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Abstract

We show that in multi-sender cheap talk games where senders imperfectly observe

the state, if the state space is large enough, then there exist equilibria arbitrarily

close to full revelation of the state as the noise in the senders’observations vanishes.

In the case of replacement noise, where the senders observe the true state with high

probability, our equilibrium construction involves one round of communication. In

the case of continuous noise, where senders observe a signal distributed according to a

continuous distribution over an interval around the true state, our construction involves

two rounds of communication. After the first round of communication, it becomes a

common 1-belief between the senders that the state is in a small interval of the state

space, even though before the communication, there is no nontrivial event that is a

common p-belief between them for positive p. The results imply that when there are

multiple experts from whom to solicit information, if the state space is large, then even

when the state is observed imperfectly, there are communication equilibria that are

strictly better for the principal than delegating the decision right to one of the experts.

1 Introduction

In sharp contrast to the predictions of cheap talk models with a single sender (Crawford

and Sobel (1982), Green and Stokey (2007)), if a policymaker has the chance to consult
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multiple experts and the state space is large enough, there exist equilibria in which the

policymaker always learns the true state. This observation was first made by Krishna and

Morgan (2001a), while Battaglini (2002) gives necessary and suffi cient conditions for the

existence of such fully revealing equilibria. An important implication of these results is that

with a large enough state space, under the best equilibrium for the sender, retaining the

decision right and consulting multiple experts is superior to delegating the decision power

to one of the informed agents. In contrast, as Dessein (2002) shows, the best outcome from

communicating with one expert can be strictly worse than delegating the decision to the

expert. In particular, if the expert’s bias is small enough, delegation is optimal.1

This paper revisits the above questions by departing from the assumption that each

sender observes the state exactly, and instead investigating a more realistic situation in

which senders observe the state with a small amount of noise.2 There are reasons to think

that in such an environment, the qualitative conclusions from multi-sender cheap talk games

would significantly change. In particular, some of the equilibrium constructions provided

in the literature require the senders to exactly reveal the true state, and punish individual

deviations by rendering an action that is bad for both senders in the case of nonmatching

reports. The latter is possible because after an out-of-equilibrium profile of messages by

the experts, nothing restricts the beliefs of the receiver. Such constructions obviously break

down if the experts observe the state with noise, however small, since nonmatching reports

then occur along the equilibrium path. Indeed, Battaglini (2002) shows that for a particular

type of noise structure, in a 1-dimensional state space, there cannot exist any fully revealing

equilibrium with two senders biased in opposite directions. However, it is not investigated

how close information revelation can get to full revelation for small biases.

Our main results show that if the state space is large enough (relative to the experts’

biases), then there exist equilibria arbitrarily close to full revelation of the state as the noise

in the senders’observations vanishes. We consider two common types of noise. First, we

investigate the case of replacement noise, where each sender observes the true state with high

probability, but observes the realization of a random variable independent of the state with

low probability. In such a context, we show that with one round of simultaneous cheap talk,

as the probabilities of observing the true state approach 1, there exist equilibria arbitrarily

close to full revelation under weak conditions on the noise structure. Then, we investigate

the case of continuous noise, when the senders’signals follow a distribution with bounded

density. We focus on the case where the conditional supports of the signals are small, around

1In the political science literature, Gilligan and Krehbiel (1987) establishes a similar point in the context
of legislative decision-making.

2Relatedly, Krehbiel (2001) addresses the issue of empirical plausibility of equilibria in a multi-sender
cheap talk context.
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the true state. Constructing equilibria with fine information revelation is more involved

in this environment, as it is a 0-probability event that the senders’observations coincide.

Nevertheless, for a broad class of continuous noise structures, we show that two rounds of

simultaneous public communication facilitate equilibria arbitrarily close to full revelation.3

The starting point for our basic construction is an equilibrium in the noiseless limit game

where, for any message m1 sent by sender 1 and any message m2 sent by sender 2 along the

equilibrium path, there is a set of states with positive measure where the prescribed message

profile is (m1,m2). Put simply, any combination of messages that are used in equilibrium

are on the equilibrium path, as in the multi-dimensional construction of Battaglini (2002),

and the receiver’s action following any of these message profiles can be determined by Bayes’

rule. A new feature of our construction is that any pair of equilibrium messages is sent

with strictly positive probability. This feature makes the equilibrium robust to introducing

a small amount of noise.

The above type of construction constitutes an equilibrium whenever the set of states

where (m′1,m2) or (m1,m
′
2) is prescribed (for m′1 6= m1 and m′2 6= m2) is far away, relative to

the senders’biases, from the set of states where (m1,m2) is prescribed. We show that even

when the set of states corresponding to each message pair is small, the above condition can

be satisfied when the state space is suffi ciently large. Thus, the action taken by the receiver

can be made arbitrarily close to the true state with ex ante probability arbitrarily close to

1, if the state space is large enough. In such equilibria, the receiver’s expected utility is

arbitrarily close to her expected utility in the case of full revelation of the state.

When the state space is a large bounded interval of the real line, we propose the following

construction. The state space is partitioned into n2 intervals ("cells") with equal size, for

some large n corresponding to the number of each sender’s equilibrium messages. The n×n
different combinations of the equilibrium messages are then assigned such that any two cells

in which a sender sends the same message are far from each other. Essentially, cells are

labeled with 2-digit numbers in a base-n number system in a particular way, and one sender

is supposed to report the first digit of the interval from which she received a signal, while the

other sender is supposed to report the second digit of the interval from which she received

a signal. The construction relies on the fact that if the state space is large, then n can be

taken to be such that 1
n2
times the length of the state space (the size of the cells) is small,

but 1
n
times the length of the state space (which is roughly the distance between cells in

which a sender sends the same message) is large.

3Investigating robust equilibria in a multi-sender cheap talk game with continuous noise and one round
of simultaneous cheap talk is outside the scope of the current paper. In a previous version of this paper,
we showed that the same construction we provide for replacement noise structures remains robust for some
special continuous noise structures. See Lu (2011) for some results with more general noise structures.
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In the case of continous noise, the above construction breaks down, as even for very

small noise, in states near a boundary between two cells, senders can be very uncertain

about the cell where the other sender’s signal lies. Senders getting signals right around cell

boundary points may therefore deviate from prescribed play, which can cause the prescribed

strategy profile to unravel far from the boundary points. To resolve this issue, we propose

a construction with two rounds of cheap talk. In the second round, players play a strategy

profile very similar to the basic construction above, involving combinations of messages from

the senders identifying cells in a partition of the state space. The main complications are

that the sizes of the partition cells vary in a specific way that depends on the noise structure,

and that instead of one fixed partition, there is a continuum of partitions that can be played

along the equilibrium path. The partition used in the second round is announced in the

first round by sender 1. In particular, for every signal s1 that player 1 can receive, there is

exactly one equilibrium partition with a cell exactly consisting of the support of sender 2’s

signal s2 conditional on s1. We show that for large state spaces, we can take the loss from a

coordination failure high enough so that sender 1 chooses to announce this partition in order

to avoid coordination failure for sure.

