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Abstract

Lexicographic probability systems (LPS’s) are representations of lexico-
graphic expected utility (LEU) preferences, which were axiomitized by Blume,
Brandenburger, and Dekel [1991]. LPS’s that satisfy the mutual singularity
condition can be viewed as providing beliefs conditional on events with zero
prior probability à la Rényi [1955]. However, this interpretation loses much of
its appeal when the space of uncertainty contains redundancies. The problem
arises acutely in the construction of higher-order LEU preferences because the
space of first-order lexicographic beliefs will contain uncountably many redun-
dant representations of the same preference relation. It follows that the mutual
singularity condition lacks bite when it is imposed on higher-order beliefs. In
this paper, we resolve this issue by showing that there is a standard Borel space
of LEU preferences without such redundancies.
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1 INTRODUCTION

Lexicographic probability systems (LPS’s) can most simply be described as finite
sequences of probability measures. They are representations of lexicographic expected
utility (LEU) preferences, which were axiomitized by Blume, Brandenburger, and
Dekel [1991]. LPS’s that satisfy what is called the mutual singularity condition can
be viewed as providing beliefs conditional on events with zero prior probability à
la Rényi [1955]. Consider the following example, which is somewhat contrived but
nevertheless informative:

X = {1, 2, 3, 4} µ1(1) = µ1(3) = 1/2

σ = (µ1, µ2) µ2(2) = µ1(4) = 1/2

The LPS σ satisfies mutual singularity because the two component measures µ1 and µ2

give probability 1 to the disjoint events Odd = {1, 3} and Even = {2, 4}, respectively.
The primary belief µ1 assigns probability 0 to the event Even. The secondary belief
µ2 can be viewed as the belief conditional on the event Even.

However, this natural interpretation loses much of its appeal when the space
of uncertainty contains redundancies. In the following example, 1′ is a redundant
representation of 1.

X = {1, 1′, 2, 3} µ1({1}) = µ1({3}) = 1/2

σ = (µ1, µ2) µ2({2}) = µ2({1′}) = 1/2

The LPS σ satisfies mutual singularity as before, but the interpretation of µ2 as the
belief conditional on {1′, 2} loses saliency when 1 is given positive probability by the
primary belief µ1.

The issue arises acutely in the construction of higher-order LEU preferences. The
space L(X) of first-order lexicographic beliefs over X contains numerous redundant
representations. For each LPS σ ∈ L(X), there exist an uncountable number of LPS’s
in L(X) that represent the exact same LEU preference relation. This holds true even
when X itself contains no redunancies. It is therefore difficult to meaningfully impose
the mutual singularity condition on second-order beliefs, which belong to the space
L(X × L(X)).

The axiom of choice guarantees the existence of a set U ⊆ L(X) that contains a
representation of each and every LEU preference without redundancies. However, in
order to define useful second-order preferences, the set U needs to have nice properties.
For one thing, U would need to be a measurable set.

The mutual singularity condition plays an important role in the framework used
by Brandenburger, Friedenberg, and Keisler [2008] to conduct epistemic analyses of
iterated elimination of weakly dominated strategies. Each type in their framework
maps to an LPS over the strategies and types of the other players. If two types
represent the same hierarchy of beliefs, then it is not clear what modeling assumptions
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are captured by the mutual singularity condition. Given the aforementioned issues,
a lexicographic type structure that contains all hierarchies of preferences cannot be
constructed without redundancies unless we can pick out a well-behaved subset of
L(X) for each arbitrary X.

In this paper, we show that there is indeed such a well-behaved non-redundant
space of all LEU preferences represented in L(X) when X is a Polish space. In par-
ticular, it is a standard Borel space generated by a Polish topology, which means that
the space of higher-order LEU preferences is always Polish as well. A similar prop-
erty, which holds for higher-order expected utility preferences, is crucial to showing
the existence of a single probability measure that extends all finite-order beliefs in a
consistent infinite hierachy.

The paper is organized as follows. Section 2 gives a review of the basic terminology
that is necessary to formally state our main problem and its solution, which borrows
extensively from the work on Borel cross-section problems in the field of descriptive
set theory. Section 3 breaks the proof of the main theorem into several substan-
tially distinguishable sub-problems and provides a concise framework for discussing
maximally parsimonious representations of LEU preference relations.

2 PRELIMINARIES

2.1 LEXICOGRAPHIC PROBABILITY SYSTEMS

Definition 1. A topological space is a pair (X, T ), where X is a set and T is a
topology on X.

