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Abstract

We present a dynamic model of trading under adverse sate@iseller faces a sequence
of randomly arriving buyers, each of whom receives a noigpnali about the quality of the
asset and makes a price offer. We show that there is gengracainique equilibrium and
fully characterize the resulting trading dynamics. Buyéeliefs about the quality of the
asset gradually increase or decrease over time, dependlitige dnitial level. The rich trading
dynamics provides a way to overcome a common criticism oradya adverse selection,
thereby broadening its applicability. We also show thatriowng asset transparency may lead
to gains or losses in efficiency.
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1 Introduction

When an asset has been for sale for a while, what would buyknsabout its quality? The answer
depends on the perceived source of the delay. First, it doelpist that no potential buyer has
shown up yet (search frictions). This source is independéttte quality of the asset. Second,
the seller might have a high reservation value for the asgkttaerefore, be unwilling to settle at
a low price. If this is the perceived source of the delay, aj@rdelay indicates a higher quality.
Finally, potential buyers might have observed an unfaveratiribute of the asset and, therefore,
decided not to purchase it. In this case, clearly buyers ge¢pessimistic about the quality of the
asset over time.

We develop a model that incorporates all of these three eswnd study the resulting equi-
librium dynamics. Conceivably, depending on the condgiona given market, each one of them
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can be the overriding factor dictating trading dynamicsis Itor this reason that all have been
extensively, yet typically separately, studied in ther&tare: the first in the literature on sequen-
tial search, going back to Stigler (1961), the second in doemt literature on dynamic adverse
selectiont and the last in the literature on observational learningneered by Benerjee (1992)
and Bikhchandani, Hirsleifer and Welch (1992). Howevee, ¢iisting literature is silent on how
these sources are linked together and to the other aspdbis wfarket environment. Understand-
ing these links is not only of theoretical interest but ibatsucial in informing policies aimed at
alleviating inefficiencies due to adverse selection. Wekthinat by clarifying the interplay among
various sources of delay, our paper provides a deeper uaddisg of dynamic adverse selection,
as well as a richer context for policy evaluation.

We consider the problem of the seller who possesses ansitdaiasset and faces a randomly
arriving sequence of buyers. The asset is either of low ty@dw type) or of high quality (high
type). There are always gains from trade, but the qualithefasset is known only to the seller.
Each buyer, upon arrival, receives a noisy signal about tladityf of the asset, which we interpret
as the outcome of inspection, and makes a take-it-or-l¢ay@er. Importantly, we assume that
each buyer observes how long the asset has been up for sadeqii-the-market).

We show that there is generically a unique equilibrium irs ihiynamic trading problem, and
equilibrium trading dynamics crucially depend on the dsseitial reputation (i.e. buyers’ prior
beliefs about the quality of the asset). If an asset is likelye of high quality, then delay typically
results from unfavorable inspection outcomes, and thuagket’s reputation (the probability that
the asset is of high quality) declines over time. In contriftite asset is likely to be of low quality,
then delay stems mainly from the seller’s rejecting low gsicln this case, the seller’s reputation
increases over time. Intuitively, the higher the sellegjsutation is, the more likely do buyers offer
a high price. Therefore, if the seller’s reputation is highen the low-type seller is unwilling to
accept a low price. This means that trade is delayed only wdespite the seller’s high reputation,
buyers are unwilling to offer a high price, which is when thiegeived unfavorable inspection
outcomes. The low type is more likely to generate an unfdleraspection outcome than the
high type, and thus the asset is less likely to be of high guyahe longer it stays on the market.
If the seller’'s reputation is low, then the low type tradesreat a low price, while the high type
still accepts only a high price. Since delay arises due tditpe type’s insistence on a high price,
the seller’s reputation improves over time. Interestinglyyers’ beliefs converge to a certain level,
whether the seller’s initial reputation is high or low. Tiheghe level at which the seller’s reputation
is such that the two effects are exactly balanced.

The role of search frictions is worth explaining. First, asimtioned earlier, search frictions are

1See Evans (1989), Vincent (1989, 1990), Janssen and Rop)2D@neckere and Liang (2006), Horner and
Vieille (2009), and Moreno and Wooders (2010) for some sahdantributions



neutral to thelirectionof the evolution of beliefs, because they affect both typpsa#dy. However,
they affect thespeedof the evolution. Buyers can never exclude the possibifigt the seller has
been so unfortunate that no buyer has ever contacted tlee getl This forces buyers’ beliefs to
change gradually. Second, search frictions are resp@nsiily for a portion of delay. As is true
in other dynamic models of adverse selection, the expeotezltb trade remains bounded away
from zero even if search frictions are arbitrarily small.the limit, which we study in Section 5,
buyers’ beliefs immediately jump to a stationary level, tratle does not necessarily take place
immediately.

The richness of our equilibrium dynamics provides a way terogme a common criticism on
the literature on dynamic adverse selection, thereby itning to its applicability. The literature
is growing fas€ mainly because it has the potential to provide a synthetiarhof several forms of
market inefficiencies, such as trading delay (liquidityarket freeze (breakdown), and inefficient
assignments, and thus can be used to address various Esiggsi including the policies that
have been implemented or stipulated after the recent fiahodsis. Yet, most existing studies
present only one form of equilibrium dynamics: it has begreatedly found that either trading is
immediate (when the initial reputation is above some thokhhor buyers’ beliefs only increase
over time (below the threshold). Casual observations, keweuggest that a high-quality asset
tends to trade faster than a low-quality asset (in other syahe longer an asset stays on the market,
the more likely is its quality to be low) in various marketsltiough it might be controversial
whether information asymmetries are indeed present insackets, the inability to generate such
dynamics clearly limits the applicability of dynamic adserselection. Our results suggest that
with only one additional but plausible modeling innovat{bayers’ receiving noisy signals about
the quality of the asset), trading dynamics under advetsetsen can be very much enriched, and
a broader set of empirical patterns can be accommodated.

Our model, with its unique equilibrium and clean charaetgion, is particularly suited for
evaluating government policies that influence the markatgire® Within our framework, proba-
bly the most intriguing exercise would have to do with themifativeness of buyers’ signals (i.e.,
the quality of buyers’ inspection technology). It is widelgcepted that asset (corporate) trans-
parency improves market efficiency by facilitating sogiaeésirable trade. Such beliefs have been
reflected in recent government policies, such as the Sasbarkey act passed in the aftermath of
the Enron scandal and the Dodd-Frank act passed in the atteiwhthe recent financial crises,

2A non-exhaustive list includes Camargo and Lester (201han@ (2010), Chari, Shourideh and Zetlin-Jones
(2010), Chiu and Koeppl (2011), Choi (2013), Daley and Gr&12), Guerrieri and Shimer (2012), Horner and
Vieille (2009), Kurlat (2010), Lauermann and Wolinsky (3)1Moreno and Wooders (2012), Roy (2012), and Zhu
(2012).

3For instance, the government may mitigate search frictignsentralizing matching and/or trading mechanisms.
It may provide subsidies to trading parties, so as to alteutaeir incentive problems. Our complete and neat charac-
terization make it fairly straightforward to analyze théeefs of those and related policies.



both of which include provisions for stricter disclosurgueéements on the part of the sellers. Pre-
sumably, the main goal of such policies is to help buyerssssgee merits and risks of financial
assets more accurately. In our model this corresponds toamaase in the informativeness of
buyers’ signals.

We demonstrate that enhancing asset transparency doescestarily lead to efficiency gains.
In particular, we show that an increase of the precision g&bsi signals can increase or decrease
the expected time to trade for each type, depending on tle’s@hitial reputation. More precisely,
if buyers believe that the asset is likely to be of low qualihen more precise signals speed up
trade for both types, while they unambiguously slow dowderim the opposite cadeThis mixed
result arises, because an increase of the informativenfigences buyers’ inferences from the
length of delay as well as from the signal that they receiatuitively, each buyer must take into
account the fact that not only his signals, but also all otherers’ signals have become more
precise. This indirect effect can work in the opposite dimecto the direct one and be significant,
which makes the overall effects ambiguous.

