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Abstract

This paper proposes a model of two-party representative democracy on a single-

dimensional political space, in which voters choose their parties in order to in�uence

the parties�choices of representative. After two candidates are selected as the me-

dian of each party�s support group, Nature determines the candidates�competence

levels. Based on the candidates�political positions and competence levels, voters

vote for the preferable candidate without being tied to their party�s choice. We show

that (1) there exists a nontrivial equilibrium under some conditions, and that (2)

dependent on voter distribution over their political positions, the equilibrium party

line and the ex ante probabilities of the two-party candidates winning are biased.

In particular, we show that if a party has a strong subgroup with extreme posi-

tions, then the party tends to alienate its moderate subgroup, and its probability

of winning the �nal election is reduced.
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1 Introduction

In a two-party electoral system, o¢ ce-motivated parties set their policy platforms to at-

tract the majority of voters in order to get elected. Downs (1957) and Black (1958) have

shown that if the policy space is one-dimensional then both parties choose the median

voter�s �bliss point� as their party platform. Although this theoretical result is a nice

justi�cation for a two-party system, we do not observe this outcome in US politics. Why

is this the case? First, in the real world, the policy space is not one-dimensional. However,

given a two-party system, a similar result can occur when candidates are o¢ ce-motivated

even with a multidimensional policy space, if there is an equilibrium. In contrast, if can-

didates are policy-motivated, then we have policy divergence as Wittman (1983), Calvert

(1985), and Roemer (2001) show in models with uncertainty in voting outcomes.

Although the result that candidates� levels of policy-orientation determine the level

of equilibrium policy divergence is quite reasonable, one problem still remains. How did

these policy-oriented candidates get elected as party candidates? In the real world, it ap-

pears that on many occasion candidates who are quite far from the median voter can be

elected in party primaries in many occasions. In 2004, moderate Republican senator Arlen

Specter faced a tough challenge from the right in the Republican primary election; but

once Specter defeated the challenge with a narrow margin, he was comfortably reelected

in the general election with great support from independents. During his reelection bid

in 2006, moderate Democratic senator Joe Lieberman lost the Democratic Party primary

election but won reelection in the general election as a third-party candidate. Electing

extreme candidates in party primaries can have serious consequences: it can, for example,

destabilize one party�s domination over the other. A recent experience in California is

vividly described by Fiorina, Abraham, and Pope (2011, pages 210-211). In the 1994

election, the California Republican Party won its governorship in a landslide, won four of

the six other statewide races for state o¢ ce, and Republicans defeated four Democratic

House incumbents. However, thereafter, the California Republican Party was taken over

by its extreme social conservative elements, nominating hard-core conservatives with lim-

ited in primary elections; and in 2002 Democrats won all the statewide races for the �rst

time in California history. In less than a decade, California changed its hue from dark red

to dark blue, and California is still known as a Democratic state (for now).

From these examples, we can make a few observations. First, primary election results

can be quite biased, and the candidates who make it to the �nal election may not be close

to the median voter�s bliss point. Second, if the candidates elected in primary elections are

too extreme, then the party has a high chance of losing the general election by alienating

moderate central voters. Third, one party�s domination is fragile and unstable, and it

can be upset easily. Fourth, a dramatic change in a party�s power may last for long time
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despite the fragility of a party�s domination. In this paper, we will propose a simple

two-party voting model that is consistent with these observations, and we will ask the

following two questions: Does the presence of an extreme intraparty group within its

political position (say, the social conservative subgroup in the Republican Party) have

implications for the party line? Although it is under debate among researchers, some

argue that US voters are becoming more and more politically divided. If this is true,

what are the implications for equilibria and political stability?

Fiorina, Abraham, and Pope (2011) argue that each party�s elite activists tend to

have rather extreme views, and they in�uence primary election outcomes, resulting in

more policy polarization. Levendusky (2009) stresses the role that party elites play in

sorting voters into the two parties by clarifying each party�s political positions.1 Sorting

of voters can aggravate the polarization of the party candidates even further. These

authors investigate how we reached the current US political landscape over time with a

dynamic analysis that checks the causality of events. Levendusky (2009) provides series

of empirical evidences that support his hypothesis. However, it is very hard to construct a

formal game-theoretical model with many players (party elites, voters, party candidates,

etc.) that describes the dynamic evolution of party policies and voter sorting, since we

need to specify our model precisely through speci�c assumptions on how rational party

elites and voters are and what information they possess when they choose their actions.

Although it would be elegant if we could construct such a dynamic model, it is extremely

di¢ cult to make the model robust to a speci�c setup and assumptions.

In this paper, we will take a simple alternative approach. We will provide a �static�

model using equilibrium analysis without analyzing the causality of events. That is, we

will focus on self-sustainable (internally consistent) allocations. This approach may ap-

pear to be a regression from the dynamic approach proposed by Levendusky (2009), which

can explain how things evolved, but we believe that static analysis could complement dy-

namic analysis. By ignoring dynamics, we can draw simple conclusions from the analysis

� for example, if there are multiple equilibria, then we can say that some su¢ ciently

large shock can upset an equilibrium and shift it to a very di¤erent equilibrium. And the

equilibrium is self-sustainable, so the existence of multiple equilibria can explain the third

and the fourth observations mentioned. Our model predicts voter sorting in equilibrium,

and it trivially causes more polarized party primary results by adopting our simpli�cation

assumption that the outcome of a party primary is the median voter�s bliss point within

the party.

1In the 60s, voters were not sorted to Democrats and Republicans by their political positions (Southern

states were the stronghold of conservative democrats), but by the 80s the conservatives sorted to the

Republicans while the liberals sorted to the Democrats. Levendusky (2009) asserts that party elites

clari�ed party/ideology mapping, resulting in voter sorting.
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Our main idea is described by introducing uncertainty in voting outcomes following

Wittman (1983). Speci�cally, we assume that each candidate has a chance to win due to

the uncertainty of the election. That is, our model involves common shocks rather than

idiosyncratic shocks among voters in the �nal election. As is often seen in the real world,

the candidates�campaign and debate performances can change the voting outcome.2 Some

voters may prefer the candidate from the opposite party even if her political position is

very far from the candidate�s position.3 With such uncertainty in the voting outcome,

even if an extreme candidate is selected in a primary, she may win the �nal election if she

happens to be judged much more competent than the moderate candidate, although such

an event would occur only with very low probability. Suppose that an extreme candidate

is chosen in a party by the in�uence of a strong, extreme subgroup in that party. Then,

moderate potential supporters of the party are alienated if the party does not re�ect their

voice in choosing the party candidate. If they participate in the other party which has

more diverse support groups, they may be able to play a more signi�cant role in choosing

that party�s candidate. As a result, the party line shifts accordingly, and the more diverse

party selects a more moderate candidate, while the party supported by an extreme group

selects a more extreme candidate. This is a self-sustaining outcome� an equilibrium.

Obviously, the diverse party�s candidate�s political position is closer to the median voter�s

position, and she has a higher probability of getting elected.

To determine the party line in the equilibrium, we assume that voters are strategic

in choosing their parties, foreseeing their in�uence on the choice of candidates, and we

assume away all other strategic behaviors by voters and candidates.4 We simply assume

that a party candidate (or a party policy platform) is the median voter within the party

support group.5 In order to describe voters�strategic behavior in their party choice, we

will not simply adopt Nash behavior, since we assume that voters are atomless. In this

framework, unilateral deviations cannot a¤ect the parties�candidate-selection processes,

so any partition of voters can be a Nash equilibrium. To avoid this di¢ culty, we consider

small coalitional deviations and de�ne a �political equilibrium�as a partition of voters

2For example, we can recall the loss of the incumbent George Allen, a Republican, in the 2006 Virginia

senator race and the victory by Scott Brown, a Republican, in the 2010 Massachusetts senator race to

replace late Edward M. �Ted�Kennedy, a Democrat who had been the senator for more than 40 years.

These shocks were clearly not idiosyncratic: the shocks can be quite dramatic and devastating.
3Persson and Tabelini (2000), Roemer (2001), and Bernhadt, Krasa, and Polborn (2008) use voting

models with common shocks.
4We assume that the elected candidate cannot misrepresent her political position, following the citizen

candidate literature (see Osborne and Slivinsky 1996; Besley and Coate 1997).
5Although this may sound like a strong assumption, we can generate similar results in a simpli�ed

model even if voters select their party�s candidates strategically (see a companion paper: Kobayashi and

Konishi 2012; draft). We will explain this companion paper in the Conclusion section.
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from which any arbitrarily small coalitional deviations are unpro�table.6

Our game goes as follows. In stage 1, voters choose their parties by calculating their

expected utilities from the �nal election from joining each party (with small groups of

other voters). By the voters�party choice, the two party candidates are selected as the

median voter of each party. In stage 2, Nature plays, and the two candidates�competence

(relative attractiveness) is determined randomly. In stage 3, voters cast their ballots for

the preferable candidate given the two candidates� positions and competence (relative

attractiveness). A voter�s party a¢ liation does not bind her voting behavior, and she

votes sincerely. The �nal voting outcome is the equilibrium outcome of this voting game.

Our solution concept, political equilibrium, is a subgame perfect equilibrium, except that

we allow for small coalitional deviations instead of each voter�s unilateral deviation in the

party-choice stage (stage 1).7

We will �rst characterize our political equilibrium, and �nd that our equilibrium is

consistent with voters�party sorting. Using this property, we provide su¢ cient conditions

for the existence of a political equilibrium (Theorems 1 and 2). Then, we move on to

investigate how the party line is a¤ected by the distribution of voters over policy space:

in particular, we show the relation of the median voter�s position with the equilibrium

party line (Proposition 4). Other things being equal, if a party�s support group (in terms of

its policy spectrum) becomes more extreme, then the party tends to lose support, making

its candidate more extreme and the opponent party�s candidate more moderate. Example

2 assumes a density function with a step where discontinuity occurs at the median voter,

with higher density to the left of the median and lower density to the right. We �nd that

the party line will move left, i.e., the right party expands by making it easier for voters to

have their voice. In an example with a tri-peaked symmetric voter distribution (Example

3: a step function with peaks at the left extreme, the center, and the right extreme),

we conduct a comparative static exercise to analyze what happens when voters are more

politically divided. When the voter distribution is uniform, there is a unique symmetric

equilibrium. However, as the population of the moderate left and right decreases gradually,

two other asymmetric equilibria suddenly appear. Such an asymmetric equilibrium has

6This de�nition of equilibrium has super�cial similarity to ��-club�s deviations�of Osborne and Tourky

(2008). However, the uses of small coalitional deviations in these two equilibrium concepts are very

di¤erent (see footnote 7 below).
7Our solution concept super�cially resembles a part of Osborne and Tourky�s (2007), small club

Nash equilibrium. They consider deviations by positive measures of atomless voters to determine each

subgame�s voting outcome. However, this is a response to the insensitivity to the electoral outcome to a

single voter�s action (they assume that voting is costly), given a continuum of voters. In contrast, in our

model, a small coalition�s deviation has more signi�cance. By a small coalitional deviation, candidates�

political positions change, and voters�utilities are a¤ected by that. Thus, in our paper, small coalitions

play more signi�cant role than in Osborne and Tourky (2008).
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the feature of having one party composed mostly of extreme voters and the other party

composed of the rest of the voters, including the centrist group. This equilibrium has

two self-sustaining parties: the former party chooses an extreme candidate who has a low

probability of winning (but there is still a chance to win if common shock is strongly in

favor of him), while the latter chooses a moderately oppositely biased candidate with a

high chance to win. Voters who are happy with the extreme candidate despite her low

chance of winning continue to support the extremist party. However, there is another

oppositely biased equilibrium that is self-sustainable. Thus, if voters are deeply divided

politically, then there will be multiple equilibria and the equilibrium allocation can jump

from one extreme to the other with a substantial shock in the environment.