For the sake of brevity, we will often refer to topological spaces without specifying
the topology. For example, when we refer to a topological space X, it should be
implicitly understood that X is associated with some topology, which we will denote
by T(X).

Definition 2. A Borel space is a pair (X,B), where X is a set and B is a Borel
σ-algebra generated by some topology on X.

For the sake of brevity, we will often refer to Borel spaces without specifying
the Borel σ-algebra. For example, when we refer to a Borel space X, it should be
implicitly understood that X is associated with some Borel σ-algebra, which we will
denote by B(X). With some abuse of notation, we will also denote the Borel σ-algebra
generated by the topology T as B(T ).

Naturally, each topological space (X, T ) canonically generates the associated Borel
space (X,B(T )). As such, if we declare at some point that X is a topological space
then we may subsequently let X denote the associated Borel space as well when there
is no risk of confusion.

Definition 3. A topological space (X, T ) is called Polish if its topology T is separable
and admits a complete metric.
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Definition 4. A standard Borel space is Borel space (X,B) where B is generated
by a Polish topology on X.

Definition 5. Let X be a Polish space. A lexicographic probability system
(LPS) on X is a finite sequence of probability measures on X. The space of all LPSs
on X is denoted by L(X). The space of all probability measures on X is denoted by
P(X).

Definition 6. The LPS σ ∈ L(X) has length equal to n ∈ N—i.e., is length-n—if
σ = (µ1, . . . , µn) for some µ1, . . . , µn ∈ P(X). If σ is length-n then we write #σ = n.
The set of all length-n LPSs on X is denoted by Ln(X). It is readily seen that the
following equations also define the sets L(X) and Ln(X) as well as the space L≤n(X)
of all LPSs that have length less than or equal to n.

Ln(X) ≡
n∏
k=1

P(X); L(X) ≡
⋃
n∈N

Ln(X); L≤n(X) ≡
n⋃
k=1

Lk(X).

2.2 LEXICOGRAPHIC EXPECTED UTILITY PREFERENCES

Definition 7. Let X be a Borel space. An act defined over X is a Borel map from
X to [0, 1]. The set of all acts defined over X is denoted by A(X).

Definition 8. For each LPS σ ∈ L(X), %σ is the preference relation over A(X)
that is defined by the following sentence, where ≥L denotes the usual lexicographic
comparison over vectors of real numbers.1

∀σ = (µ1, . . . , µn) ∈ L(X),∀f, g ∈ A(X),

f %σ g ⇐⇒
(∫

X

f dµ1, . . . ,

∫
X

f dµn

)
≥L

(∫
X

g dµ1, . . . ,

∫
X

g dµn

)
.

A preference relation % over A(X) is called a lexicographic expected utility
(LEU) preference relation if there exists some σ ∈ L(X) such that %=%σ.

Definition 9. Let σ, ρ ∈ L(X). We say that σ and ρ represent the same prefer-
ences and write σ ∼= ρ if %σ=%ρ. Note that ∼= is an equivalence relation on L(X).

Definition 10. The LPS σ ∈ L(X) is a minimal-length representation if it is the
shortest LPS that represents %σ, i.e.,

∀ρ ∈ L(X), σ ∼= ρ =⇒ #ρ ≤ #σ.

For each m ∈ N, the set of all minimal-length representations in Lm(X) is denoted
by Lm(X). We let L(X) ≡

⋃
{Lm(X) : m ∈ N}. It is obvious that every LPS has

a minimal-length representation. Furthermore, the set Lm(X) is nonempty for all
m ∈ N.

1Details here.
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2.3 THE MAIN PROBLEM

Our main problem arises from the fact that more than one LPS can represent the
same LEU preference relation.

Example 1. Let σ = (µ1, µ2) ∈ L(X) and ρ = (µ1, 0.5µ1 + 0.5µ2). It is clear that
σ ∼= ρ.

Given that L(X) contains many redundant representations, it is reasonable to ask
if there is a standard Borel space of all LEU preferences that does not contain any
redundant representations. Formally, this is equivalent to asking if there is a Borel
set U ⊆ L(X) such that the following sentence holds.

∀σ ∈ L(X), ∃!ρ ∈ U, σ ∼= ρ.

Furthermore, if such a U does exist then it would be useful to have a well-behaved
function that maps each LPS to its equivalent representation in U . Formally, what
we desire is a surjective Borel measurable map λ : L(X)→ L(X) such that

U = {σ ∈ U : λ(σ) = σ} and ∀σ, ρ ∈ L(X), σ ∼= ρ =⇒ λ(σ) = λ(ρ).