In the latter construction, even though, initially, no small subset of the state space is

common p-belief between the senders for positive p, after the first-round communication,

it becomes a common 1-belief between the senders that both of their signals and the true

state are in a small interval. This aspect of our construction is potentially relevant in games

outside the sender-receiver framework. In particular, the infection arguments used in global

games rely on the nonexistence of nontrivial events that are common p-belief among players,

for p close enough to 1, as described for example in Morris et al. (1995).4 We show that

strategic communication can create such events, albeit in a different type of game: in global

games with cheap talk, the communication stage is followed by actions from the senders of

messages, while in our game they are followed by an action from a third party. As far as we

know, existing work on global games with pre-play cheap talk (Baliga and Morris (2002),

Baliga and Sjostrom (2004), Acharya and Ramsay (2013); see also p71 in the survey paper

Morris and Shin (2003)) only consider one round of communication. Our analysis suggests

the potential importance of considering multiple rounds of communication in related games.5

In all of our equilibrium constructions, the receiver solicits different pieces of information

4The concept of common p-belief for p < 1 was introduced by Monderer and Samet (1989).
5In cheap talk games without noise, it has been shown that adding rounds of communication can improve

information transmission. Krishna and Morgan (2001b) make this point in two-sender games where messages
are sequential, while Krishna and Morgan (2004) study a one-sender setting where the receiver can also send
messages. See also Golosov et al. (2011), for a sender-receiver game in which there are multiple rounds of
action choices, besides communication.
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from the senders. Alone, each message is of very limited use, but their combination reveals

the state with high precision.6 This resembles the policymaker soliciting information along

different dimensions from different experts. However, the “dimensions”in our constructions

are artificial and do not correspond to natural dimensions of the state space. For this reason,

we view our contribution as more normatively relevant, for situations where the policymaker

can propose a mechanism, but cannot commit to action choices (so that the latter have to

be sequentially rational). We note that for a fixed bounded state space, our constructions do

not necessarily yield the best robust equilibrium for the receiver. However, if the state space

is large enough relative to the biases, they provide a recipe to construct robust equilibria

close to full revelation of information, irrespective of the fine details of the game (prior

distribution of the noise, preferences of the senders), for a remarkably large class of games.

In particular, the constructions allow for state-dependent biases for the senders. Moreover,

we do not require either the single-crossing condition on the senders’ preferences that is

usually assumed in the literature, or the assumption that the sign of a sender’s bias remains

constant over the state space. Thus, our results hold for games outside the Crawford and

Sobel framework.

The closest papers to ours in the literature are Battaglini (2002), Battaglini (2004) and

Eső and Fong (2008).7 Battaglini (2002) shows the nonexistence of fully revealing equilibria

robust to replacement noise in one-dimensional state spaces, but does not address the ques-

tion of how close robust equilibria can get to full revelation. We show that for large state

spaces, there are such equilibria arbitrarily close to full revelation.8 Battaglini (2004) shows

the existence of a fully revealing equilibrium that is robust to a specific continuous noise, if

the state space is a multi-dimensional Euclidean space and the prior distribution is diffuse.

This result requires restrictive assumptions, and in particular does not extend to situations

where the prior distribution is proper. Eső and Fong (2008) analyze a continuous-time dy-

namic multi-sender game with discounting and construct a fully revealing equilibrium that

is robust to replacement noise under certain assumptions, including that the receiver is more

patient than the senders. Less related to our work are papers that investigate multi-sender

cheap talk games in which the senders observe the state with substantial noise, such as

6Ivanov (2012) proposes an optimal mechanism with similar features in a communication game with one
sender, in which the receiver can endogenously determine the type of information the sender can learn, and
there can be multiple rounds of learning and communication.

7Also related to this literature is Ambrus and Takahashi (2008), showing the nonexistence of fully re-
vealing equilibria that satisfy a robustness criterion (diagonal continuity), indirectly motivated by noisy
state observations, for compact state spaces. Lai et al. (2011) and Vespa and Wilson (2012) are recent
experimental contributions on multi-sender cheap talk games.

8To reconcile these results, note that a finer and finer interval partition of the real line segment, such as
the one in our construction, does not have a well-defined limit as the sizes of the intervals in the partition
go to zero.
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Austen-Smith (1990a, 1990b, 1993), Wolinsky (2002) and Ottaviani and Sørensen (2006).

The rest of the paper is organized as follows. In Section 2, we introduce the model and

some terminology. In Section 3, we establish our main results for one-dimensional state

spaces (both bounded and unbounded) in games with replacement noise. In Section 4, we

examine the case of continuous noise. Finally, in Section 5, we discuss extensions of the

model. In particular, we describe how some of our results extend to multidimensional state

spaces, to discrete state spaces, to models in which noise is also introduced at other points

of the game, and to situations in which the receiver has commitment power.

2 The model

The model features two senders, labeled 1 and 2, and one receiver. The game starts with

sender 1 observing signal s1 and sender 2 observing signal s2 of a random variable θ ∈ Θ,

which we call the state. We refer to Θ as the state space, and assume that it is a closed and

connected subset (not necessarily proper) of Rd.9 In Sections 3 and 4, we assume d = 1,

while in Section 5, we discuss the case where d > 1. The prior distribution of θ is given by

F , which we assume exhibits a density function f that is strictly positive and continuous on

Θ.10

We will consider both games in which the senders observe the state perfectly (noiseless

limit games, where s1 = s2 = θ), and games in which senders observe the state with small

noise, for two types of noise structures: replacement noise (Section 3), where each sender

observes the true state with high probability, and bounded continuous noise (Section 4),

where each sender observes a signal that follows a continuous distribution around the state.

After observing their signals, the senders simultaneously send public messages m1 ∈ M1

and m2 ∈ M2. We assume that M1 and M2 are Borel sets having the cardinality of the

continuum. In the baseline game, after observing the above messages, the receiver chooses

an action y ∈ Rd, and the game ends. In Section 4, we consider an extended version of
this game, with an additional round of cheap talk. Formally, after the senders send public

messages m1 and m2, they send another pair of messages m′1 ∈ M1 and m′2 ∈ M2. After

observing the sequence of message pairs (m1,m2), (m′1,m
′
2), the receiver chooses an action

and the game ends.

We assume that the receiver’s utility function v(θ, y) is continuous, strictly concave in y,

and that v(θ, ·) attains its maximum value of 0 at y = θ. We also assume that sender i’s

9Closedness is assumed for notational convenience only. None of the results depend on this assumption.
10Although we assume a proper prior distribution throughout, our results from Section 3 readily extend

to the case where the state space is an unrestricted Euclidean space and the prior is diffuse, as in Battaglini
(2004).
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utility function ui(θ, y) is continuous, that it is strictly concave in y, and that ui(θ, ·) attains
its maximum value of 0 at y = θ+bi(θ). We refer to θ+bi(θ) as sender i’s ideal point at state

θ, and to bi(θ) as sender i’s bias at state θ. Note that neither the signals or the messages

directly enter the players’utility functions.

We also maintain the following two assumptions throughout the paper.

A1: For every y ∈ Rd,
∫
Rd f(θ)v(θ, y)dθ is finite.

A2: For any δ ≥ 0 and θ ∈ Θ, there exists K(δ) > 0 such that ui(θ, a′) < ui(θ, a)

whenever |a− θ| ≤ δ and |a′ − θ| ≥ K(δ), ∀ i = 1, 2.

A1 requires that the expected utility of the receiver from choosing any action is well-

defined under the prior. A2 posits that neither sender becomes infinitely more sensitive to

the chosen action being in some directions from the true state than in other directions. In

the case of symmetric loss functions around ideal points, which is assumed in most of the

literature, A2 is equivalent to requiring that there is a universal bound on the magnitude of

senders’biases. The assumption automatically holds in the case of state-independent biases

assumed, for example, in Battaglini (2002, 2004).

3 Replacement noise

Throughout this section, we assume that the senders observe the state with replacement

noise, defined as follows.

Definition: In a game with replacement noise, there is a random variable τ ∈ Θ inde-

pendent of θ and distributed according to cdf G with a continuous density function g strictly

positive on Θ. Then, conditional on any θ ∈ Θ, si =
{

θ with probability p
τ with probability 1−p for i ∈ {1, 2}, for

some p ∈ (0, 1).

The solution concept we use is weak perfect Bayesian equilibrium, defined in the context

of our model as follows.

For the baseline game with one communication round, let h(θ, s1, s2) be the joint density

function of the state and the sender’s signals, and for i ∈ {1, 2}, let hsii be the marginal density
of (θ, s−i) conditional on si. An action rule of the receiver is a function y : M1 ×M2 → Rd,
and a belief rule of the receiver is a function µ : M1 ×M2 → ∆(Θ). For every i ∈ {1, 2},
sender i’s signaling strategy is a function mi : Θ→Mi.11

11Since we only construct pure strategy equilibria, we do not formally introduce mixed strategies here.
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Definition: Action rule ŷ, belief rule µ̂, and signaling strategies m̂i (i ∈ {1, 2}) constitute
a pure strategy weak perfect Bayesian Nash equilibrium if:

(1) ∀ i ∈ {1, 2} and si ∈ Θ, m̂i(si) solves max
mi∈Mi

∫
(θ,s−i)∈Θ2

ui(θ, y(mi, m̂−i(s−i)))h
si
i (θ, s−i)dθds−i,

(2) ∀ (m1,m2) ∈M1 ×M2, ŷ(m1,m2) solves max
y∈R

∫
θ∈Θ

v(θ, y)µ(m1,m2)dθ,

(3) µ̂(m1,m2) is obtained from m̂1(·) and m̂2(·) by Bayes’rule, whenever possible.

