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Abstract

We provide a class of tractable communication games where messages are

noisy and lies are costly, in which costs are increasing in the magnitude of the

lie. Games in this class admit Nash-Bayesian equilibria where both players use

affi ne strategies. There can be between one and five affi ne equilibria, all of them

partially informative. There is always at least one, but at most three straight

talking equilibria, in which both players’strategies are increasing. Exactly one

of the following statements holds: either (i) there is exactly one truthful or

exaggerating equilibrium or (ii) there are between one and three understated

equilibria. There can also be up to two ironic equilibria, where both players’

strategies are decreasing. In general, the optimal level of noise is not zero and

differs between the two players. The receiver may prefer to deal with a less

honest sender and with a sender who is more dissimilar to him. Finally, we

study the limit of the equilibria as either (i) the noise vanishes or (ii) the lying

cost vanishes.
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1 Introduction

In this paper, we propose a new framework to think about the strategic transmission

of relevant information from an informed sender to a receiver who needs to take a

decision, when there is a conflict of interest. The large litterature on this type of

problems originates from the seminal paper by Crawford and Sobel (1982) who mod-

elled an extreme situation where messages are pure cheap talk: they do not directly

enter the payoffs of the players. They show that games where the conflict of interest

is not too large have equilibria where the sender sends different messages depending

on his information and the receiver reacts differently to messages. The assumption in

their model is that (i) the communication channel that is used perfectly transmits to

the receiver the messages the sender decides to send and (ii) that there is no intrinsic

psychological cost for the receiver in lying. We depart from this benchmark case in

that we remove these two assumptions: we study communication through a noisy

channel and assume that it is costly for the sender to lie.

In recent years, there has been experimental evidence that senders experience lying

costs when engaged in a sender-receiver game (Gneezy, 2005; Hurkens and Kartik,

2006). Several models consider lying costs in the context of a sender receiver game

(Kartik, 2009; Kartik, Ottaviani and Squintani). These papers, however, maintain

the assumption that the communication channel perfectly transmits the information

sent by the receiver. Introducing noise into these models enables the sender to hide

in the noise. Another series of papers have considered noisy communication (Board,

Blume and Kawamura, 2007; Board and Blume 2012). They do however assume that

liying is costless to the receiver. One of our important contributions in this paper

is that we identify a class of models with lying costs and noise that leads to simple

tractable equilibria, where players use affi ne startegies. The sender sends a message

that is an affi ne function of his type and the receiver chooses an action that is an

affi ne function of the message he receives. The simplicity of the strategy space makes

it possible to adress new questions that would otherwise be out of reach.

We show that in any game in the class we consider, there can be between one

and five affi ne equilibria, all of them partially informative. There is always at least

one, but at most three straight talking equilibria, in which both players’strategies

are increasing. Exactly one of the following statements holds: either (i) there is
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exactly one truthful or exaggerating equilibrium or (ii) there are between one and

three understated equilibria. There can also be up to two ironic equilibria, where

both players’strategies are decreasing. In general, the optimal level of noise is not

zero and differs between the two players. The receiver may prefer to deal with a less

honest sender and with a sender who is more dissimilar to him. Finally, we study the

limit of the equilibria as either (i) the noise vanishes or (ii) the lying cost vanishes.

2 The model

First, nature draws the Sender’s type θ ∈ Θ = R and a noise level ε ∈ R from a

joint distribution. The Sender observes θ and sends a message m ∈ M = R. The
receiver then observes y = m + ε ∈ Y = R and chooses an action a ∈ A = R. The
payoffs U i (a, θ) , for i ∈ {R, S} are then realized. A pure strategy for the Sender is
a function µ : Θ → M. A pure strategy for the Receiver is a function α : Y → A. A

Bayesian Nash-Equilibrium is a strategy profile (µ, α) such that

Eε
[
US (α (µ (θ) + ε) , θ) | θ

]
≥ Eε

[
US (α (m+ ε) , θ) | θ

]
.

for all m ∈M, and all θ ∈ Θ and

Eθ,ε
[
UR (α (y) , θ) | µ (θ) + ε = y

]
≥ Eθ,ε

[
UR (a, θ) | µ (θ) + ε = y

]
.

for all a ∈ A, and all y ∈ Y.
We assume that the Receiver’s payoff is

UR (a, θ) = − (a− [rθ + b])2 ,

and that the Sender’s payoff is

US (a, θ) = − (a− [sθ + c])2 − k (θ −m)2 .

Here θ and ε are independent real random variables that we are assume to be normally

distributed with zero zero expectation and variances σ2θ > 0 and σ2ε > 0. Let

v =
σ2ε
σ2θ

> 0.

3



The parameters b, c, r and s are real numbers. Without loss of generality we assume

s ≥ 0.1 Following Kartik (2009), the real number k > 0 parametrizes the sender’s

cost of lying. If k is large, the cost of lying is high. In the limit k → 0 the sender’s

message is pure cheap-talk.

3 Preliminaries

3.1 Linear equilibria

We look for equilibria in which players use “linear”strategies.

µ (θ) = βθ + µ0

α (y) = λy + α0.

The unique best reply of the receiver to a linear strategy (β, µ0) of the sender is

linear with parameters (λ, α0) satisfying

λ = r
β

β2 + v
and α0 = b− λµ0. (1)

These equations follow upon observing that the receiver’s best response is given by

rE[θ | y] + b and that from the linear conditional expectation property of normally

distributed random variables we have E[θ | y] = β
β2+v

(y − µ0). The second equality
has the following interpretation. The expected message sent induces the expected

preferred action of the receiver.

The unique best reply of the sender to a linear strategy (λ, α0) of the receiver is

linear with parameters (β, µ0) satisfying

β =
k + sλ

k + λ2
and µ0 = λ

c− α0
k + λ2

. (2)

These equations follow from substituting a = λ(m + ε) + α0 into the expression for

the sender’s payoff, taking expectations with respect to ε and then maximizing with

respect to m.

