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Abstract

We present a dynamic model of trading under adverse selection. A seller faces a sequence

of randomly arriving buyers, each of whom receives a noisy signal about the quality of the

asset and makes a price offer. We show that there is generically a unique equilibrium and

fully characterize the resulting trading dynamics. Buyers’ beliefs about the quality of the

asset gradually increase or decrease over time, depending on the initial level. The rich trading

dynamics provides a way to overcome a common criticism on dynamic adverse selection,

thereby broadening its applicability. We also show that improving asset transparency may lead

to gains or losses in efficiency.

JEL Classification Numbers: C73, C78, D82.
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1 Introduction

When an asset has been for sale for a while, what would buyers infer about its quality? The answer

depends on the perceived source of the delay. First, it couldbe just that no potential buyer has

shown up yet (search frictions). This source is independentof the quality of the asset. Second,

the seller might have a high reservation value for the asset and, therefore, be unwilling to settle at

a low price. If this is the perceived source of the delay, a longer delay indicates a higher quality.

Finally, potential buyers might have observed an unfavorable attribute of the asset and, therefore,

decided not to purchase it. In this case, clearly buyers get more pessimistic about the quality of the

asset over time.

We develop a model that incorporates all of these three sources and study the resulting equi-

librium dynamics. Conceivably, depending on the conditions in a given market, each one of them
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can be the overriding factor dictating trading dynamics. Itis for this reason that all have been

extensively, yet typically separately, studied in the literature: the first in the literature on sequen-

tial search, going back to Stigler (1961), the second in the recent literature on dynamic adverse

selection,1 and the last in the literature on observational learning, pioneered by Benerjee (1992)

and Bikhchandani, Hirsleifer and Welch (1992). However, the existing literature is silent on how

these sources are linked together and to the other aspects ofthe market environment. Understand-

ing these links is not only of theoretical interest but is also crucial in informing policies aimed at

alleviating inefficiencies due to adverse selection. We think that by clarifying the interplay among

various sources of delay, our paper provides a deeper understanding of dynamic adverse selection,

as well as a richer context for policy evaluation.

We consider the problem of the seller who possesses an indivisible asset and faces a randomly

arriving sequence of buyers. The asset is either of low quality (low type) or of high quality (high

type). There are always gains from trade, but the quality of the asset is known only to the seller.

Each buyer, upon arrival, receives a noisy signal about the quality of the asset, which we interpret

as the outcome of inspection, and makes a take-it-or-leave-it offer. Importantly, we assume that

each buyer observes how long the asset has been up for sale (time-on-the-market).

We show that there is generically a unique equilibrium in this dynamic trading problem, and

equilibrium trading dynamics crucially depend on the asset’s initial reputation (i.e. buyers’ prior

beliefs about the quality of the asset). If an asset is likelyto be of high quality, then delay typically

results from unfavorable inspection outcomes, and thus theasset’s reputation (the probability that

the asset is of high quality) declines over time. In contrast, if the asset is likely to be of low quality,

then delay stems mainly from the seller’s rejecting low prices. In this case, the seller’s reputation

increases over time. Intuitively, the higher the seller’s reputation is, the more likely do buyers offer

a high price. Therefore, if the seller’s reputation is high,even the low-type seller is unwilling to

accept a low price. This means that trade is delayed only when, despite the seller’s high reputation,

buyers are unwilling to offer a high price, which is when theyreceived unfavorable inspection

outcomes. The low type is more likely to generate an unfavorable inspection outcome than the

high type, and thus the asset is less likely to be of high quality, the longer it stays on the market.

If the seller’s reputation is low, then the low type trades even at a low price, while the high type

still accepts only a high price. Since delay arises due to thehigh type’s insistence on a high price,

the seller’s reputation improves over time. Interestingly, buyers’ beliefs converge to a certain level,

whether the seller’s initial reputation is high or low. Thisis the level at which the seller’s reputation

is such that the two effects are exactly balanced.

The role of search frictions is worth explaining. First, as mentioned earlier, search frictions are

1See Evans (1989), Vincent (1989, 1990), Janssen and Roy (2002), Deneckere and Liang (2006), Hörner and
Vieille (2009), and Moreno and Wooders (2010) for some seminal contributions
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neutral to thedirectionof the evolution of beliefs, because they affect both types equally. However,

they affect thespeedof the evolution. Buyers can never exclude the possibility that the seller has

been so unfortunate that no buyer has ever contacted the seller yet. This forces buyers’ beliefs to

change gradually. Second, search frictions are responsible only for a portion of delay. As is true

in other dynamic models of adverse selection, the expected time to trade remains bounded away

from zero even if search frictions are arbitrarily small. Inthe limit, which we study in Section 5,

buyers’ beliefs immediately jump to a stationary level, buttrade does not necessarily take place

immediately.

The richness of our equilibrium dynamics provides a way to overcome a common criticism on

the literature on dynamic adverse selection, thereby contributing to its applicability. The literature

is growing fast,2 mainly because it has the potential to provide a synthetic theory of several forms of

market inefficiencies, such as trading delay (liquidity), market freeze (breakdown), and inefficient

assignments, and thus can be used to address various policy issues, including the policies that

have been implemented or stipulated after the recent financial crisis. Yet, most existing studies

present only one form of equilibrium dynamics: it has been repeatedly found that either trading is

immediate (when the initial reputation is above some threshold) or buyers’ beliefs only increase

over time (below the threshold). Casual observations, however, suggest that a high-quality asset

tends to trade faster than a low-quality asset (in other words, the longer an asset stays on the market,

the more likely is its quality to be low) in various markets. Although it might be controversial

whether information asymmetries are indeed present in suchmarkets, the inability to generate such

dynamics clearly limits the applicability of dynamic adverse selection. Our results suggest that

with only one additional but plausible modeling innovation(buyers’ receiving noisy signals about

the quality of the asset), trading dynamics under adverse selection can be very much enriched, and

a broader set of empirical patterns can be accommodated.

Our model, with its unique equilibrium and clean characterization, is particularly suited for

evaluating government policies that influence the market structure.3 Within our framework, proba-

bly the most intriguing exercise would have to do with the informativeness of buyers’ signals (i.e.,

the quality of buyers’ inspection technology). It is widelyaccepted that asset (corporate) trans-

parency improves market efficiency by facilitating socially desirable trade. Such beliefs have been

reflected in recent government policies, such as the Sarbanes-Oxley act passed in the aftermath of

the Enron scandal and the Dodd-Frank act passed in the aftermath of the recent financial crises,

2A non-exhaustive list includes Camargo and Lester (2011), Chang (2010), Chari, Shourideh and Zetlin-Jones
(2010), Chiu and Koeppl (2011), Choi (2013), Daley and Green(2012), Guerrieri and Shimer (2012), Hörner and
Vieille (2009), Kurlat (2010), Lauermann and Wolinsky (2013), Moreno and Wooders (2012), Roy (2012), and Zhu
(2012).

3For instance, the government may mitigate search frictionsby centralizing matching and/or trading mechanisms.
It may provide subsidies to trading parties, so as to alleviate their incentive problems. Our complete and neat charac-
terization make it fairly straightforward to analyze the effects of those and related policies.
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both of which include provisions for stricter disclosure requirements on the part of the sellers. Pre-

sumably, the main goal of such policies is to help buyers assess the merits and risks of financial

assets more accurately. In our model this corresponds to an increase in the informativeness of

buyers’ signals.

We demonstrate that enhancing asset transparency does not necessarily lead to efficiency gains.

In particular, we show that an increase of the precision of buyers’ signals can increase or decrease

the expected time to trade for each type, depending on the seller’s initial reputation. More precisely,

if buyers believe that the asset is likely to be of low quality, then more precise signals speed up

trade for both types, while they unambiguously slow down trade in the opposite case.4 This mixed

result arises, because an increase of the informativeness influences buyers’ inferences from the

length of delay as well as from the signal that they receive. Intuitively, each buyer must take into

account the fact that not only his signals, but also all otherbuyers’ signals have become more

precise. This indirect effect can work in the opposite direction to the direct one and be significant,

which makes the overall effects ambiguous.

Related Literature

As explained above, most existing studies on dynamic adverse selection generate one form of

equilibrium dynamics (that buyers’ beliefs that the asset is of high quality increase over time).

One notable exception is Taylor (1999). He studies a two-period model in which the seller faces

a random number of buyers and conducts a second-price auction in each period. He considers

several settings which differ in the observability of first-period trading outcomes (in particular,

inspection outcome and price history) by second-period buyers. In all settings, buyers assign a

lower probability to the event that the asset is of high quality in the second period than in the first

period (that is, buyers’ beliefs decrease over time). The logic behind the evolution of beliefs is

similar to ours: The high type generates good signals more often than the low type. Therefore, a

high-quality asset is more likely to be traded in the first period than a low-quality asset. However,

the opposite form of trading dynamics (buyers’ beliefs increase over time) is absent in his model.5

In addition, since his model has only two periods, trading dynamics is not as rich and complete as

ours.