Two articles are most closely related to our paper. Feddersen (1992) constructs a

model in which voters choose political positions and calls a group of voters who choose

the same political position a party. In the sense that voters choose their party strategically,

our model is closest to Feddersen (1992), since voters are assumed to be strategic players

in his model as well as ours. However, there are also a number of di¤erences between

the two approaches. Feddersen�s model is deterministic, allows an arbitrary number of

parties, and allows a multidimensional policy space. In contrast, uncertainty plays an

essential role in our model, while we restrict our attention to the two-party case on a

single-issue space. In our model, a party�s political position (the candidate�s position)

is determined by aggregating the party supporters� political positions (via the party�s

median voter�s policy). Extending the Wittman model (1983), Roemer (2001, Chapter 5)

endogeneizes the party line through assuming that voters sort into parties by comparing

their (deterministic) utility levels from two candidates� policies. In our model, voters

compare the expected utility levels of joining each party. In this sense, voters in our

model are more farsighted and strategic. Our Example 3 will bring out the di¤erence

between these two approaches.

In section 2, we present our model. In section 3, we de�ne political equilibrium and

investigate its properties. Using these properties, we provide some insights into how the

party line is a¤ected by the distribution of voters over their political positions. In section

4, we provide a sequence of examples that show when the equilibrium is biased and there

are multiple equilibria. The main observations from the examples are: if one party has

a stronger extreme subgroup, then the party loses some of centrist supporters; and if

the voters are more polarized then there tend to be asymmetric equilibria in which one

party consists of mostly extremists while the other party has both centrists and extremists

as its supporters. In section 5, we conclude with a brief discussion of how relaxing our

assumptions will a¤ect our results.
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2 The model

2.1 The overview of the model and the game

There is a one-dimensional policy space, and a continuum of atomless citizens, namely

atomless voters, is distributed over the interval [0; 1]. There are two parties. The party

names themselves do not matter, but for convenience, we call one party with more sup-

porters from the left side the L party and the other with more supporters from the right

side the R party. These parties are formed by the voters. Each party selects a candi-

date who represents the party, and each voter casts a vote for his or her most favorite

candidate. Following the citizen-candidate models by Osborne and Slivinski (1996) and

Besley and Coate (1997), we assume that the winner becomes the policy maker who im-

plements her own preferred policy, which means that the policy maker elected by voters

has complete authority, and we assume that candidates�political positions are common

knowledge and that candidates cannot commit to anything, so that they cannot be tied

to their ex-ante policies. We also assume that candidates��political competence,�which

is the ability to implement a policy successfully and in a favorable way for voters, is a

random variable that is initially unknown to the voters but is revealed after the candidate

starts the campaign.8 As a result, a candidate with the higher political competence has

a higher probability to be elected to the o¢ ce. Note that this random shock is not an

idiosyncratic shock across voters but is common to all voters, and thus a¤ects the voting

outcome.9 Once the candidates�political competence is realized, voters�behavior depends

on the candidates�political competence and positions. Thus, at the voting stage some

voters can prefer the candidate of the opposite party. Since there are no restrictions on

voting, she does not necessarily vote for the candidate of her party.

We consider the following dynamic two-party representative election game. In stage

1-a, voters choose their parties; in stage 1-b, in each party, a member of the party is

chosen as the party representative, who will choose the policy once elected; in stage 2,

Nature plays and the competence (attractiveness to voters) of each candidate is realized;

and in stage 3, all voters vote freely for one of the two candidates, and a winner becomes

the policy maker and implements her favorite policy. Basically, we analyze these stages in

8To be concrete, through the electoral campaigns where voters watch candidates�debates, campaign

ga¤es, scandals, and so on, voters can know which candidate has the superior ability to implement policy

and which is a more charismatic policymaker, which can a¤ect the voting outcome.
9It is well known that each candidate takes the median voter�s position if there is no uncertainty

following the median voter theorem. On the other hand, when �the candidates are uncertain of the

distribution of citizens�ideal points,� they may take di¤erent positions (Osborne 1995). In this paper,

by introducing this political competence, a simple uncertainty, we can explain the political phenomenon

we pointed out in the previous section.
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reverse order. However, following Besley and Coate (2003), we greatly simplify stage 1-b:

a median of the support group of each party is selected as the candidate who represents

the party. We solve this game by backward induction, so that the equilibrium is basically

the subgame perfect equilibrium. However, we need to modify the equilibrium slightly in

stage 1, since each voter is atomless. We introduce an equilibrium notion that is immune

to any small coalitional deviations, as mentioned in the previous section. Regarding

small deviations, Osborne and Tourky (2008) also use a similar deviation named ��-club�

and de�ne the �small club Nash equilibrium.�10 This small club is not a coalition that

weakly improves each member�s payo¤ in the club, but a club that improves the sum

of the members� payo¤ in the club by deviating. While Osborne and Tourky do not

consider redistribution among the members in the club, our model is more rigid in terms

of the redistribution of each member�s payo¤ in the coalition by considering coalitional

deviations.

2.2 Voters

Each voter cares about the policy chosen by the elected representative and cares about her

competence, which is the ability to implement her policy successfully and in a favorable

way for voters. Each voter is atomless and has a type �, which is distributed continuously

on [0; 1] with density function g(�).11 Type � voters have the following von Neuman-

Morgenstern, hereafter vNM, expected utility function:

u(pk; �; �k) = �jpk � �j+ �k;

where pk 2 [0; 1] and �k 2 R denote the policy implemented by the elected represen-

tative k 2 C as a policy maker and a realization of a random variable that describes

her competence, respectively. C denotes a candidate set composed of candidates selected

from each party. The random variable �k follows probability density function fk with

zero expectation (E(�k) = 0) and symmetric distribution with respect to 0. A positive

realization �k shows that the candidate is competent, while a negative realization denotes

her incompetence.

2.3 Allocations and Party-Candidates

In this section, we explain how each candidate is selected in each party. In this model,

who becomes a candidate depends on the structure of the party.

10They use the �-clubs deviations not in the party-formation stage but in the voting stage. In their

model, candidates and voters are separated, which is not the citizen candidate model.
11Thus, even if all voters of type � form one group, it is still atomless.

8



De�nition 1 An allocation is a list of membership densities of L party and R party,

gL : [0; 1] ! R+ and gR : [0; 1] ! R+, respectively, such that for all � 2 [0; 1], gL(�) +
gR(�) = g(�) holds.

We assume that supporters of each party elect a party representative who becomes a

candidate running for the representative (policy maker). Each candidate is of the major-

ity�s preferred type, namely a median voter elected as a party representative, following

Besley and Coate (2003), as we said earlier.12 Let x(gL) and y(gR) be such thatZ x(gL)

0

gL(�)d� =

Z 1

x(gL)

gL(�)d� () GL(x(gL)) = GL(1)�GL(x(gL))

and Z y(gR)

0

gR(�)d� =

Z 1

y(gR)

gR(�)d� () GR(y(gR)) = GR(1)�GR(y(gR));

respectively. They denote the candidates of the L party and the R party, respectively.

Obviously, each candidate x and y depends on the distribution of her supporters (each

party�s distribution), respectively. From now on, our main focus is on �sorting alloca-

tions,�that is all supporters of the L party are on the left side of a threshold type and

those of the R party are on the right side of the type:

De�nition 2 A sorting allocation is an allocation g~�R and g
~�
L with a threshold ~� 2 [0; 1]

which partitions [0; 1] into two intervals: L = [0; ~�) and R = (~�; 1] such that

1. g~�L(�) = g(�) and g
~�
R(�) = 0 for all � 2 [0; ~�), and

2. g~�L(�) = 0 and g
~�
R(�) = g(�) for all � 2 (~�; 1].13

Throughout the paper, we will denote these sorting allocations with threshold values
~� by g~�L and g

~�
R, respectively. We will focus our attention on a sorting allocation in later

sections. On the basis of these characteristics, we can determine the candidates in a

sorting allocation with threshold type ~�. From the de�nition of a sorting allocation, x is

determined by G(x) = G(~�)�G(x) and y is determined by G(y)�G(~�) = 1�G(y). In
a sorting allocation, each candidate also depends on the threshold ~�. Thus, we will also

denote each candidate as a function of ~�: i.e. x = x(~�) and y = y(~�) in the following

sections when we focus on a change in the threshold ~�.

12We can obtain similar results with a model where voters select their party�s candidate strategically, as

long as the density function f is su¢ ciently widely spread; see Kobayashi and Konishi (2012; in progress).
13Although the voters of type ~� are not choosing any parties in this notation, the results in the following

sections do not change even if they are choosing either L or R party since only one type of voters, also

including ~�, are atomless. However, we only assume that there are atomless voters of type 0 (1) in L (R)

even if ~� = 0 (~� = 1) for convenience.
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2.4 Realization of Competence of a Candidate

After candidates x and y are selected, their competence �x and �y is realized. In principle,

we assume that both �x and �y are independent distributed random variables following fx
and fy, respectively. But for expository simplicity, we will assume throughout the paper

that only the party L candidate x has random variable � with a density function f , and

y has no shock.14

2.5 Voting

First, note that voters�behavior is not determined by the parties they belong to. There

is absolutely no commitment: voters consider only the candidates� political positions

and their competence when deciding whom to vote for. We assume that all voters vote

sincerely. Let us consider a type � voter. We de�ne a function of type ��s relative

evaluation of y to x, which is the di¤erence of type ��s utilities from policies chosen by

each candidate, as h(x; y; �) � �jy � �j+ jx� �j when � = 0, or

h(x; y; �) =

8>><>>:
�(y � �) + (x� �) = x� y � 0 if � � x
�(y � �) + (� � x) = 2� � x� y if x < � < y

�(� � y) + (� � x) = y � x � 0 if y � �
:

Clearly, h(�) is a weakly increasing function of �. Note that to slide type � 2 (x; y) to
the right by one unit enlarges the relative evaluation of y by two units, which means that

voters prefer y to x as their type gets larger. Then competence �, which makes the median

voters indi¤erent between both candidates, is dependent on x and y. Thus, we will denote

competence as a function of x and y: i.e.

�(x; y) � h(x; y; �med) = �jy � �medj+ jx� �medj = 2�med � x� y (1)

We assume that a candidate who receives a plurality of the vote, i.e. who receives more

ballots than the other candidate, at the voting stage becomes the elected representative.15

Then we have the following lemma (for the proof, see Appendix A):

Lemma 1 If � > �(x; y), then x is the winner. If � < �(x; y), then y is the winner.