Related Literature

As explained above, most existing studies on dynamic adveetection generate one form of
equilibrium dynamics (that buyers’ beliefs that the assetfi high quality increase over time).
One notable exception is Taylor (1999). He studies a twisdanodel in which the seller faces
a random number of buyers and conducts a second-price auntieach period. He considers
several settings which differ in the observability of fipsriod trading outcomes (in particular,
inspection outcome and price history) by second-periocetaiyIn all settings, buyers assign a
lower probability to the event that the asset is of high duati the second period than in the first
period (that is, buyers’ beliefs decrease over time). Thgclbehind the evolution of beliefs is
similar to ours: The high type generates good signals mdaemdhan the low type. Therefore, a
high-quality asset is more likely to be traded in the firsi@ethan a low-quality asset. However,
the opposite form of trading dynamics (buyers’ beliefs @asre over time) is absent in his moélel.
In addition, since his model has only two periods, tradingatdyics is not as rich and complete as
ours.

Two papers study a similar model to ours. Lauermann and \8kyiri2013) investigate the
ability of prices to aggregate dispersed information in tirsg very close to ours: an informed
player (buyer in their model) faces an infinite sequence afformed players, who each receives

4There is an intermediate range in which trade of the high sy@eds up, while that of the low type slows down.
For a more complete picture, see Figure 4.

STaylor (1999) assumes that there are no gains from tradeavi-gality asset. Therefore, buyers never make an
offer that can be accepted only by the low type. This forceshigh type to always trade faster than the low type.



a noisy signal about the informed player’s type. There ai@itaportant modeling differences.
First, in their model, the informed player makes a takeriteave-it offer to each uninformed
player. They adopt the bargaining protocol, because thely for a condition under which the
price fully reflects the underlying value of the good (tratislg into our framework, the price
must be equal toy (vy) if high (low) quality). This, of course, creates a severeaikdoyium
multiplicity problem, as is typical in signalling games. éjhcircumvent the problem by restricting
attention to undefeated equilibria. Second, more impdigtain their model, uninformed players
do not observe the informed player’s time-on-the-markedrgrgenerally, the informed player’s
past behavior) and, therefore, make inferences only basetler own signals. This creates a
non-trivial inference problem on the part of uninformedygles, as their actual beliefs do not have
to coincide with their initial beliefs. However, it essaily forces buyers’ beliefs (and strategies)
to be always stationary (that is, buyers’ beliefs do not wwaver time), while the evolution of
uninformed players’ beliefs and the resulting trading dyires are the main focus of this paper.

Zhu (2012) considers a model in which an informed seller @aamact only a finite number of
buyers. As in Lauermann and Wolinsky (2013), he does nowatloyers to observe the seller’s
time-on-the-market. However, he assumes that the selec@atact an identical buyer repeatedly,
and each buyer knows whether the seller has visited him &efonot. Naturally, the seller revisits
a buyer only after she has contacted all other buyers. Torerdbuyers make different inferences
about the seller’s outside options, depending on whetheehah visited before or not, which affects
their optimal offer strategies. Indeed, this new type oéiehce is the main focus of the paper.
Consequently, the resulting trading dynamics is qualédyidifferent from ours.

Finally, Daley and Green (2012) study the role of arrival xdgenous information (“news”)
about the quality of the asset in a setting similar to ourse fifost crucial difference from ours
is that news is public information to all buyersTherefore, buyers do not face any inference
problem regarding other buyers’ signals. This makes thading dynamics quite distinct from
ours! Similarly to us, they also explore the effects of increadimgquality of news and find that
it is not always efficiency-improving. However, the mectsamileading to the conclusion is quite
different from ours.

The rest of the paper is organized as follows. We formallyoahtice the model in Section 2.
We present several useful properties of the players’ opttnategies and beliefs in Section 3 and
provide a formal characterization in Section 4. We thengmethe limit equilibrium outcome as
search frictions vanish in Section 5. We investigate theat$fof improving the informativeness of

5There are two other modeling differences. First, the sellerys faces a competitive pool of buyers (in other
words, at least two buyers in each time). Second, there aseaezh frictions: the seller continuously receives price
quotes.

"The difference persists even in the limit as search frigtidisappear in our model. See Section 5 for our friction-
less market outcome.



buyers’ signals in Section 6. Omitted proofs are collectetthe Appendix.

2 TheMode

A seller wishes to sell an indivisible asset. Time is contis; and the time the seller comes to
the market is normalized t@ Potential buyers arrive sequentially according to a Poigsocess
of rate A > 0. Once a buyer arrives, he receives a private signal aboufuaidy of the asset and
offers a price. If the seller accepts the price, then thegetrand the game ends. Otherwise, the
buyer leaves, while the seller waits for subsequent buyEne seller discounts future payoff at
rater > 0.

The good is either of low qualityl{) or of high quality ¢). If low quality, the seller derives a
flow payoff of rc;, from owning the asset, while a buyer, once he acquires ijves a flow payoff
of rvy,. The corresponding values for high quality arg; andrvy, respectively. There are always
gains from trader; < v, andcy < vy. However, the quality of the asset is private information
to the seller. It is commonly known that the probability tttee asset is of high quality at tinteis
equal tog € (0,1).

Upon arrival, each buyer receives a private signal aboutjttadity of the asset. A signal
is drawn from the seb = {si,...,sx}. The signal generating process depends on the quality
of the asset. If the quality is low (respectively, high),riitbe probability that a buyer receives
signals,, is given by~ (s,) (respectively;yy(s,)). Without loss of generality, assume that the
likelihood ratio% is strictly increasing im, so that the higher a signal is, the more likely is it
that the asset is of high quality. For later use llgts,,) (I, (s,.)) be the probability that a buyer
receives a signaleakly(strictly) below s,, from a typea seller. Formally, for eachh = L, H,
La(sn) =2 cn Yalsw), While Tl =37, va(sw)-

We assume that buyers observe (only) how long the asset basipdor sale (i.e. timg.8 This
is certainly consistent with the arrangement in the housiagket and also seems to be plausible in
several other markets. In addition, it allows us to studglitrg dynamics under adverse selection,
which is the main focus of the paper, without raising addilocomplication$. The information
structure also has an important technical advantage. Bot,athere is a positive probability
(e~ that no buyer has arrived and, therefore, trade has nor@ctby timet. Therefore, there
are no off-the-equilibrium paths, which implies that allibfs can be obtained through Bayesian

8]t is well-known that the information buyers have about gastories of the game plays a crucial role in this type
of games. See Noldeke and Van Damme (1990), Swinkels (18@®her and Vieille (2009), Kim (2012), Kaya and
Liu (2012), and Fuchry and Skrzypacz (2012). We note that in our model, buyesele neither the number of
buyers who had arrived before nor the offers they had madestedller.

SFor alternative approaches, see Zhu (2012) and Lauermahwalinsky (2013).



updating?®

The offer strategies of buyers are represented by a funefiorR . x S x R, — [0, 1], where
op(t, s, p) denotes the probability that the buyer who arrives at tirmed receives a signaloffers
a pricep to the seller. The offer acceptance strategy of the selleepsesented by a function
os : {L,H} x R, x R, — [0,1] whereos(a,t,p) denotes the probability that a typeseller
accepts price in period¢t. An outcome of the game is a tuple p) wheret denotes the time of
trade and is the accepted price. All agents are risk neutral. If theeselccepts price at timet
and her type i € {L, H}, then her payoff ig1 — e~"")c, + ¢ "'p, while the payoff of the buyer
who offered the price i — v,. All other buyers obtain zero payoft.

We adopt the perfect Bayesian equilibrium concept. The @pinicecessitates the specification
of agents’ beliefs at each information set. két) represent buyers’ beliefs that the seller who has
not traded untit is the high type. Then, atuples, oz, ¢) is a perfect Bayesian equilibrium if (1)
givenog andg, for anyt ands, og(t, s, p) > 0 only whenp maximizes the expected payoff of the
buyer with signak at timet, (2) givenog, for anya andt, os(a,t,p) > 0 only whenp is weakly
greater than type seller’s continuation payoff at time and (3) givervs ando s, for anyt, ¢(t) is
derived through Bayesian updating.

In order to avoid trivial cases, we focus on the environmieat $atisfies the following assump-
tion.

Assumption 1

r(vy, —cr) < Mew —vp).

The left-hand side is buyers’ willingness-to-pay for therdquality asset, while the right-hand side
is the low-type seller’s reservation price when all subseqiiouyers offery regardless of their
signal. If this assumption is violated, then the seller s/pan be easily separated and the resulting
trading dynamics is trivial. We note that; > v;, is necessary for this assumption to hold, but a
stronger assumption commonly adopted in the literatarg,+ (1 — q)v, < ¢, IS not.

3 Preliminary Observations

In this section, we provide some useful observations regarthe players’ equilibrium strategies
and beliefs.