We use this weak notion of perfect Bayesian Nash equilibrium mainly because there

is no universally accepted definition of perfect Bayesian Nash equilibrium with continuous

action spaces. We note that in the equilibrium below, there are no out of equilibrium

message pairs, and Bayes’rule pins down the receiver’s beliefs after any possible message

pair. Such equilibria satisfy the requirements of any reasonable definition of perfect Bayesian

equilibrium.

We henceforth refer to weak perfect Bayesian Nash equilibrium simply as equilibrium.

3.1 Large bounded state space

First, we consider the case where Θ = [−T, T ] for some T ∈ R++, and show that for every

ε, δ > 0, if T is large enough and the noise parameter is low enough, then there exists an

equilibrium of the cheap talk game in which, at every state, the probability that the distance

between the induced action and the state is smaller than δ is at least 1− ε.
To establish this result, we consider the following signaling profile for the senders. For

any T ≥ K(δ), let nδ,T be the largest integer such that T
nδ,T
≥ K(δ). Partition Θ to nδ,T

equal intervals, to which we will refer as blocks. Note that the size of each block is 2T
nδ,T

,

which is by construction between 2K(δ) and 4K(δ). Next, further partition each block into

nδ,T equal subintervals, to which we will refer as cells. We will use Ij,k(i,j) to denote the jth

cell in the ith block, where k(i, j) =
{

i+j−1 if i+j−1≤n
i+j−1−n if i+j−1>n

. Thus, block i is partitioned into the

following nδ,T cells: {(1, i), (2, i+ 1), ..., (nδ,T − i+ 1, nδ,T ), (nδ,T − i+ 2, 1), ..., (nδ,T , i− 1)},
and there is a total of n2

δ,T cells. For completeness, assume that the cells in the partition are

closed on the left and open on the right, with the exception of cell (nδ,T , nδ,T ), which is closed

at both ends. Define signaling profile (mδ,T
1 ,mδ,T

2 ) such that for every j, k ∈ {1, ..., nT}, after
receiving signal s1 ∈ Ij,k, sender 1 sends message mj

1, and after receiving signal s2 ∈ Ij,k,

sender 2 sends message mk
2. Figure 1 below illustrates this signaling profile.

Let yδ,T be an action rule that maximizes the receiver’s expected payoffgiven (mδ,T
1 ,mδ,T

2 ).

Note that y(mj
1,m

k
2) is uniquely defined for j, k ∈ {1, ..., nδ,T} for any noise structure we

consider, since the conditional beliefs of the receiver after receiving such message pairs are
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given by Bayes’rule, and the receiver’s utility function is strictly concave. As for out-of-

equilibrium messages mi 6= mj
i for all j ∈ {1, ..., nδ,T}, assume that the receiver interprets

each as having the same meaning as some message sent in equilibrium. No sender will then

have an incentive to deviate to an out-of-equilibrium message.

Figure 1: Signaling profile for large bounded intervals

Proposition 1: For every δ > 0, there exists T (δ) > 0 such that if T > T (δ), then

strategy profile (mδ,T
1 ,mδ,T

2 , yδ,T ) constitutes an equilibrium in the noiseless limit game, and

for every θ ∈ Θ, we have |yδ,T (mδ,T
1 (θ),mδ,T

2 (θ))− θ| < δ.

Proof: By construction, the receiver plays a best response in the proposed profile, so we
only need to check the optimality of the senders’strategies.

Note that nδ,T →∞ as T →∞. Since, by construction, 2T
nδ,T
≤ 4K(δ) for any T ≥ K(δ),

the above implies that the cell size, 2T
n2δ,T

, goes to 0 as T → ∞. Note that for every j, k ∈
{1, ..., nδ,T} and θ ∈ Ij,k, the assumptions on v imply that if both senders play according to
the prescribed profile, then the action induced at θ lies within Ij,k.

Also by construction, if the other sender plays the prescribed strategy, all other actions

that a sender could induce by sending a different message than prescribed are more than
nδ,T−2

nδ,T
times the block size away. The latter is by construction at least 2K(δ), so if nδ,T > 4,

those actions are more than K(δ) away.

The above imply that there exists T (δ) > 0 such that |yδ,T (mδ,T
1 (θ),mδ,T

2 (θ)) − θ| < δ

if T > T (δ), and any deviation by a sender, given strategy profile (mδ,T
1 ,mδ,T

2 , yδ,T ), would

induce an action y by the receiver such that |u− θ| > K(δ). By the definition of K(δ), this

implies that there is no profitable deviation by either sender. �

Intuitively, the proposed construction is an equilibrium because the cell associated with

message pair (mj
1,m

k
2) for any j, k ∈ {1, ..., nδ,T} is far away from any cell in which the

prescribed message pair is either (m1,m
k
2) with m1 6= mj

1, or (mj
1,m2) with m2 6= mk

2. This

holds for large T even given a small cell size, which ensures that the distance between states

and induced actions is small.

Next, we show that if noise parameter 1−p is small enough, then profile (mδ,T
1 ,mδ,T

2 , yδ,T )

remains an equilibrium in a game with replacement noise.
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Proposition 2: Suppose δ > 0 and T > T (δ). Then for any noise distribution G, there

exists p(G) < 1 such that p > p(G) implies that in a game with replacement noise structure

(G, p), strategy profile (mδ,T
1 ,mδ,T

2 , yδ,T ) constitutes an equilibrium.

Proof: Note that since both f and g are continuous and strictly positive on the compact
Θ, as p → 1, given signaling strategies (µδ,T1 , µδ,T2 ), the conditional distribution of θ given

message pair (mj
1,m

k
2) in the game with replacement noise converges weakly to the condi-

tional distribution of θ given message pair (mj
1,m

k
2) in the noiseless limit game, for every

j, k ∈ {1, ..., nδ,T}. Then since the expected payoff of the receiver resulting from choosing

some action y after message pair (mj
1,m

k
2) is continuous with respect to the weak topology

in the conditional distribution of θ given (mj
1,m

k
2), the theorem of the maximum implies

that yδ,T is continuous in p, even at p = 1. This implies that the expected payoff of sender

i resulting from sending message ml
i after receiving signal si is continuous in p, for every

i ∈ {1, 2}, l ∈ {1, ..., nδ,T} and si ∈ Θ, even at p = 1. Moreover, in the noiseless limit

game, after signals s1, s2 ∈ Ij,k, sending message mj
1 yields a strictly higher expected payoff

for sender 1 than ml
1 for l 6= j, and sending message mk

2 yields a strictly higher expected

payoff for sender 2 than ml
2 for l 6= k. Thus, the same holds for p close enough to 1. This

establishes the claim. �

The intuition behind Proposition 2 is that the receiver’s optimal action rule given (mδ,T
1 ,mδ,T

2 )

is continuous in p, even at p = 1. Therefore, the expected payoff of a sender when send-

ing different messages after a certain signal changes continuously in p as well. Since in the

noiseless limit game, a sender strictly prefers to send the prescribed message to sending any

other equilibrium message, the same holds for noisy games with p high enough.

Note that the above propositions imply that for any δ > 0, if the state space is large

enough, then there is an equilibrium of the noiseless limit game, where the action induced

at any state is at most δ away from the state, that is robust to replacement noise in a strong

sense: it can be obtained as a limit of equilibria of games with vanishing replacement noise,

for any noise distribution G.

The propositions also imply the following result.