Since � is a random variable drawn from a probability distribution with density func-

tion f , once x and y are determined, 1�F (�(x; y)) and F (�(x; y)) are the winning proba-
bilities of candidates x and y, respectively, from this lemma; those probabilities are de�ned

14We can calculate that each voter�s expected utility in the case where candidate x and y have compe-

tence �x and �y, respectively, is the same as that in the case where only a candidate x has competence �

by assuming that both �x and �y are independent and that f(�) =
R +1
�1 fx(�+ �y)fy(�y)d�y.

15We assume that all voters vote for either x or y sincerely, so that no voters abstain. As a result,

obtaining a plurality of the vote means obtaining a majority of the vote.
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as Py(x; y) � F (�(x; y)) and Px(x; y) � 1�F (�(x; y)). Taking these probabilities and the
political positions of both candidates into account, voters choose their parties.

Before the next section, we will present a clear-cut corollary of the above lemma (see

Figure 1):

Corollary 1 If �med < x+y
2
, then x has a higher chance of winning (F (�(x; y)) < 1 �

F (�(x; y))). If �med >
x+y
2
, then x has a higher chance of winning (F (�(x; y)) > 1 �

F (�(x; y))). If �med =
x+y
2
, then F (�(x; y)) = 1� F (�(x; y)).

2.6 Party Choice by Voters

In stage 1, all voters choose either the L party or the R party. We assume that there

is no option of joining no party.16 Each voter chooses one party i 2 fL;Rg, where she
can obtain a higher expected utility than the other through in�uencing the choice of the

party�s candidate as the party representative. Note that since every voter is atomless,

each voter�s party choice has absolutely no impact on the party�s representative selection.

The expected utility of a voter of type � when two candidates are x and y is

Eu(x; y; �) =

Z �(x;y)

�1
f(�)(�jy � �j)d�+

Z +1

�(x;y)

f(�)(�jx� �j+ �)d�

=

Z �(x;y)

�1
f(�)d�(�jy � �j) +

Z +1

�(x;y)

f(�)d�(�jx� �j) +
Z +1

�(x;y)

�f(�)d�

= F (�(x; y))| {z }
prob. y winning

� (�jy � �j)| {z }
utility from y winning

+ (1� F (�(x; y)))| {z }
prob. x winning

� (�jx� �j)| {z }
utility from x winning

(2)

+

Z +1

�(x;y)

�f(�)d�| {z }
ave. of � when x wins

:

We denote the expected utility of each voter of type � in stage 1 when voters�distributions

are gL and gR by EU :

EU(gL; gR; �) = Eu(x(gL); y(gR); �):

In sorting allocations, noting that x = x(~�) and y = y(~�), the expected utility of type � is

EU(g
~�
L; g

~�
R; �) = Eu(x(

~�); y(~�); �):

2.7 Political Equilibrium

We now de�ne our equilibrium concept. On the one hand, if we allow large coalitional

deviations, then it is hard to assure any kind of stable allocation. On the other hand, if we
16We assume that each voter cannot choose �nothing,� i.e. there are no independent voters. We can

also consider the case where voters can choose nothing strategically. However, that case requires a further

research.
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allow only unilateral deviations of one voter or one type of voter, any allocation can be a

Nash equilibrium at the party choice stage, since every voter is atomless. Thus, we adopt

an equilibrium concept that is immune to any small but positive measure coalition 
 :

[0; 1]! R+.17 Are there incentives to deviate from an allocation for a small coalition that
is far from the party line? If we allow such coalitional deviations, we need to generalize the

de�nition of political equilibrium. Note that if there are only �nite voters then each voter

has some impact on the selection of the party candidate. Our small coalitional deviations

can be regarded as individual voters�deviations in a �nite model. Let Supp(
) = f� 2
[0; 1] : 
(�) > 0g. Formally, our equilibrium concept is de�ned as follows:

De�nition 3 A political equilibrium is an allocation with gL : [0; 1] ! R+ and gR :
[0; 1] ! R+ (gL(�) + gR(�) = g(�) for all � 2 [0; 1]) such that there is a small positive
measure �� > 0 such that18

1. for all 
 � gL with
R

d� � �� for all � 2 Supp(
), EU(gL � 
; gR + 
; �) �

EU(gL; gR; �),

2. for all 
 � gR with
R

d� � �� for all � 2 Supp(
), EU(gL + 
; gR � 
; �) �

EU(gL; gR; �).

Condition 1 in De�nition 3 concerns deviations from supporters from the L party to

the R party, while condition 2 concerns deviations from the R party to the L party. We

will be particularly interested in the following sorting political equilibrium.

De�nition 4 A sorting political equilibrium is a sorting allocation with party line
~� 2 (0; 1) such that there is �� > 0 such that

1. for all 
 � g with Supp(
) � [0; ~�] and
R 1
0

(�0)d�0 � ��, and all � 2 Supp(
),

EU(g
~�
L � 
; g

~�
R + 
; �) � EU(g

~�
L; g

~�
R; �),

2. for all 
 � g with Supp(
) � [~�; 1] and
R 1
0

(�0)d�0 � ��, and all � 2 Supp(
),

EU(g
~�
L + 
; g

~�
R � 
; �) � EU(g

~�
L; g

~�
R; �).

Condition 1 in De�nition 4 concerns deviations from supporters from the L party to

the R party, while condition 2 concerns deviations from the R party to the L party. Both

de�nitions say that any small coalitional deviations less than or equal to �� in measure do

17As we will show in the next section, small coalitions�deviation incentives di¤er in the intervals (x; y)

and others [0; x) and (y; 1]. Assuming that the deviations are allowed only near the party line, we will

be focusing on (x; y). It turns out that such an equilibrium allocation is immune to deviation of small

coalitions with a positive measure if a sort of voters�psychological costs are introduced (see Section 3).
18Function gL � 
 : [0; 1]! R+ is such that (gL � 
)(�) = gL(�)� 
(�) for all � 2 [0; 1].
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not yield a greater payo¤ than not deviating to each member of those deviations in the

equilibrium.

In the next section, we will discuss deviation incentives by small coalitions from dif-

ferent policy areas � from intervals (x(~�); y(~�)), [0; x(~�)) and (y(~�); 1]. We will show

that we unfortunately need an additional assumption to assure immunity to coalitional

deviations from intervals [0; x(~�)) and (y(~�); 1]. The next section will show that every

political equilibrium is a sorting political equilibrium under a realistic condition.

3 Deviation Incentives for Small Coalitions

In this section, we provide a general analysis of deviation incentives for small coalitions

from an allocation described by gL and gR. We will start with coalitions from central

regions.

3.1 Deviations from Interval (x; y)

Let us partition the space of voter types into three intervals: [0; x), (x; y), and (y; 1].19

Since we will consider coalitional deviations near the party line, let us start with a coali-

tional deviation with size � > 0 that belongs to the interval (x; y), moving from R to

L.20 In this case, the coalitional deviation reduces the population of party R and in-

creases that of party L by �. To avoid confusion, we denote � in this case by �R!L(x;y) > 0.

We can easily construct such a deviation. Consider 
(x;y) : [0; 1] ! R+ such thatR 1
0

(x;y)(�)d� =

R y
x

(x;y)(�)d� = �R!L(x;y) and 
(x;y)(�) � gR(�) for all � 2 (x; y). After

the deviation by �R!L(x;y) , party L�s population distribution is g
~�
L + 
(x;y), while party R�s

population distribution is g~�R� 
(x;y). That is, the new median voter type x0 of party L is
determined by

G(x0) = G(~�) + �R!L(x;y) �G(x0);

and y0 of party R is by

G(y0)�G(~�)� �R!L(x;y) = G(1)�G(y0):
19We do not consider the case where x = y. This is the case where both parties have the same party

medians, which means that x and y are also the median voter, and we cannot even distinguish between

parties L and R.
20If a coalitional deviation in the interval (x; y) involves groups who switch parties R! L and L! R,

then the e¤ect of the deviation is simply reduced by canceling them out. So, we can concentrate on

one-sided move: either R! L or L! R.
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Since we are considering a small coalitional deviation, we will take �R!L(x;y) ! 0. By totally

di¤erentiating them,21 we have

g(x)dx = d�R!L(x;y) � g(x)dx; (3)

or
dx

d�R!L(x;y)

=
1

2g(x)
;

and similarly, we have
dy

d�R!L(x;y)

=
1

2g(y)
:

These derivatives represent that, by the small coalitional deviation �R!L(x;y) ! 0, both x and

y move to the right. Thus, type ��s expected payo¤ is a¤ected by such a deviation through

changes in x and y. Since we are investigating the incentive of a coalition member to join

the deviation, we consider voters of R in (~�; y). Thus, for � 2 (~�; y) we have

Eu(x; y; �) = �F (�(x; y))(y � �)� (1� F (�(x; y)))(� � x) +
Z +1

�(x;y)

�f(�)d�:

Note that �med 2 [x; y] holds. Suppose that �med < x < y. Then, since x and y are

the medians of parties L and R, we reach a contradiction. The case where x < y < �med
follows the same logic. Thus, �med 2 [x; y] must hold. This implies �(x; y) = 2�med�x�y,
and the impact of the coalitional deviation from the interval (~�; y) is written as

dEu(x; y; �)

d�R!L(x;y)

=
1

2

�
�F (�(x; y))

g(y)
+
1� F (�(x; y))

g(x)| {z }
changes in candidates�positions

� (2� � x� y � �(x; y))f(�(x; y))
�

1

g(x)
+

1

g(y)

��
| {z }

changes in winning probabilities

=
1

2

�
�Py(x; y)

g(y)
+
Px(x; y)

g(x)
� (h(x; y; �)� h(x; y; �med))f(�(x; y))

�
1

g(x)
+

1

g(y)

��
: (4)

The �rst two terms in the brackets of (4) are changes in the expected utility that both

candidates bring by moving to the right. The last term in the brackets is a change in

the expected utility that is brought about by the change in the winning probability of

y, namely f(�(x; y)) d�(x;y)
d�R!L
(x;y)

. Especially, h(x; y; �) � h(x; y; �med) in the last term in the

brackets denotes a di¤erence between ��s and �med�s relative evaluations of y to x, which

means ��s evaluations of both candidates based on �med since a candidate who receives

the ballots of �med voters becomes the winner by majority rule in a sorting allocation.

21In this case, x0 and y0 are functions of the coalitional deviation size �R!L
(x;y) , so that taking the di¤erence

of this equation between before and after deviation G(x0) �G(x) = �R!L
(x;y) � (G(x0) �G(x)), dividing it

by �R!L
(x;y) and taking �

R!L
(x;y) to zero, we can obtain the same result.
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As a result, a change in the winning probability of y is evaluated by ��s expected utility

based on �med.