If (β, λ) solves the system {
λ = rβ

β2+v

β = k+sλ
k+λ2

(3)

1Treating −θ rather than θ as the type of the sender transforms a model with s < 0 into one

with s > 0.
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then the system {
α0 = b− λµ0
µ0 = λ c−α0

λ2+k
.

has a unique solution given by

µ0 =
λ

k
(c− b) and α0 = b− λ2

k
(c− b) . (4)

Therefore the problem of finding equilibria can be reduced to the problem of finding

the solutions (β, λ) to the system (3). Furthermore, taking the solution to (4) into

account, we can we can write the player’s expected payoffs as functions of (β, λ) and

the exogenous parameters:

uS(β, λ) = −
[
(λβ − s)2 + λ2v + k(1− β)2

]
σ2θ −

k + λ2

k
(c− b)2 . (5)

uR(β, λ) = −
[
(λβ − r)2 + λ2v

]
σ2θ . (6)

3.2 Existence of straight talking equilibria and non-existence

of babbling equilibria

We refer to an equilibrium as straight talking if β > 0 holds. An equilibrium with

β = 0 is babbling and an equilibrium with β < 0 is ironic.

Substituting the first equation from (3) into the second yields that β is part of

and equilibrium if and only if

kβ
(
β2 + v

)2
+ r2β3 − k

(
β2 + v

)2 − srβ (β2 + v
)

= 0 (7)

holds. Because we have assumed k > 0 the left side of (7) is strictly smaller than

zero at β = 0 and converges to ∞ for β → ∞. If follows that there is no babbling
equilibrium and that at least one straight talking equilibrium exists.

The intuition for the non-existence of a babbling equilibrium is the following: if y

had no informational content, the receiver would find it optimal to chose the response

a = c no matter which signal he receives. Given that lying is costly and his message

does not affect the receiver’s response the sender will however find it optimal to choose

m = θ, implying that y carries informational content.
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3.3 The maximal number of straight talking and ironic equi-

libria

Expanding the polynomial equation (7) can be rewritten as

kβ5 − kβ4 +
[
2kv + r2 − sr

]
β3 − 2kvβ2 +

[
kv2 − srv

]
β − kv2 = 0. (8)

Form Descartes’ rule of signs it is then immediate that there is a unique straight

talking equilibrium if

2kv + r2 − sr ≤ 0 (9)

holds. This is because when this inequality holds, then kv − sr ≤ 0 also holds an an

implication. Similarly, there is no ironic equilibrium if

kv − sr ≥ 0 (10)

holds. This is because when this inequality holds, then 2kv + r2 − sr ≥ 0 also holds

as an implication.

As we will see below (10) does a good job at capturing the conditions which

preclude the existence of ironic equilibria, namely high values of k and v and low

values of r and s (observe, in particular, that no ironic equilibrium can exist for s = 0

or r ≤ 0), but the suffi cient conditions for uniqueness of a straight talking equilibrium

in (9), which requires not only k and v to be small, but also s > r > 0, can be much

improved.

We obtain the following result.

Proposition 1. For any parameters, there can be at most three straight talking equi-

libria and at most two ironic talking equilibria. There are parameters for which the

game has two ironic and three straight talking equilibria.

Proof to be added.

3.4 Changing parameters

Let γ = λβ. This parameter measures how strongly the receiver’s response varies

with the underlying type of the sender. Multiplying both equations in the system (3)
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by β (which introduces an artificial root at β = 0 which does not correspond to an

equilibrium) we can rewrite these equations as

γ = f(β) =
rβ2

v + β2
(11)

and

g(β, γ) = kβ2 + γ2 − kβ − sγ = 0. (12)

and identify the linear equilibria of the model with the solutions (β, γ) of these equa-

tions satisfying β 6= 0.

Equation (12) is equivalent to(
β − 1

2

)2(√
k+s2

4k

)2 +

(
γ − s

2

)2(√
k+s2

4

)2 = 1 (13)

and thus describes an ellipse. Let

γ =
s

2
−
√
k + s2

4
, γ =

s

2
+

√
k + s2

4
, β =

1

2
−
√
k + s2

4k
and β =

1

2
+

√
k + s2

4k
.

For all γ ∈ [γ, γ] let β1 (γ) ≤ β2 (γ) be the two reals such that (β1 (γ) , γ) is the

left part of the graph of the ellipse and (β2 (γ) , γ) is the right part of the graph of

the ellipse. More precisely:

β1 (γ) =
1

2
−
√

1

4
+
sγ − γ2

k
(14)

β2 (γ) =
1

2
+

√
1

4
+
sγ − γ2

k
. (15)

Similarly, for all β ∈
[
β, β

]
, let γ1(β) ≤ γ2(β) be the two reals such that (β, γ1(β)) is

the lower part of the graph of the ellipse and (β, γ2(β)) is the upper part of the graph

of the ellipse. More precisely

γ1 (β) =
s

2
−
√
s2

4
+ k (β − β2) (16)

γ2 (β) =
s

2
+

√
s2

4
+ k (β − β2) . (17)

Observe that every equilibrium (β, γ) must satisfy β ≤ β ≤ β and γ ≤ γ ≤ γ.
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4 Uniqueness and multiplicity of straight talking

equilibria

Here we consider the case r > 0.2 In addition we assume s > 0.3

We have already established that there is at least one straight talking equilibrium.

Here we identify conditions under which there is a unique such equilibrium and discuss

the existence of different kinds of straight talking equilibria.

Before we proceed, observe that under the assumption r > 0 the best response of

the receiver to any strategy of the sender with β > 0 satisfies λ > 0. Consequently,

we seek to identify conditions under which there cannot be more than one solution

to the equations (11) and (12) satisfying β > 0 and γ > 0.

4.1 Truthful equilibrium

The conditions under which there is an equilibrium satisfying β = 1 are easy to

identity: this will be an equilibrium if and only if f(1) = s holds, 4 which is in turn

is equivalent to r = s(1 + v). Furthermore, if f(1) = s holds, there can be no other

straight talking equilibrium but (β, γ) = (1, s) because γ2(β) > s > f(β) > 0 > γ1(β)

holds for all β ∈ (0, 1) and f(β) > s > γ2(β) ≥ γ1(β) holds for all β ∈ (1, β).

Consequently, we have the following result.

Proposition 2. There exists an equilibrium with β = 1 if and only if r = s(1 + v)

holds. If this condition holds (β, γ) = (1, s) is the unique equilibrium satisfying β > 0.

