a given loss threshold could drive all agents out of the market except those who use

the finest possible categorization (if any such agents exist), thereby eliminating price distortions.

However, since our results hold independent of the fractions of agents using various partitions, we

conjecture that our results hold as long as there is continual entry of a nonvanishing mass of new
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traders using coarse categories.

In the variant of our model that incorporates individual demands in Section 6.1, risk aversion

limits the size of the position taken by each trader. Since agents who form rational expectations

perceive the risk of state transitions over a short horizon to be very low, risk aversion tends to limit

their positions less than those of agents who use coarse categorization. Thus at a fixed trading

frequency we expect that increasing risk aversion should reduce price distortions. However, as

Section 6.1 indicates, risk aversion alone does not overturn the constant price result in the high

frequency limit.

For the sake of parsimony, we have assumed that agents employ categories that are fixed across

time. Alternatively, one might expect agents to adjust their categories as they learn the correct

model. If learning leads to successive refinements in categorization toward the finest categorization,

then our results may not hold in the long-run. As with limits on losses, however, we expect

that continual entry of agents using coarse categories would suffice to generate persistent price

distortions.

Another simplifying assumption of our model is that all agents are able to trade at the same

frequency. If instead some agents are forced to maintain their positions for some fixed time that

is independent of the period length then these agents may drive prices back toward fundamentals.

On the one hand, in the baseline model of Section 4, the addition of such traders would reduce the

impact of coarse categorization, leading to prices lying between rational expectations and constant

prices on categories. On the other hand, explicitly considering individual demands may mitigate

the influence of these agents since agents who can trade at higher frequency tend to take larger

positions.

Appendices

A Proof of Proposition 1

Let m∆(ω, ω
′) =

∑

n πnm
n
∆(ω, ω

′) denote the population-average belief about transition probabil-

ities. Given an aggregate category C, for each ∆ let m̃∆ denote the transition probabilities of
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the restriction of m∆ to C, that is, the probabilities defined on C × C obtained by conditioning

m∆(ω, ω
′) on ω′ ∈ C. Let φ∆

C denote the stationary distribution of m̃∆.

Lemma 2. There exists K(η,∆) such that, for each η > 0,

1. for each ∆ > 0 and ω ∈ C,

1

K(η,∆)

K(η,∆)−1
∑

k=0

‖m̃k
∆(ω, ·) − φC

∆‖ < η,

where ‖·‖ is the 1-norm and m̃k
∆ are the transition probabilities for k steps of m̃∆; and

2. K(η,∆)∆ → 0 as ∆ → 0.

Proof. We claim that, for each η > 0 and ω ∈ C, there exists K0 such that

‖m̃k
∆(ω, ·)− φC

∆‖ < η/2

for every k ≥ K0, and K0∆ → 0 as ∆ → 0. Since ‖m̃k
∆(ω, ·) − φC

∆‖ ≤ 2 for every k, taking

K(η,∆) = 4K0/η proves the result.

We will show that there exists ε∆ such that (i)

‖m̃k
∆(ω, ·) − φC

∆‖ ≤ 2(1 − ε∆)
k−1 (10)

for every k and ω, and (ii) lim∆→0 ε∆/∆ = ∞. Then, letting

K0(η,∆) = 2 +
log(η/4)

log(1− ε∆)
,

straightforward algebraic manipulation shows that 2(1−ε∆)
k−1 < η/2 for every k ≥ K0, as needed.

Moreover, K0(η,∆)∆ → 0 as ∆ → 0 since lim∆→0∆/ log(1− ε∆) → 0 by (ii).

Existence of ε∆ satisfying (i) and (ii) follows from Corollary 1.2 of Hartfiel (1998). The corollary

implies that if there exist δ∆ ≥ 0 and L such that m̃L
∆(ω, ω

′) ≥ δ∆ for all ω and ω′, then

‖m̃k
∆(ω, ·) − φC

∆‖ ≤ 2(1 − δ∆)
k
L
−1

24



for every k > 0.

Inequality (10) follows by taking L = |C|. Notice that m̃
|C|
∆ (ω, ω′) is bounded from below by a

constant δ independent of ∆. Thus we can choose ε∆ to be 1− (1− δ)
1
L .

Proof of Proposition 1. Notice that equations (3) and (18) imply

P (ω) = d(ω)(1 − e−∆) + e−∆Em∆(ω,ω′)[P (ω′)]

Let ω ∈ C and rewrite the last equation as

P (ω) = d(ω)(1 − e−∆) + e−∆ Em∆(ω,ω′)[P (ω′)|ω′ /∈ C]
︸ ︷︷ ︸

f(ω,∆)

Prm∆(ω,ω′)[ω
′ /∈ C]

︸ ︷︷ ︸

εω∆+O(∆2)

+ e−∆ (1− Prm∆(ω,ω′)[ω
′ /∈ C])

︸ ︷︷ ︸

1−εω∆+O(∆2)

Em̃∆(ω,ω′)[P (ω′)]

where εω = lim∆→0 Prm∆(ω,ω′)[ω
′ /∈ C]/∆.7

Using the approximation d(ω)(1 − e−∆) = d(ω)∆ +O(∆2), the last equation can be rewritten

as

P (ω) = d(ω)∆ + f(ω,∆)εω∆+ e−∆(1− εω∆)Em̃∆(ω,ω′)[P (ω′)] +O(∆2).