Note that � shows up only in the third term in the brackets of (4) (the e¤ect due to

the changes in winning probabilities), which is a decreasing function in �.22 Noting that

h(x; y; �)� h(x; y; �med) = 2(� � �med) for � 2 (x; y), suppose that dEu(x;y;~�)

d�R!L
(x;y)

= 0 with the

threshold ~� that divides into L and R ; i.e. ~� is satis�ed with

�F (�(x; y))
g(y)

+
1� F (�(x; y))

g(x)
= 2(~� � �med)f(�(x; y))

�
1

g(x)
+

1

g(y)

�
:

(It will be shown in section 4.1 that (4) becomes zero with ~�.) Then, for all � < ~�, we have
dEu(x;y;�)

d�R!L
(x;y)

> 0, while for all � > ~�, we have dEu(x;y;�)

d�R!L
(x;y)

< 0. This implies that coalitions do

not want to move from R to L if they are composed of the types in (~�; y), while some small

coalitions composed of the types in (x; ~�) want to move from R to L if there are some

voters belonging to R in (x; ~�). However, since we are considering a sorting allocation, all

voters of � 2 [0; ~�) are in L, so there are no small coalitions that want to move from R

to L. From the analysis above, it is easy to see that if we consider a coalitional deviation

with size � ! 0 moving from L to R that belongs to the interval (x; y), the analysis is

symmetrically reversed. This argument shows that if only voters in the interval (x; y) are

allowed to move, then only a sorting allocation is consistent with the political equilibrium.

3.2 Psychological Costs for [0; x) and (y; 1]

In the previous subsection, we showed that unless we can exclude voters in intervals

[0; x) and (y; 1], it is hard to achieve an equilibrium distribution of voters between the

parties. We provide a very simple example to illustrate this point. As we have seen,

coalitional deviations from intervals [0; x) and (y; 1] are su¢ cient to upset the immunity

to the coalitions; by combining voters in (x; y) and (y; 1], we can create an even simpler

and robust example.

Example 1 Assume that g is uniform g(�) = 1 for all � 2 [0; 1], and that f is very

widely spread (for example, f(�) = 1
2a
for all � 2 [�a; a] with a large number a. In this

case, whoever the two candidates x and y are, their chances of winning are always almost
1
2
and 1

2
, respectively. Now, since everything is symmetric, a natural candidate for an

equilibrium is a symmetric allocation gL(�) = g(�) for all � < 1
2
and gR(�) = g(�) for all

� > 1
2
. In this case, x = 1

4
and y = 3

4
. Can this be immune to a coalitional deviation far

from the party line? We denote a coalitional deviation as 
. Consider a deviation from

22While the �rst and second terms are common for each type � because of their linear utility, changes

in winning probability mean di¤erent changes in expected utility because the evaluations of x and y are

di¤erent for each type.
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party R to L: 
(�) = g(�) for all � 2 (3
4
� �; 3

4
� 1

2
�) [ (3

4
+ 1

2
�; 3

4
+ �] where � > 0 is a

small positive number. That is, after the deviation, there is no impact on the R party�s

candidate: y0 = 3
4
. However, clearly x0 is closer to �med after the deviation. Given a

widespread f , the chances of x0 and y0 to win are still almost 1
2
and 1

2
. Then, deviators in


 have a closer candidate from L who wins with probability 1
2
, so they are all better o¤.

�

Although this example may appear extreme, the force of the coalitions is robust in

our model. However, in fact, voters with an extreme political position tend to have a

strong, sometimes even fanatical, belief in their position. It seems unnatural for voters

who are even more right than the median of the R party to move to the L party, while

moderate voters around the party line do not move. To avoid this, we simply assume that

if a voter�s political position is more extreme than the median of a party that is closer

to her position, then it is psychologically costly for her to join the other party.23 That

is, we can assume the presence of psychological costs � if a voter joins a party that is

not supported by her political-position neighbors, she feels deeply distressed, as if she is

sinning her convictions. From the standpoint of analysis, this psychological cost shows up

only on special occasions to eliminate unlikely behavior by voters outside interval (x; y).

De�nition 5 Psychological cost is de�ned as the following function:

�(�; i;x; y) =

8>><>>:
� > 0 if

(
i = R and � < x < y, or

i = L and x < y < �

0 otherwise

;

and �(�; i) = 0, otherwise.

Clearly, psychological costs will prohibit small coalitions outside interval (x; y) from

deviating. More precisely, for any � > 0, there exists a �� > 0 (in the de�nition of

political equilibrium) such that every political equilibrium is a sorting allocation.

4 The Main Analysis

4.1 Existence of Political Equilibrium

In this section, we provide su¢ cient conditions for the existence of a sorting political

equilibrium. To do so, we need to characterize sorting political equilibria � a sorting

allocation that is immune to any small coalitional deviations near the party line of a

threshold ~�. Let us begin by considering how type ~� voters� expected utility changes

23For example, a politically active liberal person may not enjoy going to a conservative party�s conven-

tion.
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when the threshold ~� slides slightly to the right. Di¤erentiating (2) with respect to ~�,24

we have
dEu(x(~�); y(~�); ~�)

d~�
=
g(~�)

2
'(~�);

where function ' : [0; 1]! R is de�ned by

'(~�) � �Py(x(
~�); y(~�))

g(y(~�))
+
Px(x(~�); y(~�))

g(x(~�))

�2(~� � �med)f(�(x(~�); y(~�)))
�

1

g(y(~�))
+

1

g(x(~�))

�
: (5)

This function ' is very useful in characterizing sorting political equilibria.

Note that '(~�) denotes the change of the border type ~��s expected utility when the

party line ~� moves, but it is not the change of the expected utility of any particular type

of voters. This is because the evaluating type ~� itself is also changing as the party line
~� changes. To evaluate the expected utility change of some type �, we need to adjust

the formula in order to use the ' function to evaluate the expected utility change of

each player when the party line ~� changes. Here, we consider small coalitional deviations

from the R party to the L party and from L to R around ~�, which are
R ~�+�
~�

g(�)d� andR ~�
~��� g(�)d� for a small interval � > 0, respectively. Those deviations can be expressed

by sliding the party line ~� by �. In the following lemma, we provide the di¤erence in the

expected utility of type � when the threshold changes from ~� to ~� +� or to ~� ��.

Lemma 2 Consider sorting allocations described by ~� and ~� + � such that � > 0 and

that � is su¢ ciently small. Then, we have

Eu(x(~� +�); y(~� +�); �)� Eu(x(~�); y(~�); �)

=

Z ~�+�

~�

g(�0)

2

�
'(�0)� 2(� � �0)f(�(x(�0); y(�0)))

�
1

g(x(�0))
+

1

g(y(�0))

��
d�0:

As a consequence, Eu(x(~� +�); y(~� +�); �)�Eu(x(~�); y(~�); �) is decreasing in � for all
� 2 (~�; y(~�)). Similarly, consider sorting allocations described by ~� and ~� ��. Then, we
have

Eu(x(~� ��); y(~� ��); �)� Eu(x(~�); y(~�); �)

= �
Z ~�

~���

g(�0)

2

�
'(�0)� 2(� � �0)f(�(x(�0); y(�0)))

�
1

g(x(�0))
+

1

g(y(�0))

��
d�0:

As a consequence, Eu(x(~� ��); y(~� ��); �)�Eu(x(~�); y(~�); �) is increasing in � for all
� 2 (~�; y(~�)).
24Slightly sliding ~� means that the number g(~�) � d~� of voters moves from R to L, so that this move

can be regarded as d�R!L
(x;y) = g(~�)d~� in (3), then we obtain dx

d~�
= g(~�)

2g(x) . Similarly, we can also obtain
dy

d~�
= g(~�)

2g(y) .
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The �rst term of the content of bracket g(�
0)
2
'(�0) in the right side is the change of the

border type�s expected utility. Thus, integrating g(�0)
2
'(�0) from ~� to ~� + �, the voter�s

type that is evaluating is also moving from ~� to ~� + �. The second term is a correction

term that appears when the voter�s type that is evaluating is �xed at �. Note that the

utility that each type of voter obtains from candidate y and x is di¤erent; in other words,

each type evaluates candidate y and x di¤erently. Thus, when the evaluator changes

from �0 to �, this di¤erence in evaluation has to be adjusted.25 More concretely, since

the di¤erence in the utility of y and x is �jy � �j + jx � �j � �(x; y) = 2(� � �med), the
di¤erence of this term between type �0 and type � is 2(�� �med)�2(�0� �med) = 2(�� �0).
Now, note that

dF (�(x(�0); y(�0)))

d�0
=
dF (�(x; y))

d�
�d�(x; y)
d�0

= f(�(x(�0); y(�0)))�g(�
0)

2

�
1

g(x(�0))
+

1

g(y(�0))

�
Since F (�(x(�0); y(�0))) is the probability of y winning, this denotes the change in the

expected utility of the border type �0 by changing the probability of y winning when the

threshold slightly moves to the right. (Note that increasing y�s winning probability means

decreasing x�s winning probability, and vice versa, so that this expression also means a

change in the probability of x losing at the same time.) As a result, for this adjustment,

we have to subtract the term of 2(� � �0) multiplied by the change in the probability
f(�(x(�0); y(�0))) � g(�

0)
2
( 1
g(x(�0)) +

1
g(y(�0))) from

g(�0)
2
'(�0). Thus, voters of the edge type

~� +� in the coalition of [~�; ~� +�] receive a utility improvement from the deviation that

is smallest among the coalition members, since the formula in Lemma 2 is a decreasing

function of �.

When '(~�) = 0, by reducing � to zero, both equalities in Lemma 2 are proportional

to '0(~�)
2
� f(�(x(~�); y(~�)))

�
1

g(x(~�))
+ 1

g(y(~�))

�
. Although it is more involved to prove the

following proposition formally, we can intuitively interpret the following characterization

of a sorting political equilibrium.

Proposition 1 Suppose that f and g are di¤erentiable. A sorting allocation with thresh-

old ~� is a political equilibrium if (i) '(~�) = 0 and (ii) '
0(~�)
2
�f(�(x(~�); y(~�)))

�
1

g(x(~�))
+ 1

g(y(~�))

�
<

0. On the other hand, a sorting allocation with threshold ~� is a political equilibrium only

if (i) '(~�) = 0 and (ii�) '0(~�)
2
� f(�(x(~�); y(~�)))

�
1

g(x(~�))
+ 1

g(y(~�))

�
� 0.

Proposition 1 says that '(~�) = 0 is not su¢ cient but is a necessary condition and

that we also need a slope condition of '(~�) for a sorting allocation to become a political

equilibrium.

From the above proposition, we can easily �nd a su¢ cient condition for a sorting

allocation to become a political equilibrium.
25On the other hand, the change in expected utility of the border type �0 by changing each candidate�s

position is the same as that of the evaluator type �, since linear utility is assumed.
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Corollary 2 Suppose that f and g are di¤erentiable. A sorting allocation with threshold
~� is a political equilibrium if (i) '(~�) = 0 and (ii) '0(~�) � 0.

We can also �nd su¢ cient conditions for the existence of a sorting political equilibrium

by imposing '(0) > 0 and '(1) < 0 in the below theorem. 26

Theorem 1 Suppose that f and g are di¤erentiable, Supp(f) � [�1; 1], and g(�) > 0

for all � 2 (0; 1), and g(0)
g(�med)

� Px(x(0);y(0))
Py(x(0);y(0))

and g(1)
g(�med)

� Py(x(1);y(1))

Px(x(1);y(1))
. Then, there exists a

sorting political equilibrium with an interior threshold ~� 2 (0; 1).