2For r = 0 it is trivial that the unique linear equilibrium has (β, λ) = (1, 0). The case r < 0 will

be considered separately.
3The case s = 0 is covered in most of the following, so that it can be used for illustrative purposes.

However, the result establishing uniqueness for low k uses the assumption s > 0.
4Assuming b = c = 0 the interpretation of the case f(1) = s is the following: if the sender reports

his type truthfully (that is, choose β = 1) the best response of the receiver is to choose λ = s so that

conditional on θ the receiver’s expected action is the one the sender wants him to choose. Hence,

there is no incentive for the sender to distort his message from the truth and (β, λ) = (1, s) is an

equilibrium. Similarly, f(1) < s means that if the sender reports his type truthfully then from the

sender’s perspective the receiver’s best response isn’t suffi ciently reactive to the underlying state of

the world. This implies that the sender has an incentive to exaggerate by choosing β > 1.
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4.2 Exaggerating equilibrium

Here we consider the possibility of a straight talking equilibrium in which the sender

exaggerates his type in the sense that β > 1 holds. Because γ2(β) ≥ s and γ1(β) ≤ 0

holds for all β ∈ [0, 1] and f(β) is strictly increasing such an equilibrium exists if

and only if f(1) < s holds. Consequently, a necessary and suffi cient condition for the

existence of an exaggerating equilibrium is

r < s(1 + v) (18)

and if this condition holds there can be no straight talking equilibrium with β ≤ 1.

The proof of the following result demonstrates that, in addition, that there cannot

be more than one exaggerating equilibrium. The diffi cult case in proving this result

is the one in which f(β) < s/2 holds, meaning that the receiver is much less reactive

than the sender would like him to be.

Proposition 3. There exists an equilibrium with β > 1 if and only if condition (18)

holds. If this condition holds there is a unique equilibrium satisfying β > 0.

Proof. Let (β∗, γ∗) be the straight talking equilibrium with the smallest β > 0. If

β∗ = β it is immediate that there is no other straight talking equilibrium. Suppose

1 < β∗ < β and γ∗ = γ2(β
∗) holds. Because f is strictly increasing and γ2 is strictly

decreasing on the interval [β∗, β] it is immediate that f(β) > γ2(β) holds for all

β ∈ (β∗, β]. Using the inequality γ2(β) ≥ γ1(β) this implies there is no straight

talking equilibrium with β > β∗. It remains to consider the case 1 < β∗ < β and

γ∗ = γ1(β
∗). The slope of f at β ∈ (0, β) is

f ′(β) =
2rvβ

(β2 + v)2
= 2

vf(β)

rβ2
f(β)

β
.

From (11) we have vf(β) < rβ2, implying

f ′(β) < 2f(β)/β. (19)

The slope of γ1 at β ∈ (0, β) is

γ′1(β) =
k
(
β − 1

2

)√
s2

4
+ k (β − β2)

=
k
(
β − 1

2

)
s
2
− γ1(β)

.
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From (12) we have k(β − 1) = γ1(β)(s− γ1(β))/β. Using γ1(β) < s/2 this implies

γ′1(β) >
γ1(β)

β

(s− γ1(β))

( s
2
− γ1(β))

> 2
γ1(β)

β
. (20)

From (19) and (20) it follows that f(β) < γ1(β) holds for all β ∈ (β∗, β) (because at

any point of intersection of f and γ1 in the interval [0, β) the slope of f is strictly

smaller than the slope of γ1, implying that there can be at most one such intersection).

Using the inequality γ2(β) ≥ γ1(β) this implies there is no straight talking equilibrium

with β > β∗.5

4.3 Understated equilibria

Here we consider equilibria which are understated in the sense that 0 < β < 1 holds.

Because straight talking equilibria exist and (as we have seen above) for r > s(1 + v)

there can be no truthful or exaggerating equilibria, this condition is necessary and

suffi cient for the existence of an understated equilibrium.

Proposition 4. An equilibrium satisfying 0 < β < 1 exists if and only if r > s(1+v)

holds.

Because β ∈ (0, 1) implies γ1(β) < 0 every understated equilibrium satisfies γ =

γ2(β).

We say that an understated equilibrium is loud if β ∈ [1/2, 1) holds and gentle if

β ∈ (0, 1/2) holds.

Because γ2 is strictly decreasing on the interval [1/2, 1] and f is strictly increasing

there can be at most one loud equilibrium and the conditions f(0.5) ≤ γ2(0.5) and

f(1) > γ2(1) are necessary and suffi cient for existence of a loud equilibrium. As we

will see below the condition f(0.5) ≤ γ2(0.5) is not suffi cient to exclude the possibility

that besides the loud equilibrium there are also gentle ones. If, however, the stronger

condition f(0.5) ≤ s holds, there can be no gentle equilibrium as γ2(β) > s > f(β)

then holds for all β ∈ (0, 1/2). We thus have the following result.

5This is a bit sloppy because as it stands the argument only precludes the existence of an equi-

librium in (β∗, β), so one should also argue that there can be no additional equilibrium at β. But

as the “slope”of γ1 is infinite there, it seems obvious enough (but painful to write down properly)

that there can be no such equilibrium.
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Proposition 5. An equilibrium satisfying 1/2 ≤ β < 1 exists if and only if

(1 + v)s < r ≤ [1 + 4v]

[
s

2
+

√
s2 + k

2

]
. (21)

Furthermore, there is at most one such equilibrium and if

(1 + v)s < r ≤ (1 + 4v)s (22)

holds then the unique equilibrium satisfying 1/2 < β < 1 is also the unique equilibrium

satisfying β > 0.

For large enough values of k it follows from (21) that a loud equilibrium exists

provided the condition (1+v)s < r is satisfied. Intuition suggests that for large value

of k there can be no gentle equilibrium as it is too expensive for the sender to stray

far from β = 1, implying that under these circumstance a loud equilibrium not only

exists but is also the unique straight talking equilibrium. The following proposition

formalizes this intuition.

Proposition 6. Suppose

(1 + v)s < r ≤ 4
√
v

[
s

2
+

√
s2 + k

2

]
(23)

holds. Then there exists a unique straight talking equilibrium which satisfied 1/2 ≤
β < 1.