It would be icing on the cake if U only contained minimal-length representations,
i.e., U ⊆ L(X). There are some obvious candidate techniques when X is finite or
countable. However, such methods are inconceivable in the important case when X
is uncountable.

The principal motivation for our problem is the construction higher-order lexico-
graphic preferences without redundancies. Consider a finite space Θ of fundamental
uncertainty. We may be interested in finding the cross section of L(X), where X is
the uncountable set Θ× L(Θ).

2.4 THE PROBLEM REFRAMED AND A SKETCH OF THE SOLUTION

Fortunately, we can take advantage of existing results from the field of descriptive set
theory to tackle our main problem. We will reframe the question as an instance of the
Borel (cross) section problem, which has been the subject of extensive research
in mathematics. To do so, we first state two key definitions.

Definition 11. Let Π be a partition of X. A cross section of Π is a subset S ⊆ X
such that S ∩ A is a singleton for every A ∈ Π.

Definition 12. Let Π be a partition of X. A section of Π is a map f : X → X
such that

∀x, y ∈ X, xΠf(x) ∧ (xΠy =⇒ f(x) = f(y)).

Note that each section f defines a canonical cross section {x ∈ X : x = f(x)}.

4



It is clear that the equivalence relation ∼= induces a partition Π∼= of L(X). Our
problem can now be restated in the following form.

(i) Does there exist a Borel cross section of Π∼=?

(ii) Does there exist a Borel measurable section of Π∼=?

A class of results known as Borel cross section theorems states the conditions
under which such objects exist. In order to formulate the particular cross section
theorem that we use in this paper, a few more definitions are needed.

Definition 13. Let Π be a partition of X and A ⊆ X. A∗ =
⋃
{P ∈ Π : A∩P 6= ∅}

is called the saturation of A.

Definition 14. Let X be a topological space. A set E ⊆ X is a Gδ set if there exists
a countable family {Gn : n ∈ N} of open sets such that E =

⋂
n∈NGn.

Definition 15. Let X be a topological space. A set E ⊆ X is a Fσ set if there exists
a countable family {Fn : n ∈ N} of closed sets such that E =

⋃
n∈N Fn.

Informally speaking, we can think of Gδ sets and Fσ sets as almost open sets and
almost closed sets, respectively. We can now state the following cross section theorem
and our main result.

Proposition 1 (Theorem 5.9.1 in Srivastava [1998]). Every partition Π of a Polish
space X into Gδ sets such that the saturation of every basic open set is simultaneously
Fσ and Gδ admits a section s : X → X that is Borel measurable of class 2 (i.e., the
inverse image of every open set is Gδ). In particular, such partitions admit a Gδ

cross section.

Theorem 1 (The Main Theorem). Let X be a Polish space. Then there exists a Borel
set U ⊆ L(X) and a class-2 Borel map λ : L(X) → L(X) such that the following
statements hold.

(i) U ⊆ L(X) and ∀σ ∈ L(X), ∃!ρ ∈ U, σ ∼= ρ

(ii) U = {σ ∈ L(X) : λ(σ) = σ} and ∀σ, ρ ∈ L(X), σ ∼= ρ =⇒ λ(σ) = λ(ρ).

Furthermore, U is a Polish space if given the subspace topology with respect to L(X).

Theorem 1 says that there is Polish subspace U of L(X) that is well-behaved in
several ways. First, each LPS in L(X) is ∼=-equivalent to some element of U . This
implies that every LEU preference relation is represented in U . Second, U does not
contain redundant representations of the same LEU preference relation. Third, U
is the set of all fixed points of a well-behaved function that maps each LPS to its
∼=-equivalent representation in U .
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3 PROOF OF THE MAIN THEOREM

3.1 TWO SUB-PROBLEMS

Theorem 1 follows from the two intermediate results that are stated below.

Lemma 1. Let X be a Polish space and m ∈ N. Then there exists a Borel set
Um ⊆ Lm(X) and a class-2 Borel map ϕm : Lm(X)→ Lm(X) such that the following
statements hold.

(i) ∀σ ∈ Lm(X),∃!ρ ∈ Um, σ ∼= ρ

(ii) Um = {σ ∈ Lm(X) : ϕm(σ) = σ} and ∀σ, ρ ∈ Lm(X), σ ∼= ρ =⇒ ϕm(σ) =
ϕm(ρ).