The condition basically says that it is enough that (i) the ratios g(0)=g(�med) and

g(1)=g(�med) are small, which means most extreme voters in both parties have less in�u-

ence than moderate voters relatively, and (ii) uncertainty in relative competence of the

two candidates is large, which means that even an extreme candidate has a relatively large

chance to win to guarantee the existence of equilibrium. Later, we consider a special case

of uniformly distributed f , and we can dispense with the second requirement.

5 The Party Structure in a Political Equilibrium

So far, although we have characterized political sorting equilibria, it is not yet clear what

the intrinsic factor is for the determination of the party line. In this section, we make this

clear by presenting more analyses and examples.

5.1 General Case

In this subsection, we investigate how the distribution of voter types is important to deter-

mining the equilibrium party structure by using our characterization of a sorting political

equilibrium, which includes Proposition 1 or Corollary 2. We start with comparing the

equilibrium party line ~� with the traditional �median voter� �med in the following two

propositions. It is convenient to de�ne the changes in candidates�positions weighted by

their chance of winning when the party line ~� increases (moves to the right) slightly:27

�(~�) � �Py(x(
~�); y(~�))

g(y(~�))
+
Px(x(~�); y(~�))

g(x(~�))
:

Proposition 2 Suppose that the conditions in Theorem 1 are met. Then, unless �(�med) =

0, �med cannot be a party line of a political equilibrium.

26Note that we are assuming that there are always two parties even in the case of ~� = 0 or 1. Here, we

are considering the case where the minority party is extremely small (~� = � or ~� = 1� � for � very small).
Taking the limit, we have lim�!0 '(�) = '(0) and lim�!0 '(1� �) = '(1).
27Strictly speaking, �(~�) is an e¤ect when x and y move by 2 �dx=d�R!L

(x;y) = 1=g(x) and 2 �dy=d�R!L
(x;y) =

1=g(y) in (3).
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This proposition tells us that a sorting political equilibrium does not always divide the

voters into two parties at the median type. Next, we will consider the condition where the

median type becomes the threshold of a two-party structure. It turns out that it is not

su¢ cient to have symmetric g and f , though the additional condition is often satis�ed.

Proposition 3 Suppose that the conditions in Theorem 1 are met, and that g and f are

symmetric. Then, there is a political equilibrium with ~� = �med if and only if

g(�med)

4g(x(�med))2

�
4f(0)� g

0(x(�med))

g(x(�med))

�
� 4f(0)

g(x(�med))
� 0:

The above proposition tells us that, in general, ~� and �med have no reason to coincide

with each other. They can coincide, but only in very special situations. We can elaborate

this observation using the � function:

Proposition 4 Suppose that the conditions in Theorem 1 are met. Then there exists a

sorting equilibrium with threshold ~�
�
> (<)�med if �(�med) > (<)0.

The condition �(�med) > 0 says that if a small group near �med switches its party

from R to L, then x moves more to the right than y moves to the left in the sense of the

expectation. That is, the gain of x coming closer is greater than the loss of y moving away

from �med, and such a small group in R prefers to switch its party. Thus, the statement

of Proposition 4 is intuitive.

Incidentally, although the above propositions provide explanations for an equilibrium

of a party line far from the median of voters on a distribution g(�) that includes a less

irregular distribution, which is in favor of our theory, those explanations do not mention

that there is only a biased equilibrium once a distribution g(~�) is determined. In other

words, we cannot exclude the possibility that there may be another equilibrium that

has an opposite bias. In the next subsection, we will impose a simplifying example on

competence distribution f .

In concluding this subsection, we can discuss how the distribution of voters g a¤ects the

equilibrium party lines. Using �(~�) and the above consideration, we can talk about equilib-

rium predictions by focusing on the sign of �(�med). We suppose that when �(�med) � 0 (�
0), '(�) > 0 holds for all � 2 [0; �med) ('(�) < 0 holds for all � 2 (�med; 1]). If g(y(�med)) =
g(x(�med)), then what matters is Py(x(�med); y(�med)) R Px(x(�med); y(�med)). If y(�med)
is further away from �med than x(�med), then Py(x(�med); y(�med)) < Px(x(�med; y(�med)))

holds since Corollary 1, and �med < ~� such that '(~�) = 0 occurs. This means that if

the support group of party R shifts more to the extreme right in the policy spectrum,

then moderate R supporters tend to switch from R to L. If Py(x(�med); y(�med)) =

Px(x(�med; y(�med))) that is �med =
x+y
2
while g(y(�med)) > g(x(�med)), then a coalitional

move from R to L does not change the position of R�s candidate much, while the position
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of L�s candidate is pulled toward the median. Thus, the moderate R supporters tend to

switch parties. That is, other things being equal, if a party�s support group (in terms of

its policy spectrum) becomes more extreme, then moderate voters�strategic behavior of

switching from R to Lmakes the party lose of some of its support, by making its candidate

more extreme and the opponent party�s candidate more moderate (see Figure 2). As a

result, the probability of R�s candidate winning is reduced. To sum up, the distribution

of voters g(�) determines the relation between each candidate and a party line, and the

candidates�positions determine their chances of winning. Thus, the distribution of voters

plays a deterministic role.

5.2 A Special Case: Uniform f function

In the previous subsection, we saw that the importance of the voters�distribution. In this

subsection, we focus on g(�). Here, we assume that the common random variable called

relative competence is uniform (f is a uniform distribution). Since our interest in this

section is to see how the distribution of voters g a¤ects the party line and voting outcome,

the distribution of f is not really essential to our analysis.

f(�) =

(
1
2a

if � 2 [�a; a]
0 otherwise

Here, we assume a � 1, so that even an extreme candidate has a chance to win. Then,
with this uniformly distributed f , our ' : [0; 1] ! R can be written as follows using

�(x(~�); y(~�)) = 2�med � x(~�)� y(~�):

'(~�) � 1

g(y(~�))

h
�F (�(x(~�); y(~�)))� 2(~� � �med)f(�(x(~�); y(~�)))

i
+

1

g(x(~�))

h�
1� F (�(x(~�); y(~�))))

�
� 2(~� � �med)f(�(x(~�); y(~�)))

i
=

1

g(y(~�))
� 1

2a
�
h
�a+ x(~�) + y(~�)� 2~�

i
+

1

g(x(~�))
� 1

2a
�
h
a+ x(~�) + y(~�)� 2~�

i
(6)

From the above formula (6), we obtain

2a � '(~�) =
�
x(~�) + y(~�)� 2~�

�� 1

g(y(~�))
+

1

g(x(~�))

�
+ a�

�
1

g(x(~�))
� 1

g(y(~�))

�
: (7)

Note that x(0) = 0, y(0) = �med, x(1) = �med, and y(1) = 1. Thus, we obtain

2a � '(0) = 1

g(�med)
� (�a+ �med) +

1

g(0)
� (a+ �med)

and

2a � '(1) = 1

g(1)
� (�a� (1� �med)) +

1

g(�med)
� (a� (1� �med)) :
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Thus, g(�med) � g(0) is su¢ cient for '(0) > 0, and g(�med) � g(1) is su¢ cient (but

not necessary) for '(1) < 0. This implies that we can assure the existence of political

equilibrium under weak su¢ cient conditions when uniform f function is assumed.

Theorem 2 If g is continuous with g(�) > 0 for all � 2 [0; 1] and f is a uniform dis-

tribution with support [�a; a] where a � 1, then g(0) � g(�med) and g(1) � g(�med) are

su¢ cient for the existence of political equilibrium with interior ~�.

It is still in general hard to tell how the sign of '(~�) changes as ~� goes up, but we can

decompose the e¤ects. Rewriting (7), it is easy to see that '(~�) R 0 holds if and only if

�
x(~�) + y(~�)� 2~�

�
| {z }

A

+ a�
 
g(y(~�))� g(x(~�))
g(x(~�)) + g(y(~�))

!
| {z }

B

R 0: (8)

When ~� is small, x(~�) and ~� are close to each other while y(~�) is far from ~�. As a result,

term A is positive. Similarly, when ~� is large, x(~�) is far from ~� while ~� and y(~�) are close

to each other, implying that term A is negative. It is easy to see that term A tends to

be decreasing in ~�, although the sign of term A can change multiple times in the middle

depending on the subtle shape of the density function g. However, term B has large

�rst-order e¤ects of changes in the relative sizes of g(x(~�)) and g(y(~�)). Clearly, the sign

and the value of term B can be volatile as ~� increases. However, in simple cases, we can

more or less see the shape of the ' function.

Proposition 5 Suppose that the conditions of Theorem 2 are met. Then, there is a

unique equilibrium if we have

1.
g(~�)

g(x(~�))
+

g(~�)

g(y(~�))
� 4; and

2. g0(y(~�))
g(x(~�))

g(y(~�))
� g0(x(~�))g(y(

~�))

g(x(~�))
for all ~� 2 [0; 1].

Condition 1 corresponds to dA=d~� � 0, and condition 2 corresponds to dB=d~� � 0.

It is easy to see that the conditions are satis�ed as long as g does not �uctuate much

(a �at distribution: for example, if max� g(�) � 2�min� g(�), then condition 1 is surely
satis�ed). Regarding Condition 2, suppose that the distribution g has a single-peak at

�p 2 [0; 1]. Clearly, if x < �p < y, then g0(x) > 0 > g0(y) the condition is satis�ed. If

x < y < �p, then g(y) > g(x), g0(x) > 0 and g0(y) > 0 hold, and the condition is still

satis�ed unless g0(y) is much larger than g0(x). Similarly, if �p < x < y, then g(x) > g(y),

g0(x) < 0, and g0(y) < 0 hold, and the condition is again satis�ed unless the absolute value

of g0(x) is much larger than g0(y). Thus, if g is single-peaked and g0(�) does not change
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much within interval [0; �p) and interval (�p; 1], then condition 2 is satis�ed. Summarizing

the above, we have the following corollary:

Corollary 3 Suppose that the conditions of Theorem 2 are met. Then, there is unique

equilibrium if (i) max� g(�) � 2�min� g(�) and (ii) g is single-peaked.

By the above analysis, we can see that if the voters�distribution is single-peaked and

the slope on either side does not change much, then both A and B in (8) are decreasing;

thus '(~�) = 0 can occur once and for all, implying unique equilibrium. Now, let us

go back to Proposition 4. The proposition assures that if the conditions of Theorem 1

(alternatively 2) are met, and if �(�med) R 0, then there is a political equilibrium of which
party line satis�es ~�

� R �med. Note that �(�med) = '(�med). Thus, under the conditions
in Proposition 5, we have a unique political equilibrium with ~�

� R �med if and only if

(x(�med) + y(�med)� 2�med)| {z }
winning probability e¤ect

+ a�
�
g(y(�med))� g(x(�med))
g(x(�med)) + g(y(�med))

�
| {z }

policy responsiveness e¤ect

R 0:

That is, the L party has an advantage for attracting supporters over the R party if the

winning probability e¤ect is positive, which means x is closer to the median voter than

y, and if the policy responsiveness e¤ect is positive, which means L�s policy platform

is more responsive to the new centrists�participation than R�s policy platform. Now,

let�s say �p < �med, which implies that the L party has a more extreme group. In this

case, the winning probability e¤ect tends to be positive while the policy responsiveness

e¤ect is negative (Figure 3: a �gure of a single-peaked voter distribution with a biased

peak to the left, so that x is closer to the median than y). Then, what is the sign of

�(�med)? It is ambiguous. However, if a is large enough, which means the uncertainty in

competence level is large enough, i.e., even an extreme candidate has a chance to win the

election; then the policy responsiveness e¤ect dominates the winning probability e¤ect

and �(�med) < 0 and ~�
�
< �med hold. A large a is required, since the L party�s choosing

an extreme candidate is justi�able only when that candidate has a good enough chance

to win the election.

