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Abstract

We recover approximate parametric preferences from consistent and inconsistent

consumer choices. The procedure seeks to utilize revealed preference information con-

tained in choices by minimizing its ranking inconsistency with the proposed parametric

preferences. We prove that the goodness-of-�t of such an approximation can be decom-

posed into measures of inconsistency and misspeci�cation. This provides a reasonable

way to test restrictions on parametric models. An application of the method to the

data set constructed by Choi et al. [2007] to study choice under risk suggests more

frequent and pronounced non-expected utility preferences than previously suggested.
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1 Introduction

This paper is a contribution to the applicability of revealed preference theory to the domain

of recovering stable preferences from individual choices. The need for such an application

emerges from the recent availability of relatively large data sets composed of individual

choices made directly from linear budget sets, where choices of most subjects seem to be ex-

actly or approximately stable.1 These rich data sets allow researchers to recover approximate

individual stable utility functions and report the magnitude and distribution of behavioral

characteristics in the subject population.

Our proposed procedure of recovering approximate preferences is based on the minimal

budget adjustments required to remove inconsistencies between the ranking information

induced by the suggested preferences and the revealed preference information contained in

the choices. The latter summarizes all ranking information implied by the observed choices

that has refutable predictions. That is, assuming singleton choice sets, if an alternative is

chosen from a set and is available in a subset then it will be chosen from the subset; Similarly,

if an alternative is not chosen from a set then it will not be chosen from any other set in

which the original chosen alternative is also feasible. This procedure extends the rationale

of Afriat [1972] and Varian [1990], who seek the minimal budget adjustments to remove

violations of rationality (consistency with the Generalized Axiom of Revealed Preference,

henceforth GARP), to the domain of parametric recoverability of preferences.

Given a data set constructed from a generic consumer choice problem, which satis�es

GARP, Afriat [1967] suggests a nicely behaved piecewise linear utility function that satis�es

the restrictions imposed by revealed preference. This method requires recovering twice the

number of parameters as there are observations and therefore the behavioral implications of

such functional forms are di�cult to interpret. Varian [1982] builds on this work to construct

non parametric bounds that allow partial identi�cation of the utility function, assuming that

the preferences are convex. However, in many cases, researchers assume simple functional

forms with few parameters that lend themselves naturally to behavioral interpretation.2

The drawback of this approach is that simple functional forms are often too structured

to capture every nuance of individual decision making, and thus preferences recovered in

1Notable references are Andreoni and Miller [2002], Fisman et al. [2007], Choi et al. [2007], Ahn et al.
[2011], Andreoni and Sprenger [2012].

2For example, the single parameter in the CRRA von Neumann-Morgenstern utility function can be
interpreted as a measure of the decision maker's risk attitude.
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this way are almost always misspeci�ed. That is, the ranking implied by the recovered

preferences may be inconsistent with the ranking information implied by the decision maker's

choices (summarized through revealed preference). Following this line of reasoning, given

a parametric utility function, we seek a measure to quantify the extent of misspeci�cation

that may also be used as a criterion for choosing the element of the functional family which

minimizes this inconsistency.

A utility function rationalizes a data set, by the classical sense, if there are no incon-

sistencies between the order revealed by the choices and the ranking induced by the utility

function. We weaken this notion by requiring the condition to hold for adjusted budget sets.

A utility function v-rationalizes the data, where v is an adjustments vector, if by reducing

the budget of observation i by a proportion of vi for all i, all inconsistencies between the pro-

posed utility function and the revealed preference information are removed. Our proposed

measure is based on an aggregation of the minimal budget adjustments that are required

in order to remove inconsistencies between the revealed preference information implied by

the data and the rankings of bundles induced by a given utility function. We show that this

minimal vector can be calculated observation by observation using the money metric utility

function.

If a data set satis�es GARP, the measure we propose quanti�es the extent of misspeci-

�cation that arises solely from considering a speci�c family of utility functions, rather than

all possible utility functions. If the data set does not satisfy GARP, the measure can be

decomposed into an inconsistency index (the Varian [1990] e�ciency index) and a misspeci-

�cation index, which is the di�erence between our measure and the Varian index. Since for

a given data set the inconsistency index is constant (zero if GARP is satis�ed), the measure

can be used to recover parametric preferences within some parametric family by minimizing

the misspeci�cation. Similarly, it can be used to evaluate the increase in misspeci�cation

implied by restricting the set of parameters. Moreover, one can use the measure to choose

among functional forms. For example, consider some parametric form of non-expected utility

that includes expected utility as a special case. Given a data set of choices under risk, one

can recover the values of the parameters that minimize misspeci�cation, and evaluate the

additional misspeci�cation implied by restricting to expected utility.

To illustrate, we apply our method to recover preferences from data on choice under risk

collected by Choi et al. [2007]. We recover parameters for the disappointment aversion func-
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tional form of Gul [1991]3 using both the Euclidean-distance-based NLLS and the revealed

preference approach and identify several important qualitative di�erences in the recovered

parameters. In several cases, the recovered parameters are contradictory with respect to

whether subjects are elation loving or disappointment averse, and as such the behavioral

conclusions of our analysis may depend critically on the chosen recovery method. Moreover,

quantitative di�erences in the distribution of parameter values in the subject population

suggest that the preferences recovered by minimizing inconsistency with revealed preference

information put higher weight on �rst-order risk aversion and lower weight on second-order

risk aversion [Segal and Spivak, 1990] than previously found using a distance-based ap-

proaches. We calculate the additional misspeci�cation implied by restricting to expected

utility, and �nd that for about one third of the subjects expected utility may be used as a

good approximation since the restriction implies a proportional increase in misspeci�cation

of less than 10%.

Varian [1990] suggested the money metric as a �natural measure of how close the ob-

served consumer choices come to maximizing a particular utility function� (page 133) and

then recommends its usage as a criterion for recovering preferences. He argues that measur-

ing di�erences in utility space has a more natural economic interpretation than measuring

distances between bundles in commodity space. We augment Varian's intuition by providing

theoretical foundations for the usage of the money metric as a measure of misspeci�cation.

First, we demonstrate that the money metric utilizes more preference information encoded

in the observed choices to recover preferences than methods that are based on minimizing

distance between observed and predicted bundles. Second, we prove that the money met-

ric measure can be constructed observation-by-observation while maintaining most revealed

preference information contained in choices. Third, we relate the budget adjustments im-

plied by the money metric to the non-parametric measure of the inconsistency implied by

revealed preference. Finally, since we show that the goodness of �t can be decomposed into

an inconsistency index and a misspeci�cation index, we introduce several novel applications

including evaluating parametric restrictions and model selection.

The procedure proposed in this paper selects, for each individual independently, a deter-

ministic utility function such that the inconsistency between its ranking information and the

revealed preference information encoded in the individual's choices is minimized. A di�erent

3Although in the considered setup of two-states of the world it is observationally equivalent to models
of Rank Dependent Utility [Quiggin, 1982].
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approach, used frequently in empirical analysis of consumer demand is the Random Utility

Maximization (henceforth, RUM) model. A RUM model is a probability distribution over a

set of utility functions. The theory of revealed stochastic preference is an application of RUM

models to the typical �eld data set where a population of individuals is faced with a variety

of choice problems and for every choice problem the researcher observes only the distribution

of choices (the proportion of the population that chose each alternative).4 In this context,

a data set is rationalizable if it can be represented as a result of utility maximization, that

is there exists an RUM model such that for every alternative, the expected frequency gen-

erated by the model coincides the observed frequency. Given a choice problem, the choice

heterogeneity inherent in the typical �eld data set requires some stochastic element to enable

rationalizability. Such heterogeneity is absent from the experimental data we examine in this

paper where individuals choices are observed. Therefore, as mentioned by McFadden [2005]

and Hoderlein and Stoye [2010] among others, RUM models are inadequate for recovering

preferences from experimental data.

2 Non-Parametric Recoverability

Consider a decision maker (DM) who chooses bundles xi ∈ <K+ i = 1, . . . , n out of budget

menus
{
x : pix ≤ 1, pi ∈ <K++

}
. The traditional problem of recoverability is to �nd a util-

ity function that rationalizes the data. This section presents the standard non-parametric

approach to the problem of recoverability, following Varian [1982]. In particular, we explain

why this approach constitutes partial identi�cation only under an important restriction on

preferences. This restriction of this non-parametric approach motivates the study of the

parametric approach presented in the next section.

Let D =
{

(pi, xi)
n
i=1

}
be a �nite data set, where xi is the chosen bundle at prices pi.

De�nition 1. An observed bundle xi ∈ <K+ is

1. directly revealed preferred to a bundle x ∈ <K+ , denoted xiR0
Dx, if p

ixi ≥ pix.

2. strictly directly revealed preferred to a bundle x ∈ <K+ , denoted xiP 0
Dx, if p

ixi > pix.

4RUM models can be interpreted either as modeling a homogeneous population where individuals hold
identical stochastic preferences (e.g. Gul and Pesendorfer [2006]) or modeling a heterogeneous population
where each individual has deterministic preferences (e.g. McFadden [2005]).
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3. revealed preferred to a bundle x ∈ <K+ , denoted xiRDx, if there exists a sequence of

observed bundles
(
xj, xk, . . . , xm

)
such that xiR0

Dx
j, xjR0

Dx
k, . . . , xmR0

Dx.

4. strictly revealed preferred to a bundle x ∈ <K+ , denoted xiPDx, if there exists a sequence
of observed bundles

(
xj, xk, . . . , xm

)
such that xiR0

Dx
j, xjR0

Dx
k, . . . , xmR0

Dx at least one

of them is strict.

The data is said to be consistent if it satis�es the General Axiom of Revealed Preference.

De�nition 2. Data set D satis�es the General Axiom of Revealed Preference (GARP) if for

every pair of observed bundles, xiRDx
j implies not xjP 0

Dx
i.

The following de�nition relates the revealed preference information implied by observed

choices to ranking induced by utility maximization.