This can be interpreted as the pricing equation of a process in which the asset pays a dividend

d(ω)∆, with some probability εω∆ the process terminates giving a final payoff f(ω,∆), and with

the remaining probability 1 − εω∆ the process continues to the next trading period, in which the

state will be ω′ ∈ C.

Iterating the last equation for K periods gives

P (ω) =

K−1∑

k=0

e−k∆E

[(
k−1∏

k′=0

(1− εωk′
∆)

)

(d(ωk)∆ + f(ωk,∆)εωk
∆)

]

+ e−K∆E

[(
K−1∏

k′=0

(1− εωk′
∆)

)

P (ωK)

]

+O(K∆2),

7The fact that Prm∆(ω,ω′)[ω
′ /∈ C] = εω∆+O(∆2) holds because m∆(ω, ω′) = q∆(ω, ω′) whenever ω and ω′ lie in

different aggregate categories.
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where ωk is the state in period k of the Markov process m̃∆ on C starting from ω0 = ω. For any

K, we may rewrite the last equation as

1

K
P (ω) =

1

K

K−1∑

k=0

E [(d(ωk) + f(ωk,∆)εωk
)∆]

+
1

K
(1−K∆)E

[(

1−
K−1∑

k′=0

εωk′
∆

)

P (ωK)

]

+O(K∆2). (11)

Taking K = K(η,∆) from Lemma 2 and K0 as in the proof of the lemma, we have

E

[(

1−

K−1∑

k′=0

εωk′
∆

)

P (ωK)

]

= E







1−

K−K0−1∑

k′=0

εωk′
∆−

K−1∑

k′=K−K0

εωk′
∆



P (ωK)





= E

[(

1−

K−K0−1∑

k′=0

εωk′
∆

)

E [P (ωK) | ωK−K0]

]

+O(ηK∆)

= E

[(

1−
K−1∑

k′=0

εωk′
∆

)

E [P (ωK) | ωK−K0]

]

+O(ηK∆).

Substituting into (11) and applying Lemma 2 gives

1

K(η,∆)
P (ω) =

(
dC + [fε]C

)
∆+ (1−K(η,∆)∆)

(
1−K(η,∆)εC∆

) 1

K(η,∆)
PC

+O(η/K(η,∆) + η∆+K(η,∆)∆2), (12)

where xC denotes the average of x(ω) with respect to the stationary distribution of the process

m̃∆.
8 Rearranging yields

P (ω)− PC =
(
dC + [fε]C

)
K(η,∆)∆ +

(
−K(η,∆)−K(η,∆)εC + εCK(η,∆)2∆

)
∆PC

+O(η +K(η,∆)η∆+K(η,∆)2∆2).

Since K(η,∆)∆ → 0 as ∆ → 0, this last equation implies that lim∆→0

(
P (ω)− PC

)
= 0. More

8Note that, although it is omitted from the notation, each of these averages depends on ∆.
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precisely,

P (ω)− PC = O(K(η,∆)∆ + η +K(η,∆)η∆+K(η,∆)2∆2)

= O(K(η,∆)∆ + η).

Taking the average of (12) with respect to the stationary distribution of m̃∆ (which amounts

to replacing P (ω) with PC), dropping a term of order K(η,∆)∆2, and simplifying leads to

1

K(η,∆)

(
K(η,∆)∆ +K(η,∆)εC∆

)
PC =

(
dC + [fε]C

)
∆+O(η/K(η,∆) + η∆+K(η,∆)∆2),

and hence

PC =
dC + [fε]C

1 + εC
+O

(
η

∆K(η,∆)
+ η +K(η,∆)∆

)

.

Notice that, as ∆ → 0, the stationary distribution of m̃∆ approaches φC , where φC is the

stationary distribution of the true process q restricted to C.9 It suffices to show that there exists

∆(η) such that η/ (∆(η)K (η,∆(η))) and K (η,∆(η)) ∆(η) vanish as η → 0. Given a, b ∈ (0, 1)

such that a < b, it suffices to take ∆(η) such that ηb < ∆(η)K (η,∆(η)) < ηa. By Lemma 2, the

upper bound is satisfied for sufficiently small ∆. If the lower bound is not satisfied for any ∆ > 0

then we can simply replace K(η,∆) with a larger value for a particular ∆ in order to satisfy both

bounds.