Two papers study a similar model to ours. Lauermann and Wolinsky (2013) investigate the

ability of prices to aggregate dispersed information in a setting very close to ours: an informed

player (buyer in their model) faces an infinite sequence of uninformed players, who each receives

4There is an intermediate range in which trade of the high typespeeds up, while that of the low type slows down.
For a more complete picture, see Figure 4.

5Taylor (1999) assumes that there are no gains from trade of a low-quality asset. Therefore, buyers never make an
offer that can be accepted only by the low type. This forces the high type to always trade faster than the low type.
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a noisy signal about the informed player’s type. There are two important modeling differences.

First, in their model, the informed player makes a take-it-or-leave-it offer to each uninformed

player. They adopt the bargaining protocol, because they look for a condition under which the

price fully reflects the underlying value of the good (translating into our framework, the price

must be equal tovH (vL) if high (low) quality). This, of course, creates a severe equilibrium

multiplicity problem, as is typical in signalling games. They circumvent the problem by restricting

attention to undefeated equilibria. Second, more importantly, in their model, uninformed players

do not observe the informed player’s time-on-the-market (more generally, the informed player’s

past behavior) and, therefore, make inferences only based on their own signals. This creates a

non-trivial inference problem on the part of uninformed players, as their actual beliefs do not have

to coincide with their initial beliefs. However, it essentially forces buyers’ beliefs (and strategies)

to be always stationary (that is, buyers’ beliefs do not evolve over time), while the evolution of

uninformed players’ beliefs and the resulting trading dynamics are the main focus of this paper.

Zhu (2012) considers a model in which an informed seller can contact only a finite number of

buyers. As in Lauermann and Wolinsky (2013), he does not allow buyers to observe the seller’s

time-on-the-market. However, he assumes that the seller can contact an identical buyer repeatedly,

and each buyer knows whether the seller has visited him before or not. Naturally, the seller revisits

a buyer only after she has contacted all other buyers. Therefore, buyers make different inferences

about the seller’s outside options, depending on whether she has visited before or not, which affects

their optimal offer strategies. Indeed, this new type of inference is the main focus of the paper.

Consequently, the resulting trading dynamics is qualitatively different from ours.

Finally, Daley and Green (2012) study the role of arrival of exogenous information (“news”)

about the quality of the asset in a setting similar to ours. The most crucial difference from ours

is that news is public information to all buyers.6 Therefore, buyers do not face any inference

problem regarding other buyers’ signals. This makes their trading dynamics quite distinct from

ours.7 Similarly to us, they also explore the effects of increasingthe quality of news and find that

it is not always efficiency-improving. However, the mechanism leading to the conclusion is quite

different from ours.

The rest of the paper is organized as follows. We formally introduce the model in Section 2.

We present several useful properties of the players’ optimal strategies and beliefs in Section 3 and

provide a formal characterization in Section 4. We then present the limit equilibrium outcome as

search frictions vanish in Section 5. We investigate the effects of improving the informativeness of

6There are two other modeling differences. First, the selleralways faces a competitive pool of buyers (in other
words, at least two buyers in each time). Second, there are nosearch frictions: the seller continuously receives price
quotes.

7The difference persists even in the limit as search frictions disappear in our model. See Section 5 for our friction-
less market outcome.
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buyers’ signals in Section 6. Omitted proofs are collected in the Appendix.

2 The Model

A seller wishes to sell an indivisible asset. Time is continuous, and the time the seller comes to

the market is normalized to0. Potential buyers arrive sequentially according to a Poisson process

of rateλ > 0. Once a buyer arrives, he receives a private signal about thequality of the asset and

offers a price. If the seller accepts the price, then they trade and the game ends. Otherwise, the

buyer leaves, while the seller waits for subsequent buyers.The seller discounts future payoff at

rater > 0.

The good is either of low quality (L) or of high quality (H). If low quality, the seller derives a

flow payoff ofrcL from owning the asset, while a buyer, once he acquires it, receives a flow payoff

of rvL. The corresponding values for high quality arercH andrvH , respectively. There are always

gains from trade:cL < vL andcH < vH . However, the quality of the asset is private information

to the seller. It is commonly known that the probability thatthe asset is of high quality at time0 is

equal toq̂ ∈ (0, 1).

Upon arrival, each buyer receives a private signal about thequality of the asset. A signals

is drawn from the setS = {s1, ..., sN}. The signal generating process depends on the quality

of the asset. If the quality is low (respectively, high), then the probability that a buyer receives

signalsn is given byγL(sn) (respectively,γH(sn)). Without loss of generality, assume that the

likelihood ratio γH (sn)
γL(sn)

is strictly increasing inn, so that the higher a signal is, the more likely is it

that the asset is of high quality. For later use, letΓa(sn) (Γ−
a (sn)) be the probability that a buyer

receives a signalweakly(strictly) below sn from a typea seller. Formally, for eacha = L,H,

Γa(sn) ≡
∑

n′≤n γa(sn′), whileΓ−
a ≡

∑
n′<n γa(sn′).

We assume that buyers observe (only) how long the asset has been up for sale (i.e. timet).8 This

is certainly consistent with the arrangement in the housingmarket and also seems to be plausible in

several other markets. In addition, it allows us to study trading dynamics under adverse selection,

which is the main focus of the paper, without raising additional complications.9 The information

structure also has an important technical advantage. For any t, there is a positive probability

(e−λt) that no buyer has arrived and, therefore, trade has not occurred by timet. Therefore, there

are no off-the-equilibrium paths, which implies that all beliefs can be obtained through Bayesian

8It is well-known that the information buyers have about pasthistories of the game plays a crucial role in this type
of games. See Nöldeke and Van Damme (1990), Swinkels (1999), Hörner and Vieille (2009), Kim (2012), Kaya and
Liu (2012), and Fuchs,̈Ory and Skrzypacz (2012). We note that in our model, buyers observe neither the number of
buyers who had arrived before nor the offers they had made to the seller.

9For alternative approaches, see Zhu (2012) and Lauermann and Wolinsky (2013).
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updating.10

The offer strategies of buyers are represented by a functionσB : R+ ×S ×R+ → [0, 1], where

σB(t, s, p) denotes the probability that the buyer who arrives at timet and receives a signals offers

a pricep to the seller. The offer acceptance strategy of the seller isrepresented by a function

σS : {L,H} × R+ × R+ → [0, 1] whereσS(a, t, p) denotes the probability that a typea seller

accepts pricep in periodt. An outcome of the game is a tuple(t, p) wheret denotes the time of

trade andp is the accepted price. All agents are risk neutral. If the seller accepts pricep at timet

and her type isa ∈ {L,H}, then her payoff is(1 − e−rt)ca + e−rtp, while the payoff of the buyer

who offered the price isp− va. All other buyers obtain zero payoff.11

We adopt the perfect Bayesian equilibrium concept. The concept necessitates the specification

of agents’ beliefs at each information set. Letq(t) represent buyers’ beliefs that the seller who has

not traded untilt is the high type. Then, a tuple(σS, σB, q) is a perfect Bayesian equilibrium if (1)

givenσS andq, for anyt ands, σB(t, s, p) > 0 only whenp maximizes the expected payoff of the

buyer with signals at timet, (2) givenσB, for anya andt, σS(a, t, p) > 0 only whenp is weakly

greater than typea seller’s continuation payoff at timet, and (3) givenσS andσB, for anyt, q(t) is

derived through Bayesian updating.

In order to avoid trivial cases, we focus on the environment that satisfies the following assump-

tion.

Assumption 1

r(vL − cL) < λ(cH − vL).

The left-hand side is buyers’ willingness-to-pay for the low-quality asset, while the right-hand side

is the low-type seller’s reservation price when all subsequent buyers offercH regardless of their

signal. If this assumption is violated, then the seller types can be easily separated and the resulting

trading dynamics is trivial. We note thatcH > vL is necessary for this assumption to hold, but a

stronger assumption commonly adopted in the literature,q̂vH + (1− q̂)vL < cL, is not.

3 Preliminary Observations

In this section, we provide some useful observations regarding the players’ equilibrium strategies

and beliefs.
10This is certainly not the case, for example, if the number of previous buyers or past offers are observable.
11This means that buyers have no outside options. The accommodation of positive outside options is fairly straight-

forward and does not alter any result in a significant way.
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3.1 Seller’s Optimal Acceptance Strategy

Since the seller’s action of rejecting a price is not observable to future buyers, it is clear that each

type of the seller adopts a “reservation price” strategy, accepting all prices above her reservation

price and rejecting all prices below it. In addition, for thesame reasoning as in the Diamond

paradox, buyers never offer a price strictly abovecH . This implies that the high-type seller’s

reservation price is always equal to her reservation value of the assetcH . In what follows, we denote

by p(t) the low-type seller’s reservation price at timet. SincecL < cH , p(t) is always strictly

smaller thancH . We also drop the seller’s intrinsic type from the argumentsof her acceptance

strategy and useσS(t, p), instead ofσS(L, t, p), to denote the low-type seller’s acceptance strategy.