Furthermore, Um is a Polish space if given the subspace topology with respect to
Lm(X).

Lemma 2. Let X be a Polish space and m ∈ N. Then there exists a class-2 Borel
map ψm : Lm(X) →

⋃
k≤m Lk(X) such that range(ψm) =

⋃
k≤m Lk(X) and ∀σ ∈

Lm(X), σ ∼= ψm(σ).

Proof of Theorem 1. For each m ∈ N, let Um, ϕm, and ψm be the objects that exist
by Lemmas 1 and 2. Let U ≡

⋃
m∈N Um and define λ as follows.

∀σ ∈ L(X), λ(σ) ≡ ϕ#ψ(σ)(ψ#σ(σ))

The desired properties of U and λ follow immediately.

Sections 3.2 and 3.3 cover the proofs of Lemmas 2 and 1, respectively.

3.2 THE ANATOMY OF A LEXICOGRAPHIC PROBABILITY SYSTEM

The proof of Lemma 2 can be more easily understood by deconstructing the anatomy
of each LPS σ as it relates to the determination of the LEU preference relation that
is represented by σ.

Definition 16. Let m ∈ N and σ = (µ1, . . . , µm) ∈ L(X). For all k ∈ {1, . . . ,#σ},
let σ|k denote the length-k initial segment of σ.

σ|k ≡ (µ1, . . . , µk)

Definition 17. Let m ∈ N and σ = (µ1, . . . , µm) ∈ L(X). The relevent index set
of σ, denoted by Iσ, is defined as follows. Members of Iσ are called relevant indices
of σ.

Iσ ≡ {k ∈ N : k ≤ m ∧ ∀j < k, (σ|k � σ|j)}
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The notion of a relevant index is an intuitive one. Suppose that σ = (µ1, . . . , µm) ∈
L(X) is an LPS and 1 ≤ k ≤ m. If there exists a j < k such that σ|k ∼= σ|j, then
µk adds no information about preferences that is not already captured by σ|j. If so,
then omitting µk from the description of σ would not remove any information that
is relevant to the evaluation of preferences. It should be immediately apparent that
the minimal-length representation of %σ must have length equal to the size of the set
Iσ. A minimal-length representation can be constructed by simply stripping σ of all
components that have irrelevant indices.

Example 2. Let µ, ν ∈ P(X) and µ 6= ν.

σ = (µ1, µ2, µ3, µ4) = (ν, ν, 0.8ν + 0.2µ, µ) ∈ L(X)

Iσ = {1, 3}
σ ∼= (µ1, µ3) ∈ L(X)

Proof of Lemma 2. For each D ∈ 2{1,...,m} \ {∅}, let AD ≡ {σ ∈ Lm(X) : Iσ = D}.
Therefore, A = {AD : D ∈ 2{1,...,m}\{∅}} is a finite partition of Lm(X) into nonempty
closed sets. We can define ψm in a piecewise fashion on each AD ∈ A by letting
ψm(σ) ≡ (µk)k∈D for each σ = (µ1, . . . , µm) ∈ AD. Therefore, the map ψm is piecewise
continuous over each AD ∈ A. The inverse image of an open set under ψm is therefore
a finite union of sets that are each finite intersections of open sets with closed sets.
Therefore, the inverse image of an open set under ψm is a Gδ set. It follows that ψm
is a class-2 Borel map.2

3.3 PROOF OF LEMMA 1

In order to prove Lemma 1, we must show that the partition Π∼= of the Polish space
Lm(X) satisfies the premises for the application of Proposition 1. In other words, we
must show that

(i) each P ∈ Π∼= is Gδ; and

(ii) the saturation of every basic open set is simultaneously Fσ and Gδ.

Remark 1. P(X) is a closed convex subset of a locally convex Hausdorff topological
vector space, namely the space M(X) of totally finite and countably additive signed
borel measures on X with the topology of weak convergence. P(X) is a topological
subspace of M(X), but not its vector subspace.

Remark 2. The set Lm(X) is open in the Polish space Lm(X) for all m ∈ N.

Lemma 3 (Part i). Let m ∈ N and σ = (µ1, . . . , µm) ∈ Lm(X). The ∼=-equivalence
class Πσ of σ is a Gδ set in Lm(X)

2It can also be shown that ψm is not a class-1 Borel map (i.e., ψm is not continuous).
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Proof of Lemma 3. Note that Πσ is the following product set.