B Proof of Proposition 3

The first-order condition for this problem for an agent using theory Z is

∑

ω′

mZ
∆(ω, ω

′)V Z
∆ (ω′)R∆(ω, ω

′) exp
(
−αZ

∆(ω)R∆(ω, ω
′)
)
= 0. (13)

Lemma 3. For every ∆ and ω, and all steady-state prices P∆(ω), we have P∆(ω) ∈ [0, 1].

Proof. The first-order condition (13) can only hold if, for each ∆, R∆(ω, ω
′) is nonnegative for

9To see this, note that for each individual i categorizing ω and ω′ together, the limiting transition probability
mi

∆(ω,ω′) from ω to ω′ is proportional to the stationary distribution mass assigned to ω′. Hence the stationary
distribution of q restricted to C is also stationary with respect to each individual belief mi

∆(ω, ω′). Aggregating
across individuals gives the claim.
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some ω′ and nonpositive for some other ω′. Hence in the state ω with the highest price, we must

have R∆(ω, ω) ≥ 0, which implies that P∆(ω) ≤ d(ω). Similarly, we must have P (ω) ≥ d(ω) in the

lowest price state ω. The result follows since d(ω) ∈ [0, 1] for every ω.

In case there are multiple steady-state price vectors for some ∆, fix an arbitrary choice.

We want to show that lim∆→0 (P∆(ω)− P∆(ω
′)) = 0 whenever ω′ ∈ Π(ω). Note that, because

the state space is finite, it suffices to consider vanishing sequences (∆ℓ)
∞
ℓ=1 for which there is an

ordering ω1, . . . , ωS of all states such that P∆ℓ
(ω1) ≤ P∆ℓ

(ω2) ≤ · · · ≤ P∆ℓ
(ωS) for each ∆ℓ. From

this point on, we fix such a subsequence and restrict attention to ∆ such that ∆ = ∆ℓ for some ℓ.

Lemma 4. Given any state ω, suppose there exists ε ∈ (0, 1] such that for every ω′ ∈ Π(ω) for which

R∆(ω, ω
′) < 0 for sufficiently small ∆, we have R∆(ω, ω

′) = O(∆ε). Then R∆(ω, ω
′′) = O(∆ε/2)

whenever ω′′ ∈ ΠZ(ω) for some Z.

Proof. Let ω, ω, and Z be such that the premise holds for ω and ω ∈ ΠZ(ω). We need to show

that R∆(ω, ω) = O(∆ε/2). If R∆(ω, ω) < 0 for sufficiently small ∆ then we are done. Accordingly,

suppose R∆(ω, ω) ≥ 0.

The proof proceeds as follows. First we find a lower bound on the left-hand side of the first-order

condition for Z in state ω. The first-order condition is a sum of terms, one for each ω′, with each

term having the same sign as R∆(ω, ω
′). We find lower bounds on the sum of the negative terms

and on the term for ω′ = ω. For the first-order condition to hold, the sum of these two lower bounds

cannot be greater than 0 (since all other terms are nonnegative). This gives an inequality that can

be solved for the demand αZ
∆(ω) to obtain a lower bound on αZ

∆(ω) that depends on R∆(ω, ω). We

then compute a similar lower bound on the demand of agents using theory Z̃ 6= Z. Market clearing

requires that the sum of the two lower bounds on demand be at most 0. This gives an inequality

that yields the desired bound on R∆(ω, ω).

Consider the first-order condition for Z in state ω. For each negative term of the sum in (13)

(i.e. each term for which R∆(ω, ω
′) < 0), either ω′ /∈ ΠZ(ω), in which case mZ

∆(ω, ω
′) = O(∆) and

R∆(ω, ω
′) = O(1), or ω′ ∈ ΠZ(ω), which, since ΠZ(ω) = {ω, ω}, implies that ω′ = ω, in which case

R∆(ω, ω
′) = O(∆). Therefore, there exists some M > 0 such that the sum of all negative terms is

bounded below by

−M∆exp(MαZ
∆(ω)).
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Now consider the term for ω′ = ω. Since ω ∈ ΠZ(ω), m
Z
∆(ω, ω) approaches a positive number as

∆ → 0. Since V Z
∆ (ω) is bounded away from 0, there exists some L > 0 such that this term is

bounded below by

LR∆(ω, ω) exp
(
−αZ

∆(ω)R∆(ω, ω)
)
.

In particular, for (13) to hold, we must have

LR∆(ω, ω) exp
(
−αZ

∆(ω)R∆(ω, ω)
)
−M∆exp(MαZ

∆(ω)) ≤ 0.

Isolating αZ
∆(ω) yields

αZ
∆(ω) ≥

log
(
LR∆(ω,ω)

M∆

)

R∆(ω, ω) +M
. (14)

Now consider the first-order condition in state ω for an individual using theory Z̃ 6= Z. For

each negative term in the first-order condition, R∆(ω, ω
′) = O(∆ε) by assumption. Therefore, there

exists some M ′ > 0 such that the sum of the negative terms in the first-order condition is bounded

below by

−M ′∆ε exp(M ′αZ̃
∆(ω)).