To fully characterize an equilibrium, it is necessary to determine the low-type seller’s accep-

tance strategy when a buyer’s offer is exactly equal top(t). She is, of course, indifferent between

accepting and rejectingp(t). However, equilibrium requires that ifp(t) < vL, then she acceptp(t)

with probability1. This results from the optimality of buyers’ offer strategies. If the low type does

not acceptp(t)(< vL) with probability1, then the buyer can offer a price slightly abovep(t). Since

the alternative offer would be accepted with probability1 by the low type, it would strictly increase

the buyer’s expected payoff. This holds for any price abovep(t), and thus in equilibrium the low

type must acceptp(t) with probability1.

3.2 Buyers’ Optimal Offer Strategies

Without loss of generality, we assume that each buyer offerseither the reservation price of the low

typep(t) or that of the high typecH . This assumption incurs no loss of generality for the following

reasons. First, it is strictly suboptimal for a buyer to offer strictly abovecH or betweenp(t) andcH .

Second, if in equilibrium a buyer makes a losing offer (a price strictly belowp(t)), then it suffices

to set his offer to be equal top(t) and the low type’s acceptance strategyσS(t, p(t)) to reflect her

rejection of the buyer’s losing offer. For example, if the buyer at timet with signals is designated

to offer a price belowp(t) with probability1, then his offer can be set to be equal top(t), and the

low-type seller can be assumed to reject the price with probability 1.

Given the low-type seller’s reservation pricep(t), the buyer’s optimal strategy is a “cutoff

signal” strategy, offeringcH if his signal is above the cutoff signal, while offeringp(t) if his signal

is below it. This follows immediately from the fact that the information structure exhibits the

monotone likelihood ratio property, and thus the buyer’s interim belief is strictly increasing in his

signal.
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3.3 Evolution of Beliefs

The previous results have an important implication on the way buyers’ beliefs evolve over time.

Supposep(t) < vL. In this case, the low-type seller accepts bothp(t) andcH with probability1.

Therefore, her exit rate is equal to the arrival rate of buyers λ. On the other hand, the high-type

seller accepts onlycH . Therefore, her exit rate is equal to the arrival rate of buyersλ multiplied by

the probability that the buyer’s signal exceeds a certain cutoff. Since the latter is always smaller

than the former (the low type trades faster than the high type), buyers’ beliefs about the seller’s

type necessarilyincreaseover time. Ifp(t) > vL, then both types accept onlycH . But, the high

type generates good signals (above a cutoff signal) with a higher probability than the low type.

Therefore, the exit rate of the high type exceeds that of the low type. This induces buyers’ beliefs

to decreaseover time.

The following lemma summarizes the most useful observations of this section.

Lemma 1 If p(t) < vL (respectively,p(t) > vL), then the low-type seller accepts (respectively,

rejects)p(t) with probability1, and thus buyers’ beliefsq(t) increase (respectively, decrease) over

time. The changes of buyers’ beliefs are strict unless buyers offercH regardless of their signal.

4 Equilibrium Characterization

Equipped with the observations in the previous section, we now turn to the equilibrium charac-

terization. The unique equilibrium of our model exhibits the following intuitive, yet not obvious,

properties:

(i) The low-type seller’s reservation pricep(t) depends only on buyers’ beliefsq(t) and is in-

creasing inq(t). In a slight abuse of notation, we denote byp(q) the low-type seller’s reser-

vation price when buyers’ beliefs are equal toq.

(ii) There is a finite partition of the belief space,{qN+1 = 0, qN , ..., q1, q0 = 1}, which informs

the cutoff signal above which each buyer offerscH . Specificly, if a buyer’s prior beliefq(t)

belongs to the interval(qn+1, qn), then he offerscH if and only if his signal is strictly above

sn.12

(iii) Buyers’ beliefs conditional on no trade converge monotonically to a stationary valueq∗.

Figure 1 illustrates these properties in an example with 5 signals.

In this section, we first construct an equilibrium that satisfies (i) and (ii), and illustrate the

resulting trading dynamics. Our construction makes it clear that for a generic set of parameter

12If q(t) > q1, then he offerscH regardless of his signal, while ifq(t) < qN , then he never offerscH .
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q6 = 0 q5 q4 q3 = q∗ q2 q1 q0 = 1

offer cH : never {s5} {s4, s5} {s3, s4, s5} {s2, ..., s5} always

p(t) :
< vL > vL = λ

r+λcH

q(t) :
increase decrease constant

Figure 1: Equilibrium structure when there are 5 signals (N = 5) andq∗ = q3.

values, there is a unique equilibrium that satisfies the conditions. Moreover, the constructed equi-

librium necessarily satisfies (iii). We then show that any equilibrium must satisfy (i) and (ii), and

thus the constructed equilibrium is the unique equilibriumin this game.13 Finally, we discuss the

non-generic cases where the uniqueness of equilibrium fails.

4.1 Equilibrium construction and trading dynamics

In this section we construct an equilibrium that satisfies properties (i) and (ii), and discuss the

trading dynamics that arises in the equilibrium.

4.1.1 Unique Stationary Path

We first consider the behavior along the stationary path where buyers’ beliefs remain constant at

q∗. We identify the critical belief levelq∗ and characterize the equilibrium when buyers’ beliefs

are equal toq∗.

Notice that Lemma 1 implies thatp(q∗) = vL: otherwise,q(t) either increases or decreases.

In order to utilize this fact, denote byρL (ρH ) the rate at which the low-type (high-type) seller

13The equilibrium properties are fairly intuitive. A buyer ismore willing to offercH when his interim belief is
higher, and for a given signalsn, his interim belief is strictly increasing in his prior belief. Therefore, he should
be less reluctantto offer cH ; i.e. his cutoff signal must decrease as his belief increases (property (ii)). Then, from
the perspective of the low-type seller, the higher buyers’ beliefs are, the more frequently would he receive offercH .
Therefore, the low-type seller’s reservation price must increase in buyers’ beliefs (property (i)). However, a priori, it is
not clear whether there cannot exist an equilibrium that violates these properties. In particular, if the low-type seller’s
reservation price were to decline in buyers’ beliefs, buyers may bemore reluctantto offercH at higher beliefs, simply
because a lower reservation price makes the option of trading with only the low type more attractive. This, in turn,
could be consistent with the seller’s reservation price falling. The main thrust of our uniqueness proof is to rule out
this possibility.
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receives offercH when buyers’ beliefs are equal toq∗. Then,ρL must satisfy

r(vL − cL) = ρL(cH − vL).

Generically, there does not existn such thatρL = λ(1−ΓL(sn)). This implies that buyers typically

play a mixed offer strategy once their beliefs reachq∗. In what follows, we focus on the generic

case whereρL 6= λ(1 − ΓL(sn)) for anyn = 1, ..., N . For the sake of completeness, we discuss

the non-generic case at the end of this section.

To pin down buyers’ equilibrium offer strategies, letn∗ be the largest value ofn such that

ρ(q∗) > λ(1−ΓL(sn)). By Assumption 1,n∗ is well-defined. In addition, letσ∗
B be the value such

thatρ(q∗) = λ(γL(n
∗)σ∗

B + 1− ΓL(sn∗)). For the generic case we are considering,σ∗
B always lies

in (0, 1). By construction,p(q∗) is equal tovL if all subsequent buyers offercH with probability1

when their signals are strictly abovesn∗, with probabilityσ∗
B when their signals aresn∗, and with

probability0 when their signals are strictly belowsn∗.

The identification ofsn∗ allows us to find the value ofq∗. Consider a buyer who had prior belief

q∗ and received signalsn∗. By Bayes’ rule, his belief updates to q∗γH (sn∗ )
q∗γH (sn∗ )+(1−q∗)γL(sn∗)

. The buyer

must be indifferent between offeringcH andp(q∗). But, sincep(q∗) = vL, he must receive zero

expected payoff, regardless of the low-type seller’s acceptance strategy. This implies thatq∗ must

satisfy

q∗γH(sn∗)(vH − cH) + (1− q∗)γL(sn∗)(vL − cH) = 0 ⇔
1− q∗

q∗
=
γH(sn∗)

γL(sn∗)

vH − cH
cH − vL

.

It remains to determine the probability that the low-type seller acceptsp(q∗) = vL, which we

denote byσ∗
S for notational simplicity. To identifyσ∗

S, notice thatq(t) is time-invariant if and only

if the low type has the same exit rate as the high type. The hightype accepts onlycH . Therefore,

given buyers’ offer strategies characterized by(n∗, σ∗
B), her exit rate is equal to

ρH = λ(γH(sn∗) + 1− ΓH(sn∗)).

If the low type acceptsp(q∗) with probabilityσ∗
S, then her exit rate is equal to

ρL + (1− ρL)σ
∗
S = λ(γL(n

∗)σ∗
B + 1− ΓL(sn∗)) + λ(Γ−

L(sn∗) + γL(n
∗)(1− σ∗

B))σ
∗
S.

σ∗
S is the unique value that equates the above two rates,ρH andρL+ (1− ρL)σ

∗
S. It is well-defined

in (0, 1) becauseΓH(·) first-order stochastically dominatesΓL(·).