0This is certainly not the case, for example, if the numbermrefjus buyers or past offers are observable.
1This means that buyers have no outside options. The accoatinnaf positive outside options is fairly straight-
forward and does not alter any result in a significant way.



3.1 Sdler’'sOptimal Acceptance Strategy

Since the seller’s action of rejecting a price is not obdele/¢éo future buyers, it is clear that each
type of the seller adopts a “reservation price” strateggepting all prices above her reservation
price and rejecting all prices below it. In addition, for te@me reasoning as in the Diamond
paradox, buyers never offer a price strictly abaye This implies that the high-type seller’s
reservation price is always equal to her reservation vditleemsset ;. In what follows, we denote
by p(t) the low-type seller’'s reservation price at time Sincec;, < cy, p(t) is always strictly
smaller tharncy. We also drop the seller’s intrinsic type from the argumeaitber acceptance
strategy and uses (¢, p), instead obg(L, ¢, p), to denote the low-type seller's acceptance strategy.

To fully characterize an equilibrium, it is necessary toedetine the low-type seller’'s accep-
tance strategy when a buyer’s offer is exactly equal(tgp. She is, of course, indifferent between
accepting and rejecting(t). However, equilibrium requires thatift) < vy, then she accept(t)
with probability 1. This results from the optimality of buyers’ offer strategi If the low type does
not accepp(t)(< vy) with probability1, then the buyer can offer a price slightly abgxye). Since
the alternative offer would be accepted with probabilityy the low type, it would strictly increase
the buyer’s expected payoff. This holds for any price abgvg and thus in equilibrium the low
type must accepi(t) with probability 1.

3.2 Buyers Optimal Offer Strategies

Without loss of generality, we assume that each buyer offigher the reservation price of the low
typep(t) or that of the high typey . This assumption incurs no loss of generality for the folloyv
reasons. First, it is strictly suboptimal for a buyer to of#ictly abover; or betweerp(t) andcy.
Second, if in equilibrium a buyer makes a losing offer (a@strictly belowp(t)), then it suffices
to set his offer to be equal tg¢) and the low type’s acceptance strategyt, p(t)) to reflect her
rejection of the buyer’s losing offer. For example, if theybuat timet with signals is designated
to offer a price below(t) with probability 1, then his offer can be set to be equapto), and the
low-type seller can be assumed to reject the price with foitibal.

Given the low-type seller’s reservation pripét), the buyer's optimal strategy is a “cutoff
signal” strategy, offeringy, if his signal is above the cutoff signal, while offeripg) if his signal
is below it. This follows immediately from the fact that th&fermation structure exhibits the
monotone likelihood ratio property, and thus the buyertsriim belief is strictly increasing in his
signal.



3.3 Evolution of Beliefs

The previous results have an important implication on thg layers’ beliefs evolve over time.
Suppose(t) < vg. In this case, the low-type seller accepts bpth andcy with probability 1.
Therefore, her exit rate is equal to the arrival rate of bsiyerOn the other hand, the high-type
seller accepts only;;. Therefore, her exit rate is equal to the arrival rate of lbsiyemultiplied by
the probability that the buyer’s signal exceeds a certatoftuSince the latter is always smaller
than the former (the low type trades faster than the high)typeyers’ beliefs about the seller’'s
type necessarilyncreaseover time. Ifp(t) > v, then both types accept onty;. But, the high
type generates good signals (above a cutoff signal) withrghemiprobability than the low type.
Therefore, the exit rate of the high type exceeds that ofdhetype. This induces buyers’ beliefs
to decreasever time.

The following lemma summarizes the most useful observatadrthis section.

Lemmal If p(t) < v, (respectivelyp(t) > v.), then the low-type seller accepts (respectively,
rejects)p(t) with probability1, and thus buyers’ beliefgt) increase (respectively, decrease) over
time. The changes of buyers’ beliefs are strict unless lsuytercy regardless of their signal.

4 Equilibrium Characterization

Equipped with the observations in the previous section, o turn to the equilibrium charac-
terization. The unique equilibrium of our model exhibite flollowing intuitive, yet not obvious,
properties:

(i) The low-type seller’s reservation prigét) depends only on buyers’ belief$t) and is in-
creasing im(t). In a slight abuse of notation, we denoteiiy) the low-type seller’s reser-
vation price when buyers’ beliefs are equaljto

(i) There is a finite partition of the belief spadgjy., = 0,3y, -.-, 1, gy = 1}, which informs
the cutoff signal above which each buyer offefs Specificly, if a buyer’s prior belief(t)
belongs to the intervdlg, ., g, ), then he offers:; if and only if his signal is strictly above

5,12

(i) Buyers’ beliefs conditional on no trade converge mtorocally to a stationary valug'.

Figure 1 illustrates these properties in an example witlybads.
In this section, we first construct an equilibrium that dass (i) and (ii), and illustrate the
resulting trading dynamics. Our construction makes itrctbat for a generic set of parameter

12if q(t) > g,, then he offergy regardless of his signal, whileft) < g, then he never offers;.

9
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Figure 1: Equilibrium structure when there are 5 signals< 5) andg* = q;.

values, there is a unique equilibrium that satisfies the itimmd. Moreover, the constructed equi-
librium necessarily satisfies (iii). We then show that anyikloyrium must satisfy (i) and (ii), and
thus the constructed equilibrium is the unique equilibriarthis game*:? Finally, we discuss the
non-generic cases where the uniqueness of equilibriush fail

4.1 Equilibrium construction and trading dynamics

In this section we construct an equilibrium that satisfiegpprties (i) and (ii), and discuss the
trading dynamics that arises in the equilibrium.

4.1.1 Unique Stationary Path

We first consider the behavior along the stationary path &beayers’ beliefs remain constant at
q*. We identify the critical belief leve* and characterize the equilibrium when buyers’ beliefs
are equal ta*.

Notice that Lemma 1 implies that¢*) = v;: otherwiseq(t) either increases or decreases.
In order to utilize this fact, denote by; (py) the rate at which the low-type (high-type) seller

13The equilibrium properties are fairly intuitive. A buyermsore willing to offercy when his interim belief is
higher, and for a given signal,, his interim belief is strictly increasing in his prior befi Therefore, he should
be less reluctanto offer cy; i.e. his cutoff signal must decrease as his belief incie§seperty (ii)). Then, from
the perspective of the low-type seller, the higher buyeetielis are, the more frequently would he receive offgr
Therefore, the low-type seller’s reservation price mustease in buyers’ beliefs (property (i)). However, a pritiis
not clear whether there cannot exist an equilibrium thaibwss these properties. In particular, if the low-typeeséd|
reservation price were to decline in buyers’ beliefs, bayeay banore reluctanto offercy at higher beliefs, simply
because a lower reservation price makes the option of gaadlith only the low type more attractive. This, in turn,
could be consistent with the seller’s reservation pricknfgd The main thrust of our uniqueness proof is to rule out
this possibility.

10



receives offer:y when buyers’ beliefs are equal ¢b. Then,p; must satisfy
r(vp —cp) = prey —vp).

Generically, there does not exissuch thap, = A(1—-T"1(s,,)). This implies that buyers typically
play a mixed offer strategy once their beliefs regth In what follows, we focus on the generic
case wherg, # A1 —T';(s,)) foranyn = 1,..., N. For the sake of completeness, we discuss
the non-generic case at the end of this section.

To pin down buyers’ equilibrium offer strategies, let be the largest value of such that
p(q*) > AM1—T1(s,)). By Assumption 1n* is well-defined. In addition, let}; be the value such
thatp(q*) = AM(y.(n*)oy + 1 —T'L(s,+)). For the generic case we are considerirjgalways lies
in (0,1). By constructionp(q*) is equal tov;, if all subsequent buyers offe; with probability 1
when their signals are strictly aboyg-, with probabilitys};, when their signals arg,-, and with
probability0 when their signals are strictly belowy-.