Proof. Define λf : (−∞,+∞) → (0,∞) by λf (β) = f(β)/β = rβ/(β2 + v). The

derivative of this function is

λ′f (β) =
v − β2
β2 + v)2

,

implying that λf (β) is unimodal on [0,∞) with the unique maximum occurring at

β =
√
v. Hence, we have f(β) ≤ λf (

√
v)β for all β ∈ [0, β]. Because γ2 is concave

and γ2(0) ≥ 0 holds, it follows that the condition γ2(1/2) ≥ λf (
√
v)/2 is suffi cient to

imply γ2(β) > f(β) for all β ∈ (0, 1/2). Calculating λf (
√
v) yields the result.

Observe that (as must be the case) the rightmost side in (23) is smaller than

the rightmost side in (21), but that for v = 1/4 these two expressions are identical,

implying that in this special case whenever a loud equilibrium exists it is the unique

straightforward equilibrium. More generally, as asserted in the following proposition,

there is a unique straight talking equilibrium whenever v ≥ 1/4 holds.
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Proposition 7. If v ≥ 1/4 there exists a unique straight talking equilibrium.

Proof. Define λ2 : (0, β)→ (0,∞) by λ2(β) = γ2(β)/β. Because γ2 is strictly concave

and γ2(0) ≥ 0 holds, the function λ2 is strictly decreasing on (0, 1/2] whereas for

v ≥ 1/4 the function λf (defined in the proof of the previous proposition) is strictly

increasing on (0, 1/2]. It follows that the functions λ2 and λf have either zero or one

intersections on (0, 1/2). In the first case every straight talking equilibrium satisfies

β ≥ 1/2 and it follows from previous results (Propositions 2, 3, and 5) that there

is a unique straight talking equilibrium. In the second case there is a unique gentle

equilibrium and we must have λf (1/2) > λ2(1/2), implying r > [1 + 4v]
[
s
2

+
√
s2+k
2

]
.

From previous results (Propositions 2, 3, and 5) the later condition precludes the

existence of a straight talking equilibrium with β ≥ 1/2, implying that the unique

gentle equilibrium is also the unique straight talking equilibrium.

We know that the condition

r > [1 + 4v]

[
s

2
+

√
s2 + k

2

]
(24)

is suffi cient for the existence of a gentle equilibrium and ensures that all straightfor-

ward equilibria are gentle. If v ≥ 1/4 holds, the previous result implies that (24) is

necessary and suffi cient for the existence of a gentle equilibrium and ensures it unique-

ness. Without the additional condition v ≥ 1/4 we are neither assured that (24) is

necessary for existence of a gentle equilibrium (rather we have the weaker necessary

conditions r > max{(1+4v)s, 4
√
v
[
s
2

+
√
s2+k
2

]
}) nor do we have a uniqueness result.

At the cost of replacing (24) by a stronger condition, the following proposition

extends our previous uniqueness result for gentle equilibria to the case v < 1/4.

Proposition 8. If

r ≥ 2

[
s

2
+

√
s2 + k

2

]
(25)

then there there exists a unique straight talking equilibrium. If v < 1/4 this equilibrium

satisfies β < 1/2.

Proof. Condition (25) is equivalent to f(
√
v) ≥ γ2(1/2). Suppose v < 1/4. Then (25)

implies (24), so that all straight talking equilibria satisfy β < 1/2. Uniqueness follows

by observing that both f and γ2 are increasing on [0, 1/2] so that f(
√
v) ≥ γ2(1/2)
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implies f(β) > γ2(β) for all β ∈ [
√
v, 1/2]. Because λf is strictly increasing and λ2

is strictly decreasing on (0,
√
v) it follows that f and γ have at most one intersection

on [0, 1/2]. If v ≥ 1/4 uniqueness follows from the preceding result.

Our results so far establish that multiple straight talking equilibria can only exist

if there is at least one gentle equilibrium. We now provide an upper bound on k

which ensures that if there is a gentle equilibrium it must be the unique straight

talking equilibrium, thus establishing uniqueness of straight talking equilibrium for

suffi ciently small lying costs.

Proposition 9. If

k ≤ rs
v

(v + 1/4)2
(26)

then there is a unique equilibrium with β > 0.

Proof. We first observe that the first and second derivatives of f are

f ′(β) = 2rv
β

(v + β2)2
, f ′′(β) = 2rv

(v − 3β2)

(v + β2)3
. (27)

Hence on (0,∞) the function f has a unique inflection point β◦ =
√
v/3. Suppose

there exist equilibria satisfying 0 < β < 1/2. (Otherwise uniqueness of straight

talking equilibria is immediate from the previous results.) Let β∗ be the smallest such

equilibrium. It must then be the case that f ′(β∗) ≥ γ′(β∗) holds. If f ′(β∗) > γ′2(β
∗)

and there is no other equilibrium satisfying β < 1/2, it follows that f(1/2) > γ2(1/2)

holds, precluding the existence of any equilibrium with β ≥ 1/2, so that there is

a unique straight talking equilibrium. Similarly, unless there is another equilibrium

satisfying β < 1/2, f ′(β∗) = γ′2(β
∗) and f ′′(β∗) > γ′′2 (β∗) implies f(1/2) > γ2(1/2)

and thus uniqueness of straight talking equilibria. Hence, if there are multiple straight

talking equilibria, we must either have (i) f ′(β∗) = γ′2(β
∗) and f ′′(β∗) ≤ γ′′(β∗) or (ii)

there exists a second equilibrium with 1/2 > β∗∗ > β∗ satisfying f ′(β∗∗) ≤ γ′2(β
∗∗).

In either case we have the existence of an equilibrium satisfying 0 < β < 1/2, f ′(β) ≤
γ′2(β) and β > β◦: In case (i) the conclusion β > β◦ follows because γ2 is strictly

concave, so that f ′′(β∗) ≤ g′′(β∗) implies f ′′(β∗) < 0; in case (ii) it follows because

we have γ′2 (β∗) ≤ f ′ (β∗) and f ′ (β∗∗) ≤ γ′2 (β∗∗) and therefore, from the concavity

of γ2, f ′ (β∗∗) < f ′ (β∗) . This implies the inflection point of the f lies on [0, β∗∗) .