De�nition 3. A utility function u : <K+→ < rationalizes data set D, if for every observed

bundle xi ∈ <K+ , u(xi) ≥ u(x) for all x such that xiR0
Dx. We say that D is rationalizable if

such u (·) exists.
Rationalizability does not imply uniqueness. There could be di�erent utility functions

(not related by a monotonic transformation) that rationalize the same data set. Afriat's

celebrated theorem provides tight conditions for the rationalizability of a data set.

Theorem. [Afriat, 1967] The following conditions are equivalent:

1. There exists a non-satiated utility function that rationalizes the data.

2. The data satis�es GARP.

3. There exists a non-satiated, continuous, concave, monotonic utility function that ra-

tionalizes the data.

Proof. See Afriat [1967], Diewert [1973], Varian [1982].

Afriat's proof of (3) is constructive: he shows that if a data set D of size n satis�es GARP

then U (x) = mini {U i + λipi (x− xi)}, where U i and λi > 0 are 2n real numbers that satisfy

a set of n inequalities: U i ≤ U j + λjpj(xi − xj), rationalizes D. It is important to note that

although Afriat's utility function does not rely on any parametric assumptions, it is di�cult

to directly learn from it about behavioral characteristics of the decision maker, which are
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typically summarized by few parameters (e.g. risk aversion, ambiguity aversion). Moreover,

this utility function that rationalizes the data is generically non-unique. Hence, if one can

�nd a �simpler� (parametric) utility function that rationalizes the data set - it will have equal

standing in representing the ranking information implied by the data set.

If one accepts that �simple� may be superior, then one should consider paying a price in

terms of misspeci�cation. In later sections we will pursue this line of reasoning by considering

the minimal misspeci�cation implied by certain parametric speci�cations. Moreover, we next

demonstrate that even the non-parametric method of recoverability introduced by Varian

[1982] imposes some signi�cant restrictions on the structure of preferences that may be

recovered.

Assume D satis�es GARP. The following de�nitions follow Varian [1982].

De�nition 4. Pu (x) ≡ {x′ : u (x′) > u (x)} is the strictly upper contour set of a bundle

x ∈ <K+ given a utility function u(x).

Next, consider the set of prices at which an unobserved bundle - x, can be chosen such

that the augmented data set would still be consistent with GARP.

De�nition 5. Suppose x ∈ <K+ is an unobserved bundle, then

S (x) = {p |{(p, x)} ∪D satis�es GARP and px = 1}

For every unobserved bundle x, Varian [1982] employs S (x) to construct lower and upper

bounds on the upper and lower contour sets through x.

De�nition 6. For every unobserved bundle x ∈ <K+ :

1. The revealed worse set is RW (x) ≡
{
x′
∣∣∀p ∈ S(x), xPD∪{p,x}x

′}. The not revealed

worse set, denoted by NRW (x), is the complement of RW (x).

2. The revealed preferred set is RP (x) ≡
{
x′
∣∣∀p ∈ S(x′), x′PD∪{p,x′}x

}
.

In Fact 5, Varian [1982] (page 953) states: �let u(x) be any utility function that rationalizes

the data. Then for all (unobserved bundles - HPZ) x , RP (x) ⊂ Pu(x) ⊂ NRW (x)�. Thus,

given a data set that satis�es GARP and a utility function that rationalizes these data, every

indi�erence curve through a given unobserved bundle must be bounded between the revealed

worse set and the revealed preferred set of this bundle.
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RP (A)

x1

x2

A

B

x1

x2

(a) Violation of the Revealed Preferred Set

RW (B)

x1

x2

A

B

x1

x2

(b) Violation of the Revealed Worse Set

Figure 2.1: Violations of Fact 5

Suppose a DM has to decide how to allocate a wealth of 1 between consumption in two

mutually exclusive, exhaustive and equally probable states of the world. The allocation is

attained by holding a portfolio of Arrow securities with unit prices p = (p1, p2). Figure

2.1 presents a data set D of two observations. Portfolio x1 = (0.124, 2.222) is chosen when

prices are p1 = (0.450, 0.425), and portfolio x2 = (3.850, 0.094) is chosen when prices are

p2 = (0.250, 0.400). Notice that since p2 < p1,5 every portfolio that is feasible under p1 is

also feasible when prices are p2, therefore x2R0
Dx

1. Now consider two unobserved portfolios

A = (0.390, 1.806) and B = (1.390, 1.390). Portfolio A is feasible under both prices, but

portfolio B is feasible only under p2. The revealed preferred set of A and the revealed worse

set of B are drawn in panels 2.1a and 2.1b, respectively. Now consider the following utility

function over portfolio x = (x1, x2) :

u(x1, x2) =
√

max {x1, x2}+
1

4

√
min {x1, x2} (2.1)

which represents the preferences of an elation seeking DM [Gul, 1991] with β = −0.75 and

a CRRA utility index with ρ = 0.5 over Arrow securities.6 Therefore, the DM's preferences

5For vectors notation see Footnote 13.
6A reader who is not familiar with Gul [1991] model, may �nd the following footnote helpful: Let

p = (p1, x1; ...pn, xn) be a lottery such that x1 ≤ · · · ≤ xn. Assuming (for simplicity) that ce (p) /∈ supp (p),
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here are not convex and u (·) is not quasi-concave (let alone not concave). The indi�er-

ence curves drawn in Figure 2.1 through x1 and x2 demonstrate that this utility function

rationalizes the data (see De�nition 3).

Recall that Fact 5 in Varian [1982] states that for any unobserved bundle x, if u rational-

izes the data then RP (x) ⊂ Pu(x) ⊂ NRW (x). However, Figure 2.1a clearly demonstrates

that while B ∈ RP (A), it is not true that B ∈ Pu(A). Similarly, Figure 2.1b shows that

while A ∈ Pu(B) it is not true that A ∈ NRW (B). That is, the ranking of unobserved port-

folios implied by the Revealed Preferred and Revealed Worse sets is inconsistent with the

ranking of portfolios induced by the utility function (2.1) that rationalizes the data. In other

words, the utility function's indi�erence curves do not abide by Varian [1982] non-parametric

bounds.

Figure 2.1 suggests the source of the above inconsistency with Varian's Fact 5: when

the DM is elation seeking, her preferences are non-convex and the utility function is not

concave. The failure of the nonparametric bounds can be traced back to the construction

of the revealed preferred and revealed worse sets. Since by Afriat's Theorem if the data

satis�es GARP there exists a concave utility function that rationalizes it, S (x) (De�nition

5) is non-empty for every x. However, there may exist a utility function that rationalizes the

data for which there is no price vector p that will support x as an optimal choice. Therefore,

the support of p can be partitioned into elation and disappointment sets: there exists a unique j such that
for all i < j : (xi, 1) ≺ p and for all i ≥ j : (xi, 1) � p. Gul's elation/disappointment decomposition is
then given by r =(x1, r1; · · · ;xj−1, rj−1), q = (xj , qj ; · · · ;xn, qn) and α =

∑n
i=j pi such that ri =

pi
1−α and

qi =
pi
α . Note that p = αq + (1− α) r. Then:

uDA (p) = γ (α)E (v, q) + (1− γ(α))E (v, r)

and ∃ − 1 < β <∞ such that

γ (α) =
α

1 + (1− α)β
where v (·) is a utility index and E (v, µ) is the expectation of the functional v with respect to measure µ.
If β = 0 disappointment aversion reduces to expected utility, if β > 0 the DM is disappointment averse
(γ (α) < α for all 0 < α < 1), and if β < 0 the DM is elation seeking (γ (α) > α for all 0 < α < 1). Gul
[1991] shows that the DM is averse to mean preserving spreads if and only if β ≥ 0 and v is concave. That is,
if v is concave then, by Yaari [1969], preferences are convex if and only if the DM is weakly disappointment
averse.
For binary lotteries: Let (x1, p;x2, 1− p) be a lottery. The elation component is x2 and the disappointment

component is x1 and α = 1− p (in our case α = 0.5). Therefore:

uDA (x1, p;x2, 1− p) = γ (1− p) v (x2) + (1− γ (1− p)) v (x1)

and since γ (0) = 0, γ (1) = 1 and γ (·) is increasing, γ (·) can be viewed as a weighting function, and DA is
a special case of Rank Dependent Utility [Quiggin, 1982].

9



even if x′ is such that xPD∪{p,x}x
′ for every p ∈ S (x) , it does not imply that the utility

function that never chooses x will rank x above x′.7

Non-convex preferences are very important in domains like risk, ambiguity and other-

regarding preferences. However, Varian's nonparametric recoverability approach partially

identi�es upper and lower bounds on the utility function subject to the restriction of convex

preferences. If the data set is generated by a DM who correctly maximizes a non-convex

preference relation, the ranking implied by the nonparametric bounds may be inconsistent

with the underlying preferences of the DM.8

Unlike the non-parametric approach described above, the parametric approach to recov-

erability permits the observer to identify non-convex preferences within a given functional

family with few parameters, at a cost of introducing misspeci�cation. Once the misspeci�-

cation is quanti�ed, we will pursue a procedure to minimize it.

So far we have just discussed data sets that satisfy GARP and hence we know there exists

a utility function that rationalizes the observed choices. What about choices that are not

consistent in the sense that they do not abide by GARP? Afriat [1973, 1987] and Houtman

[1995] use similar methods to those used in Afriat [1967] to recover an approximate utility

function, in the sense that the existence of an underlying preference relation is maintained

by allowing the DM not to exactly maximize that relation. This approach su�ers from the

same shortcomings of Afriat [1967] discussed above. The non-parametric approach of Varian

[1982] has been extended and developed in Blundell et al. [2003, 2008] and ?, however, to the

best of our knowledge, it had not been expanded to include treatment of inconsistent data

sets, and doing so will probably entail some behavioral assumptions regarding the nature

of the inconsistencies. The parametric approach developed in the current paper, not only

extends naturally to inconsistent data sets, but also permits an insightful decomposition of

the goodness of �t into measures of inconsistency and misspeci�cation.