The identification ok,,- allows us to find the value @f. Consider a buyer who had prior belief
¢* and received signal,.. By Bayes' rule, his belief updates to— (Sn‘j;f(’fiz*)m ok The buyer
must be indifferent between offering; andp(¢*). But, sincep(¢*) = v, he must receive zero
expected payoff, regardless of the low-type seller’s atzoege strategy. This implies that must
satisfy

1—q  yu(sw)ve —cu
* n — ]_ —a* n* — - O <~ — N
¢ vh($ne)(0n — en) + (1= ¢")ye(se) (v — cn) ¢ Yn(ser) cm — v

It remains to determine the probability that the low-typkeseaccept(q*) = v, which we
denote by § for notational simplicity. To identify &, notice that(t) is time-invariant if and only
if the low type has the same exit rate as the high type. The tiyjogr accepts onlyy. Therefore,
given buyers’ offer strategies characterized by, o), her exit rate is equal to

PH = )‘(VH(Sn*) +1- FH(Sn*)>
If the low type acceptg(q¢*) with probabilityc, then her exit rate is equal to
pr+ (1= pr)og = Ayo(n)op +1 = Tr(se)) + AL (sn+) + 72 (n*)(1 = 0p))os.

o is the unique value that equates the above two raieandp,, + (1 — pr)o%. Itis well-defined
in (0, 1) becausé’y (-) first-order stochastically dominat&sg-).
We summarize all the findings on the stationary path in theviehg proposition.

Proposition 1 (Stationary path) Letg¢*, n*, o5, andog be the values defined as above. When

11



buyers’ beliefs are equal tg*, the following strategy profile constitutes an equilibriuBuyers’
beliefs stay constant. Each buyer offegswith probability1 if his signal is strictly above,,-, with
probability o7, if his signal iss,,-, and with probabilityd otherwise. The low-type seller accepts
p(q*) = v, with probabilityc¥. Moreover, this is the unique stationary path; i.e. if bug/dreliefs
are to remain constant, then the equilibrium must be as desdr

4.1.2 Evolution of Beliefs

Givenn* and the partition(qy. 1, Gy, .-, 41, 4o}, buyers’ beliefs evolve deterministically, condi-
tional on no trade. There are three distinct regions, deépgrah the location of(¢).

If ¢(t) > g, then the outcome is trivial. Each buyer offegs regardless of his signal. There-
fore, trade takes place as soon as a buyer arrives. Sincaypeth exit at the same rate, buyers’
beliefs do not change over time.

Suppose(t) € (gni1,q,) and0 < n < n* (so thatg(t) € (¢*,7,)). In this casep(q(t)) > vy,
and thus in equilibrium the low-type seller accepts anjy(see Lemma 1). Since the buyer offers
cy if and only if his signal is strictly above,, the low type exits the market at ratél — 'z (s,,)),
while the high type at rate\(1 — 'y (s,,)). It then follows thatg(-) evolves according to the
following law of motion#

q(t) = q)(1 = g(0) AT (sn) = T'r(sn)). (1)

Sincel'y(+) first-order stochastically dominat&s (-), I'y(s,) — I'z(s,) is always negative, and
thusq(t) strictly decreases it In Figure 2, a typical path for buyers’ beliefs startingnfrg > ¢*

is illustrated by the solid line. The kink &} is due to the fact that the cutoff signal changes from
s1 t0 s, at that point, and thuB,(-) — I'z(+) as well.

Now suppose(t) € (gn+1,9,) @andn > n* (so thatq(t) < ¢*). In this casep(q(t)) < vy,
and thus in equilibrium the low type accepig(¢)) with probability1 (see Lemma 1). Therefore,
her exit rate is equal ta. The high type still accepts only,;, and thus her exit rate is equal to
A1 —Tg(s,)). As above, it follows that the law of motion gft) in this case is given by

q(t) = q(t)(1 — q(t)) AT u(sn). (2)

This expression is obviously positive, and tlygs strictly increases in. The dashed line in Figure

YHeuristically, by Bayes’ rule,

q(t)efA(lfFH(s”))dt
5n)

q(t +dt) = q(Oe TaG)dt | (1 — g(t))e- 0—TL(sa)dt"

The equation can be derived by subtractjig from both sides and dividing byt.
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Figure 2: The evolution of buyers’ beliefs. The parameténes used for this figure and Figure 3
are as followsN = 5, y.(s,) = (6 —n)/15, vu(s,) = n/15,r = 0.1, and\ = 0.4.

2 exemplifies a typical path buyers’ beliefs follow from b&lg*.

Proposition 2 (Evolution of Beliefs) Consider an equilibrium that satisfies (i) and (ii), and sup-
poseq(t) € (¢n+1,qn). If n = 0, theng(t) does not change. F < n < n*, theng(t) evolves
according to (1). If» > n*, theng(t) evolves according to (2).

Two remarks are in order. First, starting frginwhetherg € (¢*,q,) or g < ¢*, ¢(-) converges
to ¢* in finite time, because(t) is bounded away fro.1> Notice that this implies that property
(iii) follows from (i) and (ii). Second, the offer strategi®f the buyers with prior belief,, and
signals,, for somen # n* are indeterminate, since such buyers are exactly indiftdvetween
offering cy or p(q, ). However, the offer strategies at such decision nodes daffestt the equi-
librium play, in particular, the evolution of buyers’ bdke This is because the beliefs are strictly
monotone, and the arrival rate of buyers is finite so that tiedability that a buyer arrives at a

BFormally, if 7 € (¢*,7, ), theng(t) is bounded above by

(,min_ ¢(1=a)) Apin (Ci(sa) = Tu(s.)) <0,

7' €lq*,q]

If ¢ < ¢*, theng(¢) is bounded below by

( min ¢’ (1 — q’)) Al (8p+) > 0.

q'€[q,9*]
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point at which his belief is equal to one of the cutoff9is In fact, this is the reason why the
behavior at these nodes cannot be determined from othdrbegum requirements, unlike in the
case ofg,,.. In what follows, without loss of generality, we assume floatachn # n*, the buyer
with prior beliefg,, and signak,, offerscy with probability 1.

4.1.3 Reservation Pricesand Equilibrium Belief Cutoffs

We conclude the equilibrium construction by jointly idéyithg p(-) and{gy, ...,q,}. We also
establish that given (i) and (ii), both reservation prickextulep(¢) and partition{q, ..., g, } are
uniquely determined.

First fix p(q). Given the previous characterization of the low-type ssllequilibrium accep-
tance strategy, each buyer’s optimal offer strategy dependl/ on his beliet; and the low-type
seller’s reservation pricg(q). Consider a buyer who had prior beligf and received signad,.
The buyer must be indifferent between offerinngandp(q). Using the fact that his interim belief

. qnfyH(sn) .y . . . . .
is equal toﬁm(%wl_am(%) , it is straightforward to show tha, is the unique value that satisfies

cy —min{vr,p(q,)} @ Yu(Sa)
Vg — CH 11— G YL(5n) ©)

The use ofmin{v, p(t)}, instead ofp(t), reflects the fact that if(q) > v, then the buyer’s
expected payoff by offering(q) is equal td), either because the offer itselfig, which is accepted
only by the low type, or because it is greater thanin which case in equilibrium it is rejected
with probability 1.

Now fix the partition{q,, ..., g, }. Intuitively, p(¢) is determined only by the rate at which the
low type receives offeey: each buyer offers eithet; or her reservation pricg(t), which she is
indifferent between accepting and rejecting. Therefarette purpose of calculating the expected
payoff, she can be assumed only to acegptThen, the low-type seller’s reservation price for the
belief level can be calculated recursively as follows: Sig®g < [, ,,7,,). While buyers’ beliefs
are in this interval, the low-type seller receives offgrat rate\(1 — ', (s,,)). If n < n*, theng(?)
decreases tg,,,, while if n > n*, then it increases tg,. Defineq so thatg = g, if n < n~,
while ¢ =g, if n > n*. Then,

T(q,9) .
p(q) _ / ((1 o efrt)cL + efrtcH)d (1 o e*/\(lfFL(sn))t) + e*(T“i’A(l*FL(Sn)))T(q,q)p((j)’ (4)
0
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whereT (g, ¢) is the length of time it takes for buyers’ beliefs to move frono ¢.*° A closed-form
solution can be found by applying the definitionof, -) and using the fact that(g,,-) = vy.
Finally, we combine the characterizations and compute theffs G, ...,g, as well as the
reservation price schedut¢-). Their uniqueness follows from the explicit computation.
Consider firsg,, for n < n*. In this casep(q) > v, and thus (3) reduces to
1-9q, yu(s.)vy —cu

= (5)

qn /YL(STL) Cg — UL .

Therefore, the cutoffg,, are determined independently of the true value(af). The uniqueness
follows from the fact that the left-hand side is increasindpile the right-hand side is constant.
Giveng, for eachn < n*, p(q) can be calculated using (4) for agy> ¢*.