To finish the proof it thus suffi ces to show that condition (26) implies that there is
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no β ∈ (β◦, 1/2) satisfying f ′(β) ≤ γ2(β). Towards this end we first observe that

β ∈ (β◦, 1/2) implies

f ′ (β) ≥ f ′
(

1

2

)
=

rv(
v + 1

4

)2 .
Second, since γ′2 is strictly decreasing, we have that f

′(β) ≤ γ′2(β) implies

f ′(β) < γ′2 (0) =
k

s
.

Therefore, if both of these conditions holds we have be that

v(
v + 1

4

)2 < k

rs
,

contradicting (26).

4.4 Summary of suffi cient conditions for the uniqueness of

straight talking equilibria

Uniqueness of straight talking equilibrium is assured if the communication schedule

is suffi ciently noisy, that is v ≥ 1/4. Depending on the other parameters this case is

consistent with the equilibrium value of β taking any value in (0, β].

For small noise, that is v < 1/4, the following are suffi cient for uniqueness:

• r is suffi ciently small relative to s, that is r ≤ (1 + 4v)s. In this case the

equilibrium value of β satisfies β > 1/2. Observe, in particular, that if r ≤ s

uniqueness holds independently of the other parameter values.

• r is suffi ciently large relative to s, that is r > s+
√
s2 + k. Under the assumption

v < 1/4 in this case the equilibrium value of β satisfies β < 1/2.

• Large lying costs k, that is r ≤ 4
√
v
[
s
2

+
√
s2+k
2

]
. In this case the equilibrium

value of β satisfies β ≥ 1/2.

• Small lying cost k, that is k ≤ rs v
(v+1/4)2

.
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4.5 Existence of multiple straight talking equilibria

From the above suffi cient conditions for uniqueness, multiple straight talking equi-

libria can exist only if v is small and the other parameters are in some intermediate

range. So far we we have noted that multiplicity of straight talking equilibria requires

that there exists at least one gentle equilibrium and that in this case all other equilib-

ria must be understated, too, and that there is at most one loud equilibrium among

those. We have not, however, provided explicit conditions on the underlying parame-

ters which are suffi cient for the existence of multiple straight talking equilibria. Here

we fill this gap.

The basic idea is very simple: Assuming r < s
2

+
√
s2+k
2

ensures that there exists

a straightforward equilibrium satisfying β > 1/2. On the other hand, as the proof

of the following proposition demonstrates, for suffi ciently low v a gentle equilibrium

exists whenever s < r holds.

Proposition 10. Let

s < r <
s

2
+

√
s2 + k

2
(28)

and suppose
√
v ≤ min{ s

k
ρ̂,

1

2x̂
} (29)

where ρ̂ = maxx≥0
[
r x
1+x2
− s 1

x

]
> 0 and x̂ > 0 is a solution to this maximization

problem. Then there exist multiple straightforward equilibria.

Proof. We first demonstrate that ρ̂ and x̂ are well defined and satisfy ρ̂ > 0 and

x̂ > 0. Towards this end observe that

ρ(x) = r
x

1 + x2
− s1

x
=

1

x(1 + x2)

[
(r − s)x2 − s

]
,

so that the assumption r > s in (28) implies that ρ(x) is strictly positive for suffi ciently

large x. As ρ(0) < 0 and limx→∞ ρ(x) = 0 it follows that ρ̂ and x̂ are well-defined and

satisfy ρ̂ > 0 and x̂ > 0. Now set β̂ = x̂
√
v. From (29) we have β̂ ≤ 1/2. Because γ2

is strictly concave, γ2(0) = s, and γ′2(0) = k
s
we have γ2(β̂) < s+ k

s
x̂
√
v. We also have

f(β̂) = rx̂2/(1 + x̂2), so that (29) implies f(β̂) > g(β̂). It follows that there exists

a gentle straight talking equilibrium. As the second inequality in (28) implies that

there exists an equilibrium with β > 1/2, it follows that there are multiple straight

talking equilibria.
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5 Ironic equilibria

Ironic equilibria can only exists if r > 0 and s > 0 holds, so we impose these parameter

restrictions throughout this section.

A simple necessary condition for the existence of ironic equilibria is that the

inequality

− r

2
√
v
β ≥ γ1(β) (30)

holds for some β ∈ (β, 0). The expression on the left side of this inequality is obtained

by observing that - by the same argument as in the one used in the proof of Proposition

6 for the case β > 0 - the inequality f(β) ≤ r
2
√
v
β holds for all β < 0.

Because γ1(0) = 0, γ′1(0) = −k
s
and γ1 is strictly convex inequality (30) holds for

some β < 0 if and only if rs ≥ 2k
√
v, so that the condition rs < 2k

√
v precludes

the existence of an ironic equilibrium. Suppose on the other hand that the inequality

rs ≥ 2k
√
v holds and that, in addition, −

√
v ≥ β holds. Then we have

f(−
√
v) =

r

2
≥ k

s

√
v > γ1(−

√
v),

implying the existence of (at least) two ironic equilibria. We have thus shown

Proposition 11. If rs < 2k
√
v then no ironic equilibrium exists. If rs ≥ 2k

√
v and

√
v ≤ 1

2

√
1 +

s2

k
− 1

2
(31)

then at least two ironic equilibria exist.

In particular, fixing all other parameter values ironic equilibria exist if

• v is small

• k is small

• s is large

Provided that v and k are suffi ciently small relative to s to ensure the inequality

in (31), ironic equilibria will also exist whenever r is large enough.

16



6 The case s = 0

The special case s = 0 in which the sender does not care about the state θ is of interest

because here the effect of lying costs on the equilibrium analysis are particularly easy

to understand. We first observe that in this case there are no ironic equilibria. All

equilibria have to be straight talking (because β = 0) and understated (because β = 1

and γ1(β) = γ2(β) = 0.