We summarize all the findings on the stationary path in the following proposition.

Proposition 1 (Stationary path) Let q∗, n∗, σ∗
B , andσ∗

S be the values defined as above. When
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buyers’ beliefs are equal toq∗, the following strategy profile constitutes an equilibrium: Buyers’

beliefs stay constant. Each buyer offerscH with probability1 if his signal is strictly abovesn∗, with

probabilityσ∗
B if his signal issn∗, and with probability0 otherwise. The low-type seller accepts

p(q∗) = vL with probabilityσ∗
S. Moreover, this is the unique stationary path; i.e. if buyers’ beliefs

are to remain constant, then the equilibrium must be as described.

4.1.2 Evolution of Beliefs

Givenn∗ and the partition{qN+1, qN , ..., q1, q0}, buyers’ beliefs evolve deterministically, condi-

tional on no trade. There are three distinct regions, depending on the location ofq(t).

If q(t) > q1, then the outcome is trivial. Each buyer offerscH regardless of his signal. There-

fore, trade takes place as soon as a buyer arrives. Since bothtypes exit at the same rate, buyers’

beliefs do not change over time.

Supposeq(t) ∈ (qn+1, qn) and0 < n < n∗ (so thatq(t) ∈ (q∗, q1)). In this case,p(q(t)) > vL,

and thus in equilibrium the low-type seller accepts onlycH (see Lemma 1). Since the buyer offers

cH if and only if his signal is strictly abovesn, the low type exits the market at rateλ(1−ΓL(sn)),

while the high type at rateλ(1 − ΓH(sn)). It then follows thatq(·) evolves according to the

following law of motion:14

q̇(t) = q(t)(1− q(t))λ(ΓH(sn)− ΓL(sn)). (1)

SinceΓH(·) first-order stochastically dominatesΓL(·), ΓH(sn) − ΓL(sn) is always negative, and

thusq(t) strictly decreases int. In Figure 2, a typical path for buyers’ beliefs starting from q̂ > q∗

is illustrated by the solid line. The kink atq2 is due to the fact that the cutoff signal changes from

s1 to s2 at that point, and thusΓH(·)− ΓL(·) as well.

Now supposeq(t) ∈ (qn+1, qn) andn ≥ n∗ (so thatq(t) < q∗). In this case,p(q(t)) < vL,

and thus in equilibrium the low type acceptsp(q(t)) with probability1 (see Lemma 1). Therefore,

her exit rate is equal toλ. The high type still accepts onlycH , and thus her exit rate is equal to

λ(1− ΓH(sn)). As above, it follows that the law of motion ofq(t) in this case is given by

q̇(t) = q(t)(1− q(t))λΓH(sn). (2)

This expression is obviously positive, and thusq(t) strictly increases int. The dashed line in Figure

14Heuristically, by Bayes’ rule,

q(t+ dt) =
q(t)e−λ(1−ΓH (sn))dt

q(t)e−λ(1−ΓH (sn))dt + (1− q(t))e−λ(1−ΓL(sn))dt
.

The equation can be derived by subtractingq(t) from both sides and dividing bydt.

12



0 t

q1

q2

q3q3

q4

q5

Figure 2: The evolution of buyers’ beliefs. The parameter values used for this figure and Figure 3
are as follows:N = 5, γL(sn) = (6− n)/15, γH(sn) = n/15, r = 0.1, andλ = 0.4.

2 exemplifies a typical path buyers’ beliefs follow from below q∗.

Proposition 2 (Evolution of Beliefs) Consider an equilibrium that satisfies (i) and (ii), and sup-

poseq(t) ∈ (qn+1, qn). If n = 0, thenq(t) does not change. If0 < n < n∗, thenq(t) evolves

according to (1). Ifn ≥ n∗, thenq(t) evolves according to (2).

Two remarks are in order. First, starting from̂q, whether̂q ∈ (q∗, q1) or q̂ < q∗, q(·) converges

to q∗ in finite time, becausėq(t) is bounded away from0.15 Notice that this implies that property

(iii) follows from (i) and (ii). Second, the offer strategies of the buyers with prior beliefqn and

signalsn for somen 6= n∗ are indeterminate, since such buyers are exactly indifferent between

offering cH or p(qn). However, the offer strategies at such decision nodes do notaffect the equi-

librium play, in particular, the evolution of buyers’ beliefs. This is because the beliefs are strictly

monotone, and the arrival rate of buyers is finite so that the probability that a buyer arrives at a

15Formally, if q̂ ∈ (q∗, q1), thenq̇(t) is bounded above by
(

min
q′∈[q∗,q̂]

q′(1− q′)

)
λ min
n<n∗

(ΓH(sn)− ΓL(sn)) < 0.

If q̂ < q∗, thenq̇(t) is bounded below by

(
min

q′∈[q̂,q∗]
q′(1− q′)

)
λΓH(sn∗) > 0.
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point at which his belief is equal to one of the cutoffs is0. In fact, this is the reason why the

behavior at these nodes cannot be determined from other equilibrium requirements, unlike in the

case ofqn∗. In what follows, without loss of generality, we assume thatfor eachn 6= n∗, the buyer

with prior beliefqn and signalsn offerscH with probability1.

4.1.3 Reservation Prices and Equilibrium Belief Cutoffs

We conclude the equilibrium construction by jointly identifying p(·) and{qN , ..., q1}. We also

establish that given (i) and (ii), both reservation price schedulep(q) and partition{qN , ..., q1} are

uniquely determined.

First fix p(q). Given the previous characterization of the low-type seller’s equilibrium accep-

tance strategy, each buyer’s optimal offer strategy depends only on his beliefq and the low-type

seller’s reservation pricep(q). Consider a buyer who had prior beliefqn and received signalsn.

The buyer must be indifferent between offeringcH andp(q). Using the fact that his interim belief

is equal to qnγH (sn)
qnγH (sn)+(1−q)γL(sn)

, it is straightforward to show thatqn is the unique value that satisfies

cH −min{vL, p(qn)}

vH − cH
=

qn
1− qn

γH(sn)

γL(sn)
. (3)

The use ofmin{vL, p(t)}, instead ofp(t), reflects the fact that ifp(q) ≥ vL, then the buyer’s

expected payoff by offeringp(q) is equal to0, either because the offer itself isvL, which is accepted

only by the low type, or because it is greater thanvL, in which case in equilibrium it is rejected

with probability1.

Now fix the partition{qN , ..., q1}. Intuitively, p(t) is determined only by the rate at which the

low type receives offercH : each buyer offers eithercH or her reservation pricep(t), which she is

indifferent between accepting and rejecting. Therefore, for the purpose of calculating the expected

payoff, she can be assumed only to acceptcH . Then, the low-type seller’s reservation price for the

belief level can be calculated recursively as follows: Supposeq ∈ [qn+1, qn). While buyers’ beliefs

are in this interval, the low-type seller receives offercH at rateλ(1−ΓL(sn)). If n < n∗, thenq(t)

decreases toqn+1, while if n ≥ n∗, then it increases toqn. Defineq̃ so thatq̃ = qn+1 if n < n∗,

while q̃ = qn if n ≥ n∗. Then,

p(q) =

∫ T (q,q̃)

0

((1− e−rt)cL + e−rtcH)d
(
1− e−λ(1−ΓL(sn))t

)
+ e−(r+λ(1−ΓL(sn)))T (q,q̃)p(q̃), (4)
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whereT (q, q̃) is the length of time it takes for buyers’ beliefs to move fromq to q̃.16 A closed-form

solution can be found by applying the definition ofT (·, ·) and using the fact thatp(qn∗) = vL.

Finally, we combine the characterizations and compute the cutoffs qN , ..., q1 as well as the

reservation price schedulep(·). Their uniqueness follows from the explicit computation.

Consider firstqn for n < n∗. In this case,p(q) > vL, and thus (3) reduces to

1− qn
qn

=
γH(sn)

γL(sn)

vH − cH
cH − vL

. (5)

Therefore, the cutoffsqn are determined independently of the true value ofp(q). The uniqueness

follows from the fact that the left-hand side is increasing,while the right-hand side is constant.

Givenqn for eachn < n∗, p(q) can be calculated using (4) for anyq > q∗.

The determination ofqn for n > n∗ is more involved, because they cannot be identified sep-

arately fromp(·). Nonetheless, as shown in the previous section,q(t) evolves deterministically

from qn+1 to qn for anyn ≥ n∗. Therefore,qn∗+k for eachk = 0, 1, ..., N − n∗ − 1 can be found

recursively as follows:

• For eachk = 0, ..., N − n∗ − 1,

p(qn∗+k+1) =

∫ T (qn∗+k+1,qn∗+k)

0

((1− e−rt)cL + e−rtcH)d
(
1− e−λ(1−ΓL(sn∗+k))

)

+e−(r+λ(1−ΓL(sn∗+k)))T (qn∗+k+1,qn∗+k)p(qn∗+k).

• qn∗+k+1 is the value that satisfies

1− qn∗+k+1

qn∗+k+1

=
γH(sn∗+k+1)

γL(sn∗+k+1)

vH − cH
cH − p(qn∗+k+1)

.