7De�nitions 5 and 6 can be trivially extended to include observed bundles, and then a similar argument
can be constructed for the observed portfolio x1 in Figure 2.1a. Note that the violation of the revealed worse
set demonstrated in Figure 2.1b cannot occur for an observed bundle since there exists a price vector p that
supports the bundle as an optimal choice.

8An alternative perspective on this problem is provided by Afriat's Theorem. He showed that if one
considers all possible utility functions, then if any utility function rationalizes a data set, then there ex-
ists a concave utility function that rationalizes the same data. However, the convexi�ed preferences rank
unobserved bundles di�erently than the non-convex preferences.
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Figure 3.1: Measuring Misspeci�cation with Budget Adjustments

3 Parametric Recoverability

This section proposes a loss-function that measures the inconsistency between the ranking

information encoded in choices made within a data set and a given utility function. For

a data set that satis�es GARP, this will constitute a measure of the misspeci�cation in

representing the data set by the utility function.

Consider, for example, a data set of a single observation D = {(p1, x1)} and two candi-

date9 utility functions u and u′ as depicted in Figure 3.1. The data set includes only a single

observation, hence is trivially consistent. However, both utility functions fail to rationalize

the data since for both utility function there exist feasible bundles that are preferred to

x1according to the respective utility function.

Consider the unobserved bundles in the lightly shaded region of Figure 3.1. These are

bundles over which x1 is directly revealed preferred and yet are ranked higher than x1 by

the utility function u. In other words, u is misspeci�ed since for these bundles the ranking

induced by u is inconsistent with the ranking implied by choices and summarized by the

revealed preference information. Yet, if we look at the union of the light and dark shaded

regions, it is easy to see that all inconsistencies with the revealed preference information

implied by u are also implied by u′. In this sense, we say that the utility function u dominates

u′ and that u′ is more misspeci�ed than u.10

9The restriction to two utility functions represents the parametric restriction in recovering preferences.
10Following this example of a single data point, it might be tempting to conclude that as the preferences

become less convex (for the same prediction), the misspeci�cation diminishes. However, this intuition is
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Our proposed loss-function seeks the minimal adjustment to the expenditure levels such

that all inconsistencies between the revealed preference information and the ranking infor-

mation are removed. In Figure 3.1, Iu and Iu′ are the highest expenditure levels (keeping

the prices constant) such that there is no a�ordable bundle that is ranked strictly higher

than x1 by the utility functions u and u′ respectively. Since Iu′ < Iu < p1x1 it is evident that

although both utility functions are misspeci�ed, the misspeci�cation implied by u is smaller

than the misspeci�cation implied by u′ relative to the data set.11 In the following subsection

we introduce theoretical foundations for this approach.

3.1 v-Rationalizability and the Money Metric Index

The following de�nition is a generalization of De�nition 1. Similar concepts have been

introduced into the literature on consistency (Afriat, 1972, 1987, Varian, 1990, 1993) in

order to measure how close is a DM to satisfying GARP12. As will be evident from the

rest of the current subsection, we employ these relations in order to eliminate the part of

the revealed preference information contained in the choices, which is inconsistent with the

ranking implied by a speci�c utility function under consideration. The minimal eliminated

part will serve as a measure of the distance between the utility function and the data set.13

De�nition 7. Let D be a �nite data set. Let v ∈ [0, 1]n. An observed bundle xi ∈ <K+ is

1. v−directly revealed preferred to a bundle x ∈ <K+ , denoted xiR0
D,vx, if v

ipixi ≥ pix.

2. v−strictly directly revealed preferred to a bundle x ∈ <K+ , denoted xiP 0
D,vx, if v

ipixi >

pix.

3. v−revealed preferred to a bundle x ∈ <K+ , denoted xiRD,vx, if there exists a sequence

of observed bundles
(
xj, xk, . . . , xm

)
such that xiR0

D,vx
j, xjR0

D,vx
k, . . . , xmR0

D,vx.

misleading since in larger data sets the variability in prices may be high enough so that less convex preferences
will result in more misspeci�cation than the more convex one.

11Obviously, this measure is not unique. For example, an alternative measure could use the area contained
in the intersection of the upper counter set that goes through x1 and the budget line. We di�er the discussion
of this alternative measure to section 5.2.

12A di�erent but related concept of inconsistency is presented in Echenique et al. [2011]. The main
di�erence is that in most of the literature a single adjustment is enough to �break� a cycle, while in their
work, all the relevant budget lines must be adjusted.

13Throughout the paper we use bold fonts (as v or 1) to denote vectors of scalars in <n. For v,v′ ∈ <n
v = v′ if ∀i : vi = v′i, v = v′ if ∀i : vi ≥ v′i, v ≥ v′ if v = v′and v 6= v′ and v > v′ if ∀i : vi > v′i. We
continue to use regular fonts to denote vectors of prices and goods.
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4. v−strictly revealed preferred to a bundle x ∈ <K+ , denoted xiPD,vx, if there exists a se-
quence of observed bundles

(
xj, xk, . . . , xm

)
such that xiR0

D,vx
j, xjR0

D,vx
k, . . . , xmR0

D,vx

at least one of them is strict.

Afriat [1967] showed that D satis�es GARP if and only if there exists a non-satiated utility

function that rationalizes the data. However, if we consider a speci�c utility function, it will

generically not rationalize the data (even if choices are consistent).

Next we de�ne the following generalization of rationalizability:

De�nition 8. Let v ∈ [0, 1]n. A utility function u(x) v-rationalizes D, if for every observed

bundle xi ∈ <K+ , u(xi) ≥ u(x) for all x such that xiR0
D,vx.

That is, the intersection between Pu (xi), the set of bundles strictly preferred to xi ac-

cording to u (·) , and the set of bundles to which xi is v−directly revealed preferred when

the budget constraint is adjusted by vi, is empty. Notice that 1−rationalizability reduces to

De�nition 3, and every utility function 0-rationalizes D.

To illustrate, consider Figure 3.1, where x1 is chosen but is not optimal according to utility

function u. For every v1 such that 0 ≤ v1p1x1 ≤ Iu there is no x that satis�es v1p1x1 ≥ p1x

and is strictly preferred to x1 according to u. In this case we say that u v−rationalizes
x1. Of course this condition can be trivially satis�ed by setting v1 = 0 ; thus we de�ne

the minimum adjustment (supremum v) as the basis for our measure of misspeci�cation. In

Figure 3.1 the minimal adjustment required to v−rationalize x1 by utility function u is given

by Iu
p1x1

. Naturally, we would expect utility functions that represent the decision maker's

preferences more closely, i.e. less misspeci�ed, to require smaller budget adjustments in

order to v−rationalize the observed choices. This is evident in Figure 3.1 where Iu′ < Iu and

captures the intuition that u is less misspeci�ed than u′.

When the data set contains more than a single point, we must aggregate the adjustments

required for each observation using an aggregator function.

De�nition 9. f : [0, 1]n → [0,M ], where M is �nite, is an Aggregator Function if f(1) = 0,

f(0) = M and f(·) is continuous and weakly decreasing.14

The minimal adjustment to the budget set for every observation is given by the Money

Metric Utility Function [Samuelson, 1974]:

14For every v,v′ ∈ [0, 1]n:
v ≥ v′ =⇒ f(v) ≤ f(v′)
v >v′ =⇒ f(v) < f(v′)

.
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De�nition 10. The normalized money metric vector for a utility function u(·), v?(D, u),

is such that v?i(D, u) = m(xi,pi,u)
pixi

where m(xi, pi, u) = min{y∈<K
+ :u(y)≥u(xi)}p

iy. The Money

Metric Index for a utility function u(·) is f (v? (D, u)).

Thus, the money metric vector and the money metric utility function upon which it is

based, measure, for a given utility function, the minimal expenditure required to achieve at

least the same level of utility as the observed choices.15

Proposition 1. Let D =
{

(pi, xi)
n
i=1

}
and let u (·) be a continuous and locally non-satiated

utility function.

1. u(·) v?(D, u)-rationalizes D.

2. v? (D, u) = 1 if and only if u (·) rationalizes D.

3. Let v ∈ [0, 1]n. u (·) v-rationalizes D if and only if v 5 v?(D, u).

Proof. See Appendix A.

Proposition 1 establishes that f (v? (D, u)) may be viewed as a measure of the distance

between the data set and a given utility function. Part 3 shows that v? (D, u) measures

the minimal adjustments to the budget sets required to v−rationalize D by u, that is - to

remove inconsistencies between the revealed preference information contained in D and the

ranking information induced by u.

Part 3 also implies that each coordinate of v? (D, u) is calculated independently of the

other observations in the data set. This is a crucial feature of this procedure which deserves

some discussion. Based on the intuition contained in the nonparametric recoverability lit-

erature and Fact 5 in Varian [1982] in particular16, one may be led to believe that a utility

function can be consistent with the directly revealed preference information but fail to ratio-

nalize the data based on the indirect revealed preference information. However, since RD is

the transitive closure of R0
D, it follows that a utility function is consistent with the directly

revealed preference information if and only if it is consistent with all the indirectly revealed

15We include (D,u) in the de�nition to emphasize that the optimal budget set adjustments depend on
both the observed choices and on the speci�c utility function.

16Recall that the focus of Varian [1982] is primarily on constructing tight non-parametric bounds on
utility for unobserved bundles.
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preference information. In other words, if the utility function is inconsistent with some in-

direct revealed preference information, it must be inconsistent with some directly revealed

preference information as well.

Figure 3.2 demonstrates this point, and how the data is v?−rationalized. The data set

includes two observations, where x1 is directly revealed preferred to x2. Although the utility

function u (·) ranks x1 above x2 it fails to rationalize the data since u (y) > u (x1) although

x1 is strictly indirectly revealed preferred to y (which is feasible when x2 is chosen). First,

note that if this is the case, it must be that u (y) > u (x2). That is, u (·) does not rationalize
the direct revealed preference information. Second, as is evident from Figure 3.2a, D will

be v?−rationalized by adjusting only observation 2's budget set to remove inconsistencies

between the utility ranking and the direct revealed preference information.17 More generally,

the v?− adjustments can be calculated observation-by-observation: for each observation the

minimal adjustment is independent of the required adjustments for other observations.18

Moreover, since RD,v?(D,u) is just the transitive closure of R0
D,v?(D,u), Figure 3.2b19 demon-

strates that v? (D, u) retains most of the indirect revealed preference information that is

consistent with the ranking encoded in the utility function under consideration.