The uniqueness results from the previous section apply to the case s = 0 (with

the “small k”-bound stated in Proposition 9 and the bound r ≤ [1 + v] never being

satisfied for any values of the remaining parameters). In particular, equilibrium is

unique if v ≥ 1/4 holds, with the equilibrium being loud if r ≤ [1 + 4v]
√
k and gentle

otherwise. If v < 1/4 there is a unique equilibrium if r ≤ 2
√
v
√
k (in which case the

equilibrium is loud) or r ≥
√
k (in which case the equilibrium is gentle). Observe that

the latter of these conditions implies that as in the case s > 0 equilibrium is unique

for suffi ciently small lying costs.

Even in the case s = 0 multiple equilibria may occur. To see this, suppose the

inequality r ≤ 1
2

√
k holds, ensuring that for all v > 0 a loud equilibrium exists.

Provided that v < 1/4 holds, it follows that there must be multiple equilibria if the

inequality

f(
√
v) ≥ γ2(

√
v)⇔ r ≥ 2

√√
v − v

√
k (32)

is satisfied. For values of v satisfying the inequalities
√
v − v < 1/16 and v < 1/4

the interval (2
√√

v − v
√
k, 1

2

√
k) is non-empty and for all r in this interval multiple

equilibria exist. Hence, provided that v < v ≈ 0, 0044 holds, we have multiple

equilibria.

7 The case r < 0

We first observe that in this case there are no ironic equilibria. From our general

existence result a straight talking equilibrium exists. Because f(β) < 0 holds for

β > 0 all straight talking equilibria must feature γ < 0 and must thus be understated

and satisfy γ = γ1(β).

Following the same logic as in the case r > 0 some results are clear:
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• Loud equilibria exist if and only if f(1/2) > γ1(1/2) which translates to

r ≥ [4v + 1]

[
s

2
−
√
s2 + k

2

]
.

Furthermore, there is at most one loud equilibrium.

• The condition

r ≥ 4
√
v

[
s

2
−
√
s2 + k

2

]
ensures that there is no gentle equilibrium. Hence, if this condition holds there

is a unique equilibrium which is loud.

• If v ≥ 1/4 there is a unique equilibrium.

8 Comparing equilibria

8.1 Stability

We say that an equilibrium (β∗, λ∗) is stable if there exists a neigborhood of β∗ such

that for any initial condition β0 in the neighborhood, the composed best response

dynamic {
λn = rβn

β2n+v

βn+1 = k+sλn
k+λ2n

converges to β∗.

In the generic situation in which we have an odd number of straight talking equi-

libria, the smallest and the loudest straight talking equilibrium may or may not be

stable. If there are ironic equilibria the larger of these (in absolute value) may or

may not be stable. The smaller one is necessarily unstable. If there is more than one

straight talking equilibrium the first and (in case this is possible) the third of these

will be stable. Moreover, when there are there are three straight talking equilibria, we

know that all of them are understated. The loudest equilibrium is necessarily stable

and the middle one unstable. We summarize this result in the following proposition.

Proposition 12. If there are three traight talking equilibria, the loudest one is neces-

sarily stable. Moreover, in that case, the iteration of the composed best response dy-

namic from β∗ = 1 converges to the loudest straight talking equilibrium. The medium
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one is necessarily unstable. If there are two ironic equilibria, the gentle one is neces-

sarily unstable.

Proof. The presence of three straight talking equilibria implies that all three are

understated. In particular, the loudest one (β∗, λ∗) is such that the best response of

the sender is negative at λ∗. This and the presence of three straight talking equilibria

further implies that the best response of the receiver is also negative ta β∗. Finally,

the best-response of the sender cross the receiver’s from above, which implies that

(β∗, λ∗) is stable.

If one considers “truth-telling”as the natural starting point of a dynamic, then

one would tend to focus on the largest straight talking equilibrium. If ones considers

babbling as the natural starting point of a dynamics, then one would tend to focus

on the smallest straight talking equilibrium. It is not immediately apparent how one

would want to tell a story about the emergence of ironic equilibria.

8.2 Informational content

A standard question in models such as ours is “How much information is transmitted

in equilibrium?”In a model with normally distributed random variables it is natural

to measure “how much information” by considering the ratio of the precisions of

the receiver’s posterior (after having observed the message) and prior (before having

observed the message) forecast of θ. The prior precision is 1/σ2θ . The posterior

precision after having observed the signal βθ + ε is 1/σ2θ + β2/σ2ε (this uses standard

formulas for the precision of normally distributed random variables). Hence, the ratio

of the precisions is simply

1 + β2/v

(to be evaluated at the equilibrium value of β).6

The following result follows directly from the definitions.

6As we have seen before, the value β =
√
v plays a special role in our analysis as this is the value

of β at which the receiver’s best response λ takes it maximal value. We may observe that at this

value of β the measure of informational effi ciency is equal to 2 —which happens to be its equilibrium

value in the Kyle model. Observe too, that as far as the cost resulting from the presence of noise is

concerned the value β =
√
v is the worst possible one as it leads to the maximal possible value of

λ2v.
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Proposition 13. The informational content of an equilibrium is proportional to β2.

The loudest straight talking equilibrium is also the most informative one. Any straight

talking equilibrium is more informative than any ironic equilibrium.

8.3 Equilibrium utilities

Multiplying both sides of the equation for the receiver’s best response by λ and using

the definition γ = λβ we obtain that for any profile (β, λ) on th receiver’s best

response, the relation

λ2v = (r − γ)γ (33)

holds. Substituting this into the formulas for player’s expected utilities given in (5)

and (6) we obtain.

Lemma 1. Let (β, λ) be an equilibrium with βλ = γ. Then the corresponding equi-

librium utilities are given by

uS(β, λ) = −
[
(γ − s)2 + (r − γ)γ) + k(1− β)2

]
σ2θ −

kv + (r − γ)r

kv
(c− b)2 .

uR(β, λ) = −r (r − γ)σ2θ .

Using these eexpressions, one can immediately rank the equilibria, from the point

of view of the receiver’s welfare. This is because in any equilibrium, γ ≤ r holds and

uR is increasing in γ. Therefore the receiver prefers the equilibrium which has the

highest value of γ, which is also the most informative one. This gives the following

result.

Proposition 14. If these equilibria exist, the receiver ranks equilibria as follows. The

gentle ironic is the worst (if there is any), followed by the loud ironic (if there is any),

followed by the gentle straight talking (if there is any), followed by the middle straight

talking (if there is any), followed by the loudest equilbrium, which is the receiver’s

preferred equilibrium.