Suchqn∗+k+1 uniquely exists becausep(·) is strictly increasing and it is known thatp(qn∗) =

vL.

As in the previous case, givenqn for eachn ≥ n∗, (4) can be used to computep(q) for eachq < q∗.

The results are summarized in the following proposition.

16 Formally, ifn < n∗, thenT (q, q′) is defined to be the value that satisfies

q′ =
qe−λ(1−ΓH(sn))T (q,q′)

qe−λ(1−ΓH(sn))T (q,q′) + (1− q)e−λ(1−ΓL(sn))T (q,q′)
⇔

1− q′

q′
=

1− q

q
e−λ(ΓH(sn)−ΓL(sn))T (q,q′),

while if n ≥ n∗, then

q′ =
qe−λ(1−ΓH (sn))T (q,q′)

qe−λ(1−ΓH (sn))T (q,q′) + (1 − q)e−λT (q,q′)
⇔

1− q′

q′
=

1− q

q
e−λ(ΓH(sn)−1)T (q,q′).
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Proposition 3 There is a unique equilibrium ofp(·) and {qN+1 = 0, qN , ..., q1, q0 = 1} that

satisfies properties (i) and (ii).

Figure 3 illustrates the trading dynamics that emerges fromour model. If buyers’ beliefs about

the asset’s quality are rather optimistic (q̂1), then the low-type seller’s reservation price (p(q̂1) =

p(0)) exceedsvL. In this case, trade takes place only at pricecH . Since the high type generates

good signals more often than the low type, buyers’ beliefsq(·) decline over time (see the solid

line in Figure 2). Asq(·) decreases, buyers offercH less frequently, and thus the low-type seller’s

reservation also declines (the solid line in the right panel). Onceq(t) becomes equal toq∗, buyers’

beliefs do not change thereafter, and the low-type seller’sreservation price stays equal tovL. If

buyers’ initial beliefs are pessimistic (q̂2), then the resulting dynamics is exactly the opposite:

buyers’ beliefs and the low-type seller’s reservation price decline over time and converge toq∗ and

vL, respectively.

0 1

p(q)

cL

vL

q∗ q1 0 t

p(t)

q̂1q̂2

Figure 3: The low-type seller’s reservation price as a function of buyers’ beliefsq (left) and that of
time t (right).

We conclude this section by summarizing all the results regarding the equilibrium construction.

Theorem 1 For a generic set of parameter values, there exists an equilibrium in which buyers’

beliefs evolve as described in Proposition 2. Until buyers’beliefs reachq∗, buyers’ equilibrium

offer strategies are characterized by a partition{qN , ..., q1}: If q(t) ∈ (qn+1, qn], then the buyer

offerscH if his signal is strictly abovesn andp(q(t)) otherwise. The low-type seller acceptsp(q(t))
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with probability1 if q(t) < q∗ and with probability0 if q(t) > q∗. Once buyers’ beliefs reachq∗,

then the game is played as described in Proposition 1. This isthe unique equilibrium that satisfies

properties (i) and (ii).

4.2 Uniqueness

We now prove that the equilibrium presented in Theorem 1 is the unique equilibrium of our model.

Theorem 2 For a generic set of parameter values, there is a unique equilibrium.

In light of Theorem 1, it suffices to show that any equilibriumsatisfies properties (i) and (ii).

We obtain this result in two steps. First, we show that in any equilibrium, even without reference to

properties (i) and (ii), buyers’ beliefs evolve monotonically, regardless of their starting point. This

implies, among others, that that the low-type seller’s reservation price can be regarded as a function

of buyers’ beliefsq. Second, we show that the reservation pricep(q) must be strictly increasing

in q wheneverq < q∗. From this, we deduce that buyers’ cutoff signals must be non-increasing in

q. The latter, in particular, implies that there exists a partition {qN , ..., q1} that describes buyers’

equilibrium offer strategies as in property (ii).

4.2.1 Monotonicity of beliefs

Lemma 1 already argued that ifp(t) < vL, thenq(t) is increasing, while ifp(t) > vL, then it is

decreasing. The next lemma links the ranking ofp(t) relative tovL to the ranking ofq(t) relative

to q∗. The monotonicity of beliefs immediately follow by combining Lemmas 1 and 2.

Lemma 2 In any equilibrium,q(t) ≤ q∗ if, and only if,p(t) ≤ vL.

Proof. See the Appendix.

This intuitive lemma would immediately follow if it were already established that the low-type

seller’s reservation price is increasing in buyers’ beliefs. In the absence of that result, establishing

Lemma 2 requires subtler arguments. The crucial step is to observe that, if, for instance, it were

the case that for somēt, q(t̄) > q∗ while p(t̄) < vL, the reservation price must eventually converge

to vL from below. This observation can be used to reach a contradiction as follows: just before

the convergence occurs, the beliefs must be bounded away from q∗. This follows from Lemma 1:

for t > t̄ and before the convergence occurs,p(t) < vL, and thusq(t) must be increasing, which

impliesq(t) > q(t̄) > q∗. In the meantime, the low-type seller’s reservation value is almostvL.

Consider a buyer arriving at such an instant. If he makes an offer of p(t), his payoff is almost 0,

sincep(t) is almostvL. On the other hand, upon receiving a signal ofsn∗, his payoff from offering
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cH is bounded away from 0: the payoff would be exactly zero if hisbelief were exactlyq∗, yet his

belief is strictly above (and bounded away from)q∗. It follows that such a buyer would offercH
at least as often as on the stationary path. Clearly, this provides the low-type seller with a higher

payoff than his stationary payoffvL, leading to a contradiction. We formalize this argument in the

Appendix.

4.2.2 Monotonicity of p(·) and buyers’ cutoff signals

The monotonicity of beliefs discussed above implies that, in any equilibrium, there is a one-to-

one correspondence between the time-on-the-market, whichis the only relevant history in this

game, and buyers’ beliefsq. Therefore, the low-type seller’s reservation price, which is formally a

function of his time-on-the-market, can be expressed as a function of buyers’ beliefs. For the same

reason, buyers’ offer strategies can also be expressed as functions ofq. Let s̄(q) denote the cutoff

signal that a buyer with prior beliefq uses. Next we establish thatp(q) is strictly increasing and

s̄(q) is non-increasing.

First considerq > q∗. Then by Lemma 2,min{p(t), vL} = vL. Inspecting (3) immediately

reveals that for this range of beliefs,s̄(q) is non-increasing. This, in turn, implies the monotonicity

of p(q).

Next considerq < q∗. Now, it is not a priori clear that a higher prior belief wouldbe associated

with a lower cutoff signal, because ifp(·) is decreasing, then offeringp(q) could be relatively more

attractive whenq is higher, and thus the buyer could be more reluctant to offercH . Yet, if p(q) is

monotone inq, then the monotonicity of the cutoff signals follows. The next lemma establishes

that p(t) is increasing over time wheneverq(t) < q∗. Combining this with the monotonicity of

beliefs, the desired result follows.

Lemma 3 In any equilibrium, ifq(t) < q∗, thenp(·) is strictly increasing int.

The argument for this result uses the idea that ifp(·) is not increasing, then there exists an

interval, say(t, t′), such thatp(·) is∪-shaped over the interval and the values at the two end points

are identical. In the mean time, sincep(t) < vL, buyers’ beliefs must increase over the interval.

But then, within the interval, the buyers cannot be offeringcH more frequently thanafter time t′,

since at that point both buyers’ beliefs and the low-type seller’s reservation price are higher. This

leads to a contradiction.

4.2.3 Proof of Theorem 2

Let us summarize how all the components we have established so far lead to the proof of the

uniqueness.
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Firstly, Proposition 1 establishes thatif buyers’ beliefs are to remain constant at some level,

this level must beq∗ as defined in 4.1.1. Lemmas 1 and 2 establish that in any equilibrium buyers’

beliefs must be decreasing ifq(t) > q∗, while increasing ifq(t) < q∗. Sinceq(t) is continuous in

t, buyers’ beliefs cannot “jump over”q∗ and must remain constant once buyers’ beliefs reachq∗.

Next, if q̂ > q∗, then, by Lemma 1, the low-type seller also trades only when an offer of cH is

made, until buyers’ beliefs reachq∗. This uniquely pins down buyer behavior via (5) forq > q∗.

Then, the low-type seller’s behavior for this range of beliefs is determined by (4).

Finally, if q̂ < q∗, then the uniqueness argument requires an extra step, sincein this case

buyers’ equilibrium offer strategies cannot be pinned downindependently of the low-type seller’s

reservation price. In this case, the crucial step is Lemma 3 which establishes thatp(t) cannot be

decreasing over time. Proposition 3 then proves the uniqueness of equilibrium strategies.

4.3 Non-Generic Cases

We conclude this section by illustrating the equilibrium outcome for the non-generic case, where

there existsn∗ such thatρL = r(vL−cL)
λ(cH−vL

= λ(1− ΓL(sn∗)).