The determination of,, for n > n* is more involved, because they cannot be identified sep-
arately fromp(-). Nonetheless, as shown in the previous sectjot), evolves deterministically
fromg,,, tog, foranyn > n*. Thereforey,.., for eachk = 0,1,..., N —n* — 1 can be found
recursively as follows:

e Foreachk =0,...,. N —n* —1,

T(qn* 4k+15dn* +k)
P @ ipr1) = / (1 —e™ep + e eg)d (1 — e MLl
0

+e—(r+A(1—FL (Sn*+k)))T(Qn*+k+17Qn*+k)p(gn*+k)_

® 7,41 IS the value that satisfies

1= Qi1 Yu(Sngr41) Vg —cm

Q= 4k+1 VE(Sntht1) i = P(@por g os1)

Suchg,,. ., uniquely exists becaugg-) is strictly increasing and it is known thatg,,.) =

vr,.

As in the previous case, given for eachn > n*, (4) can be used to computé;) for eachg < ¢*.
The results are summarized in the following proposition.

16 Formally, ifn < n*, thenT'(q, ¢) is defined to be the value that satisfies

-A(1— Sn 3 ! — —
q/ _ qe (1 FH( ))T(q q ) PN 1 q/ _ 1 qe—A(FH(Sn)_FL(Sn))T(qJ]/)
qe MITr(E)T(@d) 4 (1 — q)e MA-Tr(E))T(a.a) 7 q ’
while if n > n*, then
' ge M- Tuls)T(@d) o 1=d 124 rao-nT@)
q qe M-Tu())T(ad) 4+ (1 — g)e (a.4) 7 p :
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Proposition 3 There is a unique equilibrium gf(-) and {Gy,, = 0,qy,...,q;, Gy = 1} that
satisfies properties (i) and (ii).

Figure 3 illustrates the trading dynamics that emerges fsanmodel. If buyers’ beliefs about
the asset’s quality are rather optimistig)( then the low-type seller’s reservation prigéd;) =
p(0)) exceeds,. In this case, trade takes place only at piige Since the high type generates
good signals more often than the low type, buyers’ beligfs decline over time (see the solid
line in Figure 2). As;(-) decreases, buyers offey; less frequently, and thus the low-type seller’s
reservation also declines (the solid line in the right par@hceq(t) becomes equal tg", buyers’
beliefs do not change thereafter, and the low-type seltessrvation price stays equal tg. If
buyers’ initial beliefs are pessimistig.{, then the resulting dynamics is exactly the opposite:
buyers’ beliefs and the low-type seller’s reservationg@decline over time and convergegoand
vr,, respectively.

p(q) p(t)

CL

Figure 3: The low-type seller’s reservation price as a fiomcdf buyers’ beliefs; (left) and that of
timet (right).

We conclude this section by summarizing all the resultsndigg the equilibrium construction.

Theorem 1 For a generic set of parameter values, there exists an dagiulin in which buyers’
beliefs evolve as described in Proposition 2. Until buyémliefs reachy*, buyers’ equilibrium
offer strategies are characterized by a partitiéqy, ..., 7, }: If ¢(t) € (7,..,7,], then the buyer
offerscy if his signal is strictly above,, andp(q(t)) otherwise. The low-type seller accepts(t))
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with probability 1 if ¢(¢) < ¢* and with probability0 if ¢(¢) > ¢*. Once buyers’ beliefs reaajf,
then the game is played as described in Proposition 1. Thisisinique equilibrium that satisfies
properties (i) and (ii).

4.2 Uniqueness

We now prove that the equilibrium presented in Theorem ldsitiique equilibrium of our model.

Theorem 2 For a generic set of parameter values, there is a unique ggium.

In light of Theorem 1, it suffices to show that any equilibrigatisfies properties (i) and (ii).
We obtain this result in two steps. First, we show that in aquilédrium, even without reference to
properties (i) and (i), buyers’ beliefs evolve monototizaegardless of their starting point. This
implies, among others, that that the low-type seller'smestéon price can be regarded as a function
of buyers’ beliefs;. Second, we show that the reservation pg¢g) must be strictly increasing
in ¢ whenever; < g*. From this, we deduce that buyers’ cutoff signals must beinoreasing in
q. The latter, in particular, implies that there exists aipart {g,, ..., g, } that describes buyers’
equilibrium offer strategies as in property (ii).

4.2.1 Monotonicity of beliefs

Lemma 1 already argued thatjift) < v, theng(t) is increasing, while ip(t) > v, then it is
decreasing. The next lemma links the ranking @ relative tov,, to the ranking of;(¢) relative
to ¢*. The monotonicity of beliefs immediately follow by comhigi Lemmas 1 and 2.

Lemma 2 In any equilibriumg(t) < ¢*if, and only if,p(t) < vy.

Proof. See the Appendix. ]

This intuitive lemma would immediately follow if it were &ady established that the low-type
seller’s reservation price is increasing in buyers’ bsli¢h the absence of that result, establishing
Lemma 2 requires subtler arguments. The crucial step is$ergb that, if, for instance, it were
the case that for someq(¢) > ¢* while p(t) < v;, the reservation price must eventually converge
to v;, from below. This observation can be used to reach a contradias follows: just before
the convergence occurs, the beliefs must be bounded awayyfroThis follows from Lemma 1:
for t > t and before the convergence occyrg, < vy, and thusy(t) must be increasing, which
impliesq(t) > q(t) > ¢*. In the meantime, the low-type seller’s reservation vafu@rostu, .
Consider a buyer arriving at such an instant. If he makes f&m of p(¢), his payoff is almost 0,
sincep(t) is almostv;,. On the other hand, upon receiving a signasef, his payoff from offering
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cy is bounded away from 0: the payoff would be exactly zero iflesef were exactly/*, yet his
belief is strictly above (and bounded away frog) It follows that such a buyer would offety

at least as often as on the stationary pa@iearly, this provides the low-type seller with a higher
payoff than his stationary payaff,, leading to a contradiction. We formalize this argumenhia t
Appendix.

4.2.2 Monotonicity of p(-) and buyers’ cutoff signals

The monotonicity of beliefs discussed above implies thatny equilibrium, there is a one-to-
one correspondence between the time-on-the-market, whitte only relevant history in this
game, and buyers’ beliets Therefore, the low-type seller’s reservation price, hgformally a
function of his time-on-the-market, can be expressed as@ifin of buyers’ beliefs. For the same
reason, buyers’ offer strategies can also be expresseaetsofus ofq. Let 5(¢) denote the cutoff
signal that a buyer with prior belief uses. Next we establish thaty) is strictly increasing and
5(q) is non-increasing.

First considery; > ¢*. Then by Lemma 2min{p(¢),v.} = v;. Inspecting (3) immediately
reveals that for this range of beliefgy) is non-increasing. This, in turn, implies the monotonicity
of p(q).

Next consider; < ¢*. Now, it is not a priori clear that a higher prior belief woldd associated
with a lower cutoff signal, becauseyif-) is decreasing, then offeringq) could be relatively more
attractive whery is higher, and thus the buyer could be more reluctant to offerYet, if p(q) is
monotone irng, then the monotonicity of the cutoff signals follows. Thex<nkemma establishes
thatp(¢) is increasing over time wheneveft) < ¢*. Combining this with the monotonicity of
beliefs, the desired result follows.

Lemma 3 In any equilibrium, ifg(t) < ¢*, thenp(-) is strictly increasing irt.

The argument for this result uses the idea that(if is not increasing, then there exists an
interval, say(t¢,t'), such thap(-) is U-shaped over the interval and the values at the two end points
are identical. In the mean time, sing&) < vy, buyers’ beliefs must increase over the interval.
But then, within the interval, the buyers cannot be offerdpgmore frequently thaafter time ¢/,
since at that point both buyers’ beliefs and the low-typ&esslreservation price are higher. This
leads to a contradiction.

4.2.3 Proof of Theorem 2

Let us summarize how all the components we have establishéar dead to the proof of the
uniqueness.
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Firstly, Proposition 1 establishes thatbuyers’ beliefs are to remain constant at some level,
this level must be* as defined in 4.1.1. Lemmas 1 and 2 establish that in any bguii buyers’
beliefs must be decreasinggift) > ¢*, while increasing if;(t) < ¢*. Sincegq(t) is continuous in
t, buyers’ beliefs cannot “jump over* and must remain constant once buyers’ beliefs reach

Next, if 7 > ¢*, then, by Lemma 1, the low-type seller also trades only whreofter of ¢y is
made, until buyers’ beliefs reaefi. This uniquely pins down buyer behavior via (5) fpr> ¢*.
Then, the low-type seller’s behavior for this range of elis determined by (4).