Now consider the term with ω′ = ω. Since mZ̃
∆(ω, ω) is bounded below by a constant multiple of

∆, there exists some L′ > 0 such that this term is bounded below by

L′∆R∆(ω, ω) exp(−αZ̃
∆(ω)R∆(ω, ω)).

By the first-order condition, the sum of these two bounds is nonpositive. Isolating αZ̃
∆(ω) in the

corresponding inequality gives

αZ̃
∆(ω) ≥

log
(
L′∆1−εR∆(ω,ω)

M ′

)

R∆(ω, ω) +M ′
. (15)

Let M ′′ = max{M,M ′} and note that we could replace M or M ′ with M ′′ in (14) and (15) and

they would still hold (since we can always replace the constant with a larger one at the first step

of each derivation).
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Substituting (14) and (15) into the market-clearing condition yields

log
(
LR∆(ω,ω)

M ′′∆

)

R∆(ω, ω) +M ′′
+

log
(
L′∆1−εR∆(ω,ω)

M ′′

)

R∆(ω, ω) +M ′′
≤ 0.

This implies that R∆(ω, ω)
2∆−ε is bounded above (by (M ′′)2/(LL′)). Therefore, R∆(ω, ω) =

O(∆ε/2).

The proposition follows by applying Lemma 4 inductively starting from the state with the lowest

price. In such a state, the premise of the lemma holds with ε = 1. Then the lemma shows that

the premise holds for every state that any group categorizes together with that state. Continuing

in this fashion yields the conclusion for every state.

C Proof of Proposition 4

Proof. Assume for contradiction that the result does not hold. Then there exists a vanishing

sequence ∆ℓ such that the sequence P∆ℓ
(ω) converges for each ω, and there exist at least two states

for which the limits of these sequences differ. For each ω, let P (ω) = limℓ P∆ℓ
(ω). Consider

ω∗
ℓ ∈ argmin

ω∈Ω
P∆ℓ

(ω).

Recall that, for sufficiently large ℓ, there exists ω̂ such that P (ω̂) > P (ω∗
ℓ ) and denote P (ω̂)−

P (ω∗
ℓ ) by M , and minω 6=ω′ q (ω, ω′) by α. Note that α is positive by A2. Note also that there exist

L and β > 0 such that

Pn
∆ℓ

(ω∗
ℓ ) = (1− e−∆ℓ)d (ω∗

ℓ ) + e−∆ℓEmn
∆ℓ

(ω∗
ℓ
,ω)

[
Pn
∆ℓ

(ω)
]
≥ P∆ℓ

(ω∗
ℓ ) + L∆ℓ + βMλn (α∆ℓ) ,

for every group n.

Furthermore, (6) implies that

P∆ℓ
(ω∗

ℓ ) ≥ (1− µ)min
n

Pn
∆ℓ

(ω∗
ℓ ) + µmax

n
Pn
∆ℓ

(ω∗
ℓ ) ≥ P∆ℓ

(ω∗
ℓ ) + L∆ℓ + µβMλn∗ (α∆ℓ) ,

where n∗ is a group for which λn∗ (p)
p diverges as p → 0 (which exists by A1). Hence L∆ℓ +
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µβMλn∗ (α∆ℓ) is positive for sufficiently large ℓ. This in turn implies that P∆ℓ
(ω∗

ℓ ) > P∆ℓ
(ω∗

ℓ )

when ℓ is large, yielding the desired contradiction.

D Supplementary material

D.1 Dynamic process

For convenience, we first restate the relevant elements of the model. A single asset pays a dividend

that depends on a state ω(t) drawn from a finite set Ω. The state evolves according to an ergodic

continuous-time stationary Markov process with transition rates q(ω, ω′). Trading occurs at discrete

times t = 0,∆, 2∆, . . . . We write ωk for ω(k∆) and q∆(ω, ω
′) for the transition probabilities between

trading periods. A constant per-unit flow dividend of d(ωk) is paid from time k∆ to (k + 1)∆.

A continuum of agents indexed by i ∈ [0, 1] trades the asset in each period. Trading decisions

are based on the current dividend and on agents’ forecasts of the prices in the following period.

Agents form these forecasts as follows. Each agent i categorizes states according to a partition Πi

of Ω that is fixed across all periods. For each state ω, let Π(ω) denote the element of the partition

Π containing ω. In period k, agent i forms a forecast Qi
k+1 of the price in period k+1 according to

Qi
k+1 =

∑

s<k−1:ωs∈Πi(ωk)
ps+1

∑

s<k−1:ωs∈Πi(ωk)
1

whenever the denominator is nonzero (otherwise take the forecast to be some arbitrary fixed num-

ber), where ps denotes the market price in period s as described below. Thus the price forecast

Qi
k+1 is formed by averaging all prices that occurred in periods immediately following those in

which the state was in the same category as the current one (according to Πi).