To illustrate the basic problem of these cases, letqn∗ andqn∗+1 be the values such that

1− qn∗

qn∗

=
γH(sn∗)

γL(sn∗)

vH − cL
cL − vL

,

and
1− qn∗+1

qn∗+1

=
γH(sn∗+1)

γL(sn∗+1)

vH − cL
cL − vL

.

Supposeq(t) ∈ [qn∗+1, qn∗ ] and all subsequent buyers offercH if and only if their signal is strictly

abovecH . Then, the low-type seller’s expected payoff stays equal tovL. Suppose she acceptsvL
with probabilityσ∗

S, whereσ∗
S satisfies

λ(1− ΓH(sn∗)) = λ(1− ΓL(sn∗) + ΓL(sn∗)σ∗
S).

Then, buyers’ beliefs do not change over time. Furthermore,given thatvL is the low-type seller’s

reservation price, buyers’ offer strategies are also optimal. This implies that any belief level be-

tween[qn∗+1, qn∗ ] can serve as the critical stationary belief in our model.

In fact, buyers’ beliefs do not even need to converge to a certain level. Once buyers’ beliefs

fall betweenqn∗+1 andqn∗, any belief path that stays within the interval can be supported as an

equilibrium: Although buyers’ offer strategies are fixed, buyers’ beliefs can decrease or increase,

depending on the low-type seller’s acceptance strategy of offer vL. For instance, the low-type

seller may rejectvL with probability1, until it reachesqn∗ and stays constant thereafter. Or, she
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may acceptvL with probability1, until buyers’ beliefs hitqn∗+1. Buyers’ beliefs may even keep

oscillating between (or any two levels between)qn∗ andqn∗+1.

Nevertheless, all these equilibria have crucial properties in common. First, within the range of

beliefs, the buyers play the same offer strategy across all equilibria, offeringcH if and only if their

signal is strictly abovesn∗. Therefore, in any equilibrium the low-type seller’s reservation price is

equal tovL, once buyers’ beliefs fall into the interval[qn+1, qn]. Second, outside[qn+1, qn], buyers’

beliefs gradually converge to the interval[qn∗+1, qn∗ ], just as they converge toq∗ in the generic

case. Furthermore, the unique convergence path can be fullycharacterized as in the generic case:

If q(t) ∈ [qn+1, qn] for somen < n∗, then the low type trades at rateλ(1−ΓL(sn)), while the high

type at rateλ(1 − ΓH(sn)). If n ≥ n∗ + 1, then the low type trades at rateλ, while the high type

at rateλ(1 − ΓH(sn)). Finally, given the first two properties, it follows that allthe equilibria are

payoff-equivalent, whether the initial belief̂q belongs to the interval[qn+1, qn] or not. The only

difference among the equilibria is the low-type seller’s trading rate,17 as it varies depending on the

low-type seller’s acceptance strategy of offervL.

5 Equilibrium Outcomes in the Frictionless Limit

In this section we present equilibrium outcomes for the limit case whereλ is arbitrarily large. The

limit case is of interest for at least three reasons. First, the market outcome characterized in the

previous section is influenced by the level of search frictions as well as information asymmetry.

The analysis of the limit case allows us to separate the effects due to the latter from those due

to the former. Second, while search frictions are physically inherent in various markets, such as

labor markets and over-the-counter markets, they can be mitigated by government policies. For

example, the government can increaseλ by introducing a more efficient job-matching mechanism

or promoting electronic trading, as opposed to over-the-counter trading. The limit case informs

us of the extent to which the government can facilitate tradethrough such policies.18 Finally, it

permits a direct comparison of our model to the existing onesthat assume away search frictions

(that is, the models in which the seller can trade any time shewants). In this section, we provide

the result and intuition, while relegating the formal derivation to the Appendix.

We focus on the time to trade for each type, denoted byτa(q̂) for eacha = L,H, and the

low-type seller’s expected payoff from the gamep(q̂). Since there are gains from trade, whether

the asset is of high or low quality, the surplus generated in the market is larger, the earlier does

trade takes place. Therefore, the time to trade can be considered as a measure of surplus generated.

17The high-type seller’s trading rate is identical across allequilibria, because buyers’ offer strategies are identical.
18It is fairly straightforward to show that a marginal increase ofλ always increases the low-type seller’s expected

payoff and speeds up trade of both types.
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Meanwhile, the low-type seller’s expected payoff can be interpreted as a measure of division of

surplus: recall that the high-type seller’s expected payoff is always equal to0.

We start with two convenient observations. First, ifλ is sufficiently large, then the stationary

cutoff signals∗ is necessarily equal to the highest signalsN .19 Intuitively, if buyers arrive fre-

quently, then the low-type seller has a strong incentive to wait for cH . For her reservation price to

stay equal tovL, each buyer must offercH with a sufficiently small probability and, therefore, only

when he receives the highest signalsN (even then with probability less than1). This implies that

the stationary cutoff beliefq∗ is equal toqN , which in turn implies that for anyn, the corresponding

cutoff signalqn is determined to be the value that satisfies

1− qn
qn

=
γH(sn)

γL(sn)

vH − cH
cH − vL

. (6)

It also implies that the rate at which each type trades afterq(t) reachesq∗ is given by

ρH =
γH(sN )

γL(sN)

vL − cL
cH − vL

r, (7)

which is also independent ofλ.20

Second, buyers’ beliefs immediately jump toq∗ in the frictionless limit, as long as their initial

beliefs are smaller than̄q1. The length of time it takes for buyers’ beliefs to move fromqn to qn+1

(in the case ofn < n∗) or qn−1 (in the case ofn ≥ n∗) shrinks to0 asλ tends to infinity (see

footnote 16). Therefore, the length of time for buyers’ beliefs to move from̂q to q∗ also shrinks

to 0. Intuitively, at each belief level, (expected) arrival of each buyer moves buyers’ beliefs at a

constant rate. Therefore, buyers’ beliefs move arbitrarily fast asλ tends to infinity.

Let F ∗
a (·|q̂), a = L,H, represent the limit distributions of random variablesτa(q̂) asλ ap-

proaches infinity. The following proposition characterizes the distributions, in particular, the prob-

ability that each type trades immediately.

Proposition 4 For eachq̂ ∈ (0, q1) anda ∈ {L,H}, asλ tends to infinity, the probability that the

typea seller trades by timet converges to

Fa(t|q̂) = 1− (1− Fa(0|q̂))e
−ρH t,

whereρH is given in (7) and

19The precise condition under which this is true isλ > r(vL−cL)
γL(sN )(cH−vL) .

20If n∗ = N , then the rate at which each type receives offercH is equal toρL = λγL(sN )σ∗
B and ρH =

λγL(sN )σ∗
B , respectively. The result follows from the fact thatρL is necessarily equal tovL−cL

cH−vL
r, and both types

must have the same exit rate.
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• if q̂ < q∗, then

FL(0|q̂) = 1−
q̂

1− q̂

γH(sN)

γL(sN)

vH − cH
cH − vL

and FH(0|q̂) = 0; (8)

• if q∗ < q̂ < q̄1, then for eacha = L,H,

Fa(0|q̂) = 1−

(
1

ln

cH − vL
vH − cH

1− q̂

q̂

)ψa
n

×

N∏

i=n+1

(
li−1

li

)ψa

i

, (9)

with li =
γH (si)
γL(si)

andψai =
1−Γa(si)

ΓH (si)−ΓL(si)
.

Proof. See the Appendix.

Intuitively, the atoms at time 0,Fa(0|q̂), reflect the probabilities with which each type trades

beforeq(t) reachesq∗. These probabilities, and thus their limits as well, are straightforward to

calculate from the characterization in the previous section. To understand how the expressions in

(8) correspond to these probabilities, first recall that ifq̂ < q∗, then, sincen∗ = N , the high-type

seller trades with zero probability until buyers’ beliefs reachq∗, which impliesFH(0|q̂) = 0. For

this range of initial beliefs, the low type trades with probability 1 conditional on the arrival of a

buyer. Given this,1 − FL(0|q̂) is precisely the probability with which the low type shouldnot

trade so that buyers’ beliefs jump from̂q to q∗.21 Similarly, in (9), the first multiplicative term is

the probability with which the type-a seller does not trade before the buyers’ beliefs move toqn,

and
(
li−1

li

)ψa

i

is the corresponding probability for buyers’ beliefs to evolve from qi to qi−1.
22 It is

important to note that all these probabilities are independent ofλ; i.e. asλ varies, the equilibrium

strategies adjust so that these probabilities remain constant.

We now turn to the reservation price schedule of the low type seller. In the limit, since buyers’

beliefs immediately jump from̂q to q∗, the low-type seller either trades immediately at pricecH

(while buyers’ beliefs converge toq∗) or receives expected payoffvL (once buyers’ beliefs become

equal toq∗).23 Therefore,p(q̂) is simply a weighted average ofcH andvL, with the weight tocH
21Precisely, due to (6),

q̂

q̂ + (1− q̂)(1− FL(0|q̂))
=

1

1 + γH(sN )
γL(sN )

vH−cH
cH−vL

= q∗.