Finally, if § < ¢*, then the uniqueness argument requires an extra step, isinhés case
buyers’ equilibrium offer strategies cannot be pinned davdependently of the low-type seller’s
reservation price. In this case, the crucial step is Lemmaig8westablishes thai(¢) cannot be
decreasing over time. Proposition 3 then proves the unegseof equilibrium strategies.

4.3 Non-Generic Cases

We conclude this section by illustrating the equilibriuntaame for the non-generic case, where
there exists* such thap; = g(&;‘:” = A1 —Tr(sp+))-

—vr,

To illustrate the basic problem of these casesg|etandg,,. ., be the values such that

1 _Gn* . ’}/H(Sn*) Vg — Cy,

Gy Yo (Sn+) L —vp’

and 3
L =G pq _ Yo (Sns11) var — cr

[/ Yo (Spri1) €L — VL

Suppose(t) € [§,-41,d,~] @and all subsequent buyers oftey if and only if their signal is strictly
abovecy. Then, the low-type seller’'s expected payoff stays equal,toSuppose she accepts
with probabilityc, whereo satisfies

AL =Tg(sp)) = A1 =T n(sp+) + TL(s0)05).

Then, buyers’ beliefs do not change over time. Furtherngiven thatv;, is the low-type seller’'s
reservation price, buyers’ offer strategies are also agitirithis implies that any belief level be-
tween[q,.. 1, G,-| can serve as the critical stationary belief in our model.

In fact, buyers’ beliefs do not even need to converge to aitektvel. Once buyers’ beliefs
fall betweeng,,.,, andg,., any belief path that stays within the interval can be suigabas an
equilibrium: Although buyers’ offer strategies are fixedybrs’ beliefs can decrease or increase,
depending on the low-type seller’'s acceptance strategyffef o,. For instance, the low-type
seller may reject;, with probability 1, until it reachesj,,. and stays constant thereafter. Or, she
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may accepb;, with probability 1, until buyers’ beliefs hig,,.,. Buyers’ beliefs may even keep
oscillating between (or any two levels betwegp) andg,,. , ;.

Nevertheless, all these equilibria have crucial propgiieccommon. First, within the range of
beliefs, the buyers play the same offer strategy acrossgallieria, offeringcy if and only if their
signal is strictly above,,-. Therefore, in any equilibrium the low-type seller’s resgion price is
equal tov,, once buyers’ beliefs fall into the intervil, ., ;, g,,]. Second, outsidg,, ., g,], buyers’
beliefs gradually converge to the intenval.. ;,q,.], just as they converge g in the generic
case. Furthermore, the unique convergence path can bechdhacterized as in the generic case:
If ¢(t) € [G,41,7,) for somen < n*, then the low type trades at rat¢l —I';(s,,)), while the high
type at rate\(1 — 'y (s,,)). If n > n* + 1, then the low type trades at rate while the high type
atrateA(1 — 'y (s,)). Finally, given the first two properties, it follows that #fle equilibria are
payoff-equivalent, whether the initial beligfbelongs to the intervdl,_,,q,] or not. The only
difference among the equilibria is the low-type selleraling rate'’ as it varies depending on the
low-type seller’'s acceptance strategy of offigr

5 Equilibrium Outcomesin the Frictionless Limit

In this section we present equilibrium outcomes for thetlitase whera\ is arbitrarily large. The
limit case is of interest for at least three reasons. Fih&,market outcome characterized in the
previous section is influenced by the level of search fritias well as information asymmetry.
The analysis of the limit case allows us to separate the tsfidwee to the latter from those due
to the former. Second, while search frictions are phystaaltherent in various markets, such as
labor markets and over-the-counter markets, they can kbhigatet by government policies. For
example, the government can increadey introducing a more efficient job-matching mechanism
or promoting electronic trading, as opposed to over-theter trading. The limit case informs
us of the extent to which the government can facilitate tridaieugh such policie€ Finally, it
permits a direct comparison of our model to the existing dhasassume away search frictions
(that is, the models in which the seller can trade any timevwsm@s). In this section, we provide
the result and intuition, while relegating the formal datign to the Appendix.

We focus on the time to trade for each type, denoted-l§y) for eacha = L, H, and the
low-type seller's expected payoff from the gam@). Since there are gains from trade, whether
the asset is of high or low quality, the surplus generatedhénnbarket is larger, the earlier does
trade takes place. Therefore, the time to trade can be amesids a measure of surplus generated.

"The high-type seller’s trading rate is identical acros®aliilibria, because buyers’ offer strategies are idehtica
18t is fairly straightforward to show that a marginal increasf A always increases the low-type seller’s expected
payoff and speeds up trade of both types.
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Meanwhile, the low-type seller’s expected payoff can berteted as a measure of division of
surplus: recall that the high-type seller's expected plagailways equal to.

We start with two convenient observations. First)iis sufficiently large, then the stationary
cutoff signals* is necessarily equal to the highest sigral'® Intuitively, if buyers arrive fre-
guently, then the low-type seller has a strong incentiveda for c. For her reservation price to
stay equal ta;,, each buyer must offety with a sufficiently small probability and, therefore, only
when he receives the highest sigrgl (even then with probability less thdn. This implies that
the stationary cutoff belief* is equal taj,;, which in turn implies that for any, the corresponding
cutoff signalg,, is determined to be the value that satisfies

1 j 4, Ve (Sn) v — CH. (6)

qn /YL(STL) Cg — UL

It also implies that the rate at which each type trades afterreaches” is given by

”YH(SN) v —CL r, (7)
”YL(SN) CH — UL

PH =

which is also independent of?°

Second, buyers’ beliefs immediately jumpgoin the frictionless limit, as long as their initial
beliefs are smaller thap . The length of time it takes for buyers’ beliefs to move frgpto g,
(in the case ofr < n*) org,_, (in the case o > n*) shrinks to0 as A tends to infinity (see
footnote 16). Therefore, the length of time for buyers’ bfdito move front; to ¢* also shrinks
to 0. Intuitively, at each belief level, (expected) arrival afoh buyer moves buyers’ beliefs at a
constant rate. Therefore, buyers’ beliefs move arbiyrdaist as\ tends to infinity.

Let F}(-|q), a = L, H, represent the limit distributions of random variabte&;) as \ ap-
proaches infinity. The following proposition charactesizike distributions, in particular, the prob-
ability that each type trades immediately.

Proposition 4 For eachg € (0,7,) anda € {L, H}, as\ tends to infinity, the probability that the
typea seller trades by timeé converges to

Fu(tlg) = 1 — (1 = Fa(0[))e ",

wherepy is given in (7) and

19The precise condition under which this is true\is- m
20f n* = N, then the rate at which each type receives offgris equal top;, = M\yi(sn)o andpy =
My (sn)oy, respectively. The result follows from the fact that is necessarily equal tg-—"Lr, and both types

must have the same exit rate.
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e if ¢ < ¢*, then

~

q 'VH(SN) Vg — CH
1- @\WL(SN) Cg — UL

Fr(0g) =1 — and  Fy(0[g) = 0; 8)

e if¢* <g< q,thenforeactu = L, H,

A a N P
I 1 CH_ULl_Q)wn <li—1) :
FOg)=1— (=274} " , 9
o) =1~ (o=l 11 (5 ©

; _ yu(s) a _ 1-Ta(sq)
with [, = e en) andyf = e e

Proof. See the Appendix. ]

Intuitively, the atoms at time 04, (0|g), reflect the probabilities with which each type trades
beforeq(t) reaches;*. These probabilities, and thus their limits as well, araigtitforward to
calculate from the characterization in the previous sactim understand how the expressions in
(8) correspond to these probabilities, first recall that i ¢*, then, sincex* = N, the high-type
seller trades with zero probability until buyers’ belieé&achg*, which impliesF';(0|g) = 0. For
this range of initial beliefs, the low type trades with prbbidy 1 conditional on the arrival of a
buyer. Given this]l — F;(0|q) is precisely the probability with which the low type shouttbt
trade so that buyers’ beliefs jump frofito ¢*.2* Similarly, in (9), the first multiplicative term is
the probabLIity with which the type-seller does not trade before the buyers’ beliefs mowvg, fo
and (%)w is the corresponding probability for buyers’ beliefs to ledromg, tog, ,.2? Itis
important to note that all these probabilities are independf \; i.e. as\ varies, the equilibrium
strategies adjust so that these probabilities remain anhst

We now turn to the reservation price schedule of the low tyghers In the limit, since buyers’
beliefs immediately jump frong to ¢*, the low-type seller either trades immediately at prige
(while buyers’ beliefs converge tg) or receives expected payoff (once buyers’ beliefs become
equal tog*).2® Thereforep(q) is simply a weighted average of; andv;, with the weight tocy;

2lprecisely, due to (6),
q _ 1 _
T+ (-0 - F(0[@) 14 mCmeer 1

YL (sN) cH—vL

ZNotice thatyl — ¢ = —1. Therefore,

v — ¢ liga

7
qi+1 CH — UL qi

DL —pH
L= Git1 :ll'UH—CH_l—qi( I; )wl v

i )
lit1 cg —vr U

ZFor the latter, we again invoke the fact thet) can be calculated by assuming that the low type would accept
only cy.
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being equal to the probability that she immediately tradg®iae c;;. Recall that ifg < ¢*, then
no buyer offers:y until buyers’ beliefs reach* (recall that* = N), while if ¢ € (¢*,q,), then the
low type receives offet; with probability £7,(0|q) before buyers’ beliefs reacfi. The following
result is then immediate from Proposition 4.