Each agent i forms demand αi
k in period k proportional to her net expected profit from holding

the asset for one period:

αi
k =

(
1− e−∆

)
d(ωk) + e−∆Qi

k+1 − pk.

Assuming zero supply, the market clearing price is

pk =

∫

i
pikdi, (16)
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where pik is agent i’s reservation price in period k, defined by

pik =
(
1− e−∆

)
d(ωk) + e−∆Qi

k+1. (17)

Let Π1, . . . ,ΠN denote those partitions belonging to a positive measure of agents, and denote

by πn the measure of agents using Πn. Letting pnk denote the reservation price of each agent from

group n, the market price pk is

pk =

N∑

n=1

πnp
n
k .

D.2 Steady-state prices

Proposition 5 below shows that this learning process converges to steady-state prices P : Ω −→ R

that depend only on the current state. Steady-state prices turn out to be identical to rational

expectations prices, not with respect to the true process, but with respect to a different process

that reflects both the true process q∆ and the categorizations used by agents.

Definition 1. Given any ∆, prices P (ω) are (steady-state) rational expectations prices with respect

to a Markov process m on Ω and a dividend function d if

P (ω) = (1− e−∆)d(ω) + e−∆Em(ω,ω′)[P (ω′)]

for every ω ∈ Ω.10

Let φ denote the stationary distribution of states with respect to the true process q. For given

initial prices and a given realization of the sequence of states (ωs)
k−1
s=0 , let pk(ω) denote the price in

period k that would obtain if ωk = ω. Define the modified process by

m∆(ω, ω
′) =

N∑

n=1

πn
∑

ω′′∈Πn(ω)

φ
(
ω′′ |Πn(ω)

)
q∆(ω

′′, ω′). (18)

Proposition 5. For each ∆, the sequence pk(ω) almost surely converges to the vector P∆(ω) of

rational expectations with respect to the modified process m∆ and the dividend function d.

Proposition 5 is a corollary of Proposition 6 below.

10Note that for any m and d, rational expectations prices exist and are unique.
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To understand the modified process m∆, first consider the case in which all agents distinguish all

states, i.e. Πi(ω) = {ω} for every ω and i. In this this case, m∆ = q∆, and hence the long-run prices

are precisely the rational expectations prices with respect to the true process. To see why, consider

the forecasting procedure. In period k, each agent uses data from previous periods s < k − 1 in

which the state was indistinguishable from the current state (according to her own categorization).

For the finest categorization, these relevant periods are those s such that ωs = ωk. In the steady

state, the agent’s forecast is just the average of P (ωs+1) across the relevant periods s. In the long

run, the forecast is equal to
∑

ω′ q∆(ωk, ω
′)P (ω′), coinciding with the rational expectation of the

price in the next period.

For general categorizations, a given agent’s forecast is based on all previous periods s in which

the state ωs belonged to the current category Πi(ωk). In the long run, the average of P (ωs+1) for

those values of s is equal to

∑

ω′′∈Πi(ω)

φ
(
ω′′
∣
∣Πi(ω)

)
q∆(ω

′′, ω′)P (ω′),

where the term φ
(
ω′′
∣
∣Πi(ω)

)
captures the long-run frequency of state ω′′ in the sample of relevant

periods s. Taking the average across agents, the population-wide forecast is the expectation with

respect to the modified process m∆ in (18).11

The next section extends Proposition 5 in two directions. First, we extend the price forecasting

rule to a general class of similarity-based rules in which agents forecast using data from similar

past states. Unlike the categorization considered here, the weights assigned to different states may

vary according to the perceived degree of similarity. Second, we allow for an arbitrary fraction of

agents to form rational expectations knowing all parameters of the model, including other agents’

forecasting procedures. In the long run, such agents have the same effect on prices as agents who

categorize every state separately.

11The modified process is closely related to the coarse expectation formation in Eyster and Piccione (2012). Indeed,
applying Proposition 5 to a homogenous population gives convergence to Eyster’s and Piccione’s stationary price
function with respect to the agents’ categorization.
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D.3 Proof and Generalizations

This section proves convergence of the above learning process, extends the result to a more general

class of processes in which agents learn from similar past states, and shows that our results remain

unchanged if we allow for some agents to form rational expectations. We start by describing

learning by similarity, which includes categorization as a special case. We then consider an even

more general class of processes that is sufficiently broad to allow for the inclusion of agents who

form rational expectations about future states and other agents’ behavior.

D.3.1 Learning by similarity

The categorization framework of Section D.1 is a special case of a model in which agents learn

prices based on past prices in states similar to the current one, but do not necessarily apply equal

weight to all similar states. Proposition 5 extends to this more general case.