22Notice thatψLi − ψHi = −1. Therefore,

1− qi+1

qi+1
= li

vH − cH

cH − vL
=

1− qi

qi

(
li

li+1

)ψL

i
−ψH

i

= li
vH − cH

cH − vL

li+1

li
.

23For the latter, we again invoke the fact thatp(q) can be calculated by assuming that the low type would accept
only cH .
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being equal to the probability that she immediately trades at pricecH . Recall that ifq̂ < q∗, then

no buyer offerscH until buyers’ beliefs reachq∗ (recall thatn∗ = N), while if q̂ ∈ (q∗, q1), then the

low type receives offercH with probabilityFL(0|q̂) before buyers’ beliefs reachq∗. The following

result is then immediate from Proposition 4.

Proposition 5 In the limit asλ tends to infinity, the low-type seller’s expected payoff is equal to

p(q̂) =





vL, if q̂ ≤ q∗,

vL + FL(0|q̂)(cH − vL), if q̂ ∈ (q∗, q1),

cH , if q̂ ≥ q1.

(10)

6 Effects of Improving the Precision of Buyers’ Signals

In this section, we study the effects of improving the precision of buyers’ signals. Our main goal is

not to perform comprehensive comparative statics analysisregarding information structures, but to

obtain some insights about the effects of improving the quality of buyers’ signals. To this end, we

focus on the simplest case in which there are only two signals, that is,N = 2. In order to highlight

the purely informational effects, we further restrict attention to the limit case whereλ is arbitrarily

large.24

Specifically, we examine how the market outcome varies as thelikelihoods of the signals

change. In particular, we focus on the effects of a marginal increase inl2.25 Such changes in

the parameter values are consistent with various common notions of more precise signals.26 In

the same spirit as in Section 5, we focus on the effects of those changes on the expected time to

trade (as a measure of market liquidity and efficiency) and the low-type seller’s reservation price

(as a measure of surplus division). Since the result is obvious if q̂ > q1, we consider only the case

whereq̂ < q1. In what follows, for notational simplicity, we simply saŷq > q∗, in order to refer to

q̂ ∈ (q∗, q1).

Proposition 4 informs us of how to calculate the expected time to trade for each type. In the

limit asλ tends to infinity, each type trades either immediately or at aconstant rate ofρH thereafter.

Therefore, the expected time to trade for the type-a seller is equal to the probability that the seller

does not trade immediately (1 − Fa(0|q̂)) times the expected duration when the hazard ratio is

24Although we present the results only for the limit case, all the qualitative results established in this section hold
as long asλ is sufficiently large.

25We explain the effects of a marginal decrease inl1 at the end of this section.
26There are several ways to rank information structures. The most common criteria are Blackwell’sgarbling(Black-

well (1951)), Lehmann’saccuracy(Lehmann (1988)), and Shannon’s entropy (Shannon (1948)).Even though it is not
clear which concept is appropriate in strategic environments in general and in our model in particular, the variations
we consider are consistent with each of them.
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1 l2

q̂
1−q̂

cH−vL
vH−cH

q1
1−q1

immediate trade

exp
(

2l2−1
l2

(l2−1)
)

l2

E[τH ] ↑, E[τL] ↑
E[τH ] ↓,E[τL] ↑

exp(l2−1)
l2

q∗(l2)
1−q∗(l2)

E[τH ] ↓, E[τL] ↓

E[τH ] ↓, E[τL] →

Figure 4: The effects of an increase inl2 on the expected times to trade.

given byρH . Formally,E[τa(q̂)] =
1−Fa(0|q̂)

ρH
. The following proposition is then immediate by

basic calculus.27

Proposition 6 Supposel2 increases marginally.

• If q̂ < q∗, thenE[τL(q̂)] remains constant, whileE[τH(q̂)] decreases.

• If q̂ > q∗, thenE[τL(q̂)] decreases if and only ifl2 >
exp(l2−1)

l2

cH−vL
vH−cH

, whileE[τH(q̂)] de-

creases if and only ifl2 >
exp

(
2l2−1

l2
(l2−1)

)

l2

cH−vL
vH−cH

.

Figure 4 visualizes Proposition 1. It is clear that more transparency (increased precision of

signals) may or may not contribute to market liquidity and efficiency. Nonetheless, there are three

systematic patterns. First, more precise signals are less likely to be beneficial when̂q is high; i.e.

the range ofl2 at which an increase inl2 speeds up trade decreases asq̂ increases. Second, more

precise signals are more likely to be beneficial whenl2 is already high; i.e. the range ofq̂ at which

an increase inl2 speeds up trade increases asl2 increases. Finally, increased precision tends to

speed up trade for the high type than for the low type.

27For the case ofN = 2,

ρH = l2
vL − cL

cH − vL
r.

In addition,

FL(0|q̂) =




1− l2

vH−cH
cH−vL

q̂

1−q̂ , if q̂ ≤ q∗,

1−
(

1
l2

cH−vL
vH−cH

1−q̂
q̂

) 1

l2−1

, if q̂ > q∗
FH(0|q̂) =




0 if q̂ ≤ q∗

1−
(

1
l2

cH−vL
vH−cH

1−q̂
q̂

) l2

l2−1

if q̂ ∈ q∗
.
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To understand the first two patterns, notice that increased precision of signals affects the equi-

librium dynamics through two channels. First, it directly reduces the risk of each buyer’s paying

a high price for a low-quality asset, thereby encouraging buyers to offercH more often. Ceteris

paribus, this effect reduces the expected time to trade.28 Second, since other buyers also receive

more precise signals, it speeds up the evolution of buyers’ beliefs. In particular, if̂q > q∗, for a

fixed time-on-the-market, the higherl2 is, the more pessimistic are buyers about the quality of the

asset; i.e. for a fixedt, an increase inl2 decreasesq(t). This indirectly reduces buyers’ incentive

to offer a high price, thereby slowing down trade.29 The patterns emerge because the magnitude

of the former effect is essentially constant inq̂ and l2, while that of the latter increases in̂q and

decreases inl2. Buyers’ beliefs travel from̂q to q∗. Therefore, the latter effect amplifies asq̂ in-

creases. On the other hand, whenl2 is already high, an additional increase ofl2 has a small effect

on the speed of the belief convergence, and thus the latter effect is relatively small.

To understand why increased precision tends to speed up trade for the high type more than

for the low type, recall that, while the high type trades onlyat cH , the low type also trades at her

reservation pricep(t). Therefore, the low-type seller’s expected time to trade also depends on her

incentive to acceptp(t), which in turn depends on the rate at which buyers offercH . This means

that there is a countervailing effect to the first one in the previous paragraph: increased precision

increases the low type’s chance to trade atcH . But, this decreases the low type’s incentive to

acceptp(t) and, therefore, slows down trade. Clearly, this additionaleffect operates only for the

low type. It follows that the low type’s expected time to trade decreases only when the high

type’s also decreases, while the high type’s can decrease even when the low type’s increases. The

countervailing effect is particularly strong when̂q is smaller thanq∗. In that case, it fully offsets

the direct effect, and thus the expected time to trade stays constant.30

Remark 1 (Distribution of time to trade) Although we have focused on how the expected times

to trade respond to the change ofl2, the effects on the entire distributions of time to trade are

straightforward to obtain. Recall that the distribution for each type consists of two components:

the probability that trade takes place immediately (Fa(0|q̂)), and the stationary rate of trade con-

ditional on no trade at time0 (ρH ). The latter always increases inl2, while the former may or

may not increase. Therefore, if the former also increases, then the distribution decreases inl2 in

the first order stochastic dominance sense, while if the former decreases, then the change of the

distribution cannot be clearly ranked. Since first-order stochastic dominance implies an increase

of the expected value, it follows that the region at which an increase inl2 speeds up trade in the

28In the formal expression ofE[τa(q̂)], this effect manifests itself as a decrease inq∗ = l2
vH−cH
cH−vL

and an increase

in ρH = r(vL−cL)
cH−vL

.
29In the formal expression, this effect is present in the powerterms, 1

l2−1 and l2
l2−1 .

30Whenq̂ < q∗, buyers’ beliefs increase over time. Therefore, the secondeffect in the previous paragraph is absent.
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sense of first-order stochastic dominance is smaller than the region at which the expected time to

trade decreases inl2.

Our next result concerns how the low-type seller’s expectedpayoff is affected by an increase in

l2. Proposition 5 implies that if̂q < q∗, then it is constant inl2, while if q̂ > q∗, then it depends on

howFL(0|q̂) responds to an increase inl2.31 The following result is then straightforward to obtain

from Proposition 4.

Proposition 7 Supposel2 increases marginally.

• If q̂ < q∗, thenp(q̂) stays constant.

• If q̂ ≥ q∗, thenp(q̂) increases if and only if q̂
1−q̂

<
exp

(
l2−1
l2

)

l2

cH−vL
vH−cH

.