Part 2 of Proposition 1 is merely a restatement of the familiar de�nition of rationaliz-

ability using the money metric as a criterion. It shows that a non-satiated and continuous

utility function u (·) rationalizes the observed choices if and only if it is the case that for

all observations there exist no a�ordable bundles that achieve strictly higher level of utility

than the observed choices themselves. In this case we would say that the utility function is

correctly speci�ed.

Recall that given an aggregator function f (·), f (v? (D, u)) measures the distance between

a data set D and a speci�c preference relation represented by the utility function u. Let U c

be the set of all continuous and locally non-satiated utility functions. Given a set of utility

functions U ⊆ U c, the Money Metric Index measures the distance between U and the data

set D:

17There are several di�erent ways we could interpret the nature of this adjustment in behavioral terms,
we postpone this discussion to Section 5.3.

18An additional implication of this property is that given m data sets Di of ni observations, and utility
function u (·), if u v? (Di, u)− rationalizes Di for every i, then u v? (

⋃m
i=1Di, u)− rationalizes

⋃m
i=1Di

where v? (
⋃m
i=1Di, u) =

(
v? (D1, u)

T
, . . . ,v? (Dm, u)

T
)T

. Moreover, if f (·) is additive separable (as are all
the aggregators mentioned in this paper) then f (v? (

⋃m
i=1Di, u)) =

∑m
i=1 f (v

? (Di, u)).
19The shaded area represents those bundles that are directly and indirectly v? (D,u)− dominated by x1.
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Figure 3.2: Removing Violations of Revealed Preference

De�nition 11. For a data set D and an aggregator function f(·), let U ⊆ U c. The Money

Metric Index of U is

IM(D, f,U) = inf
u∈U

f (v? (D, u))

The following observation follows directly from the de�nition of IM(D, f,U).

Fact 1. For every U ′ ⊆ U : IM(D, f,U) ≤ IM(D, f,U ′).

In particular, it implies that for every U ⊆ U c: IM(D, f,U c) ≤ IM(D, f,U). That is, the

value of the Money Metric Index calculated for all continuous and locally non-satiated utility

functions is a lower bound on IM(D, f,U) for every subset of utility functions.

3.2 Decomposing the Money Metric Index

Thus far we have been primarily concerned with GARP-consistent data sets that can be

rationalized by some utility function. Given such data sets we argued that IM(D, f,U) is a

natural measure of the misspeci�cation induced by the choice to recover the utility function

of the DM using the parametric family U . By Afriat's Theorem, data sets that do not satisfy

GARP cannot be rationalized by any utility function. Were we to restrict our analysis to

only consistent data sets, the scope of our analysis would be somewhat limited.20

20Andreoni and Miller [2002], one of the �rst experimental papers that utilizes revealed preference ap-
proach with moderate price variation, �nds that a great majority of the subjects satisfy GARP. However, in
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The method we propose to construct v? (D, u) does not depend on the consistency of

the data set D. Therefore, even if a decision maker does not satisfy GARP, we can recover

preferences (within the parametric family U) that approximate the consistent revealed pref-

erence information encoded in the choices. The di�culty with this arises from the fact that

IM (D, f,U) includes both the inconsistency with respect to GARP and the misspeci�cation

implied by the chosen parametric family. In this section we study how we can decompose

our measure into these two components.

Our strategy in developing the decomposition is to employ Varian [1990] e�ciency index

as a measure of inconsistency, which is independent of the parametric family under consid-

eration. Then, we prove that the money metric index calculated for all locally non-satiated

and continuous utility function - IM(D, f,U c) coincides with Varian's e�ciency index. It

follows that IM(D, f,U)− IM(D, f,U c) is a measure of misspeci�cation.

Consider the following generalization of GARP [Varian, 1990]:

De�nition 12. Let v ∈ [0, 1]n. D satis�es the General Axiom of Revealed Preference Given

v (GARPv) if for every pair of observed bundles, xiRD,vx
j implies not xjP 0

D,vx
i.

The vector v is used to generate the adjusted relation RD,v that is acyclic although RD

may contain cycles. It is important to note that unlike the de�nition of v−rationalizability,
such adjustments are independent of any ranking implied by a utility function. Moreover,

usually there are many vectors such that D satis�es GARPv. Following are two useful and

trivial properties of GARPv:

Fact 2. Every D satis�es GARP0.
21

Fact 3. If v,v′ ∈ [0, 1]n and v ≥ v′ and D satis�es GARPv then D satis�es GARPv′.

Varian [1990] proposed an ine�ciency index that measures the minimal adjustments of

the budget sets which remove cycles implied by choices.22 While Varian suggests to aggregate

the adjustments using the sum of squares, we de�ne this index with respect to an arbitrary

several recent experimental studies that employ a graphical interface with considerable price variation (Choi
et al. [2007], Ahn et al. [2011], Choi et al. [2011]), about 75 percent of subjects did not satisfy GARP. Most
of them can be shown to be very nearly consistent with GARP according to various measures of consistency
as Afriat [1972] Critical Cost E�ciency Index, Varian [1990] E�ciency Index, and the Houtman and Maks
[1985] Index.

21Recall that P 0
D,0 is the empty relation.

22Afriat [1972, 1973] Critical Cost E�ciency Index employs a uniform adjustment for all budgets.
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aggregator function as in De�nition 9. Thus, for a given aggregator function, this index is a

measure of the decision maker's inconsistency.

De�nition 13. Let f : [0, 1]n → [0,M ] be an aggregator function. Varian's E�ciency Index

is23,

IV (D, f) = inf
v∈[0,1]n:D satis�es GARPv

f(v)

Fact 4. IV (D, f) always exists.24

Note that the Varian Index is independent of any preference ranking, and as de�ned is just

a measure of the inconsistency incorporated in the data set. On the other hand, recall that

for a family of utility functions U , the Money Metric Index measures the distance between

U and the data set. The following Theorem establishes that the Varian Index can be viewed

as the distance between a data set and the set of all continuous and locally non-satiated

utility functions.

Theorem 1. For every �nite data set D =
{

(pi, xi)
n
i=1

}
and aggregator function f : [0, 1]n →

[0,M ] :

IV (D, f) = IM(D, f,U c)

where U c is the set of continuous and locally non-satiated utility functions.

Proof. See Appendix B.

The proof proceeds to show that IV (D, f) ≤ IM(D, f,U c) since if IV (D, f) > IM(D, f,U c)
there exists a utility function u (·) such that IM(D, f,U c) ≤ f (v? (D, u)) < IV (D, f) and D

satis�es GARPv?(D,u) in contradiction to the de�nition of IV (D, f). On the other hand, we

show that if D satis�es GARPv then IM(D, f,U c) ≤ f(v). Moreover, we show that there

exists a vector of adjustments v such that f (v) = IV (D, f) and for every 0 ≤ λ < 1 D

satis�es GARPλv, and therefore we conclude that IM(D, f,U c) ≤ IV (D, f).

23The following example, due to Alcantud et al. [2010], clari�es the use of the in�mum. A DM makes
four choices (n = 4) of bundles of three goods (K = 3) with varying prices. The resulting choices are D ={(

(1, 1, 12 ), (8, 1, 8)
)
;
(
(1, 1, 32 ), (5, 5, 6)

)
;
(
(1, 12 , 1), (5, 6, 5)

)
; ((1, 2, 2), (8, 8, 1))

}
. It is easy to see that (8, 8, 1)

is feasible when the prices are (1, 12 , 1) and therefore (5, 6, 5)R
0
D(8, 8, 1) and in the same way (8, 8, 1)R0

D(8, 1, 8)
and (8, 1, 8)R0

D(5, 5, 6), that is (5, 6, 5)RD(5, 5, 6). However, (5, 5, 6)P
0
D(5, 6, 5). Therefore, these choices do

not satisfy GARP , or GARP1. However, consider the series vl = (1− 1
l , 1, 1, 1) where l ∈ N>0. It is easy to

verify that for every l ∈ N>0, D satis�es GARPvl
.

24f(·) is bounded and by Fact 2, the set {v ∈ [0, 1]
n
: D satisfies GARPv} is non-empty.
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Theorem 1 enables to decompose the Money Metric Index into a familiar measure of in-

consistency (The Varian Index) and a natural measure of misspeci�cation that quanti�es the

cost of restricting preferences to a subset of utility functions (possibly through a parametric

form). By monotonicity of IM (Fact 1), for every U ⊆ U c :

IV (D, f) = IM(D, f,U c) ≤ IM(D, f,U)

Therefore, we can write IM(D, f,U) as the sum of IV (D, f) and IM(D, f,U)−IV (D, f). The

former is a measure of the cost associated with inconsistent choices that is independent of

any parametric restriction and depends only on the DM, while the latter measures the cost

of restricting the preferences to a speci�c parametric form by the researcher who tries to

recover the DM's preferences. This decomposition has the advantage that the two measures

are comparable (same units) and are constructed to maintain revealed preference informa-

tion encoded in the choices. As such, IM(D, f,U) − IV (D, f) serves as a natural measure

of misspeci�cation that is rooted in economic theory. Two reasons lead us to believe that

such a decomposition is essential for any method of recovering preferences of a DM who is

inconsistent, although we are not aware of its existence elsewhere in the literature. First,

since for a given data set, the inconsistency index is constant (zero if GARP is satis�ed) we

can be certain that IM(D, f,U) can be used to recover parametric preferences within some

parametric family U by minimizing the misspeci�cation. Second, only when the decompo-

sition exists, one can truly evaluate the cost of restricting preferences to some parametric

family compared to the cost incurred by the inconsistency in the choices.