Corollary 1: Fix payoff functions v(., .) and ui(., .), i = 1, 2, defined over R2 satisfying

A1. Take any sequence of games with bounded interval state spaces [−T1, T1],[−T2, T2],... ,

state distributions F1, F2, .., noise distributionsG1,G2,... and payofffunctions (v1, u1
1, u

1
2), (v2, u2

1, u
2
2), ...

such that vj, uj1 and u
j
2 are restrictions of v, u1 and u2 to [−Tj, Tj]×R. If Ti →∞ as i→∞,

then there exists a sequence of noise levels p1, p2, ... with pi < 1 for every i ∈ Z++ and pi → 1

as i → ∞, such that there is a sequence of equilibria of the above games with equilibrium
outcomes converging to full revelation in R.
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Corollary 1 contrasts with Proposition 2 in Battaglini (2002), which establishes that if

the senders’ biases are above some threshold, then there does not exist a fully revealing

equilibrium robust to replacement noise in a one-dimensional state space, no matter how

large the state space.12 To reconcile these results, it is useful to observe that although the

sequence of outcomes induced by the sequence of equilibria from Corollary 1 converges to

full revelation of the state in R, such sequences of equilibrium strategy profiles do not have

a well-defined limit in the noiseless limit game with state space R. This is because the limit
of a sequence of interval partitions where the sizes of the intervals converge to zero is not

well-defined.

3.2 Unbounded state space

In this subsection, we analyze the case where Θ = R. We show that the equilibrium con-

struction introduced in the previous subsection can be extended to this case when the prior

distribution of states has thin enough tails.

The state space is still partitioned into n2 cells, and combinations of the n equilibrium

messages are allocated to different cells in the same order as before. The difference is that

in the case of an unrestricted state space, only the middle n2 − 2 cells can be taken to be

small; the extreme cells are infinitely large. Hence, in the equilibria we construct, even with

no noise, the implemented action will be far away from the state with nontrivial probability

in states in the extreme cells. But if the profile is constructed such that the middle n2 − 2

cells cover interval [−T, T ] for large enough T , then for small noise, the ex ante probability

that the induced action is within a small neighborhood of the realized state can be made

close to 1.

The extra assumption needed for this construction guarantees that for large enough block

size, even in the extreme cells, the senders prefer inducing the action corresponding to the

cell instead of deviating and inducing an action in a different block.

Let yθ,d,L (respectively, yθ,d,R) be the optimal action for the receiver when her belief about

the true state follows density d truncated so the true state is in (−∞, θ] (respectively, [θ,∞)).

A3: There exist C,Z > 0 such that |yθ,f,L − θ| < Z for all θ < −C, and |yθ,f,R − θ| < Z

for all θ > C.

A3 requires the tail of the prior distribution to be thin enough: it is satisfied if f converges

12Battaglini’s result is stated in an environment where each player’s loss depends only on (a− bi(θ))2, and
does so in the same way in every state. However, its proof extends to our more general setting if for every
θ, each sender’s bias is large enough (in the sense that if ui(θ, θ) = ui(θ, a) and a 6= θ, then |a− θ| must be
large), and if the extent to which the receiver’s payoff’s sensibility to |a− θ| varies across states is bounded.
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quickly enough to 0 at −∞ and∞, relative to how fast the loss functions at moderate states
diverge to infinity as the action goes to −∞ or ∞. For example, if v exhibits quadratic
loss invariant in θ, a suffi cient condition for A3 is that limx→−∞

F (x)
f(x)

and limx→∞
1−F (x)
f(x)

exist. This is clearly true if f converges to 0 exponentially fast, so for v quadratic, A3 holds

for exponential distributions or for any distribution that converges to 0 faster, such as the

normal.

Proposition 3: Suppose f(θ)
g(θ)
≥ b > 0, for every θ ∈ Θ. If Θ = R and A3 holds, then for

every δ, η > 0, there exists p < 1 such that, in a noisy game with p > p, |y − θ| < δ with ex

ante probability at least 1− η.
Proof: Consider the following strategy profile in the noiseless limit game.
Let T be such that F (T ) − F (−T ) = 1 − η

2
. As in Subsection 3.1, partition R into n

blocks. Blocks 2 through n − 1 are equally sized and large enough so that each is bigger

than K(δ) + 2δ, and they together cover [−T, T ] ∪ [−C,C], where C is the corresponding

constant in A3.

For each k ∈ {1, ..., n}, we will further partition block k into n cells, labeled as in

Subsection 3.1. Block 1 minus the leftmost cell and block n minus the rightmost cell are

each bigger than max{K(Z), K(δ) + δ}, where Z is the corresponding constant in A3. We
choose n large enough so that each of the middle n2 − 2 cells, which are of equal size, is

smaller than δ. For the sake of completeness, let each of the middle n2− 2 cells be closed on

the left and open on the right.

Label the cells as in Subsection 3.1, and consider the following strategy profile:

- when s1 falls in cell (j, k), sender 1 sends message mj
1;

- when s2 falls in cell (j, k), sender 2 sends message mk
2;

- y(mj
1,m

k
2) is an optimal response to mj

1,m
k
2 given the above strategies, for every j, k ∈

{1, ..., n};
- the receiver associates any out-of-equilibrium message to a message sent by that player

in equilibrium, and after any other message pair, the receiver chooses the corresponding

y(mj
1,m

k
2) for some j, k ∈ {1, ..., n}.

This profile constitutes an equilibrium in the noiseless limit game, which has the property

that |y − θ| < δ with ex ante probability at least 1 − η
2
. This is because message pairs are

allocated to cells in a way that at any state, any action that a sender could induce other

than the prescribed one is strictly worse for the sender than the prescribed action.

Analogous arguments as the ones used in the proof of Proposition 2 establish that for

large enough p, the above profile still constitutes an equilibrium. The assumption that
f(θ)
g(θ)
≥ b > 0 guarantees that for p large, senders believe with high probability that they have

observed the correct state. Moreover, it is easy to see that for large enough p, conditional on

12



the state being in the middle n2 − 2 cells, the probability that |y − θ| < δ is at least 1− η
2
.

Then, the ex ante probability of |y − θ| < δ is at least 1− η, concluding the proof. �

Proposition 3 implies that, if A3 holds, then in a game where the state space is the real

line, for any δ > 0, there exists an equilibrium robust to small replacement noise in which

the distance between any state and the action induced in that state is less than δ with high

ex ante probability. The thinness of the tail of the distribution then also implies that the ex

ante expected payoff of the receiver in equilibrium can closely approximate the maximum

possible payoff value 0, obtained in a truthful equilibrium.

4 Bounded continuous noise

Our construction from Section 3 requires that, regardless of their signal si, each sender

believes that the other sender’s signal sj lies in the same cell as si with high probability.

This occurs with replacement noise due to the high probability that both senders observe

the state exactly. However, if signals follow a continuous distribution around the state and

are not perfectly correlated, then the probability that they coincide is 0. As a result, when si
is suffi ciently near the boundary between two cells, the probability that sj lies on the other

side of the boundary is non-negligible. In that case, the senders may have an incentive to

second-guess their signal in order to reduce the probability of a coordination failure (which

we call miscoordination) that would result in the action being in a different block, or in

order to make miscoordination less costly by changing the action that follows it. But doing

so in states near the boundary can trigger a departure from the originally prescribed strategy

profile in other states and lead to an unraveling of the equilibrium construction from Section

3.

This section shows that for a broad class of continuous signal distributions with bounded

support, with two rounds of communication by the senders and large enough state space,

there exists an equilibrium where one of the senders’signals is perfectly revealed. Therefore,

as the noise in the senders’information goes to zero, the proposed equilibrium converges to

full revelation of the state. We do not know how close equilibria with one round of cheap

talk can get to full revelation in games with such noise.13 Naturally, our result holds for

situations with more than two rounds of simultaneous cheap talk, as in such games, senders

can simply babble before the last two rounds of messages, and then play according to the

construction proposed below.