In the simple case where b = c, the sender’s utility over pairs (β, γ) on the receiver’s

best response curve is given by

(2s− r) γ − k(1− β)2.
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If 2s > r, this implies that the sender’s ideal point (β◦, γ◦) on the receiver’s best

response curve is such that β◦ > 1. In this case, the sender’s utility is single-peaked

in β for positive values of β. Moreover, between two points (β, γ) and (−β′, γ′) , with
0 < β′ ≤ β ≤ 1, on the receiver’s best response curve, the sender prefers the first. In

other words, if an ironic pair is preferred to a straight talking one, the former must be

louder. But when 2s > r, we know that there is a unique straight talking equilibrium

and either no or two ironic equilibria. In this case, it is clear that the unique straight

talking equilibrium is preferred to the two ironic equilibria, if they exist. How the

sender ranks the two ironic equilibria is not immediately clear.

If r > 2s, this imples that the sender’s ideal point is (1, 0) , while if r < s, his

ideal point is (1,+∞) . In both cases, it is not immediately clear how the sender

ranks equilibria. In the second case, if the loudest equilibrium is understated (or if

it does not exaggerate too much), this will be the sender’s preferred equilibrium. If

it exagerates a lot, then the middle straight talking equilibrium is preferred. In any

case, one of these two equilibria is preferred to all the others. The most gentle straight

talking equilibrium comes next. The ranking between the two ironic equilibria is again

unclear.

9 Comparative statics

9.1 Comparative statics with respect to k

The effect of increasing k is easy to understand by thinking in terms of the (β.γ)

diagram. We keep the points (0, 0), (s, 0), (1, 0), (1, s) fixed and “stretch”the ellipse

by pulling at the points (1/2, γ) and (1/2, γ) is the vertical direction. Consequently,

the effect will be the following:

• r > 0, Straight talking, exaggerated equilibria: β and γ fall as k increases.

• r > 0, Straight talking, understated equilibria: If there is a unique straight

talking equilibrium β and γ increase as k increases. If v ≥ 1/4 the equilibrium

will thus simply trace along the f -curve. If v < 1/4 more interesting situations

may arise: For suffi ciently low k we have a unique gentle equilibrium which then

may either morph continuously into a loud equilibrium or at some critical value
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of k “suddenly”a second larger gentle equilibrium appears which then “splits”

into two equilibria with the larger of these equilibria then moving smoothly

into the loud domain and the smaller one of this pair (for which β and γ are

decreasing with k) merging with the smallest gentle equilibrium, leaving the

loud equilibrium as the unique one for suffi ciently high k.

• r > 0, ironic equilibria: Starting from a situation in which two of these exists,

the louder one (bigger absolute value of β) moves closer to the origin as k

increases and the more gentle one will move in the opposite direction until they

both merge and disappear.

• r < 0: if there is a unique one β and the absolute value of γ increase as k

increases. Multiplicity story is akin to the one for the r > 0 case.

An interesting implication of these results and the ones obtained in the previous

section is the fact that when 0 < r < s(1 + v) the receiver’s equilibrium utility is

actually decreasing in k. One might have thought that it is always to the receiver’s

advantage if the sender’s incentive to mislead him is reduced.

Proposition 15. Suppose that 0 < r < s(1+v) holds. Then the informational content

and the receiver’s expected utility are decreasing in k at the (unique) exaggerating

equilibrium.

The intuition of this result is simple. As moral norms against lying becomes

weaker, the equilibrium involves more exaggaration. In equilibrium, information is

encoded in a more exaggerated language, which implies a better transmission of in-

formation, as the relative importance of the noise decreases, due to how “loud”the

sender speaks.

9.1.1 Limit as k →∞

For large enough k we have a unique equilibrium (βk, γk) satisfying βk → 1 and

γk → r/(1 + v).

In terms of the welfare analysis it is not immediately obvious whether the term

k(1− β)2 converges to zero. However, using (12) we know that

k(1− β)2 = (γ − s)γ
[

1

β
− 1

]
(34)
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holds in every equilibrium. As β → 1 and γ has a finite limit, it follows that k(1−β)2

converges to zero as k converges to infinity.

uS = −(r − s)2 + s2v

1 + v
σ2θ + (c− b)2 and uR = − r2v

1 + v
σ2θ

(One should check whether the above is what one gets “in the limit”, that is,

by simply presuming that the sender is an automaton who has to tell the truth. I

think it should. That would help in clarifying that the remaining costs result from

the fact that (a) the seller gets his way in expectation with (b) the noisiness of the

communication channel imposing an additional cost hurting both players.)

9.1.2 Limit as k → 0

For r < 0 there will be a unique equilibrium for k small enough and this converges to

babbling, that is the limit is (0, 0).

For r > 0 and suffi ciently small k there are exactly three equilibria, two ironic

ones and a straight talking equilibrium. The gentler (unstable) ironic equilibrium

converges to (β, λ) = (0, 0) , which is the babbling equilibrium. (As none of the

other equilibria converges to babbling this establishes a sense in which the babbling

equilibrium —that always exists when k = 0 —is not stable.)

For the loud ironic and the straight talking equilibria, there are two cases to

consider: s ≥ r and s < r.

• r ≤ s. In this case, the sequence of straight talking equilibria (βk, r) converges

to (+∞, r) and the sequence of load ironic equilibria converges to (−∞, r).In
either case, the informational content of equilibrium goes to infinity and the

equilibrium utility of the receiver converges to 0 —which is the receiver’s ideal

outcome. Understanding what happens to the sender’s payoff is a bit more

challenging. Suppose, first, that b = c holds, so we can ignore the last term

in the sender’s payoff. Using (34) and β → ∞, γ → r, we find that the term

k(1−β)2 converges to (s− r)r —hence, unless r = s the expected lying costs to

be borne by the sender do not converge to zero. The sender’s utility converges

to (s − r)r. 7 Now, let’s assume b 6= c. The question then is what happens

7Observe that keeping s fixed this term is maximized for r = s/2. This is consistent with the

highest possible amount of exaggeration occurs when f(β) = s/2.
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to the term (r − γ)r/kv as k converges to zero. This is not obvious as r − γ
and k both go to zero, so we might want to take a closer look at (r − γ)/k.