Figure 3.3 demonstrates the decomposition graphically. Consider a data set of size 2:

D = {(p1, x1) , (p2, x2)} where pixi = 1. The choice is inconsistent since xiRxj and xjP 0xi

for i, j ∈ {1, 2} i 6= j. It is easy to see that for any anonymous aggregator, the Varian

Index will be IV (D, f) = f (1, v2). Hence, the dashed line (together with the original budget

line from which x1 was chosen) represents graphically the minimal adjustments required

for D to satisfy GARPv. Now consider, for example, the singleton set of utility functions

that includes the monotonic and continuous function u. We would like to �nd v? (D, u).

Since for this utility function Pu (x1) ∩ RW (x1) = φ, then v?1 (D, u) = 1. v?2 (D, u) is

the minimal expenditure required to achieve utility level of u (x2) under prices p2, which

is represented graphically by the dotted line. IM (D, f, {u}) = f (1, v?2 (D, u)) and since

v?2 (D, u) is smaller than v2, it implies that IM (D, f, {u}) is weakly greater than IV (D, f).
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Figure 3.3: Decomposition

The di�erence between the original budget line from which x2 was chosen and the dashed line

- v2p2x2, represents graphically the inconsistency implied by D, while the di�erence between

the dashed line and the dotted line - v?2p2x2, represents the misspeci�cation implied by u.

Their sum is the goodness of �t measured by the money metric index.

It is crucial to note that since, for a given data set, the inconsistency index is constant, the

goodness of �t measure can be used to recover parametric preferences within some parametric

family. The same idea can be applied to hypotheses testing and model selection. Consider

two parametric families U and U ′. A researcher will calculate IM(D, f,U ′) and IM(D, f,U).

As argued before, both incorporate the same inconsistency measure - IV (D, f), hence the

data set D may be as better approximated by U or U ′ depending on the relative magnitude

of the money metric index. Moreover, an important implication of Fact 1 is that if we impose

an additional parametric restriction on preferences (hence reduce the set of possible utility

functions we consider), the misspeci�cation will necessarily (weakly) increase. That is, if U ′

is a subset of U that is generated by some parametric restriction, then IM (D,f,U ′)−IM (D,f,U)
IM (D,f,U)−IV (D,f)

is

a measure of the relative marginal misspeci�cation implied by the restriction of U to U ′. We

will tend to accept the restriction if this ratio is low. This methodology resembles statistical

hypothesis testing, although the current study does not incorporate any error structure.

Inclusion of such structure may provide an interesting avenue for future research, but is not

pursued here.25

25See related discussions in Afriat [1972] and in Varian [1985].
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Figure 4.1: Non-convex preferences and a distance-based loss-function

4 Application to Choice under Risk

The goal of this section is to demonstrate the empirical di�erences between the recovery

method proposed in the current paper and a recovery method that utilizes a loss-function

that is based on the distance between observed and predicted choices in the commodity

space. Speci�cally, we compare to NLLS, which belongs to this class.

Recovery that employs such loss function fails to account for all the ranking information

encoded in the choices, since it compares only the distance between predictions and choices

and does not incorporate all other bundles that were feasible but were not chosen. Moreover,

if the �true� (unobserved) preferences are not convex, the ranking information induced by a

utility function that generates a closer prediction may be more inconsistent with the �true�

ranking of bundles. In other words, the intuition that a closer prediction represents less

misspeci�cation relies crucially on the assumption of convex preferences, which is not part

of revealed preference theory. Figure 4.1 demonstrates this argument. Consider a choice of

x0 generated by the non-convex preferences depicted in the �gure. These preferences would

imply that had the DM faced the menu {x′, x′′}, she would choose x′′. Since x′ is closer

to x0 than x′′, every recovery method that is based on a distance between observed and

predicted choices, would assign a lower loss to preferences with predicted choice at x′ than

to preferences with predicted choice at x′′. This would imply that x′ is preferred to x′′ -

contrary to the �true� preferences that generated the data.

We apply the parametric recoverability method developed in this study and NLLS to a
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data set of portfolio choice problems collected by Choi et al. [2007]. In their experiment,

subjects were asked to choose the optimal portfolio using a combination of Arrow securities

from convex budget sets with varying prices. We focus our analysis only on the treatment

where the two states are equally probable. For each subject, the authors collect 50 obser-

vations and proceed to test these choices for rationality (i.e. GARP) as well as estimate a

parametric utility function in order to determine the magnitude and distribution of risk at-

titudes in the population. Choi et al. [2007] estimate a Disappointment Aversion functional

form introduced by Gul [1991] (for equally probable states):26

u(xi) = γw
(
max

{
xi1, x

i
2

})
+ (1− γ)w

(
min

{
xi1, x

i
2

})
(4.1)

where

γ =
1

2 + β
β > −1

and

w(z) =
z1−ρ

1− ρ
The parameter γ is the weight placed on the better outcome. For β > 0, the better

outcome is under-weighted relative to the objective probability (of 0.5) and the decision

maker is disappointment averse. For β < 0, the better outcome is over-weighted relative

to the objective probability (of 0.5) and the decision maker is elation seeking.27 In the

knife-edge case, when β = 0, (4.1) reduces to expected utility. β has important economic

implication: if β > (=)0 the decision maker exhibits �rst-order (second order) risk aversion

[Segal and Spivak, 1990]. That is, the risk premium for small fair gambles is proportional

to the standard deviation (variance) of the gamble.28 First order risk aversion can account

for important empirical regularities that expected utility (with its implied second-order risk

aversion) cannot, such as in portfolio choice problems [Segal and Spivak, 1990], calibration

of risk aversion in the small and large and disentangling intertemporal substitution from

risk aversion (see Epstein, 1992 for a survey). Figure 4.2 illustrates characteristic indi�er-

26Note that for two states of the world, one cannot distinguish between Rank Dependent Preferences and
Disappointment Aversion preferences. See also Footnote 6.

27Note that we allow for elation seeking while the original work of Choi et al. [2007] assumes that β ≥ 0.
28−1 < β < 0 implies local risk-seeking behavior.
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Figure 4.2: Non-Expected Utility, Gul [1991]

ence curves for disappointment aversion and elation seeking (locally non-convex) subjects,

respectively. Additionally, w(x) is a standard utility for wealth function and is represented

here by the CRRA functional form.

We recover preferences (β and ρ) using two di�erent methods: the standard statistical

Non-Linear Least Squares (NLLS) based on the Euclidean distance and the Money Metric

method developed here. To calculate the Varian Index, IV (D, f), and the Money Metric

Index, IM (D, f,U), we use the quadratic aggregator:

f (v) =

√√√√ 1

n

n∑
i=1

(1− vi)2

In both methods we use numerical optimization algorithm that allow us to overcome the

di�culties associated with using analytical method (as those based on the �rst order con-

ditions) when preferences are not convex or the slope of the indi�erence curve at the axis

approaches in�nity. In addition, this enables switching the designated family of parametric

utility function easily. For technical and computational details see Appendix ??.

The recovered parameters for all subjects who satisfy GARP (12 out of 47), using both

the statistical method and money metric method, are reported in Table 1.29 In addition, the

29Note that the recovered parameters for the statistical method may di�er from those reported in Choi
et al. [2007] for several reasons: we allow for elation loving (−1 < β < 0); we permit boundary observations
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Statistical Money Metric
Subject β ρ β ρ IM (D, f,U)

304 0.575 176.227 0.613 26.802 0.00164
317 -0.058 1.556 0.182 0.979 0.00766
316 0.642 0.635 1.145 0.520 0.01944
326 0.673 0.339 0.698 0.146 0.02137
216 0.010 0.355 0.212 0.295 0.02328
314 0.365 0.0005 0.367 0.027 0.02817
219 0.136 0.580 0.958 0.171 0.03022
214 -0.994 15.208 0.093 0.943 0.03144
306 -0.315 6.245 0.521 1.566 0.03513
303 0.0014 1 0.893 0.247 0.04373
205 -0.991 2.722 -0.639 1.074 0.11104
320 -1 17.943 -0.508 0.968 0.13224

Mean (GARP) -0.0797 18.5673 0.37781 2.8115 0.04045
Median (GARP) 0.0057 1.2795 0.4442 0.7314 0.02919

Mean (all) 0.2695 5.9934 0.3835 1.0570 0.06178
Median (all) 0.1710 0.6349 0.3674 0.3562 0.05012

Table 1: Recovering Preferences - Results

goodness of �t, expressed as the Money Metric Index is reported in the last column. This

number represents the �ine�ciency� implied by using the functional form (note that these

subjects are consistent). The lower rows report the average and median value of parameters

for the consistent and for all 47 subjects.

Notice that in all cases the recovered parameters di�er between the two methods. While

these di�erences cannot be tested for statistical signi�cance, as our framework does not in-

clude any stochastic component, we can interpret them in terms of economic signi�cance. In

other words, numerical di�erences in the recovered parameters are suggestive of important

qualitative di�erences in behavior. Consider, for example, subject 317: the statistical method

results in β < 0 implying that the decision maker is elation loving, where as the money metric

method suggests the opposite, i.e. the decision maker is disappointment averse. There are

signi�cant behavioral di�erences between these types of preferences. In particular, elation

loving subjects will display local risk seeking behavior along the certainty line, but disap-

pointment averse subjects will display �rst-order risk aversion in the same region. In light of

(xi = 0); we use numerical optimization with 5 to 10 initial values (instead of a single initial value) ; we use
Euclidean norm (instead of the geometric mean). For robustness we made sure that we are able to replicate
Choi et al. [2007] reported results.
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the fact that our recovery method incorporates more revealed preference information than

the statistical method, it presents more welfare information that pertains to comparisons

between unobserved portfolios.