Formally, we consider a multi-stage game. At stage 0, state θ realizes, and senders 1

13For an investigation along these lines, see Lu (2011).
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and 2 receive noisy signals s1 and s2 of θ (as described in more detail below). At stage 1,

the senders simultaneously send messages m1 and m2, which are public (i.e. observed by

all players before the next stage). After observing these messages, in stage 2, the senders

simultaneously send public messages m′1 and m
′
2. Lastly, in stage 3, the receiver chooses an

action.

Strategies in the game with an extra round of communication are defined as follows.

The action rule of the receiver becomes y : (M1 ×M2)2 → R, and the belief rule is now
µ : (M1 ×M2)2 → ∆(Θ). For i ∈ {1, 2}, sender i’s signaling strategy is a pair of functions
mi : Si → ∆(Mi) and m′i : Si ×M1 ×M2 → Mi.14 Furthermore, at the second round of

cheap talk, sender i has beliefs µi : Si ×M1 ×M2 → ∆(Θ× S−i) about the state and about
sender −i’s signal. We use weak perfect Bayesian Nash equilibrium, defined analogously as
in Section 3, as our solution concept.

4.1 Unbounded state space

For continuous noise, it is more convenient to start with the case where Θ = R: the construc-
tion we provide is simpler than in the case of bounded state spaces because out-of-equilibrium

message pairs can be avoided, like in the case of replacement noise. We will discuss the case

where Θ is a large bounded interval of R in the next subsection.
We impose the following assumptions regarding the distribution of signals: (i) The sup-

port of each sender’s signal is an interval around the state, with a universal bound on the

interval’s size; (ii) The conditional distribution of sender 2’s signal given any s1 has a den-

sity function that is universally bounded, with a lower bound strictly positive; (iii) Both the

lower endpoint and the higher endpoint of the support of the distribution of s2 conditional

on s1 are increasing in s1 at a rate bounded away from 0.

A4: There exists ε > 0 such that, conditional on the state θ, we have si ∈ [θ − ε, θ + ε].

Furthermore, for every s1, the distribution of s2 conditional on s1 exhibits a density function

such that f(s2|s1) ∈ [ν, ν] everywhere on S2(s1) ≡ [s2(s1), s2(s1)], for some ν > 0, and s2(.)

and s2(.) are continuous and strictly increasing at a rate of at least r > 0.

An example of a class of noise that satisfies the above restrictions is the following: s1 =

θ + ω1 and s2 = θ + ω1 + ω2, where ωi ∼ Fi independently, and F1 and F2 are distributions

with finite interval supports and densities bounded away from 0. In particular this holds

when s2 is a mean-preserving spread of s1 satisfying the above technical conditions.

14We only introduce mixed strategies for the senders’round 1 messages since that is the only place in our
construction where players randomize.
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Moreover, we impose the following technical assumption.

Let a(s1) = arg maxa
∫
v(θ, a)f(θ|s1)dθ be the receiver’s optimal action conditional on

s1. Note that a(s1) is unique because v(θ, a) is strictly concave in a.

A5: a(s1) is strictly increasing and Lipschitz continuous in s1, with Lipschitz constant

Λ.

Lastly, we impose a weak restriction on the relation between a sender’s state-conditional

utility functions.

A6: For any ε ≥ 0, there exists L(ε) > 0 such that for any a, θ ∈ Θ, and a′, θ′ ∈
[θ−ε, θ+ε], we have ui(θ, a′)−ui(θ, a) = ui(θ

′, a′′)−ui(θ′, a) for some a′′ ∈ [a−L(ε), a+L(ε)], ∀
i = 1, 2.

A6 bounds the extent to which senders care more about the outcome in one state of the

world than the outcome in another state. Like A2, A6 is automatically satisfied if preferences

depend only on a− θ.
Our result for this subsection is stated in Proposition 4.

Proposition 4: Suppose A1, A2, A4, A5 and A6 are satisfied and Θ = R. Then in a
game with two rounds of simultaneous public messages, there exists an equilibrium where s1

is exactly revealed.

The proof of Proposition 4 can be found in the Appendix. Note that unlike in Proposition

3, the receiver learns the state with high precision (if ε is small) even for extreme values of θ.

This is because Proposition 4 uses an infinite partition, as described below, while Proposition

3 uses a finite partition. Using an infinite partition with replacement noise would create

the following problem: if a state θ is unlikely to occur (for example, θ is in a tail of the

distribution), then a sender observing si = θ would believe that her signal is noise. This

problem does not arise here because noise is bounded.

We now provide an outline of the equilibrium construction. In stage 1, sender 1 sends

a message that selects a partition among a continuum of possible partitions, while sender

2 babbles. Each of these partitions has infinitely many cells, each designated by a message

pair (m′1,m
′
2), where m′1 ∈ {1, 2, ..., n} and m′2 ∈ Z. As in our construction from Section 3,

a cell designated by message pair (m′1,m
′
2) is located far from any cell of the form (x,m′2)

for x ∈ {1, 2, ..., n}\{m′1} or of the form (m′1, x) for x ∈ Z\{m′2}. The continuum of possible
partitions is such that for any s1, exactly one partition has a cell that contains S2(s1). For

this partition, sender 1 knows for sure which cell s2 lies in. In stage 2, the senders play a
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continuation strategy profile analogous to the one from Section 3. The combination of stage

1 and stage 2 messages exactly reveals s1 to the receiver, and does not reveal any additional

information. Hence the receiver plays the optimal action conditional on sender 1’s signal

being s1.

The partitions are constructed as follows. Each partition has a countable number of

sets, indexed by integers k. Within each set k, there are n blocks with n cells each, where

sender 1’s message for each cell is the same as in Section 3’s construction, while sender 2’s

message for each cell is kn plus the message from Section 3’s construction. As before, given

a partition, as long as the blocks are suffi ciently large and the cell where signals are located

is known, no deviation is profitable.

We build the collection of partitions for the first stage as follows. First, note that A4

ensures that for any s1, s
′
1 ∈ S1, S2(s1) * S2(s′1). This implies that one can build a set

P of partitions such that, for every s1, there is a unique partition within P where sender
1 puts probability 1 on s2 lying in the same cell as s1. Furthermore, for every s1, there

exist s′1 < s1 and s′′1 > s1 such that s2(s1) = s2(s′1) and s2(s1) = s2(s′′1). Therefore, it

is possible to construct P such that, in every partition in P, every cell can occur on the
equilibrium path. Assumptions A4 (through ν and r) and A5, together with the cost of

miscoordination in our construction, ensure that sender 1 chooses the partition where the

probability of miscoordination is 0. To see this, note that since both s2(s1) and s2(s1) are

increasing at a rate bounded away from 0, and the density of S2(s1) is bounded away from

0 on its support, any small deviation from the prescribed partition increases the probability

of miscoordination by a rate bounded away from 0. Finally, the receiver’s action is a(s1):

she receives no information about s2 other than the fact that it lies in S2(s1).

We refer the reader to the proof of Proposition 4 in the Appendix for a complete descrip-

tion of the strategy profile and the demonstration that it is indeed an equilibrium.

4.2 Large bounded state space

As before, we define the underlying game (distribution of θ and si, preferences) over all of

R. In this subsection, we show that Proposition 4 continues to hold when the state space is
truncated to [−T, T ], for suffi ciently large T .

Proposition 5: Suppose A1, A2, A4, A5 and A6 are satisfied in the underlying game
and in truncated games. Then there exists T ∗ such that whenever Θ is truncated to [−T, T ],

where T > T ∗, then in a game with two rounds of simultaneous public messages, there exists

an equilibrium where s1 is exactly revealed.

The proof of Proposition 5, which can be found in the Appendix, uses the same idea as
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the proof of Proposition 4, except now each possible partition has n2 cells, like in our basic

construction from Section 3. As in Section 3, T needs to be large relative to the senders’

biases such that the partition’s blocks can be made large enough to discourage deviations.

There are two main diffi culties for this extension: i) since the size of the cells is determined

by the noise structure, to make the number of cells in each partition square, we need to modify

the construction from Section 4.1; ii) the cells at the ends of the partitions may now be out

of equilibrium. We discuss these issues below.