In fact, rather than doing that let us return to the expression λ2/k as the one

describing the expected cost of “lying about the intercept.”This term can be

rewritten 8 as
λ2

k
=
β − 1

β

γ

s− γ . (35)

As β goes to infinity, the first fraction goes to 1, demonstrating that in the case

r < a we get a strictly positive limit given by r/(s − r). (I find it somewhat
puzzling that this expression is strictly increasing in r.) In the special case s = r

we get that the cost converges to infinity. (So if there is only conflict about the

intercept the costs go off to infinity. If, however, there is an additional conflict

about slope that this effect gets tempered - provided r < s holds.)

• r > s. In this case, the two equilibrium values of β converges to the positive

and negative solution of
s

r
=

β∗2

β∗2 + v
,

i.e.

β∗ = ±
√

v

1− r
s

and γ∗ = s.

Observe the limit of the straight talking equilibrium can be gentle, loud, truth-

ful, or exaggerated depending on how the value of the ratio r/s, e.g. r = s(1+v)

implies β∗ = 1 etc. (the case distinction is exactly in line with what we have

seen before).

Observe: In the case b = c there are no lying costs in the limit and in expectation

the sender gets his most preferred action. Nevertheless, the sender does not

obtain his bliss utility as λ converges to a finite limit, implying that the noise

cost-term λ2v does not vanish in the limit, but converges to (r − s)s > 0. If

b 6= c it is clear from the calculations that we did above and the fact that β

8Here is a somewhat roundabout way of doing this. Multiply the sender’s best response condition

by λ rather than β to obtain λ2(s − γ) = k(γ − λ) and then eliminate the λ on the right side by
using λ = γ/β.
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cannot converge to 1 that the expected cost of lying about the intercept go to

infinity.

9.2 Comparative statics with respect to v

Increasing v flattens the function f .

Consider straight talking equilibria for r > 0 and suppose equilibrium is unique.

The equilibrium value of β will then be increasing in v until we hit the point at which

f(β) = s/2. Thereafter the equilibrium value of β is decreasing and converges to 1

as v → ∞. If v is suffi ciently small (and r suffi ciently large) that β < 1/2 holds for

small enough v, then the equilibrium value of γ will first be increasing in v and then

—once β = 1/2 has been hit —decreasing in v.

Considering the ironic equilibria for r > 0,it is clear that these will cease to exist

for v suffi ciently large. As long as they exist, the gentle (unstable) one will move

away from babbling when v increases, whereas the comparative statics of the louder

ironic equilibrium (I am again taking it for granted that there are at most two ironic

equilibria) are determined by whether equilibrium sits on γ2 or γ1. If it sits on γ2, then

the absolute value of β is increasing in v until it reaches β = β is reached; thereafter

we move on γ1 with β decreasing until we bump into the unstable equilibrium and

both disappear. Throughout γ is decreasing in v for the stable equilibrium.

Consider the case r < 0 under the additional assumption that we have uniqueness.

Then β is increasing in v and γ is decreasing in v for β < 1/2 and increasing thereafter.

9.2.1 Limiting behavior of all equilibria when v is small

Let r > 0.

Keeping all other parameters fixed, in the limit where v goes to 0 :

• If
r

s
≤ 1,

there is a unique positive equilibrium, that converges to (β2 (r) , r) , i.e. β =

β2 (r) and λ = r
β2(r)

. There are also two negative equilibria. One that converges

to (0, 0) , i.e. β = 0 and λ = −k
s
, and another one that converges to (β1 (r) , r) ,

i.e. β = β1 (r) and λ = r
β1(r)

.
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• If

1 <
r

s
<

1

2
+

√
k
s2

+ 1

2
,

there are three positive equilibria. Two of them converge respectively to (β1 (r) , r)

and to (β2 (r) , r) . The third one converges to (0, s) , i.e. β = 0 and λ = +∞.
There are also two negative equilibria. One that converges to (0, 0) , i.e. β = 0

and λ = −k
s
, and another one that converges to (0, s) , i.e. β = 0 and λ = −∞.

• If
1

2
+

√
k
s2

+ 1

2
<
r

s
,

there is again a unique positive equilibrium that converges to (0, s) , i.e. β = 0

and λ = +∞. There are also two negative equilibria. One that converges to
(0, 0) , i.e. β = 0 and λ = −k

s
, and another one that converges to (0, s) , i.e.

β = 0 and λ = −∞.

9.2.2 Optimal noise level

Noise has a direct negative on the welfare of both players. It has also an indirect

strategic effect. For positive (negative) equilibria that lie on some increasing (de-

creasing) portion of the ellipse, a noise increase has a positive effect on the receiver.

The opposite is true for equilibria that lie on some decreasing (increasing) portion of

the ellipse.

The welfare effect on the sender is more complex, because the lying cost also plays

a role.

Assume r > 0 and focus on straight talking equilibria.

If r ≤ s (so that the unique straight talking equilibrium is always exaggerating)

it is clear that the receiver prefers noise to be as small as possible and in the limit for

v → 0 obtains his bliss point with γ = r.

If r > s the question of the optimal noise level is more interesting (and we have

to grapple with the problem that there might be multiple equilibria).

In particular, when s < r < s/2 +
√
s2 + k/2 we have already seen that there are

two equilibria such that the receiver obtains his bliss point in the limit as v → 0.

There is, however, also a third equilibrium in which γ converges to s. So there is a

risk that the receiver may end up in the “wrong”equilibrium.
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If r is greater than the upper bound just given, pushing v to zero is not what the

receiver wants to do. Rather he wants to choose v such that equilibrium occurs at

β = 1/2 —which is the best the receiver can hope for. It is not immediately obvious to

me, though, that this equilibrium must then be unique. If it is not, the same question

as in the previous case arise. This is summarized in the following result.

Proposition 16. Suppose that r > γ. The informational content and the expected

utility of the receiver are both increasing in v in
(

0, r−γ
4γ

]
and decreasing in v on[

r−γ
4γ
,+∞

)
.
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