Each agent i is endowed with a symmetric similarity function gi : Ω × Ω −→ R+ determining

the weight assigned to various states in forming forecasts of future prices. We assume that for each

i and ω, there exists some ω′ such that gi(ω, ω
′) 6= 0. Given a history of states and prices up to

period k − 1, agent i’s forecast in period k of the price in period k + 1 is

Qi
k+1 =

∑

s<k−1 gi(ωk, ωs)ps+1
∑

s<k−1 gi(ωk, ωs)

whenever the denominator is nonzero, and some fixed constant otherwise. Thus the forecast is

formed by averaging the one-period-ahead prices in all past states, weighted according to the

degree of similarity to the current state. The categorization of Section D.1 is a special case of this

framework in which, for each i, gi takes only the values 0 and 1.

For simplicity, we assume that only a finite number of different similarity functions are used

by the agents. That is, there exists a finite partition of the population into groups of measures

π1, . . . , πN , and similarity functions g1, . . . , gN such that, for each n, every agent in n’s group uses

similarity function gn. As before, each agent’s action in each period is given by (17) and the market

price in period k is the population-wide average action given by (16).

We show in the next subsection that Proposition 1 carries over directly to this setting except
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that the modified process m∆ is defined more generally by

m∆(ω, ω
′) =

N∑

n=1

πn

∑

ω′′ gn(ω, ω
′′)φ(ω′′)q∆(ω

′′, ω′)
∑

ω′′ gn(ω, ω′′)φ(ω′′)
. (19)

Within each group, in the steady-state price forecasts, the weight given to each possible state ω′ one

period ahead is based on the likelihood of transitions to ω′ from each state ω′′ similar to the current

state ω. The weight given to the transition from ω′′ to ω′ depends on the similarity between ω and

ω′′ together with the frequency φ(ω′′) with which state ω′′ occurs. The aggregate distribution m∆

is obtained by averaging the individual distributions across all agents. Note that, as before, agents

should be interpreted as behaving, in the long-run, as if they believe (on average) that the state

evolves according to m∆; agents do not literally hold these beliefs.

D.3.2 Proof of Proposition 5

The general learning process is as follows. The state space Ω and the true process q are as in the

main text. Without loss of generality, let ∆ = 1. Let ω
k = (ωs)

k
s=0 denote the finite history of

states up to period k, and pk = (ps)
k−1
s=0 be the history of prices up to period k − 1. We assume

that all prices lie in a bounded interval [p, p]. The price pk in period k is determined according to

pk = (1− ρ)d(ωk) + ρQ
(

ω
k,pk

)

, (20)

where Q :
⋃

k

(
Ωk × [p, p]k−1

)
−→ [p, p] can be interpreted as the average forecast of the price in

period k + 1 and ρ = e−1 is the discount factor.

We assume that Q satisfies the following condition.

A1. There exists a continuous monotone function

E : [p, p]Ω −→ [p, p]Ω

such that, for any P ,P ∈ [p, p]Ω, any K, and any ε > 0, if

Pr
(
pk ∈ [P ,P ] ∀k > K

)
> 1− ε, (21)
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then for any δ > 0 there exists K ′ such that, for each ω,

Pr
(

Q
((

ω
k, ω
)

,pk
)

∈
(
E(P )(ω)− δ, E(P )(ω) + δ

)
∀k > K ′

)

> 1− ε− δ. (22)

In the case of a homogeneous population using similarity function g, the learning process from

Section D.3.1 (and hence also the categorization-based learning from Section D.1) is captured by

Qsim
(

ω
k,pk

)

=







∑
s<k−1 g(ωk ,ωs)ps+1∑

s<k−1 g(ωk ,ωs)
if
∑

s<k−1 g(ωk, ωs) > 0,

p0 otherwise,

where p0 is arbitrary. For a heterogeneous population, Q is obtained by aggregating the values of

Qsim across groups (see Lemma 6).

Lemma 5. For any similarity function g, Qsim satisfies A1 with

E(P )(ω) =
∑

ω′

m∆(ω, ω
′)P (ω′),

where m∆ is the modified process in (19).

Proof. We prove only the upper bound; the proof for the lower bound is similar. Suppose that for

some K, ε > 0, and P , Pr
(
pk ≤ P ∀k > K

)
> 1 − ε. Given any δ > 0 and γ > 0, by the Law of

Large Numbers, there exists some K ′ > K such that, with probability greater than 1− δ, for every

pair (ω′, ω′′) and every k > K ′, the fraction of periods s < k such that (ωs, ωs+1) = (ω′, ω′′) lies in

(φ(ω′)q∆(ω
′, ω′′)− γ, φ(ω′)q∆(ω

′, ω′′) + γ). Since the process q∆ is ergodic, we can choose K ′ such

that this property holds regardless of the history ω
K . Furthermore, for K ′ > K/γ, ps ≤ P (ωs)

for a fraction of at least 1 − γ periods s ≤ k with probability greater than 1 − ε, in which case

the average of the prices ps+1 across those periods s such that (ωs, ωs+1) = (ω′, ω′′) is at most