Proposition 5 In the limit as\ tends to infinity, the low-type seller's expected payoftjisat to

UL, |fa§ q*7
p(@) = S vp + Fp(0[g)(ca —vr), 7€ (¢%,7), (10)
CHy, |f Z]\Z ql'

6 Effectsof Improvingthe Precision of Buyers Signals

In this section, we study the effects of improving the preci®f buyers’ signals. Our main goal is
not to perform comprehensive comparative statics analggerding information structures, but to
obtain some insights about the effects of improving theiguaf buyers’ signals. To this end, we
focus on the simplest case in which there are only two sigtiasis,V = 2. In order to highlight
the purely informational effects, we further restrict atten to the limit case wherg is arbitrarily
large?*

Specifically, we examine how the market outcome varies adikeBhoods of the signals
change. In particular, we focus on the effects of a marginaleiase in,.2°> Such changes in
the parameter values are consistent with various commadonsobf more precise signat®. In
the same spirit as in Section 5, we focus on the effects oktlbbanges on the expected time to
trade (as a measure of market liquidity and efficiency) aeddiv-type seller’'s reservation price
(as a measure of surplus division). Since the result is alsvio; > g,, we consider only the case
whereg < g,. In what follows, for notational simplicity, we simply sgy> ¢*, in order to refer to
7€ (¢, q)

Proposition 4 informs us of how to calculate the expectee timtrade for each type. In the
limit as A tends to infinity, each type trades either immediately orcatrestant rate gf ; thereatfter.
Therefore, the expected time to trade for the typseller is equal to the probability that the seller
does not trade immediately  F,(0|q)) times the expected duration when the hazard ratio is

24although we present the results only for the limit case, ladl gualitative results established in this section hold
as long as\ is sufficiently large.

25\We explain the effects of a marginal decreass iat the end of this section.

26There are several ways to rank information structures. Tos sommon criteria are Blackwelkgrbling (Black-
well (1951)), Lehmann’accuracy(Lehmann (1988)), and Shannon’s entropy (Shannon (19E8¥n though it is not
clear which concept is appropriate in strategic enviroriangeneral and in our model in particular, the variations
we consider are consistent with each of them.
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Figure 4: The effects of an increaseljron the expected times to trade.

given by py. Formally, E[7,(q)] = %;0@ The following proposition is then immediate by

basic calculug’

Proposition 6 Supposeé, increases marginally.
e If 7 < ¢*, thenE[r.(q)] remains constant, whil&[r(7)] decreases.
o If 7 > ¢*, then E[r;(q)] decreases if and only i > <elz=ben—ti while E[ry(7)] de-

lo
2151
) . erp (l2—1)
creases if and only if, > (% )

CH—VL
lo vH—CH "

Figure 4 visualizes Proposition 1. It is clear that more spawency (increased precision of
signals) may or may not contribute to market liquidity anficefncy. Nonetheless, there are three
systematic patterns. First, more precise signals areiledg to be beneficial when'is high; i.e.
the range of, at which an increase i speeds up trade decreaseg ascreases. Second, more
precise signals are more likely to be beneficial whes already high; i.e. the range gfat which
an increase irl, speeds up trade increaseslascreases. Finally, increased precision tends to
speed up trade for the high type than for the low type.

27For the case oN = 2,

v — Cf,
pr =1
CHg — Uy,
In addition,
1 — lpr=en 0 if g <q", 0 ifg<q"
~ "H — —q - ~
FL(0[g) = SN S Fr(0[g) = N2 :
- (e iy - (Ro=at5t)™T geq



To understand the first two patterns, notice that increassdgion of signals affects the equi-
librium dynamics through two channels. First, it directbduces the risk of each buyer’s paying
a high price for a low-quality asset, thereby encouragingebsito offercy more often. Ceteris
paribus, this effect reduces the expected time to tfAdgecond, since other buyers also receive
more precise signals, it speeds up the evolution of buyelgefs. In particular, if > ¢*, for a
fixed time-on-the-market, the highgris, the more pessimistic are buyers about the quality of the
asset; i.e. for a fixed, an increase i, decreases(t). This indirectly reduces buyers’ incentive
to offer a high price, thereby slowing down tratfeThe patterns emerge because the magnitude
of the former effect is essentially constantgmndl,, while that of the latter increases inand
decreases ify. Buyers’ beliefs travel frong to ¢*. Therefore, the latter effect amplifies @a-
creases. On the other hand, wheris already high, an additional increaselphas a small effect
on the speed of the belief convergence, and thus the latest & relatively small.

To understand why increased precision tends to speed up ftoadhe high type more than
for the low type, recall that, while the high type trades oaly, the low type also trades at her
reservation price(t). Therefore, the low-type seller’'s expected time to trade depends on her
incentive to accepp(t), which in turn depends on the rate at which buyers affer This means
that there is a countervailing effect to the first one in thevious paragraph: increased precision
increases the low type’s chance to trade-gt But, this decreases the low type’s incentive to
acceptp(t) and, therefore, slows down trade. Clearly, this additi@ifEct operates only for the
low type. It follows that the low type’s expected time to teadecreases only when the high
type’s also decreases, while the high type’s can decreaseveven the low type’s increases. The
countervailing effect is particularly strong whens smaller thary*. In that case, it fully offsets
the direct effect, and thus the expected time to trade staystant°

Remark 1 (Distribution of timetotrade) Although we have focused on how the expected times
to trade respond to the changelgf the effects on the entire distributions of time to trade are
straightforward to obtain. Recall that the distributiom &ach type consists of two components:
the probability that trade takes place immediatdly(()|7)), and the stationary rate of trade con-
ditional on no trade at tim@ (pg). The latter always increases iy while the former may or
may not increase. Therefore, if the former also increa$es) the distribution decreasesiinin

the first order stochastic dominance sense, while if the éordecreases, then the change of the
distribution cannot be clearly ranked. Since first-ordeckastic dominance implies an increase
of the expected value, it follows that the region at which rzereéase irl, speeds up trade in the

28n the formal expression df[r,(7)], this effect manifests itself as a decrease’in= laPE= and an increase

|n — r('ULch)
PH cg—vr

?%In the formal expression, this effect is present in the paeens, L and lzlil.
30wheng < ¢*, buyers’ beliefs increase over time. Therefore, the seedfiedt in the previous paragraph is absent.
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sense of first-order stochastic dominance is smaller theunetiion at which the expected time to
trade decreases ip.

Our next result concerns how the low-type seller’s expeptaaff is affected by an increase in
l5. Proposition 5 implies that if < ¢*, then it is constant ify, while if ¢ > ¢*, then it depends on
how £ (0|7) responds to an increaseli® The following result is then straightforward to obtain
from Proposition 4.