In the following example, we consider the case where the voters�distribution in the left

area is more dense than the right area and the median is in the left side. For simplicity,

we will allow discontinuity of g and analyze a minimally asymmetric voter distribution:

density function g is a step function, and discontinuity occurs only at the median. We

show that the L party has a denser voter distribution and a shorter tail, and that there

is unique equilibrium in which the L party loses some of its moderate supporters.

Example 2. Consider the case where g(�) is a step function and f(�) is uniform:

g(�) =

(
1

2�med
if � � �med

1
2(1��med) if � > �med
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where a > 1
2
to assure that no probabilities of x and y winning become zero (1�F (x) > 0

and F (y) > 0). Without loss of generality, we assume �med � 1
2
so that 1

2�med
� 1

2(1��med) .

In this case, we have a unique political equilibrium with

~� =
2�med((2a+ 1)�med � a)

4�med � 1
< �med:

Thus, the party line is unambiguously biased. The details of the �gure and the calculations

of g(�) and '(~�) are in Appendix B and Figure 4. �

Example 2 shows that as long as g is relatively �at, the equilibrium is unique even if

the voter distribution is asymmetric though the party line is biased.

On the other hand, we can also show a case of multiple equilibria. In the following, we

consider a symmetric voter distribution g to show that there can be multiple equilibria

if g goes up and down. There are three core groups in the example: Extreme Left

(EL), Center (C), and Extreme Right (ER). We assume that Moderate Left (ML) and

Moderate Right (MR) are distributed in a wider political range and are less concentrated

than EL, C, and ER. This distribution expresses a political situation where major voters

are divided in three di¤erent and narrow ranges and their opinions are con�icting. This

political con�ict brings multiple equilibria. With signi�cant ups and downs, we can have

multiple equilibria even if voter distribution is asymmetric.

Example 3. Let us consider the following symmetric voter distribution described by a

step function (0 < b � 1: b = 1 corresponds to uniform g).

g(�) =

8>>>>><>>>>>:
3� 2b for all � 2 [0; 1

9
]| {z }

EL

[ [4
9
;
5

9
]| {z }

C

[ [8
9
; 1]| {z }
ER

b for all � 2 (1
9
;
4

9
)| {z }

ML

[ (5
9
;
8

9
)| {z }

MR

When b = 1, this example degenerates to uniformly distributed g. As b decreases from

unity, the voters�distribution becomes more and more politically divided although we

assume that there are still plenty in the centrist group. We can regard b�s getting lower

as a change from a situation where voters have scattered political opinions to a situation

where voters�political opinions are becoming integrated around three positions and their

con�ict is getting more severe. See the Figures 5 - 8. Due to the discontinuity of the g

function, the ' function becomes discontinuous, but we can easily approximate it by a

continuous function by using the standard procedure. Note that g(0) = g(1) = g(�med)

holds (�med = 1
2
), and the conditions of Theorem 2 are all satis�ed after an approximation

of g. Since everything is symmetric, we can focus on the cases of ~� 2 [0; 1
2
]. We will

investigate what will happen on x(~�) and y(~�) (thus including '(~�)), as ~� increases from

0 to 1
2
. Clearly, x(0) = 0 and y(0) = �med =

1
2
. It is also easy to see x(1

9
) = 1

18
and
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y(1
9
) = 5

9
, and from ~� = 1

9
, y(~�) enters into interval (5

9
; 8
9
) with lower density while x(~�)

remains in interval [0; 1
9
] with high density. From these calculations, we have '(~�) > 0

for ~� 2 [0; 1
9
]. Since g and f are symmetric, '(~�) < 0 for ~� 2 [8

9
; 1] is also obtained.

Thus, Proposition 3 is also applicable in this example after the approximation, although

the su¢ cient conditions of Theorem 1 are not met. In this example, the condition in

the proposition becomes quite simple, that is, g(�med) � 4g(x(�med)) for any a. Since

g(x(�med)) is either equal to or less than g(�med) from the de�nition of g, we have b � 1
2

when g(x(�med)) < g(�med). We can use the condition for checking whether �med is a

symmetric equilibrium. However, from then on, we need to classify a few subcases. The

following tables summarize the relevant information. We have three cases:
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As we mentioned above, when b = 1, g(�) is a uniform distribution. Then the equi-

librium is unique and symmetric, ~� = 1
2
. Even if b becomes only a little smaller than 1,

'(~�) becomes discontinuous28 at ~� = 1
9
in Case 3 of Table 1 and at 8

9
from the symmetry,

and shifts below because of the discontinuity of g(�) at 1
9
and 8

9
; see Figure 5. As b gets

smaller, this shift gets larger; then two asymmetric equilibria appear in (1
9
; 4
9
) and (5

9
; 8
9
)

in addition to the symmetric equilibrium;29 see Figure 6.30 As b gets increasingly smaller,

these asymmetric equilibria approach 1
9
and 8

9
, respectively, and �nally stick to them. In

b < 1
2
where b is in Case 2, the symmetric equilibrium disappears although '(1

2
) = 0

since the condition of Proposition 3 cannot be met, so that there are only two asymmet-

ric equilibria; see Figure 7. With the case of deeply divided voters, in each asymmetric

equilibrium, one party will be formed by all extremists (fELg and fERg, respectively)
and few moderates, while the other party will be formed by the rest (fL;C;R;ERg and
fEL;L;C;Rg, respectively), and their candidates are extremist and moderately biased
centrist. As a result, in one equilibrium x(~�) and y(~�) are around 1

18
and 5

9
, and in the

other those are around 4
9
and 17

18
), respectively. When b goes on being even smaller and

gets into Case 1, x(1
2
) is in (0; 1

9
) at ~� = 1

2
. Then, although b < 1

2
, the condition of Propo-

sition 3 is met again because of g(x(�med) = g(�med), so that the symmetric equilibrium

appears again. Since the asymmetric equilibria still exist, there are again three equilibria;

see Figure 8.�

This example shows that if there are core extreme groups (if voters are divided politi-

cally), political equilibria can be signi�cantly biased and a political party may represent an

extreme core group by alienating the center ground voters even if the voters�distribution

is symmetric.31 The existence of multiple equilibria means that even if political environ-

ments, g(�) and f(�), do not change, the political outcome can be di¤erent. That is, when

voters are politically divided, if some large enough exogenous shock occurs, then the party

supporters�allocation can jump from one political equilibrium to another. The episode

of transforming from a deep red to a deep blue state in California (see introduction) can

28Function '(~�) becomes discontinuous at the point where x or y stride over a step. In Example 2,

'(~�) is not discontinuous but only kinks at �med with a step because of x � �med � y.
29When a = 1, multiple equilibria show up for a relatively high value of b: for example, we obtain

asymmetric equilibria when b = 0:8 that makes the densities of EL, C and ER are 1:75 times larger than

ML and MR.
30The fact that there can be multiple equilibria for medium size b also shows the importance of single-

peakedness condition for the uniqueness of political equilibrium in Corollary 3.
31This example starkly contrasts our political equilibrium notion with Roemer�s equilibrium notion of

an endogenous party line (Roemer 2001 Chapter 5). In our model, the voters�party choice is determined

by a comparison of expected utilities from joining the L and R parties, but Roemer assumes that ~� is

determined by a comparison of two parties�policies. For example, if x = 1
18 and y =

5
9 , the party line is

the middle point of the two: ~� = 11
36 . Thus, our biased equilibrium cannot be supported as an equilibrium.

In fact, in this example, the Roemer equilibrium must be symmetric ~� = 1
2 .
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be explained as a consequence of such a case of politically divided voters.

6 Conclusion

In this paper, we considered a two-party representative democracy and investigated how

the distribution of voters�policy positions on a one-dimensional issue space a¤ects the

party line and the probability of each party�s winning. We introduced a common shock

that a¤ects each voter�s utility, instead of the standard idiosyncratic shocks in the proba-

bilistic voting model. We also introduced a new equilibrium concept political equilibrium,

which is immune to any small coalitional deviations near the party line, in contrast with

Nash equilibrium and strong equilibrium. This notion simpli�es the characterization of

the equilibrium by focusing on a sorting allocation case. We showed that voters�dis-

tribution intrinsically a¤ects the party line in the political equilibrium. In addition, we

showed that, in Example 3 where voters are divided into three political positions, multiple

equilibria appear as the division grows deeper. Especially, if voters are deeply divided,

symmetric equilibrium disappears even though the distribution is symmetric. In each

asymmetric equilibrium, the minority candidate becomes more extreme, and the other

becomes more moderate. Those multiple equilibria appearing from deeply divided voters

can be interpreted as bringing us to political instability that results in elections swinging

extremely between left and right.

In future research, we may consider three extensions, although they may be di¢ cult.

First, we may try to generalize the functional form of the voters�utility function. To

be concrete, we may consider a strictly convex utility (Osborne 1995) case. In this case,

voters are more sensitive to candidates�positions who are close to their own positions.

The convex utility function means that voters who are farther away from candidates do

not take much interest in them. We rede�ne the utility function of the voter as

u(pk; �; �) = �v(jpk � �j) + �;

where v0(�) < 0 and v00(�) > 0 and k 2 C is a winner. This type of utility function is

discussed in Osborne (1995). With such a utility function, one may think that extreme

left or right voters � voters far to the left (right) of the median of party L (R) � have

no incentive to switch parties, and we may be able to drop the assumption of psycho-

logical costs. It is perhaps true that such a convex cost function reduces the incentive to

switch parties, but it would not totally resolve the problem, since a voter with an extreme

position may be made better o¤ by her party�s candidate becoming more moderate and

gaining a higher chance of winning even if the voter does not care about the other party�s

candidate�s position. It all depends on the relative magnitudes of two e¤ects: dissatisfac-

tion with her party�s candidate�s position becoming more moderate and satisfaction with
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the candidate�s increase in winning probability.

Second, it would be interesting to think about how to make each party�s supporters

select their candidate strategically in the original Besley-Coate model (Besley and Coate

1997). One way is to assume that given the party line, each voter tries to �nd her ideal

candidate for the party (depending on her policy position and her candidate�s chances

of winning). It may be possible for us to drop our simple median voter assumption in

order to show the existence of equilibrium. When f is uniformly distributed, Kobayashi

and Konishi (2012; draft) assume that in primary elections, each voter announces her

ideal policy position (taking winning probabilities and her true bliss point) given the

other party�s candidate position, and the median of announced positions becomes the

party�s candidate position. With this party decision rule, the candidates�position pro�le

is determined as a Nash equilibrium. We show that the best response curve of each party

is more moderate than the party median (bounded above by the party�s true median

position), and the equilibrium outcome is weakly more moderate than the naive primary

elections we considered in this paper. However, the characterization of equilibrium under

general assumptions can be very di¢ cult.