The last column provides a metric for quantifying the extent of misspeci�cation and thus

can be used by a researcher to determine if a certain parametric form is an adequate repre-

sentation of the decision maker's preferences. For example, we can interpret this number as

the average percentage of income wasted if the decision maker were to make choices accord-

ing to the recovered utility function rather than their true preferences. For Subject 317 this

implies an average waste of about 0.8% or approximately $0.80 out of $100 of income. On

the other hand, for Subject 320 this implies an average ine�ciency of more than $13 out of

$100. These numbers have immediate economic interpretation as they quantify the percent-

age of the portfolio that should be paid to an investment manager who has disappointment

aversion preferences, instead of making the investment decisions independently. What is the

critical value for this variable remains to the researcher's discretion. In the current sample 10

out of the 12 consistent subjects have a misspeci�cation of less than 10% of their income.30

4.1 Recovering Preferences for Inconsistent Decision Makers

In Section 3.2 we proved the decomposition of the Money Metric Index into the Varian Index

- which serves as a measure of consistency, and a remainder - which is a measure of misspec-

i�cation. As such, we can use this approach to recover approximate preferences for those

subjects who fail GARP and for whom there exists no utility function that can strictly ratio-

nalize their choices. The approximate preference is the closest, within the parametric family

considered, to rationalizing the choices according to the money metric and the quadratic

additive aggregator function used.

Computing the Varian Index is a hard computational problem (see discussion in Section

5.1). We implemented an algorithm that over-estimates the real Varian Index (the details of

the implementation are in Appendix ??). The implication of this overestimation is that in

most of the results that follow, the decomposition of the Money Metric Index overestimates

the irrationality component and underestimates the misspeci�cation component. An un-

30Inspection of the choices made by subjects 205 and 320 reveals a consistent pattern in their decision
making that is easily represented by a utility function. That said, this utility function is not a member of
the parametric family being estimated and this is the source of the misspeci�cation. It should be noted,
however, that even if we did not know the true preferences of the decision maker, the criterion would still
provide evidence of the type of misspeci�cation described above.
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Subject IV β ρ IM

205 0 -0.639 1.074 0.111
207 0.00982 0.205 0.180 0.020

Table 2: Rationalizing the Inconsistent

Misspeci�cation % of income ≤ 0 1 2 3 4 5 6 7 8 9 10 11+

Frequency 5 6 6 12 5 4 2 2 1 0 0 4

Table 3: Misspeci�cation Distribution

avoidable consequence of this computational bias is that in some cases the misspeci�cation

component will be negative.

To illustrate, consider Table 2 that compares the recovered parameters using the Money

Metric method for two subjects taken from Choi et al. [2007]. Subject 205's choices are

consistent with GARP while subject 207's are inconsistent. In spite of the fact that 205

is consistent, the parametric preferences considered cannot encode the ranking implied by

her choices, as it requires 11% wasted income on average. On the other hand, the revealed

preference information implied by 207's choices is well captured by the parametric family,

since it implies ine�ciency of only 2%, in spite of the fact that her choices are not strictly

consistent (IV = 0.00962 > 0, 13 GARP violations). In other words, the misspeci�cation

implied by the parametric family is much smaller for 207 than for 205. As such, the Money

Metric recoverability can be applied uniformly to all data sets, and the misspeci�cation and

inconsistency can be evaluated on a common scale ex-post.

Using the decomposition of the Money Metric Index into the Varian Index (measure of

consistency) and a residual which measures misspeci�cation, we can calculate the misspeci-

�cation for each subject (recall that these are underestimations).

Table 3presents the distribution of misspeci�cation in the Choi et al. [2007] sample.

Due to the underestimation of the misspeci�cation and the lack of information about the

properties of this bias, all that can be learned in certainty is that at least 25% of the sample is

represented poorly by the disappointment aversion model with CRRA, as the misspeci�cation

implied by the use of the functional form is higher than 5%.
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4.2 Behavioral Implications

We �nd that for all consistent subjects and 31 out of the 47 subjects overall, the money

metric method recovers β value higher than the statistical method, and for 36 out of the

47 subjects (11 out of the 12 consistent subjects) the money metric method recovers lower

value of ρ than the estimated statistical method value. That implies much higher degree of

�rst-order risk aversion, and a much lower curvature of the indi�erence curve away from the

certainty line using the money metric recovery. Naturally, this is a limited sample, but if

this result would generalize (the graphical interface developed by Choi et al. 2007 enables

the collection of large data sets relatively quickly and cheaply) it could have far reaching

implications on the quantitative estimates used in the macroeconomics and �nance literature,

employing for example the Epstein and Zin [1989] framework.

4.3 Evaluating a Restriction to Expected Utility

Using the decomposition result we can evaluate the additional misspeci�cation implied by re-

stricting preferences to be expected utility with constant relative risk aversion. This requires

recovering ρ under the restriction that β = 0. Obviously, the restriction implies increase in

the misspeci�cation. As proposed in Section 3.2, we use the ratio IM (D,f,EU)−IM (D,f,DA)
IM (D,f,DA)−IV (D,f)

where

DA stands for disappointment averse with CRRA utility function, EU stands for expected

utility with CRRA and f is standardized sum of squares aggregator. We use a critical value

of 10%. That is, if the restriction to expected utility implies a proportional increase in the

misspeci�cation of more than 10% then, we tend to reject the expected utility speci�cation.

Note that since IV (D, f) is an overestimation of the Varian Index, the calculated ratio is

also an overestimation of the real ratio, meaning that the test is actually more strict than it

seems.

Five subjects have Varian Index of more than 10%, so their choices are too inconsistent

to consider any reasonable recoverability. Four other subjects (two of them consistent)

have a Money metric Index of more than 10%, implying that the disappointment aversion

speci�cation does not capture their behavior. Out of the reminder 38 subjects, the choices

made by 15 subjects are well approximated by the expected utility model with CRRA, as

the restriction β = 0 implies an increase of less than 10% relative to the misspeci�cation

of the disappointment aversion model (that is, the absolute additional misspeci�cation is

less than 1%). The reminder 23 subjects are not well approximated by the expected utility
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model with CRRA as the increase in the misspeci�cation implied by restricting to expected

utility is higher than 10%.

5 Short Discussions

5.1 The Computation of the Varian Index

Afriat [1972, 1973, 1987] and Varian [1990] discuss non-uniform adjustments of the budget

lines so that the inconsistencies in the data are removed. Varian [1990] argues that given an

aggregator function an optimal vector of adjustments can be found. Moreover, the value of

this vector can be interpreted as the inconsistency level of a given data set. The problem

of �nding this exact value is equivalent to the minimum cost feedback arc set problem.31 ?

shows that the minimum cost feedback arc set problem is NP-Hard and therefore �nding the

exact Varian's index is also NP-Hard as suggested in Varian [1990].

Three algorithms to compute a polynomial approximation were suggested in the eco-

nomics literature. The �rst algorithm (Tsur [1989] and Algorithm 1 in Alcantud et al.

[2010]) suggests to report the vector v such that vj is the minimal adjustment required to

exclude all xi such that xiRxj from the budget set of observation j. The second algorithm

(Algorithm 2 in Alcantud et al. [2010]) is such that vj is the minimal adjustment required

to exclude one xi such that xiRxj from the budget set of observation j. If the data satis�es

GARPv, v is reported, otherwise another point is removed for each observation j and so on

until GARPv is satis�ed. The third algorithm (Varian [1993] and Algorithm 3 in Alcantud

et al. [2010]) suggests to calculate the minimal adjustment to one of the budget sets, such

that one violation of GARP is removed. This minimal value should be substituted into

v and GARPv should be checked. If the data satis�es GARPv, v is reported, otherwise

another point is removed and the procedure is repeated until the data satis�es GARPv.

Alcantud et al. [2010] show that Algorithms 2 and 3 are better approximations than

Algorithm 1 and that they do not dominate each other. Moreover, Alcantud et al. [2010]

show that D satis�es GARPv for the v found by Algorithms 2 and 3. This implies that

these approximations are overestimations of the actual Varian's index. We do not know of

any measure for the quality of this approximation. Also, note that none of these algorithms

31Given a directed and weighted graph, �nd the �cheapest� subset of arcs such that its removal turns the
graph into an acyclic graph
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Figure 5.1: Modi�ed Budget Sets

uses the chosen aggregator function as part of its iterative mechanism. We believe that in-

corporating the computer science literature on the �minimum cost feedback arc set problem�

and using the chosen aggregator may improve considerably the quality of approximation.

5.2 Area-based Parametric Recoverability

Figure 3.1 suggests an obvious alternative to the money metric as a foundation for measuring

misspeci�cation: a measure that is based on the area of overlap between the upper contour

set corresponding to a speci�c utility function, and the set of alternatives that are revealed

worse than the observed choice. This measure is related to the Minimal Swaps Index, which

is a measure of inconsistency proposed recently by Apesteguia and Ballester [2012] for the

case of �nite number of alternatives. To generalize their method to in�nite alternatives set

as studied in the current paper, one needs to calculate an index that is based on the area

above for the entire set of acyclic relations. When the set of utility functions is restricted to

a single parametric family the Minimal Swaps Index could then be decomposed into separate

measures of inconsistency and misspeci�cation. While there was an obvious way to achieve

this goal with respect to the Money Metric Index and the corresponding Varian E�ciency

Index, it is not entirely clear how to measure inconsistency directly using areas.

We can de�ne a measure of inconsistency based on the area of overlap between the

revealed preferred set and the budget set corresponding to an observed choice. However, since

we are dealing with inconsistent data set, we di�er from Varian [1982] and de�ne the revealed

preferred set as only those bundles which are either revealed preferred or monotonically
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dominate a bundle that is revealed preferred to a given bundle. Hence, as illustrated in

Figure 5.1, violations of consistency are removed by modifying budget sets so as to eliminate

the area of overlap between the budget set and those bundles which are revealed preferred.

Hence, we can use this measure to decompose the Area Index into separate measures of

inconsistency and misspeci�cation just as we did with the Money Metric Index.

Nevertheless, the Area Index is not ideal. First, there does not exist an elegant theoretical

analog to Afriat's Theorem with respect to the modi�ed budget sets in Figure 5.1 as there

does for the speci�c type of budget set adjustments utilized in calculating the Money Metric

Index. Second, it is not clear that computing the inconsistency index suggested above would

be any easier than computing the Varian E�ciency Index, a problem which is NP-hard.