Proposition 7 Supposé, increases marginally.

e If ¢ < ¢*, thenp(q) stays constant.

 exp( 2t
e If ¢ > ¢*, thenp(q) increases if and only iﬁ—qA < p< 2 ) T —

lo vg—cy '

Remark 2 (Impact of amarginal decreasein [;) So far we have considered only an increase in
ls, sincepy andF, (t; q) are independent of the other likelihood ratioYet, decreasing (making
signals; more informative) is another way to improve the quality oférs’ signals. The only role
that/; plays is to change the lower bouidon g, above which trade is immediate. It is easy to see
that a decrease il leads to an increase ). Intuitively, this is because a decreasd;iimeans
that signals; becomes an even worse signal, and thus for a buyer to be gvithioffer ¢, with
signals,, his prior must be even higher. It is immediate thaf # g,, then a marginal decrease in
l; sharply slows down trade of both types: Before the changd, types trade upon arrival of the
first buyer, while after the change, there is substantiaydel

7 Conclusion

The main contribution of our paper is to provide a simple artditive framework, which, never-
theless, leads to a rich set of predictions for equilibrivading dynamics. Within this framework
we are able to identify different sources of trading delag arovide an understanding of how
these sources interact. The simple comparative statigsisgene present in Section 6 demon-
strates how this model can be used to identify the role ofétasansparency” which has recently
been the target of market regulations. The simple yet rictctire of the equilibrium of our model
easily lends itself to such policy analysis. Moreover, whedve that its further modifications may
help shed light on other issues of interest such as incresaesparency of market transactions
and various market regulations.

3INotice that the condition under whigf{g) increases coincides with the condition for the distribaitig, (-; g) to
decrease in the first-order stochastic dominance.
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Appendix: Omitted Proofs

Proof of Lemma 2:. We establish the result in three steps.

(1) If g(t) < ¢*, thenp(t) < vp.

Supposey(t) < g%, butp(t) > v,. Then, there must exists € (¢, c0) such thatp(t') = vy.
Suppose not, that ig(t') > v, for anyt’ > ¢t. Lemma 1 implies thag(-) then keeps decreasing.
This, in turn, implies that there must exigt € [0, ¢(¢)) such that(-) converges t@,,. Recall
that, sincep(t') > v, for anyt, both types trade only when the buyer offefs Therefore, in the
long run, both types must trade at the same rate, which cahebease only when either every
buyer always offerg; or every buyer never offersy. Sinceq(t) < ¢*, the former obviously
cannot be true. The latter also cannot be the case, becaasetlife low-type seller’s reservation
price would be close to;, which is strictly smaller than;,,.

Let ¢’ be the smallest value such that') = v,. Then, for anyz € (¢,¢), p(z) > vy.
Therefore, by Lemma I(x) < ¢(t) < ¢*, which implies that the probability that the buyer at
x € (t,t') offerscy is strictly less thany,,(s*)og + 1 — ' (s*). Combining this withp(t') = vy, it
follows thatp(t) < vy, which is a contradiction (recall that if all the buyers beemt andt’ offer
cy With probability~,, (s*)og + 1 — T (s*) andp(t') = vy, thenp(t) = vp).

Now suppose(t) < ¢*, butp(t) = v,. Together, they imply that the buyeriapfferscy with
a strictly lower probability than, (s*)og + 1 —T'1(s%). If p(t) < 0, then clearlyp(t) < v, which
is a contradiction. If(¢) > 0, there existg’ such thaty(¢') < ¢*, butp(t') > v;. We showed
above that this can never be the case.

(2) If q(t) > ¢*, thenp(t) > vy.

Suppose(t) > ¢, butp(t) < v,. We first show that there exists € (¢,00) such that
p(t') = vr. Suppose not, that ig(t') < v, for anyt’ > ¢t. Lemma 1 implies thag(-) keeps
increasing. Since(t) € [0,1] for anyt¢, this means that there exisi® € (q(¢, 1] such that
q(-) converges t@>. Since the low type trades whenever a buyer arrives (see laeP@m the
convergence can occur only when the high type trades witlostliprobabilityl. This, in turn,
implies that in the long run, each buyer offefs with probability 1, regardless of his signal. But,
then the low-type seller’s reservation price becomesraniiiy close tocy. This is a contradiction,
becausey is strictly larger than;, by Assumption 1.

Lett’ be the smallest value at whigkit’) = v,. Sincep(z) < v, foranyz € (¢,t'), ¢(-) cannot
decrease offt,t'). Thereforeg(z) > ¢* foranyz € (t,t'). Lett” = t' — ¢ for e positive, but
sufficiently small. Then, for any € (t”,t'), the buyer must offer; with probability 1 whenever
his signal is weakly above': Sincez is close ta’, p(x) is close tov,. Therefore, when the buyer’s
signal iss*, his expected payoff by offering(z) is also close td). To the contrary, his expected
payoff by offeringcy is bounded away from), because(z) > ¢(t) > ¢* (recall that the payoff
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is equal to0 if ¢(x) = ¢*). But, thenp(z) > v, because the buyers dn, t') offer ¢y at least
with probabilityl — I'; (s*), while the low-type seller’s reservation pricetats equal tov,, (recall
that the low-type seller’s reservation price is equal ib every buyer offers:; with probability
vo(s*)oh + 1 —T'1(s%)). Thisis, of course, a contradiction.

Now suppose(t) > ¢*, butp(t) = v.. In this case, the low type does not necessarily accept
p(t) with probability1. Thereforegq(-) is not necessarily increasing. However, we do know that the
buyer would offerc; with probability 1 whenever his signal is weakly above Sincep(t) = vy,
the buyer with signat* obtains zero expected payoff by offeripg), while his expected payoff
by offeringcy is strictly positive, becausgt) > ¢*. If p(¢) > 0, thenitis clear thap(t) > vy. If
p(t) < 0, then there exists > ¢ such thay(t') > ¢*, butp(t') < v,. We showed above that this
can never be the case.

(3) If ¢(t) = ¢*, thenp(t) = vy.

Thatp(t) = vy, impliesq(t) = ¢* is immediate. Now supposgt) = ¢* butp(t) < v,. Then
the belief is increasing so that for> ¢ sufficiently close ta, ¢(z) > ¢* andp(z) < v, whenever
x € (t,t'), since bothp(-) andq(-) are continuous, a contradiction. Symmetric argumentstead
contradiction for the case @ft) > vy. |

Proof of Lemma 3:. Suppose there existssuch thaty(t) < ¢*, butp(t) < 0. Sincep(-)
is continuous and eventually convergesuvig there exists’ such that’ > ¢ andp(t') = p(t).
Without loss of generality, assume that:) < p(¢) for anyx € (¢,t') andp(z) > 0 for anyz > t/
such thayy(x) < ¢* (if p(-) is not strictly increasing until it reaches, there always exist and
t’ that satisfy these properties). Fore (t,t'), p(z) < p(t'), while ¢(x) < ¢(t'). This implies
that the probability that the buyer ate (¢,t') offerscy cannot be larger than the corresponding
probability for the buyer at’. To the contrary, whenever > ¢/, p(z) > p(t') andq(z) > q(t').
Therefore, the probability that the buyerat- ¢’ offerscy is strictly larger than the corresponding
probability for the buyer at’. Since the low-type seller’s reservation prige) is determined by
the rate at which buyers offey,, itimmediately follows thap(t) < p(t'), which is a contradiction.
n

Proof of Proposition 4:. First consider the case wheaje< ¢*. In that case, for any fixed,
the H-type seller does not trade until the belief reactiesTherefore,F; (0|) = 0. The L-type,
on the other hand, trades with probability 1 conditionallmmarrival of a buyer during this period.
Then, the probability he trades before the stationary gatkeched is given by— e *7@4") where

~ 1 1-¢ ¢
T(q,q):—xlog( 7 ﬂ\)
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Combined with (6), this implies that faf < ¢*,

~

q ’YH(SN) UH — CH

Fr (0 =1- — .
1(01@) 1 —qv(sn) cu — i

Next, consider the case whegec (¢*, ). In this case, for a given, conditional on the
arrival of a buyer, each type trades if and only if the offets which happens with probability
1 —T,(sp) =1—T4u(spn1) if ¢ € [Gn, Gn—1). Therefore, for type, the probability that the trade
takes place before the belief reaclyéss given by

I —exp {_(1 —La(80-1))T(¢,7,) — Z (1— Fa(si—l))T(qi—hqi)} ;

i=n-+1
so that
1—g, ¢ \ Treo Rt
~ — qn q H(Sn—-1)— Sn—
—(1 —=T4(5,-1))T(q,q, zlog( — A) ,
(1= Ta(s0-1)T(0.7,) S
and
_ 1-Tq(s;)
_ _ 1 — q; q;_ Th(s))—Tr(s;)
1 —Tu(si21))T(Gi1,G; :log( — C— ) )
(1 = Lals)T@i 1,7 S
Then, the result follows immediately using (6). ]
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