Third, we used a static model in this paper. Although static approach has its own

advantages, it also has drawbacks � we need to treat both candidates symmetrically,

and we cannot introduce incumbents and challengers into the model. However, we can

accommodate incumbents in our model if we assume static expectation dynamics (Kramer

1977; Ferejohn, Fiorina, and Packel 1980; Ferejohn, McKelvey, and Packel 1984; Kollman,

Miller, and Page 1992; and, in particular, Bender, Diermeier, Siegel, and Ting 2011).

Voters know the incumbent�s competence level, while they do not know how competent

a challenger is going to be compared with whoever wins in the other party�s primary

election. The incumbent�s policy and competence level are intact, and the party line is

determined by the previous election. Suppose that a party occupies the o¢ ce and there

is an incumbent candidate. The challenging party chooses its candidate in the way of

previous paragraph. It may be interesting to see how the challenging party reacts against

competent and incompetent incumbents, and how the dynamics of candidate pro�les

emerge.

Appendix A: Proofs

Proof of Lemma 1 Each candidate is a median type of each party, x � �med � y.

Assume that � makes type �̂ 2 [x; y] being indi¤erent between x and y. Then, 8� 2 [x; y)
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such that � < �̂, and 8�� 2 [0; x),

0 = h(x; y; �̂)� � = �(y � �̂) + (�̂ � x)� � = 2�̂ � x� y � �

> 2� � x� y � � = h(x; y; �)� �

� 2x� x� y � �

= x� y � � = �(y � ��) + (x� ��)� � = h(x; y; ��)� �:

Thus, all voters of � 2 [0; �̂) prefer x to y, since h(x; y; �), which is the relative evaluation
of y to x is negative; that is all voters of � < �̂ type vote for x when �. Here, if � > �(x; y),

then, from

0 = h(x; y; �̂)� � = 2�̂ � x� y � �

< 2�̂ � x� y � �(x; y)

= 2�̂ � x� y � h(x; y; �med) = 2(�̂ � �med);

we have �̂ > �med. Hence, x gets a majority and wins when � > �(x; y).

Similarly, if � < �(x; y), �̂ < �med and every type � > �̂ vote for y, and y wins. �

Proof of of Corollary 1 We consider the h(x; y; �) such that � = x+y
2
:

h(x; y;
x+ y

2
) = �(y � x+ y

2
) + (

x+ y

2
� x) = 0

This means that type x+y
2
is indi¤erent between x and y when � = 0. Thus, when

�med < � =
x+y
2
, we have the below inequality:

0 = h(x; y;
x+ y

2
) > h(x; y; �med) = �(x; y)

From the assumptions E(�) = 0 and the symmetry of the distribution of �, F (�(x; y)) <
1
2
< 1� F (�(x; y)) can be obtained. The other case is shown as well as the above. �

Proof of Lemma 2 Di¤erentiating Eu(x(~�); y(~�); �) with respect to ~�, we obtain:

dEu(x(~�); y(~�); �)

d~�

=
g(~�)

2

�
�F (�(x; y))

g(y)
+
1� F (�(x; y))

g(x)
� 2(� � �med)f(�(x; y))

�
1

g(x)
+

1

g(y)

��
=
g(~�)

2

�
�F (�(x; y))

g(y)
+
1� F (�(x; y))

g(x)
� 2(~� � �med)f(�(x; y))

�
1

g(x)
+

1

g(y)

�
� 2(� � ~�)f(�(x; y))

�
1

g(x)
+

1

g(y)

��
=
g(~�)

2

�
'(~�)� 2(� � ~�)f(�(x; y))

�
1

g(x)
+

1

g(y)

��
:
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This implies that for small � > 0, we have

Eu(x(~� +�); y(~� +�); �)

= Eu(x(~�); y(~�); �) +

Z ~�+�

~�

dEu(x(�0); y(�0); �)

d�0
d�0

= Eu(x(~�); y(~�); �)

+

Z ~�+�

~�

g(�0)

2

�
'(�0)� 2(� � �0)f(�(x(�0); y(�0)))

�
1

g(x(�0))
+

1

g(y(�0))

��
d�0:

� appears only in the brackets as �2(� � �0), so that the second term in this expression

is decreasing in �. Hence, Eu(x(~� + �); y(~� + �); �) � Eu(x(~�); y(~�); �) is decreasing in
�. The latter half of the statement in lemma 2 can be shown by a symmetric argument. �

Proof of Proposition 1 Proof of Proposition 1 is provided by using the following four

lemmas together with Lemma 2. The next lemma shows that there is a coalitional devia-

tion around ~� which has the same e¤ect as small coalitions deviating from (~�; y) or (x; ~�)

to the other party.

Lemma 3 Consider an improving coalitional deviation 
 from a sorting allocation with
~� such that Supp(
) � [~�; y(~�)]. Then, there is another improving coalitional deviation


�R such that (i) 

�
R(�) = g(�) for all � 2 (~�; ~� + �) and 
�R(�) = 0, otherwise; and (ii)R ~�+�

~�

�R(�)d� =

R y(~�)
~�


(�)d�. Similarly, consider an improving coalitional deviation 


from a sorting allocation with ~� such that Supp(
) � [x(~�+�); ~�]. Then, there is another
improving coalitional deviation 
�L such that (i) 


�
L (�) = g(�) for all � 2 (~� � �; ~�) and


�L (�) = 0, otherwise; and (ii)
R ~�
~��� 


�
L (�)d� =

R ~�
x(~�)


(�)d�.

Proof of Lemma 3 Note that as long as Supp(
) � [~�; y(~�)], the e¤ects of 
 switching
party from R to L on x and y are the same as those of 
�R switching party from R to L on x

and y. Moreover, from Lemma 2, we know thatEu(x(~�+�); y(~�+�); �)�Eu(x(~�); y(~�); �)
is decreasing in � for � 2 (~�; y(~�)). Thus, if there is an incentive to join the coalition for
� > ~� + �; i.e., Eu(x(~� + �); y(~� + �); �) > Eu(x(~�); y(~�); �), then all �0 � ~� + � have

incentive to join the deviation. A symmetric argument proves the latter half of the state-

ment. �
�

The following lemma is a direct consequence of the above two lemmas 2 and 3.

Proof of

Lemma 4 Consider a sorting allocation with threshold ~�. This allocation is immune to a

coalitional deviation 
 with Supp(
) � (~�; y(~�)) if and only if Eu(x(~�+�); y(~�+�); ~�+
�) � Eu(x(~�); y(~�); ~�+�) holds for � de�ned by 
�. Similarly, this allocation is immune

31



to a coalitional deviation 
 with Supp(
) � (x(~�+�); ~�) if and only if Eu(x(~���); y(~��
�); ~� ��) � Eu(x(~�); y(~�); ~� ��) holds for � de�ned by 
�.

�

As a result, in order to check whether a sorting allocation is a political equilibrium, this

lemma tells us to con�rm whether the type that is the furthest from ~� in every coalition

has an incentive for taking part in the coalition. More precisely, if there exists �� > 0 such

that (i) Eu(x(~� + �); y(~� + �); ~� + �) � Eu(x(~�); y(~�); ~� + �) holds for all � 2 (0; ��),
and (ii) Eu(x(~� ��); y(~� ��); ~� ��) � Eu(x(~�); y(~�); ~� ��) holds for all � 2 (0; ��),
then a sorting allocation with threshold ~� is a political equilibrium.

We will simplify the above conditions by using the ' function. First, we provide a

simple necessary condition to be a political equilibrium.

Proof of

Lemma 5 Suppose that '(�) is continuous. Then, a sorting allocation with threshold ~�

is a political equilibrium only if '(~�) = 0.

Proof of Lemma 5 Suppose that '(~�) > 0. Since ' is continuous, there exists ~� > 0

such that '(�) > 0 for all � 2 [~�; ~� + ~�]. Then, from lemma 2, we have

Eu(x(~� +�); y(~� +�); ~� +�)� Eu(x(~�); y(~�); ~� +�)

=

Z ~�+�

~�

g(�0)

2

�
'(�0)� 2((~� +�)� �0)f(�(x(�0); y(�0)))

�
1

g(x(�0))
+

1

g(y(�0))

��
d�0:

By choosing a small enough � (smaller than ~�), the absolute value of the second term

in the brackets becomes smaller than '(�0), so that we can �nd an improving coalitional

deviation 
�R . Similarly, if '(~�) < 0, then there is an improving coalitional deviation 

�
L .

Hence a sorting allocation with ~� is a political equilibrium only if '(~�) = 0. �

Thus, we will assume '(~�) = 0 in order to characterize political equilibrium. By

applying the �rst-order Taylor expansion, we can approximate the utility change of the

critical coalition member�s utility in the below lemma when a coalition 
�R deviates.

Lemma 6 Suppose that '(~�) = 0 and that f and g are di¤erentiable functions. Then,

for su¢ ciently small � > 0, Eu(x(~� + �); y(~� + �); ~� + �) � Eu(x(~�); y(~�); ~� + �) is
approximated as

Eu(x(~� +�); y(~� +�); ~� +�)� Eu(x(~�); y(~�); ~� +�)

=

Z ~�+�

~�

g(�0)

2

�
'(�0)� 2(~� +�� �0)f(�(x(�00)))

�
1

g(x(�0))
+

1

g(y(�0))

��
d�0

' �2g(~�)

2

"
'0(~�)

2
� f(�(x(~�); y(~�)))

�
1

g(x(~�))
+

1

g(y(~�))

�#
:
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Proof of Lemma 6 First, we will approximateEu(x(~�+�); y(~�+�); ~�+�)�Eu(x(~�); y(~�); ~�+
�) by using the �rst-order Taylor expansion.