To make the number of cells in each partition square, we divide the set of partitions P
into two subsets, L and R. Each partition in L is constructed starting with a cell at the left

end of S2 ⊆ [−T − ε, T + ε]. This first cell is called a small extreme cell if its right endpoint

is less than s2(mins1∈S1 s1), which implies that there is no s1 for which this cell contains

S2(s1); otherwise, it is a regular cell. Each subsequent cell, except for the rightmost one, is

(s2(z), s2(z)] for some z ∈ S1, where s2(z) is the right boundary of the previous cell; these

are all regular cells. Once regular cells and, if applicable, the small extreme cell together

cover 3
4
of S2 and number n2− 1 for some integer n, we cease creating new cells, and the last

cell, called the large extreme cell, covers the rest of S2. By construction, there are n2 cells in

each partition. Partitions in R are constructed in a similar fashion, but starting at the right

end of S2. Notice that for every element of L, there is a corresponding element of R that

is identical in the area where regular cells of L-partitions and regular cells of R-partitions

overlap, and vice versa. A typical partition is illustrated in Figure 2. The top of the picture

displays the partition in L prescribed for signal s1, while the bottom of the picture displays

the corresponding partition in R. Note that in both partitions, the cell that s1 belongs to is

exactly S2(s1).

Figure 2: The L and R partitions prescribed for a typical signal of sender 1

In the proposed equilibrium, sender 1 chooses a partition where one of the cells is exactly

[s2(s1), s2(s1)]. By construction, there is at least one such partition in P, and at most one
such partition in each of L and R. When a partition from L and a partition from R both

satisfy the criterion, which occurs when s1 is a regular cell of both partitions, sender 1
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randomizes 50/50 between them; this is consistent with equilibrium since both partitions

lead to the same action, a(s1).

The second diffi culty relates to extreme cells being out of equilibrium: on the equilibrium

path, the senders’round 2 messages (m′1,m
′
2) never point to an extreme cell. This is especially

problematic when (m′1,m
′
2) corresponds to the large extreme cell due to its size. We specify

the receiver’s beliefs after such message pairs such that no profitable deviation is created.15

Specifically, if P ∈ L, then the large extreme cell is (n, n − 1). In our equilibrium, the

receiver’s belief after seeing P ∈ L and (n, n−1) is the same as if (m′1,m
′
2) had instead been

(n, n− 2), which corresponds to a cell a block away. As a result:

- When m′1 = n, the rightmost action that sender 2 can induce is in (n, n−2) (by sending

m′2 = n− 1 or n− 2). So when s2 is in cell (n, n− 1), sending m′2 = n− 1 is still optimal for

sender 2.

- When m′2 = n − 1, the rightmost action that sender 1 can induce is in (n, n − 2) (by

sending m′1 = n). This is because, apart from (n, n − 1), which cannot be induced, the

closest cell to (n, n − 2) where m′2 = n − 1 is (1, n − 1), which is almost a block to the left

of (n, n − 2).16 Therefore, when s1 is in cell (n, n − 1), sending m′1 = n is still optimal for

sender 1.

The case where P ∈ R is analogous.
The proof of Proposition 5 in the Appendix contains a complete description of the strategy

profile and establishes that it is an equilibrium.

5 Extensions and discussion

5.1 Multidimensional state spaces

Our basic construction can be readily extended to multidimensional state spaces for re-

placement noise if there are no restrictions on the state space (the state space is the whole

Euclidean space). In particular, for any δ > 0, instead of partitioning a high-probability

portion of the state space into n2 − 2 intervals of size δ, we partition in into (n2 − 2)d d-

dimensional hypercubes with edges of size δ. Now take nd messages for each sender, and

index them by {1, 2, ..., n}d. Hence, a typical message for sender i is labeled as mi
j1,...,jd

(j1, ..., jd ∈ {1, 2, ..., n}). The lth component jl of each sender’s message is determined by
the l-coordinate of the cell where that sender’s signal is located, in the same way as in

15Moreover, in round 2, sender 2 is aware that sender 1 has deviated in round 1 if s2 is in an extreme
cell of the announced partition. At such histories, in our equilibrium, sender 2’s beliefs are such that m′1 is
consistent with the cell where s2 is located.
16By construction, m′2 = n− 1 is skipped at the boundary between the last two blocks.
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Subsection 3.2. Proceeding like this for all d dimensions results in a strategy profile of the

senders such that each pair of possible messages is identified with a unique cell in the above

partition. Moreover, the profile is constructed such that at every state, sending a different

message than the one corresponding to the cell containing the state results in a message pair

identified with a cell far away from the original state, whether the sender deviates in one

or more dimensions from the prescribed message. Proving that this profile constitutes an

equilibrium for small enough replacement noise is analogous to the proof of Proposition 3.

For bounded continuous noise, the construction for Proposition 4 can be extended simi-

larly if the supports S2(.) are all orthotopes (hyperrectangles) with the same dimensions (for

example, si = θ+ ωi, where ωi
i.i.d.∼ Fi, and F1 and F2 are distributions with finite orthotope

supports and densities bounded away from 0).

For large bounded state spaces that are d-dimensional orthotopes, the above constructions

can be extended in a straightforward manner. For different types of bounded state spaces in

Rd, our basic construction cannot be applied directly. However, the same qualitative insight
still holds. Suppose the state space can be partitioned into n2 cells with diameter at most

δ, and that there is a bijection from M ≡ {m1
1, ...,m

n
1} × {m1

2, ...,m
n
2} to the cells in the

partition such that for any (m1,m2) ∈M and for any (m′1,m
′
2) ∈M with either (i) m1 = m′1

andm2 6= m′2, or (ii)m1 6= m′1 andm2 = m′2, it holds that the distance between the partition

cells associated with (m1,m2) and with (m′1,m
′
2) are at least K(δ) away from each other.

Then there is an equilibrium of the noiseless limit game that is robust to a small amount of

replacement noise.

5.2 Introducing noise at different stages of the game

We have been investigating equilibria robust to perturbations of a multi-sender cheap talk

game in the observations of the senders. This is the type of perturbation most discussed in

the literature. However, similar perturbations can be introduced at various other stages of

the communication game: in the communication phase (the actual message received by the

receiver is not always exactly the intended message by a sender) and in the action choice

phase (the policy chosen by the receiver is not exactly the same as the intended policy

choice).17

The equilibria we propose in this paper are robust with respect to the above perturbations

as well. To see this for the case of small perturbations in the receiver’s action choice, note

17For an analysis of noisy communication in one-sender cheap talk, see Blume et al. (2007). See also
Chen et al. (2008) for a one-sender cheap talk game in which both the sender and the receiver are certain
behavioral types with small probability, a model resembling one in which there is a small replacement noise
in both the communication and the action choice stages.
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that in the equilibria we construct, senders strictly prefer sending the prescribed message to

any other equilibrium message (while out-of-equilibrium messages lead to the same intended

actions as equilibrium messages). Hence both for replacement noise and in stage 2 of the

continuous noise construction, if the noise in the action choice is small enough, senders still

strictly prefer sending the prescribed message to sending any other message along the path

of play. To ensure that there is no deviation in stage 1 of the continuous noise construction,

one would need regularity conditions on the change in the distribution of the realized action

when the intended action changes.