Third, it is a simple exercise to show that choices with modi�ed budget sets as in Figure

5.1 can be easily rationalized by non-convex preferences and, in fact, any recoverability

procedure based on the Area Index would be biased towards these types of non-convexities.

Put another way, with the Area metric as a criterion, any convex preferences which rationalize

the modi�ed data set can be improved upon with similar non-convex preferences. Lastly, the

simple Area Index may lack intuitive interpretation that the money metric index enjoys. All

these are surmountable di�culties, that we think are worthwhile pursuing in future work.

Ultimately, since the Money Metric Index does not appear to su�er from the same issues we

currently believe it dominates the Area Metric both as a measure of misspeci�cation and as

a method for recovering preferences.

5.3 From Ine�ciency to Consideration Sets

In the consistency literature, Afriat [1972] and Varian [1990, 1993] view the extent of the

adjustment of the budget line as the amount of income wasted by a decision maker relative to

a fully consistent one (hence the term �e�ciency index�). A related interpretation, mentioned

by Houtman [1995], holds that the DM overestimates prices and hence does not consider all

feasible alternatives. An alternative interpretation (due to Manzini and Mariotti, 2007, 2012,

Apesteguia and Ballester, 2012, Masatlioglu et al., 2012, Cherepanov et al., 2012), views

the adjusted budget set as a consideration set which includes only the alternatives from the

original budget menu that the DM compares to the chosen alternative. By construction, those

bundles not included in the attention set are irrelevant for revealed preference consideration.

Another line of interpretation for inconsistent choice data, is measurement error [Varian,
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1985, Tsur, 1989]. These errors could be the result of various circumstances as (literally)

trembling hand, indivisibility, omitted variables etc.

All above interpretations take literally the existence of an underlying �welfare� prefer-

ences that generate the data [Bernheim and Rangel, 2009]. Since there exist other plausible

data generating processes that result in approximate (and even exact) consistent choices

[Rubinstein and Salant, 2012], we do not �nd a clear reason to favor one interpretation over

the other, and would rather remain agnostic about the nature of the adjustments required

to measure inconsistency.

More importantly, this paper studies the problem of recoverability of preferences and

not consistency. That is, we take the data set as the primitive and the utility function as

an approximation. As such, the adjustments serve us as a measurement tool (�ruler�) for

quantifying the extent of misspeci�cation. We view the current work as contributing to the

measurement of misspeci�cation rather than to the literature that explains how inconsistency

arises.
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A Proof of Proposition 1

Notation. Let x ∈ <K and δ > 0. Bδ (x) =
{
y ∈ <K : ‖y − x‖ < δ

}
.

De�nition. A utility function u : <K → < is

1. locally non-satiated if ∀x ∈ <K and ∀ε > 0 ∃y ∈ Bδ (x) such that u(y) > u(x).

2. continuous if ∀x ∈ <K and ∀ε > 0 there exists δ > 0 such that for y ∈ Bδ (x) implies

u (y) ∈ Bε (u (x)).

Lemma. If u (·) is a locally non-satiated utility function that rationalizes D =
{

(pi, xi)
n
i=1

}
,

then xiP 0x implies u (xi) > u (x).

Proof. Suppose xiP 0
Dx (pixi > pix). Then by the de�nition of the revealed preference re-

lations (De�nition 1), xiR0
Dx. Since u (·) rationalizes D, xiR0

Dx implies u (xi) ≥ u (x).

Suppose that u (xi) = u (x). Since pixi > pix ∃ε > 0 such that ∀y ∈ Bε (x) : pixi > piy.

By local non-satiation ∃y′ ∈ Bε (x) such that u (y′) > u (x) = u (xi). Thus, y′ is a bundle

such that pixi > piy′ and u (y′) > u (xi), in contradiction to u (·) rationalizes D. Therefore,
u (xi) > u (x).

For what follows, let D =
{

(pi, xi)
n
i=1

}
and let u (·) be a continuous and locally non-satiated

utility function.

Part 1: u(·) v?(D, u)-rationalizes D

Proof. Suppose that for some observation (pi, xi) ∈ D there exists a bundle x such that

xiR0
D,v?(D,u)x and u (xi) < u (x). By the de�nition of the revealed preference relations

induced by adjusted data sets (De�nition 7.1), v?i(D, u)pixi ≥ pix. By the normalized

money metric de�nition (De�nition 10), m (xi, pi, u) ≥ pix. Since m (xi, pi, u) is the minimal

expenditure required to achieve a utility level of at least u (xi), the case where the inequality

is strict contradicts De�nition 10. If m(xi, pi, u) = pix and u(xi) < u(x), by continuity of

u (·) there exists γ > 0 such that u (xi) < u ((1− γ)x). However, since pi (1− γ)x < pix =

m(xi, pi, u), we reach a contradiction to De�nition 10.
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Part 2: v? (D, u) = 1 if and only if u (·) rationalizes D.

Proof. First, let us show that if u (·) rationalizes D then v? (D, u) = 1. Suppose that for

observation (pi, xi) ∈ D, v?i (D, u) < 1, that is: m (xi, pi, u) < pixi. By De�nition 10, there

exists a bundle x such that pix < pixi and u (x) ≥ u (xi). However, since by De�nition

1.2, xiP 0
Dx, and since u (·) is a locally non-satiated utility function that rationalizes D,

the above proven lemma implies, in contradiction, that u(xi) > u(x). Thus, for every

observation (pi, xi) ∈ D, m (xi, pi, u) ≥ pixi. But by De�nition 10 m(xi, pi, u) ≤ pixi for all

i. Combining the two weak inequalities leads to m (xi, pi, u) = pixi for every observation,

that is: v?i (D, u) = 1 for all i. Thus, v? (D, u) = 1.

Next, let us show that if v? (D, u) = 1 then u (·) rationalizes D. By De�nition 10,

v?(D, u) = 1 implies m(xi, pi, u) = pixi for every (pi, xi) ∈ D. Suppose that u(·) does not

rationalize the data. That is, for some observation (pi, xi), there exists a bundle x such that

u(x) > u(xi) and xiR0
Dx. By continuity of u (·) there exist γ > 0 such that u ((1− γ)x) >

u (xi). However, since pi (1− γ)x < pixi = m (xi, pi, u) we reach a contradiction to De�nition

10.

Part 3: Let v∈<n, 0 5 v 5 1. u (·) v-rationalizes D if and only if v 5 v?(D, u).

Proof. First, let us show that if u (·) v-rationalizes D then v 5 v?(D, u). Suppose that

v is such that u (·) v-rationalizes D and for observation i, vi > v?i (D, u). By De�-

nition 8, u (xi) ≥ u (x) for all x such that xiR0
D,vx or equivalently vipixi ≥ pix. By

De�nition 10 and since vi > v?i (D, u) we get that vipixi > m (xi, pi, u) = pixi? where

xi? ∈ argmin{y∈<K
+ :u(y)≥u(xi)}p

iy. It follows that ∃ε > 0 such that ∀y ∈ Bε (xi?) : vipixi > piy.

By local non-satiation ∃y′ ∈ Bε (xi?) such that u (y′) > u (xi?) ≥ u (xi). Thus, y′ is a bundle

such that vipixi > piy′ and u (y′) > u (xi) contradicting that u (·) v-rationalizes D.

Next, let us show that if v 5 v?(D, u) then u (·) v-rationalizes D. By Part 1: u(·)
v?(D, u)-rationalizes D. That is, for every observation (pi, xi) ∈ D, v?i(D, u)pixi ≥ pix im-

plies u (xi) ≥ u (x). Since v 5 v?(D, u), for every observation (pi, xi) ∈ D, v?i (D, u) pixi ≥
vipixi. Therefore, for every observation (pi, xi) ∈ D, vipixi ≥ pix implies u (xi) ≥ u (x).

Hence, u (·) v-rationalizes D.
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B Proof of Theorem 1

Notation. We use the following notations throughout the proof:

• Let v ∈ [0, 1]n and δ > 0. B̄δ(v) = {v′ ∈ [0, 1]n : ‖v′ − v‖ < δ} .

• Ev = {v ∈ [0, 1]n : f(v) = IV (D, f)}

• ∀ε < M − IV (D, f) : Ev+ε = {v ∈ [0, 1]n : f(v) = IV (D, f) + ε}.

• EG =
{
v ∈ [0, 1]n : ∀r > 0, ∃v′ ∈ B̄r(v), D satis�es GARPv′

}
.

• Ê = Ev ∩ EG.

Lemma 1. Ev is non-empty, bounded and closed.

Proof. First, by Fact 4, IV (D, f) always exists. Second, by De�nition 9 f(·) is continuous

and bounded. By the Intermediate Value Theorem, for every value of IV (D, f) there exists

a vector v such that f(v) = IV (D, f), concluding that Ev is non-empty. Third, Ev ⊆ [0, 1]n

and therefore it is bounded. Finally, since f(·) is continuous it induces a continuous ordering
on [0, 1]n. Therefore, for every IV (D, f), the upper contour set and the lower contour set are

closed and their intersection, Ev, is closed as well.

Lemma 2. Ê is non-empty.

Proof. Assume IV (D, f) < M . Suppose that Ê is empty, that is v ∈ Ev ⇒ v /∈ EG

(due to Lemma 1, this condition is not vacuous). Thus, ∀v ∈ Ev, ∃r > 0, ∀v′ ∈
B̄r(v), D violates GARPv′ . Let r(v) = sup{r∈(0,

√
n]:∀v′∈B̄r(v), D violates GARPv′} r. r(v) is uni-

form continuous on Ev since ∀v,v′ ∈ Ev if ‖ v − v′ ‖< ε then by the triangle inequality

|r(v) − r(v′)| < ε.32 Let r̄ = minv∈Ev r(v). r̄ exists since r(v) is continuous on Ev and Ev

is bounded and closed (by Lemma 1). In addition, r̄ > 0 since ∀v ∈ Ev : r(v) > 0. Then,

∀v ∈ Ev, ∀r < r̄, ∀v′ ∈ B̄r(v), D violates GARPv′ . Thus, we established that for every

IV (D, f) < M if Ê is empty there exists a hypercylinder H of radius r̄ > 0 around Ev such

that if v′ is an interior point in H then D violates GARPv′ .