Eu(x(~� +�); y(~� +�); ~� +�)� Eu(x(~�); y(~�); ~� +�)

=

Z ~�+�

~�

g(�0)

2

�
'(�0)� 2(~� +�� �0)f(�(x(�0); y(�0)))

�
1

g(x(�0))
+

1

g(y(�0))

��
d�0

=
1

2

Z ~�+�

~�

'(�0)g(�0)d�0

+

Z ~�+�

~�

2(~� +�� �0)f(�(x(�0); y(�0)))
�
�g(�

0)

2

��
1

g(x(�0))
+

1

g(y(�0))

�
d�0:

Noting '(~�) = 0, the �rst term is approximated as

1

2

Z ~�+�

~�

'(�0)g(�0)d�0 ' 1

2

Z ~�+�

~�

('(~�)g(~�) + ('0(~�)g(~�) + '(~�)g0(~�))(�0 � ~�))d�0

=
1

2

Z ~�+�

~�

'0(~�)g(~�)(�0 � ~�)d�0

=
1

2
'0(~�)g(~�)

"
(�0 � ~�)2

2

#~�+�
~�

=
�2

4
'0(~�)g(~�):

In order to calculate the second term, �rst note that

d

d�0
F (�(x(�0); y(�0))) = f(�(x(�0); y(�0)))

�
�g(�

0)

2

��
1

g(x(�0))
+

1

g(y(�0))

�
:

Thus, partially integrating the second term, we obtainZ ~�+�

~�

2
�
~� +�� �0

�
f(�(x(�0); y(�0)))

�
�g(�

0)

2

��
1

g(x(�0))
+

1

g(y(�0))

�
d�0

=

Z ~�+�

~�

2
�
~� +�� �0

� d

d�0
F (�(x(�0); y(�0)))d�0

=
h
2
�
~� +�� �0

�
F (�(x(�0); y(�0))

i~�+�
~�| {z }

A

+

Z ~�+�

~�

2F (�(x(�0); y(�0)))d�0| {z }
B

:

Now, term A is rewritten ash
2
�
~� +�� �0

�
F (�(x(�0); y(�0))

i~�+�
~�

= 2
h�
~� +��

�
~� +�

��
F (�(x(~� +�); y(~� +�))�

�
~� +�� ~�

�
F (�(x(~�); y(~�))

i
= �2F (�(x(~�); y(~�))�:

Since F (�(x(�0); y(�0))) ' F (�(x(~�); y(~�)) + f(�(x(~�); y(~�))�0(x(~�); y(~�))
�
�0 � ~�

�
, by sub-

stituting �0(x(~�); y(~�)) = f(�(x(~�); y(~�)))(�g(~�)
2
)
�

1
g(x(~�))

+ 1
g(y(~�))

�
into this approximation,
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term B can be approximated asZ ~�+�

~�

2F (�(x(�0); y(�0)))d�0

' 2F (�(x(~�); y(~�))

Z ~�+�

~�

d�0 + 2f(�(x(~�); y(~�))�0(x(~�); y(~�))

Z ~�+�

~�

(�0 � ~�)d�0

= 2F (�(x(~�); y(~�))� + f(�(x(~�); y(~�))

 
�g(

~�)

2

!�
1

g(x(~�))
+

1

g(y(~�))

�
�2:

Thus, the second term is A+ B = f(�(x(~�); y(~�))(�g(~�)
2
)
�

1
g(x(~�))

+ 1
g(y(~�))

�
�2. Hence, we

have the approximation formula:

Eu(x(�0); y(�0); ~� +�)� Eu(x(~�); y(~�); ~� +�)

' �2

4
'0(~�)g(~�) + f(�(x(~�); y(~�))

 
�g(

~�)

2

!�
1

g(x(~�))
+

1

g(y(~�))

�
�2

=
�2g(~�)

2

"
'0(~�)

2
� f(�(x(~�); y(~�)))

�
1

g(x(~�))
+

1

g(y(~�))

�#
:

We have completed the proof. �

Proposition 1 directly follows from Lemma 6. �

Proof of Corollary 2 Since f and g are density functions, their values are nonnegative.

Thus, from Lemma 6, we get the conclusion directly. �

Proof of Theorem 1 When ~� = 0, candidates of L and R are x = 0 and y = �med,

respectively. Then, we have

'(0) = �F (�med)
g(�med)

+
1� F (�med)

g(0)
+ 2�medf(�med)

�
1

g(�med)
+

1

g(0)

�
:

Thus, if �F (�med)
g(�med)

+ 1�F (�med)
g(0)

� 0 or g(0)
g(�med)

� Px(x(0);y(0))
Py(x(0);y(0))

then it is su¢ cient for '(0) > 0.

When ~� = 1, candidates of L and R are x = �med and y = 1, respectively. Then, we

have

'(1) = �F (�med � 1)
g(1)

+
1� F (�med � 1)

g(�med)
� 2(1� �med)f(�med � 1)

�
1

g(1)
+

1

g(�med)

�
:

Thus, if �F (�med�1)
g(1)

+ 1�F (�med�1)
g(�med)

� 0 or g(1)
g(�med)

� Py(x(1);y(1))

Px(x(1);y(1))
then it is su¢ cient for

'(1) < 0.

Since g and f are continuous in �, '(�) is continuous. Thus, there exists at least a
~� 2 (0; 1) such that '(~�) = 0 and '0(~�) � 0. �
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Proof of Proposition 2 From the necessary and su¢ cient conditions of the sorting

political equilibrium in Theorem 1, if ~�
�
is a sorting political equilibrium, then

'(~�
�
) = �F (�(x; y))

g(y)
+
1� F (�(x; y))

g(x)
� (~� � �med)f(�(x; y))

�
1

g(y)
+

1

g(x)

�
= 0:

In addition, if Supp(f) � [�1; 1] and g(�) > 0 for all � 2 (0; 1) and g(0) = g(1) = 0, then a
sorting political equilibrium becomes an interior solution from Proposition 1. Thus, with

an equilibrium, f(�(x; y))( 1
g(y)
+ 1
g(x)
) > 0. From these facts, if �F (�(x;y))

g(y)
+ 1�F (�(x;y))

g(x)
6= 0 in

'(~�), then ~�� �med 6= 0. Hence �med is not an allocation of a sorting political equilibrium.
�

Proof of Proposition 3 Let ~� = �med =
1
2
. Then, by symmetry of g, we have

�med � x(�med) = y(�med) � �med, g(x(�med)) = g(y(�med)) and g0(x) = �g0(y). Thus,
�(x(�med); y(�med)) = h(x; y; �med) = 0 is obtained. Since f is symmetric, 1 � F (0) =
F (0) = 1

2
. Then,

�F (�(x; y))
g(y)

+
1� F (�(x; y))

g(x)
= 0:

Thus, when ~� = �med, '(�med) = 0. In addition to this, by using the above facts, we have

'0(~�) =
g(�med)

2g(x)2

�
4f(0)� g

0(x)

g(x)

�
� 4f(0)
g(x)

:

Moreover, the necessary and su¢ cient condition in Proposition 1,

'0(~�)

2
� f(0)

�
1

g(x(~�))
+

1

g(y(~�))

�
< 0

is equivalent to
g(�med)

4g(x)2

�
4f(0)� g

0(x)

g(x)

�
� 4f(0)
g(x)

< 0:

Hence, if this condition is satis�ed, there is a political equilibrium with ~� = �med. �

Proof of Proposition 4 Note that �(�med) = '(�med). The assumptions guarantee

'(0) > 0 and '(1) < 0. From Theorem 1 (continuity of ') and Proposition 1, we know

that there exists ~� such that '(~�) = 0 with '0(~�) � 0 under the assumption of this propo-
sition. This proves the statement of the proposition. �

Appendix B Uniform Distribution

Proof of Proposition 5. If both A and B are non-increasing, then we have '0(~�) � for
all ~�. First analyze term A. Since x(~�) and y(~�) are the solutions of

2G(x(~�)) = G(~�);

35



and

1� 2G(y(~�)) = 1�G(~�);

respectively, we obtain

dA

d~�
=

g(~�)

2g(x(~�))
+

g(~�)

2g(y(~�))
� 2

=
1

2

"
g(~�)

g(x(~�))
+

g(~�)

g(y(~�))
� 4
#
:

It is easy to see that the sign of dA
d~�
tends to be negative as long as the voter density

function does not go up or down in its magnitude too much. �

Second, let�s analyze the behavior of B. The sign of B is clearly determined by

g(y) R g(x). If g function is single-peaked at p 2 (0; 1), then g(y(~�)) � g(x(~�)) changes
its sign only once as ~� increases. Di¤erentiating B with respect to ~� we obtain

dB

d~�
=

�
g0(y)dy

d~�
� g0(x)dx

d~�

�
(g(x) + g(y))� (g(y)� g(x))

�
g0(x)dx

d~�
+ g0(y)dy

d~�

�
(g(x) + g(y))2

=

�
g0(y) g(

~�)
g(y)

� g0(x) g(~�)
g(x)

�
(g(x) + g(y))� (g(y)� g(x))

�
g0(x) g(

~�)
g(x)

+ g0(y) g(
~�)

g(y)

�
(g(x) + g(y))2

=
2g0(y) g(

~�)
g(y)
g(x)� 2g0(x) g(~�)

g(x)
g(y)

(g(x) + g(y))2

=
2g(~�)

(g(x) + g(y))2

�
g0(y)

g(x)

g(y)
� g0(x)g(y)

g(x)

�
:

�

Proof of Example 2. We can explicitly calculate the ' function and under the popu-

lation distribution. Since ' is a step function and is discontinuous at �med, we have two

cases to calculate: (I) the case of ~� � �med and (II) the case of ~� > �med. Noting that

each candidate satis�es x � �med � y under any sorting political equilibria, the two cases
are given below.

(I) The case of ~� � �med. Two candidates are

x(~�) =
~�

2
and y(~�) = �med +

1� �med
2�med

~�:

In this case, calculating (7), ' R 0 holds if and only if

2a � '(~�) = 2
�
�med +

1� 4�med
2�med

~�

�
+ 2a (2�med � 1) T 0:

36



If ~� is a threshold of a sorting political equilibrium, it satis�es '(~�) = 0 from Lemma

5, namely, at a sorting political equilibrium,

~�
�
=
2�med((2a+ 1)�med � a)

4�med � 1

holds. We need to check if ~�
� � �med holds or not. In order to satisfy ~�

� � �med, we must
have �med > 1

4
since

�med � ~�
�
=
(2a� 1)(1� 2�med)�med

4�med � 1
and �med � 1

2
and a > 1

2
. Indeed, if �med > 1

4
then the su¢ cient condition of the sorting

political equilibrium at ~�
�
is satis�ed (Corollary 2), since we have

2a � '0(~�) = 1� 4�med
�med

< 0:

We also need a condition on a, a � �med
1�2�med , since '(0) > 0 must hold in order to have

'(~�
�
) = 0.

(II) The case of ~� > �med. As well as (I), two candidates are

x(~�) =
�med(1� 2�med)
2(1� �med)

+
�med

2(1� �med)
~� and y(~�) =

1 + ~�

2
:

In this case, calculating (7), '(~�) R 0 holds if and only if

2a � '(~�) = 2
�
1

2
+
�med(1� 2�med)
2(1� �med)

+
4�med � 3
2(1� �med)

~�

�
+ 2a(2�med � 1) T 0:

Noting that '(~�) function is not discontinuous at �med but just kinks because of x �
�med � y.32 See Figure 4.
If ~�

��
is a threshold of a sorting political equilibrium in this range, i.e., '(~�

��
) = 0 as

well as the case (I), namely,

~�
��
=
�(2 + 4a)�2med + 6a�med � 2a+ 1

3� 4�med
must hold. However, calculating ~�

�� � �med, we have

~�
�� � �med =

(2a� 1) [�(1� �med)2 � �med]
3� 4�med

< 0:

Thus, there is no party line ~�
��
satisfying '0(~�

��
) = 0 in this range, which implies that

there is no political equilibrium in this range.

In conclusion, with the voter distribution g as in Example 2, there is a unique equi-

librium if any, and the equilibrium party line satis�es ~�
�
< �med. This implies that the

party with the shorter tail (or higher density: here the L party) loses some of its moderate

supporters in any political equilibrium. �
32On the other hand, on the function g(�) in Example 3, x and y stride over some steps. Thus '(~�) is

discontinuous at several points.
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Figure 1: Voting at ǫ = ǫ(x, y)
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Figure 2: Extreme supporters in R get moderate supporters switch from R to L.
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Figure 3: Sufficient conditions for unique equilibrium: single peaked and flat g(θ)
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