Πσ ≡
m∏
k=1

{νk ∈ P(X) : ∃(αj) ∈ Rk
∑k

j=1 αj = 1 ∧ αk > 0 ∧ νk =
∑k

j=1 αjµj}

We only need to prove that the following is Gδ for all k ≤ m.

Ek ≡ {νk ∈ P(X) : ∃(αj) ∈ Rk
∑k

j=1 αj = 1 ∧ αk > 0 ∧ νk =
∑k

j=1 αjµj}

Given that σ ∈ LM(X), the measures µ1, . . . , µm are linearly independent. It follows
that the closed set

span(σ|k) ≡ {νk ∈M(X) : ∃(αj) ∈ Rk νk =
∑k

j=1 αjµj}

of signed measures spanned by µ1, . . . , µk is homeomorphic to Rk and the map (αj) 7→∑k
j=1 αjµj is a homeomorphism between the two spaces. It follows that Ek = E ′k ∩

P(X), where E ′k is defined as follows.

E ′k ≡ {νk ∈M(X) : ∃(αj) ∈ Rk
∑k

j=1 αj = 1 ∧ αk > 0 ∧ νk =
∑k

j=1 αjµj}

It is immediate that E ′k is homeomorphic to a Gδ subset of Rk. Therefore, E ′k is also
Gδ in M(X) because it is Gδ in the closed topological subspace span(σ|k). Then Ek
is the intersection of the Gδ set E ′k with P(X). Therefore, Ek is a Gδ in P(X).

Definition 18. Let T be a topological vector space and let V ⊆ T . A set U ⊆ V is
radial in V if there is some u ∈ U such that, for each v ∈ V ,

(i) ∃uv ∈ U such that U includes the line segment joining u and uv; and

(ii) v lies on the ray that originates at u and passes through uv.
3

Remark 3. Let V be a locally convex topological vector space. Let C be a closed
convex subset of V . Let U be a radial convex open set such that U ∩ C 6= ∅. Let
v ∈ V . Then the following set is open in the topological subspace C.

{z ∈ C : z ∈ α(U ∩ C) + (1− α)v ∧ α > 0}

Lemma 4 (Part ii). Let m ∈ N and σ = (µ1, . . . , µm) ∈ Lm(X). Let U be a basic
open set in Lm(X). The saturation U∗, defined below, is open.

U∗ ≡
⋃
σ∈U

Πσ

3This definition differs slightly from the more common one found in functional analysis texts
such as Aliprantis and Border [1999, p. 168]. It is more usual to fix u = 0 ∈ T and define radial
neighborhoods of zero in T . Definition 18 says that a set U is radial in V if it is a nonempty
intersection of V with with a radial neighborhood of 0 ∈ T .
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u V

U

vv̂

uv̂

uv

Figure 1: An example of U radial in V . Each v ∈ V is reached by a ray that originates
at u and contains a line segment in U that has u as one of its endpoints.

C

U

v

Figure 2: An example of α(U ∩ C) + (1− α)v in Remark 3

Proof of Lemma 4. The proof is by induction on m. The base case (m = 1) is imme-
diate because P(X) = L1(X) = L1(X).

Fix an m ∈ N. Suppose that the saturation of any basic open set in Lm(X) is
open. Any basic open set U in Lm+1(X) can be written as (V ×O)∩Lm+1(X), where
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V is a basic open set in Lm(X) and O a basic open set in P(X). Then we can write
U∗ as follows.

U∗ = {σ.(µ) ∈ Lm(X) : σ ∈ V ∗ ∧ µ ∈ αO + (1− α) span(σ) ∧ α > 0}

=
⋃
σ∈V ∗

{σ.(µ) ∈ Lm(X) : µ ∈ αO + (1− α) span(σ) ∧ α > 0}

V ∗ is open by the induction hypothesis. We need only prove that the following set is
open in P(X).4

{µ ∈ P(X) : µ ∈ αO + (1− α) span(σ) ∧ α > 0}

=
⋃

ρ∈span(σ)

{µ ∈ P(X) : µ ∈ αO + (1− α)ρ ∧ α > 0}

In light of Remark 1, we can assume that O is convex and radial without loss of
generality because locally convex topological vector spaces have neighborhood base
systems of convex radial open sets. The subspace topology of P(X) has neighborhood
base systems that inherit those properties because P(X) is a closed convex subset
of M(X). Remark 3 implies that the set defined above is a union of open sets and
therefore itself open.
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