For noise in the communication phase, it is more standard to introduce replacement noise,

as in Blume et al. (2007), since there typically is no natural metric defined on the message

space (messages obtain their meanings endogenously, through the senders’ strategies). A

small modification of our equilibrium construction makes the profile robust with respect

to such noise. In particular, take any equilibrium we constructed in Sections 3 and 4,

partition each sender’s message space into subsets, one for each equilibrium message, and

associate each subset with a distinct equilibrium message. Then replace senders’strategies

from the previous equilibrium with strategies where, after any signal, the sender selects an

action randomly (according to a uniform distribution) from the subset of messages associated

with the original equilibrium message. The resulting profile remains an equilibrium and

induces exactly the same outcome. Moreover, this equilibrium is robust to a small amount

of replacement noise, subject to regularity conditions guaranteeing that, when the above

strategy profile is played, any message is much more likely to be intended than to be the

result of noise.18

5.3 Commitment power

If the receiver can credibly commit to an action scheme as a function of messages received,

then there exist constructions simpler than the ones we proposed that are robust to small

amount of noise and achieve exact truthful revelation of the state. Here, we only discuss the

case of replacement noise and one-dimensional state spaces. Mylovanov and Zapechelnyuk

(2009) show that a necessary and suffi cient condition for the existence of a fully revealing

equilibrium in a noiseless two-sender cheap talk game with commitment power and bounded

interval state space [−T, T ] is the existence of a lottery with support {−T, T} with the
property that at every θ ∈ [−T, T ], both senders prefer action θ to the above lottery. The

suffi ciency of this condition is easy to see: the receiver can commit to an action scheme that

18For a bounded state space, this is the case if the distribution of the replacement noise has a bounded
density function, and the probability of replacement noise is small enough.
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triggers the above lottery in case of differing messages from the senders.

We observe that given the above action scheme, truthtelling by the senders remains an

equilibrium for small enough replacement noise. This is because if the other sender follows

a truthtelling strategy, then after receiving signal θ, sending any other message than θ

induces the threat lottery with probability 1, while sending message θ induces θ with high

probability. The latter outcome is, by construction, preferred by the sender if the state is

likely to be θ. The above implies that in case of commitment power, there exists a fully

revealing equilibrium robust to replacement noise, even if the state space is relatively small.

For example, if senders have symmetric and convex loss functions and are biased in opposite

directions, then there exists an equilibrium construction like the one above whenever biases

are less than T in absolute value.

5.4 Discrete state spaces

The constructions in 3.2 and 3.3 extend in a straightforward manner to large discrete state

spaces. Consider first the case when the state space is a coarse finite grid of a large bounded

interval: Θ = {θ ∈ [−T, T ]|θ = −T + k · ε}, where T ∈ R+ is large and ε ∈ R+ is small.

Define n2ε,T as in Subsection 3.2, and partition [−T, T ] to n2
2ε,T equal-sized subintervals. By

construction, each partition contains at least one state from Θ. Then it is easy to see that

the strategy profile presented in 3.2 gives an equilibrium robust to a small amount of noise,

in which the supremum of the absolute distance between any possible state and the action

induced in that state is at most 2ε. This construction readily extends to other finite one-

dimensional state spaces and implies almost full revelation of the state whenever the distance

between the two extreme states is large enough, and the maximum distance between two

neighboring states is small enough.
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6 Appendix

6.1 Proof of Proposition 4

1. Constructing partitions for stage 1 messages by sender 1.

Note that by assumption A4a, s2(s1)− s2(s1) ≥ 1
ν
for all s1.

Let X be such that s2(X) = s2(0).

Define partition P (x), which consists of infinitely many cells labeled as described in the

main text, as follows for all x ∈ (0, X]. The starting cell, designated by (1, 1), is (s2(x), s2(x)].

Both to the right and to the left, each other cell is (s2(z), s2(z)], where s2(z) is the boundary

of the previous cell. Note that, in each case, z is well-defined because s2(.) and s2(.) are

continuous and strictly increasing, and that this construction will cover all of R since the
size of cells is bounded below by 1

ν
. Note that since s2(s1) and s2(s1) are strictly increasing,

there exists a unique x ∈ (0, X] such that sender 1 puts probability 1 on s1 and s2 being in

the same cell. Denote this quantity x(s1).

Let n (the number of cells per block) be large enough so that the following hold for all

s, feasible s2 given s1 = s, and actions a located n− 3 cells away from a(s):

(i) minθ∈[s−ε,s+ε]{u1(θ, a(s))− u1(θ, a)} > Λ
νr

maxθ∈[s−ε,s+ε],a′∈[a(s−4ε),a(s+4ε)] | ∂∂αu1(θ, a′)| ≡
Λ
νr
M(s), where ∂

∂α
denotes the partial with respect to the receiver’s action; and

(ii) E[u2(θ, a(s))|s1 = s, s2]− E[u2(θ, a)|s1 = s, s2] > 0.

Condition (ii) simply ensures that in stage 2, after sender 2 has learned s1 = s, sender

2 has no incentive to deviate since inducing a cell almost a block away (as happens when

she unilaterally deviates given a partition) is not profitable. Condition (i) does the same

for sender 1 and - as shown in the last part of the proof - provides incentives for sender 1

to announce a partition where no miscoordination is possible. Without the min and max

functions in condition (i), the existence of n would be guaranteed by A2 and the concavity

of u1 with respect to the action. A6 links sender 1’s preferences at any θ ∈ [s − ε, s + ε]

to her preferences at the state where | ∂
∂α
u1(θ, a′)| is maximized, which allows us to take the

min and max functions in condition (i).

2. The strategy profile

- Stage 1: Sender 1 announces partition P (x(s1)) from the set {P (x)}x∈(0,X]. For the

remainder of this proof, we will let P be the announced partition. Sender 2 babbles.

- Stage 2: We distinguish two cases:

a) On the equilibrium path for sender 1, and always for sender 2: The senders send m′i
corresponding to the cell of P where s2 lies, which, by construction, is known to sender
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1. Beliefs µi are determined according to Bayes’rule. Note that (m′1,m
′
2) reveals s1 when

combined with sender 1’s announcement in stage 1.

b) Off the equilibrium path for sender 1 (following deviation in stage 1): µ1 is unchanged

from stage 1, and sender 1 plays a best response.

- Stage 3: the receiver’s beliefs are determined by Bayes’rule (since every combination of

messages from stages 1 and 2 occurs on the equilibrium path), and she chooses a(s1), where

s1 is inferred from P , m′1 and m
′
2.

We now verify the optimality of this strategy profile for each player.

3a. Optimality for the receiver

The receiver has learned s1 exactly, but no information on s2 other than the fact that it

lies in [s2(s1), s2(s1)]. It is therefore optimal for the receiver to choose a(s1).

3b. Optimality for sender 2

Sender 2 believes that, with probability 1, sender 1’s message will correspond to the cell

where s2 lies. For the same reason as in Section 3’s basic construction, sender 2 has no

profitable deviation.

3c. Optimality for sender 1

For the same reasons as for sender 2, there is no profitable deviation if sender 1 followed

the equilibrium prescription in stage 1.

It remains to be shown that if sender 1 is supposed to announce P (x), then announcing

P (y) instead is not a profitable deviation.

Suppose sender 1’s signal is s1 and that she is supposed to announce P (x). Let c(s1)

be the cell of P (x) that would be communicated in stage 2 on the equilibrium path. Then

announcing P (y) instead would make sender 1 uncertain about sender 2’s message in stage

2. Specifically, the revealed s1 will be either:

(a) slightly different, if coordination is successful (i.e. one of the two cells of P (y) that

overlaps with c(s1) is communicated in stage 2); or

(b) almost one block away or further, in the event of miscoordination.

The probability of miscoordination is at least νr∆, so the expected loss from miscoordi-

nation (point b) is at least νr∆ Λ
νr
M(s1) = Λ∆M(s1) by the definition of n in step 1. We

will show below that the gain from point (a) cannot exceed this amount.

We assume that in stage 2, the cell communicated by sender 1 is the rightmost of the two

cells of P (y) that overlaps with c(s1). This is done without loss of generality as the left case

is symmetric, and any other announcement causes miscoordination for sure, which cannot

be profitable.
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Also without loss of generality, let P (y) be the partition that should be announced if

sender 1 had signal s1 + ∆, where s2(s1 + ∆) ∈ (s2(s1), s2(s1)). Note that ∆ < 4ε, which

allows us to use the bound M(s1). The expected gain from point (a) is thus:

∫
[u1(θ, a(s1 + ∆))− u1(θ, a(s1))]f(θ|s1, s2 ∈ [s2(s1 + ∆), s2(s1)])dθ

≤ Λ∆M(s1)

It is therefore not profitable for sender 1 to deviate. �

6.2 Proof of Proposition 5

1. Constructing partitions for stage 1 messages by sender 1.

Let S2 = [−B,B] ⊆ [−T − ε, T + ε], and let X = max{s1:s2(s1)=−T} s2(s1).