32The distance between v and v′ is at most ε, the distance between v and some w such that D satis�es
GARPw is r(v) and by the triangle inequality the distance between v′ and w, which serves as a bound on
r(v′), is between r(v)− ε and r(v) + ε.
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The next step is to show that there exists 0 < ε < M−IV (D) such that Ev+ε is contained

in H (by Lemma 1 Ev+ε is non-empty). Suppose that for every 0 < ε < M − IV (D, f) there

exists v′ε ∈Ev+ε such that v′ε /∈H. Then, v′ε, where ε→ 0, is an in�nite bounded sequence in

[0, 1]n and therefore it has a convergent subsequence. Denote the limit of this subsequence

by v̂. Since v̂ is not an interior point of H it must be that f(v̂) 6= IV (D, f). However, by

construction, limε→0 f(v′ε) = IV (D, f), suggesting that f(·) is not continuous. Thus, there

exists ε̄ such that Ev+ε̄ ⊂ H. Moreover, since f(·) is continuous ∀ε ∈ [0, ε̄) : Ev+ε ⊂ H.

That is, there exists ε̄ > 0 such that for every v′∈ [0, 1]n that satis�es IV (D, f) ≤ f(v′) <

IV (D, f) + ε̄ < M , D violates GARPv′ . Since IV (D, f) is an in�mum there is no v∈ [0, 1]n

such that f(v) < IV (D, f) and D satis�es GARPv. Thus, there exists IV (D, f) < m < M

such that for every v∈ [0, 1]n : f(v) < m and D violates GARPv. That contradicts the

maximality of IV (D, f) as an in�mum. Therefore, we have shown that if IV (D, f) < M then

Ê is non-empty.

Finally, suppose IV (D, f) = M . By De�nition 9, 0 ∈ Ev. By Fact 2, 0 ∈ EG. Thus, also
if IV (D, f) = M then Ê is non-empty.

Lemma 3. Let v ∈ [0, 1]n. If ṽ ∈ B̄δ(v) and D satis�es GARPṽ, there exists v̂ ∈ B̄δ(v)

where v̂ ≤ v such that D satis�es GARPv̂.

Proof. If ṽ ≤ v then the lemma is trivial. If v ≤ ṽ then by Fact 3 D satis�es GARPv. By

the same fact, D satis�es GARPv̂ for every v̂ ∈ B̄δ(v) where v̂ ≤ v. Otherwise, de�ne v̂

such that ∀i ∈ {1, . . . , n} : v̂i = min {vi, ṽi}. By construction, v̂ ≤ v and v̂ ≤ ṽ. Since

∀i ∈ {1, . . . , n} : |v̂i − vi| ≤ |ṽi − vi| then v̂ ∈ Bδ(v). In addition, since v, ṽ ∈ [0, 1]n then

v̂ ∈ [0, 1]n. Therefore, v̂ ∈ B̄δ(v). Finally, since v̂ ≤ ṽ and D satis�es GARPṽ by Fact 3 D

satis�es GARPv̂. Thus, we constructed v̂ ∈ B̄δ(v) where v̂ ≤ v and such that D satis�es

GARPv̂.

Lemma 4. Let v? ∈ Ê. D satis�es GARPλv? for all λ ∈ [0, 1).

Proof. By Lemma 2 v? exists. If v? = 0 the Lemma is trivial by Fact 2. Suppose v? ≥ 0.

Denote v?min = min{v?i>0} v
?
i and let δ ∈ (0, v?min). Let B̃δ(v

?) = {v : v ≤ v?} ∩ B̄δ(v
?). Let

ṽ ∈ B̃δ(v
?) such that D satis�es GARPṽ. By Lemma 3 such ṽ exists and by construction

ṽ 6= v?. Note that choice of δ implies that for every i ∈ {1, . . . , n}, v?i > 0 =⇒ ṽi > 0.

De�ne λ = {λi} ni=1 such that if v?i = 0 then λi = 0 and otherwise λi = ṽi
v?i
> 0. Then,

λ ∈ [0, 1]n\{0}. Denote λ̄ = min{λi>0} λ
i. Then, 0 < λ̄ < 1. For every i ∈ {1, . . . , n} de�ne
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v̂i = λ̄v?i . First, note that ∀i ∈ {1, . . . , n} : v̂i ≤ ṽi (if v
?
i = 0 then v̂i ≤ ṽi = v?i = 0,

otherwise, v̂i = λ̄v?i≤ ṽi
v?i
v?i = ṽi) and by Fact 3 since D satis�es GARPṽ then D satis�es

GARPv̂. Second, v̂ = λ̄v?. Finally, note that ∀i ∈ {1, . . . , n} : v?i − δ ≤ ṽi ≤ v?i . Therefore,

∀i ∈ {1, . . . , n} : 1 − δ
v?i
≤ λi ≤ 1 and 1 − δ

v?min
≤ λ̄ < 1. Thus, for every ε > 0 there exists

λ̄ > 1 − ε such that v̂ = λ̄v? and D satis�es GARPλv? . By Fact 3 for every 0 ≤ λ ≤ λ̄ D

satis�es GARPλv? . Hence, D satis�es GARPλv? for all λ ∈ [0, 1).

De�nition. Let v ∈ [0, 1]n. D satis�es v -Cyclical Consistency if

vrprxr ≥ prxs, vspsxs ≥ psxt, . . . , vqpqxq ≥ pqxr

=⇒ vrprxr = prxs, vspsxs = psxt, . . . , vqpqxq = pqxr

Lemma 5. (Following Fact 1 in Varian [1982]) Let v ∈ [0, 1]n. D satis�es v-Cyclical

Consistency if and only if it satis�es GARPv.

Proof. Suppose D violates v-Cyclical Consistency. Then, there exists a sequence of ob-

servations such that vrprxr ≥ prxs, vspsxs ≥ psxt, . . . , vqpqxq ≥ pqxr and vspsxs > psxt.

By De�nition 7 xrR0
D,vx

s, xsR0
D,vx

t, . . . , xqR0
D,vx

r and therefore xtRD,vx
s. However, by

the same de�nition xsP 0
D,vx

t. Thus, D violates GARPv. On the other hand, suppose

D violates GARPv. There exists a pair of observations (pt, xt) and (ps, xs) such that

xtRD,vx
s and xsP 0

D,vx
t. Again, by De�nition 7 there exists a subset of observations such

that xtR0
D,vx

u, xuR0
D,vx

v, . . . , xqR0
D,vx

s and since xsP 0
D,vx

t implies xsR0
D,vx

t there is a sub-

set of observations such that vtptxt ≥ ptxu, vupuxu ≥ puxv, . . . , vspsxs ≥ psxt. In addition,

since xsP 0
D,vx

t we have vspsxs > psxt. However, this combination violates v-Cyclical Con-

sistency.

Lemma 6. IV (D, f) ≤ IM(D, f,U c)

Proof. If IV (D, f) = 0 the lemma follows from de�nitions 9 and 11. Otherwise, suppose that

IV (D, f) > IM(D, f,U c). Since IM(D, f,U c) = infu∈Uc f (v? (D, u)) there exists u ∈ U c such
that f (v? (D, u)) < IV (D, f). By Proposition 1.1 u(·) v?(D, u)-rationalizes D. By Theorem

6.3.I in Afriat [1987] (p. 179)33 u(·) v?(D, u)-rationalizesD if and only ifD satis�es v?(D, u)-

33Afriat [1987] does not provide a proof for this theorem. Afriat [1973] provides a proof for the uniform
case (same adjustments for all observations) which can be generalized to this theorem. Houtman [1995]
studies general cost functions that include the uniform case, the non-uniform case that we use and many
other cases. He provides a proof for a general form of Theorem 6.3.I in Afriat [1987] that applies here as
well. Note that while Houtman [1995] elaborates on the uniform case, all his statements on this case apply
also to the non-uniform linear case that is considered here.

36



Cyclical Consistency, which is equivalent, by Lemma 5, toD satis�es GARPv?(D,u). However,

since D satis�es GARPv?(D,u) and f (v? (D, u)) < IV (D, f), IV (D, f) cannot be the in�mum

of f(·) on the set of all v ∈ [0, 1]n such that D satis�es GARPv.

Lemma 7. Let v ∈ [0, 1]n be such that D satis�es GARPv. Then IM(D, f,U c) ≤ f(v).

Proof. By Lemma 5, D satis�es GARPv if and only if D satis�es v-Cyclical Consistency. By

Theorem 6.3.I in Afriat [1987] (p. 179) D satis�es v-Cyclical Consistency if and only if there

exists a non-satiated continuous utility function u ∈ U c that v-rationalizesD. By Proposition

1.3, v ≤ v? (D, u). Since f(·) is weakly decreasing f (v? (D, u)) ≤ f(v). Therefore, by

De�nition 11, IM(D, f,U c) ≤ f(v).

Theorem. For every �nite data set D =
{

(pi, xi)
n
i=1

}
and aggregator function f : [0, 1]n →

[0,M ] :

IV (D, f) = IM(D, f,U c)

where U c is the set of contionuous and locally non-satiated utility functions.

Proof. Let v? ∈ Ê. By Lemma 2 such point exists. For every λ ∈ [0, 1] denote Fλ = f(λv?).

Consider the sequence of intervals [IV (D, f), Fλ). By Lemma 4, D satis�es GARPλv? for

all λ ∈ [0, 1). Therefore, by Lemma 7, ∀λ ∈ [0, 1) : IM(D, f,U c) ≤ Fλ. In addition, by

Lemma 6, IV (D, f) ≤ IM(D, f,U c). Hence, ∀λ ∈ [0, 1) : IM(D, f,U c) ∈ [IV (D, f), Fλ).

Since limλ→1 Fλ = IV (D, f) we get IV (D, f) = IM(D, f,U c).
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