Remark 2 (Impact of a marginal decrease in l1) So far we have considered only an increase in

l2, sinceρH andFa(t; q̂) are independent of the other likelihood ratiol1. Yet, decreasingl1 (making

signals1 more informative) is another way to improve the quality of buyers’ signals. The only role

thatl1 plays is to change the lower boundq1 on q̂, above which trade is immediate. It is easy to see

that a decrease inl1 leads to an increase inq1. Intuitively, this is because a decrease inl1 means

that signals1 becomes an even worse signal, and thus for a buyer to be willing to offer cH with

signals1, his prior must be even higher. It is immediate that ifq̂ = q1, then a marginal decrease in

l1 sharply slows down trade of both types: Before the change, both types trade upon arrival of the

first buyer, while after the change, there is substantial delay.

7 Conclusion

The main contribution of our paper is to provide a simple and intuitive framework, which, never-

theless, leads to a rich set of predictions for equilibrium trading dynamics. Within this framework

we are able to identify different sources of trading delay and provide an understanding of how

these sources interact. The simple comparative statics exercise we present in Section 6 demon-

strates how this model can be used to identify the role of “asset transparency” which has recently

been the target of market regulations. The simple yet rich structure of the equilibrium of our model

easily lends itself to such policy analysis. Moreover, we believe that its further modifications may

help shed light on other issues of interest such as increasedtransparency of market transactions

and various market regulations.

31Notice that the condition under whichp(q̂) increases coincides with the condition for the distributionFL(·; q̂) to
decrease in the first-order stochastic dominance.
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Appendix: Omitted Proofs

Proof of Lemma 2:. We establish the result in three steps.

(1) If q(t) < q∗, thenp(t) < vL.

Supposeq(t) < q∗, but p(t) > vL. Then, there must existst′ ∈ (t,∞) such thatp(t′) = vL.

Suppose not, that is,p(t′) > vL for anyt′ > t. Lemma 1 implies thatq(·) then keeps decreasing.

This, in turn, implies that there must existq∞ ∈ [0, q(t)) such thatq(·) converges toq∞. Recall

that, sincep(t′) > vL for anyt, both types trade only when the buyer offerscH . Therefore, in the

long run, both types must trade at the same rate, which can be the case only when either every

buyer always offerscH or every buyer never offerscH . Sinceq(t) < q∗, the former obviously

cannot be true. The latter also cannot be the case, because ifso, the low-type seller’s reservation

price would be close tocL, which is strictly smaller thanvL.

Let t′ be the smallest value such thatp(t′) = vL. Then, for anyx ∈ (t, t′), p(x) > vL.

Therefore, by Lemma 1,q(x) ≤ q(t) < q∗, which implies that the probability that the buyer at

x ∈ (t, t′) offerscH is strictly less thanγL(s∗)σ∗
B +1−ΓL(s

∗). Combining this withp(t′) = vL, it

follows thatp(t) < vL, which is a contradiction (recall that if all the buyers betweent andt′ offer

cH with probabilityγL(s∗)σ∗
B + 1− ΓL(s

∗) andp(t′) = vL, thenp(t) = vL).

Now supposeq(t) < q∗, butp(t) = vL. Together, they imply that the buyer att offerscH with

a strictly lower probability thanγL(s∗)σ∗
B +1−ΓL(s

∗). If ṗ(t) ≤ 0, then clearlyp(t) < vL, which

is a contradiction. Ifṗ(t) > 0, there existst′ such thatq(t′) < q∗, but p(t′) > vL. We showed

above that this can never be the case.

(2) If q(t) > q∗, thenp(t) > vL.

Supposeq(t) > q∗, but p(t) < vL. We first show that there existst′ ∈ (t,∞) such that

p(t′) = vL. Suppose not, that is,p(t′) < vL for any t′ ≥ t. Lemma 1 implies thatq(·) keeps

increasing. Sinceq(t) ∈ [0, 1] for any t, this means that there existsq∞ ∈ (q(t′, 1] such that

q(·) converges toq∞. Since the low type trades whenever a buyer arrives (see Lemma ??), the

convergence can occur only when the high type trades with almost probability1. This, in turn,

implies that in the long run, each buyer offerscH with probability1, regardless of his signal. But,

then the low-type seller’s reservation price becomes arbitrarily close tocH . This is a contradiction,

becausecH is strictly larger thanvL by Assumption 1.

Let t′ be the smallest value at whichp(t′) = vL. Sincep(x) < vL for anyx ∈ (t, t′), q(·) cannot

decrease on(t, t′). Therefore,q(x) > q∗ for anyx ∈ (t, t′). Let t′′ ≡ t′ − ǫ for ǫ positive, but

sufficiently small. Then, for anyx ∈ (t′′, t′), the buyer must offercH with probability1 whenever

his signal is weakly aboves∗: Sincex is close tot′, p(x) is close tovL. Therefore, when the buyer’s

signal iss∗, his expected payoff by offeringp(x) is also close to0. To the contrary, his expected

payoff by offeringcH is bounded away from0, becauseq(x) ≥ q(t) > q∗ (recall that the payoff
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is equal to0 if q(x) = q∗). But, thenp(x) > vL, because the buyers on(x, t′) offer cH at least

with probability1−Γ−
L(s

∗), while the low-type seller’s reservation price att′ is equal tovL (recall

that the low-type seller’s reservation price is equal to0 if every buyer offerscH with probability

γL(s
∗)σ∗

B + 1− ΓL(s
∗)). This is, of course, a contradiction.

Now supposeq(t) > q∗, butp(t) = vL. In this case, the low type does not necessarily accept

p(t) with probability1. Therefore,q(·) is not necessarily increasing. However, we do know that the

buyer would offercH with probability1 whenever his signal is weakly aboves∗: Sincep(t) = vL,

the buyer with signals∗ obtains zero expected payoff by offeringp(t), while his expected payoff

by offeringcH is strictly positive, becauseq(t) > q∗. If ṗ(t) ≥ 0, then it is clear thatp(t) > vL. If

ṗ(t) < 0, then there existst′ > t such thatq(t′) > q∗, butp(t′) < vL. We showed above that this

can never be the case.

(3) If q(t) = q∗, thenp(t) = vL.

Thatp(t) = vL impliesq(t) = q∗ is immediate. Now supposeq(t) = q∗ but p(t) < vL. Then

the belief is increasing so that fort′ > t sufficiently close tot, q(x) > q∗ andp(x) < vL whenever

x ∈ (t, t′), since bothp(·) andq(·) are continuous, a contradiction. Symmetric arguments leadto a

contradiction for the case ofp(t) > vL.

Proof of Lemma 3:. Suppose there existst such thatq(t) < q∗, but ṗ(t) ≤ 0. Sincep(·)

is continuous and eventually converges tovL, there existst′ such thatt′ > t andp(t′) = p(t).

Without loss of generality, assume thatp(x) ≤ p(t) for anyx ∈ (t, t′) andṗ(x) > 0 for anyx > t′

such thatq(x) < q∗ (if p(·) is not strictly increasing until it reachesvL, there always existt and

t′ that satisfy these properties). Forx ∈ (t, t′), p(x) ≤ p(t′), while q(x) < q(t′). This implies

that the probability that the buyer atx ∈ (t, t′) offerscH cannot be larger than the corresponding

probability for the buyer att′. To the contrary, wheneverx > t′, p(x) > p(t′) andq(x) > q(t′).

Therefore, the probability that the buyer atx > t′ offerscH is strictly larger than the corresponding

probability for the buyer att′. Since the low-type seller’s reservation pricep(·) is determined by

the rate at which buyers offercH , it immediately follows thatp(t) < p(t′), which is a contradiction.

Proof of Proposition 4:. First consider the case wherêq < q∗. In that case, for any fixedλ,

theH-type seller does not trade until the belief reachesq∗. Therefore,FH(0|q̂) = 0. TheL-type,

on the other hand, trades with probability 1 conditional on the arrival of a buyer during this period.

Then, the probability he trades before the stationary path is reached is given by1−e−λT (q̂,q
∗) where

T (q̂, q∗) = −
1

λ
log

(
1− q∗

q∗
q̂

1− q̂

)
.
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Combined with (6), this implies that for̂q < q∗,

FL(0|q̂) = 1−
q̂

1− q̂

γH(sN)

γL(sN )

vH − cH
cH − vL

.

Next, consider the case wherêq ∈ (q∗, q̄1). In this case, for a givenλ, conditional on the

arrival of a buyer, each type trades if and only if the offer iscH , which happens with probability

1 − Γ−
a (sn) = 1 − Γa(sn−1) if q ∈ [q̄n, q̄n−1). Therefore, for typea, the probability that the trade

takes place before the belief reachesq∗ is given by

1− exp

{
−(1 − Γa(sn−1))T (q̂, qn)−

N∑

i=n+1

(1− Γa(si−1))T (qi−1, qi)

}
,

so that

−(1− Γa(sn−1))T (q̂, qn) = log

(
1− q̄n
q̄n

q̂

1− q̂

)−
1−Γa(sn−1)

ΓH (sn−1)−ΓL(sn−1)

,

and

(1− Γa(si−1))T (qi−1, qi) = log

(
1− q̄i
q̄i

qi−1

1− qi−1

)−
1−Γa(si)

ΓH (si)−ΓL(si)

.

Then, the result follows immediately using (6).
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