Define partition L(x), which consists of n2 cells labeled as in Section 3, as follows for

all x ∈ (−B,X]. The leftmost cell (1, 1) is [−B, x]. Each subsequent cell, except for the

rightmost one (n, n − 1), is (s2(z), s2(z)], where s2(z) is the boundary of the previous cell;

note that this is well-defined because s2(.) and s2(.) are continuous and strictly increasing.

Let nL be large enough so that if n = nL, the left boundary of the rightmost cell (n, n− 1)

is greater than T
2
for all L(x). This is possible since, by assumption, the size of cells is

bounded below by 1
ν
and above by 2ε.19 We will refer to the rightmost cell as the large

extreme cell, and in partitions where x < s2(mins1∈S1 s1), we refer to the leftmost cell as the

small extreme cell. Moreover, call all others cells regular. Note that since s2(s1) and s2(s1)

are strictly increasing, there exists a unique x ∈ (−B,X] such that sender 1 puts probability

1 on s1 and s2 being in the same regular cell.

Let nL be large enough in an analogous way to n in the proof of Proposition 4.

Similarly, let Y = min{s1:s2(s1)=T} s2(s1), and define the partition R′(y) for all y ∈ [Y, T ),

starting from the right, so that its rightmost n2 − 1 cells cover at least [−T
2
, B]. Define nR

analogously, and let n = max{nL, nR}.
Note that, for any x, y, the regular cells from L(.) and R′(.) will overlap over at least

[−T
2
, T

2
]. Because s2(s1) and s2(s1) are strictly increasing over the relevant range, for every

19To see that for T large enough, it is possible for the size of the first n2 − 1 cells to lie between B + T
2

and B + B, we need to show that as n increases, the size of the first n2 − 1 cells will not "skip over" this
range. A partition’s n2 − 2 middle cells will cover at least (n2 − 2)η. If we increase n by 1, we are adding
2n + 1 cells, which cover at most (2n + 1)ε. Note that (n2−2)η+(2n+1)ε

(n2−2)η
n→∞→ 1, while B+B

B+T
2

≥ (T+ε)+(T−ε)
(T+ε)+T

2

,

which increases in T and converges to 4
3 > 1.
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y ∈ (0, Y ], there exists ϕ(y) ∈ (0, X] such that in the range of the overlap, the cells of

L(ϕ(y)) have the same boundaries as the cells from R′(y). Define R(x) = R′(ϕ−1(x)), so

that in the area of the overlap, the cells of L(x) and R(x) have the same boundaries.

As a result, for every s1, there exists a unique x such that sender 1 puts probability 1

on s1 and s2 being in the same regular cell for at least one of L(x) and R(x). Denote this

quantity x(s1).

2. The strategy profile

- Stage 1: Sender 1 announces a partition from the set {L(x), R(x)}x∈(0,X]. This partition

is such that sender 1 knows which regular cell s2 lies in - the partition must be either L(x(s1))

or R(x(s1)). If both of these partitions work, sender 1 randomizes 50/50 between them. For

the remainder of this proof, we will let P be the announced partition. Sender 2 babbles.

- Stage 2: We distinguish three cases:

a) On the equilibrium path (for sender 1, if no deviation in stage 1; for sender 2, if s2

lies in a regular cell of P ): The senders send m′i corresponding to the cell of P where s2

lies, which, by construction, is known to sender 1. Beliefs µi are determined according to

Bayes’rule. Note that (m′1,m
′
2) must correspond to a regular cell of P and reveals s1 when

combined with sender 1’s announcement in stage 1.

b) Off the equilibrium path for sender 1 (following deviation in stage 1): µ1 is unchanged

from stage 1, and sender 1 plays a best response.

c) Off the equilibrium path for sender 2 (if s2 lies in an extreme cell of P ): Sender 2

sends m′2 corresponding to the cell of P where s2 lies. Her belief µ2 remains unchanged with

respect to θ, while with respect to s1, it is such that m′1(s1,m1,m2) = 1 (if s2 lies in the

leftmost cell of P ) or m′1(s1,m1,m2) = n (if s2 lies in the rightmost cell of P ). Note that

this is always possible because, on the equilibrium path, m1 = P ′ and m′1 = k can occur for

all P ′ ∈ {L(x), R(x)}x∈(0,X] and k ∈ {1, ..., n}.
- Stage 3:

a) If (m′1,m
′
2) corresponds to a regular cell of P , the receiver chooses a(s1), where s1 is

inferred from P , m′1 and m
′
2. Note that this is always the case on the equilibrium path.

b) If, instead, (m′1,m
′
2) points to the small extreme cell of P , the receiver believes that

the state is the endpoint (−T or T ) within that extreme cell, and chooses that action.
c) If, finally, (m′1,m

′
2) points to the large extreme cell of P , the receiver believes that the

state is a(s1) and chooses that action, for s1 determined as follows:

- if P = L(x) for some x, then s1 is inferred as if sender 2 had sent m′2 = n− 2, so that

the cell is the regular cell (n, n− 2) instead of the large extreme cell (n, n− 1);

- if P = R(x) for some x, then s1 is inferred as if sender 2 had sent m′2 = 2, so that the

cell is the regular cell (1, 2) instead of the large extreme cell (1, 1).
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We now verify the optimality of this strategy profile for each player. For sender 2, we

will assume that P = L(x) for some x. A symmetric argument applies if P = R(x) instead.

3a. Optimality for the receiver

On the equilibrium path, the receiver has learned s1 exactly, but no information on s2

other than the fact that it lies in [s2(s1), s2(s1)]. It is therefore optimal for the receiver to

choose a(s1).

Off the equilibrium path, sequential rationality for the receiver’s action choice directly

follows from the specified beliefs.

3b. Optimality for sender 2 on the equilibrium path

If s2 lies in a regular cell of P , then sender 2 believes that m′1 will refer to the cell where

s2 lies. For the same reason as in Section 3’s basic construction, sender 2 has no profitable

deviation to another regular cell or to the small extreme cell. Deviating to the large extreme

cell (n, n − 1) is also not profitable: message pair (n, n − 1) now leads to the same action

as for message pair (n, n − 2). Obviously, sender 2 has no incentive to deviate is she is

supposed to send n − 2. When sender 1 is supposed to send n and sender 2 is supposed to

send any message other than n− 1 and n− 2, then s2 is at least almost a block away from

cell (n, n− 2), so once again, there is no incentive to deviate.

3c. Optimality for sender 2 off the equilibrium path

Given µ2, sender 2 believes, as on the equilibrium path, that coordination will be suc-

cessful if m′2 corresponds to the cell of P where s2 lies. If this cell is the small extreme cell,

this is optimal as deviating would lead to an action almost a block away. If s2 is in the large

extreme cell (n, n − 1), then sender 2 expects m′1 = n. The best that sender 2 can send is

to send n− 1 or n− 2, which results in an action about a block to the left of cell (n, n− 1).

If sender 2 sends anything else, she would expect the action to be even further left, which is

undesirable.

3d. Optimality for sender 1

For the same reasons as for sender 2, there is no profitable deviation to a regular cell or

the small extreme cell in stage 2 if sender 1 followed the equilibrium prescription in stage 1.

Deviating to the large extreme cell (n, n−1) is also not profitable: this is only possible when

m′2 = n−1, which implies that s2 is located in cell (1, n−1) or further to the left. Therefore,

inducing an action in cell (n, n − 2), which is almost a block to the right of (1, n − 1), is

suboptimal.

Moreover, it cannot be profitable for sender 1 to announce L(x) instead of R(x) or vice

versa - it would either lead to the same action, or to a far away action (if sender 1 also
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deviates in stage 2, or if the announcement causes s2 to be in the large extreme cell).

By the same argument as in the proof of Proposition 4, if sender 1 is supposed to announce

L(x), then announcing L(y) instead is not a profitable deviation (and similarly with R(x)

and R(y)).

Combining the two arguments above implies that announcing R(y) instead of L(x) is also

not a profitable deviation. �
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