(1− γ)P (ω′′) + γp. Hence for k > K ′, we have

Qsim
(

ω
k,pk

)

≤

∑

ω′,ω′′ g(ωk, ω
′′)(φ(ω′′)q∆(ω

′′, ω′) + γ)((1 − γ)P (ω′) + γp)
∑

ω′′ g(ωk, ω′′)(φ(ω′′)− γ)

with probability greater than 1− ε− δ. Given δ > 0, we can choose γ > 0 sufficiently small so that

the right-hand side of the preceding inequality is less than E(P )(ωk) + δ, as needed.
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In the main text, agents differ in their forecasting procedures and the price is determined by the

average of agents’ forecasts. The following lemma indicates that A1 aggregates across heterogeneous

groups.

Lemma 6. Suppose that a fraction πn of the population use prediction rule Qn, with
∑N

n=1 πn = 1.

Suppose moreover that all rules Qn satisfy A1 with functions En(P ) respectively. Finally assume

that price evolution is governed by (20) with prediction rule Q =
∑

πnQ
n. Then Q satisfies A1

with E(P ) =
∑

n πnE
n(P ).

Proof. Using the property of A1 with πnδ for each subpopulation and taking the maximum of the

K ′ needed for each process gives the result.

Proposition 5 is a special case of the following convergence result.

Proposition 6. If Q satisfies A1, prices are determined according to (20), and the mapping (1−

ρ)d + ρE is a contraction (with respect to some metric) then prices almost surely converge to the

unique fixed point of d+ ρE.

In the case of learning by similarity, (1−ρ)d+ρE is a contraction with respect to the sup norm,

and we therefore obtain convergence to a unique price profile, proving Proposition 5.

Proof of Proposition 6. The mapping (1−ρ)d+ρE has extreme fixed points P ∗, P
∗
: for every fixed

point P ∗, we have P ∗ ≤ P ∗ ≤ P
∗
. This follows immediately from Tarski’s Fixed Point Theorem

since [p, p]Ω is a complete lattice and (1− ρ)d+ ρE is continuous and monotone.

We will prove that for each ω, the set of cluster points of (pk(ω))k is almost surely contained

in [P ∗(ω), P
∗
(ω)]. The proposition follows immediately since the fixed point is unique when (1 −

ρ)d+ ρE is a contraction.

We prove only that the cluster points are almost surely at most P
∗
(ω). The proof of the lower

bound is similar.

Let P 0 = p1, where 1 denotes the vector with a 1 in each component, and for l ∈ N+, let

P l = (1 − ρ)d + ρE(P l−1). Since P l is nonincreasing in l, liml P l exists and is a fixed point of

(1− ρ)d+ ρE (by continuity of E).
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Note that pk ≤ P 0(ωk) for each k > 0. Suppose for induction that, given any ε > 0, there exists

Kl such that

Pr
(
pk < P l(ωk) + ε for all k > Kl

)
> 1− ε.

We will show that the same condition holds when each l is replaced with l + 1.

For any δ > 0, combining A1 with the inductive hypothesis, there exists some Kl+1 such that

Pr
(

Q
(

ω
k,pk

)

< E(P l + ε1)(ωk) + δ ∀k > Kl+1

)

> 1− ε− δ.

Substituting for Q
(
ω

k,pk
)
using (20), we have

Pr
(
pk < (1− ρ)d(ωk) + ρE(P l + ε1)(ωk) + δ ∀k > Kl+1

)
> 1− ε− δ.

Given any γ > 0, since E is continuous, there exist some ε, δ ∈ (0, γ) such that, for each ω,

ρE(P l + ε1)(ω) + δ < ρE(P l)(ω) + γ. Since ε and δ are arbitrary, we have that, for some Kl+1,

Pr
(
pk < (1− ρ)d(ωk) + ρE(P l)(ωk) + γ ∀k > Kl+1

)
> 1− γ.

Since P l+1 = (1− ρ)d+ ρE(P l), this completes the proof of the inductive step.

D.3.3 Presence of rational agents

We now consider a setting in which some agents form rational expectations. For simplicity, we

assume that the population consists of two parts. A fraction π of agents are rational while the

remaining 1 − π are coarse thinkers who use a prediction rule QC satisfying A1. Rational agents

know QC and the underlying Markov process, and form rational expectations of the forecasts formed

by coarse thinkers in the next period. The rational agents’ prediction rule QR satisfies

QR
(

ω
k,pk

)

= E
[

(1− ρ)d(ωk+1) + ρ
(

(1− π)QC
(

ω
k+1,pk+1

)

+ πQR
(

ω
k+1,pk+1

))∣
∣
∣ω

k
]

.

(23)

This equation implies that rational agents correctly predict prices given the history to date and the

prediction rules used by other agents.
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While the model in the main text does not include rational agents, it does allow for some agents

to perfectly distinguish among states. In the present setting, these agents are not rational insofar

as their price forecasts are based only on past data and do not explicitly account for other agents’

forecasts. We show here that, in the long-run, the difference between these agents and rational

agents is immaterial. Long-run prices are identical if we replace any share of agents using the finest

categorization with agents who form rational expectations.

A2. For each ω ∈ Ω, K ∈ N, and almost every ω ∈ ΩN,

lim
k→∞

(

QC
((

ω
k, ω
)

,pk
)

−QC
((

ω
k+K , ω

)

,pk+K
))

= 0,

where, for each κ, ωκ denotes the projection of ω onto its first κ components.

Roughly speaking, A2 says that data from a fixed finite number of recent periods eventually

has little impact on forecasts once the total quantity of data is large. Note that A2 is satisfied by

the similarity-based learning procedure of Section D.3.1.

Proposition 7. Suppose that a fraction π of the population form rational expectations, and the

remaining 1 − π use a prediction procedure QC satisfying A1 with bound EC(P ) and A2. Suppose

further that the mapping (1 − ρ)d + ρEC(P ) is a contraction. Then the price vector P (ω) almost

surely converges to the unique solution of

P (ωk) = (1− ρ)d(ωk) + ρ
(
πE [P (ωk+1) | ωk] + (1− π)EC(P )(ωk)

)
.

Lemma 7. If QC satisfies A1 with bound EC and A2 then QR satisfies A1 with bound

ER(P )(ωk) = E

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ

∞∑

l=1

(πρ)l−1EC(P )(ωk+l)

∣
∣
∣
∣
∣
ωk

]

. (24)

Proof of Lemma 7. Iterating (23) gives

QR
(

ω
k,pk

)

= E

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ

∞∑

l=1

(πρ)l−1QC
(

ω
k+l,pk+l

)
∣
∣
∣
∣
∣
ω

k

]

.

We need to show that for any P ,P ∈ [p, p]Ω, any K, and any ε > 0, if condition (21) holds,

then for any δ > 0 there exists K ′ such that (22) holds for QR. We prove only the upper bound;
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the proof of the lower bound is similar.

Accordingly, suppose that (21) holds for some ε > 0 and K. Fix δ > 0. Since QC and EC are

bounded, there exists M such that, for every ω
k and pk

QR
(

ω
k,pk

)

<

E

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ

(
M∑

l=1

(πρ)l−1QC
(

ω
k+l,pk+l

)

+
∞∑

l=M+1

(πρ)l−1EC(P )(ωk+l)

)∣
∣
∣
∣
∣
ω

k

]

+ δ/3. (25)

Since QC satisfies A1, there exists some K ′ such that, for each ω,

Pr
(

QC
((

ω
k−1, ω

)

,pk
)

< EC(P )(ω) + δ/3M ∀k > K ′
)

> 1− ε− δ/2. (26)

By A2, there exists some K ′′ such that, for each l = 1, . . . ,M ,

Pr
(

QC
(

ω
k+l,pk+l

)

< QC
((

ω
k−1, ωk+l

)

,pk
)

+ δ/3M ∀k > K ′′ | ωk
)

> 1− δ/2M. (27)

Combining (26) and (27) gives

Pr
(

QC
(

ω
k+l,pk+l

)

< EC(P )(ωk+l) + 2δ/3M ∀k > max{K ′,K ′′}, ∀l = 1, . . . ,M | ωk
)

> 1−ε−δ.

Combining the last inequality with (25) gives

Pr
(

QR
(

ω
k,pk

)

< ER(P )(ωk) + δ ∀k > max{K ′,K ′′}
)

> 1− ε− δ,

as needed.

Proof of Proposition 7. Combining Lemma 6, Lemma 7, and Proposition 6, the cluster points lie

between the extremal solutions to

P = (1− ρ)d+ ρ
(
πER(P ) + (1− π)EC(P )

)
.
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Substituting for ER(P ) using (24) leads to

P (ωk) = (1− ρ)d(ωk) + ρπE

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ

∞∑

l=1

(πρ)l−1EC(P )(ωk+l)

∣
∣
∣
∣
∣
ωk

]

+ ρ(1− π)EC(P )(ωk)

= (1− ρ)d(ωk) + ρπE

[

E

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ
∞∑

l=1

(πρ)l−1EC(P )(ωk+l)

∣
∣
∣
∣
∣
ωk+1

]∣
∣
∣
∣
∣
ωk

]

+ ρ(1− π)EC(P )(ωk)

= (1− ρ)d(ωk) + ρ
(
πE[P (ωk+1)|ωk] + (1− π)EC(P )(ωk)

)
,

where the second last equality follows from the Law of Iterated Expectations, and the final equality

uses the first equality with ωk+1 in place of ωk.
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