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1. Introduction

Suppose we observe a consumer making purchases from ` goods, with a typical observation

t consisting of the bundle xt P R`
` chosen by the consumer and the price vector pt P R`

``

that the consumer faces. A finite data set tppt, xtqutPT is said to be rationalized by the utility

function U : R`
` Ñ R if, for all t P T , the observed bundle xt maximizes Upxq in the budget

set

Bt
“ tx P R`

` : pt ¨ x ď pt ¨ xtu. (1)

Afriat’s Theorem gives us the precise condition under which a data set can be rationalized by

a well-behaved, i.e., strongly monotone1 and continuous, utility function U . It says that this

is possible if and only if the data set obeys an intuitive property called the generalized axiom

of revealed preference or GARP, for short (see Afriat (1967) and Varian (1982)). GARP also

has the feature that it can be easily tested using a linear program, so that Afriat’s Theorem

has become the cornerstone of a large empirical literature on consumer demand.

˚ Email address: john.quah@economics.ox.ac.uk. I am grateful to Matthew Polisson for useful conver-

sations on this issue.
1This means that Upx1q ą Upxq whenever x1 ą x.
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It is common in empirical and theoretical work to impose additional conditions on the utility

function (apart from requiring it to be well-behaved). A particularly common and convenient

property is weak separability (which we shall often refer to in this paper simply as ‘separa-

bility’). For this reason, it is useful to develop a characterization for data sets that could be

rationalized by utility functions with this added feature. The objective of this paper is to

solve this problem.

To state the issue formally, suppose that the goods available to the consumer can be parti-

tioned into the subsets X and Z, consisting of `X goods and `Z goods respectively. At t P T ,

the consumer faces prices pt “ pptX , p
t
Zq P R

`X
``ˆR

`Z
``, where the subvector ptX (ptZ) gives the

prices of the X-goods (Z-goods), and chooses to buy the bundle qt “ pxt, ztq P R`X
` ˆ R`Z

` .

We are interested in finding a necessary and sufficient condition on the data set tpqt, ptqutPT

that permits rationalization by a function G : R`X ˆR`Z Ñ R of the form

Gpx, y, zq “ F pUpxq, zq, (2)

where U and F well-behaved functions. In other words, at every observation t, qt “ pxt, ztq

maximizes Gpx, zq in the budget set

Bt
S “ tpx, zq P R

`X ˆR`Z : pptX , p
t
Zq ¨ px, zq ď pp

t
X , p

t
Zq ¨ px

t, ztqu. (3)

Notice that the preference represented by G exhibits weak separability on X-goods since the

preference over these goods is represented by the utility function U and is independent of

consumption levels of Z-goods.

To understand our approach to this issue, it is useful that we first re-visit Afriat’s Theorem.

Denote the set of observed consumption bundles by X , i.e. a bundle x is in X if it is

bought by the consumer at some observation. If the consumer is maximizing a well-behaved

utility function, then the choices made by the consumer will convey information about the

consumer’s ranking on these bundles; for example, if some bundle xs in X satisfies pt ¨xs ď pă

q pt ¨xt, then we know the consumer prefers (strictly prefers) xt to xs. In essence, GARP says

that these relationships revealed by the data must be mutually consistent, i.e., that there are

no revealed strict preference cycles. It is straightforward to show that GARP is equivalent

to the existence of a preference ľ (i.e., a reflexive, transitive and complete preorder) defined

on X that agrees with these revealed relationships. In other words, GARP allows for the

completion (on X ) of the partial rankings revealed by the data. If such a preference ľ
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exists, then at every observation t, xt must be the most preferred bundle according to ľ in

the budget set

tx P X : pt ¨ x ď pt ¨ xtu. (4)

Of course the consumer’s actual budget set is (1) and not (4), so we could understand

Afriat’s Theorem as a result that extends the domain of the rationalization: if there exists a

preference on X that rationalizes the data, then there exists a preference on R`
`, represented

by a well-behaved utility function, that rationalizes the data.

A result that is loosely analogous to this version of Afriat’s Theorem can be formulated for

separable preferences. Let C “ X ˆ Z, where X (Z) is the set of bundles of X-goods (Z-

goods) observed at some observation.2 Suppose the consumer is maximizing a well-behaved

utility function that is separable on X; then the observed purchases will reveal information

about the consumer’s rankings across certain elements of C. Furthermore, these revealed

(partial) rankings amongst bundles in C could be completed in a way that forms a separable

preference ľS on C; by a separable preference we mean a preference with the added property

that the induced preference on X , holding fixed z P Z, is independent of z. This is clear

since ľS can always be chosen to be the preference on C induced by G. It follows that, at

every observation t, qt “ pxt, ztq must be the most preferred bundle according to ľS in the

budget set

tpx, zq P C : pptX , p
t
Zq ¨ px, zq ď pp

t
X , p

t
Zq ¨ px

t, ztqu (5)

The main result of this paper is the converse of this result. It could be loosely stated as

follows: if there exists a separable preference on C that rationalizes the data, then there

exists a separable preference on R`X
` ˆ R`Z

` that rationalizes the data. This preference is

representable by a utility function G of the form (2), where U and F are well-behaved.3 This

theorem provides us with a test of the hypothesis that the consumer is maximizing a well-

behaved utility function that is separable on X, since whether there is a separable preference

on (the finite set) C that rationalizes the data is a finite problem.

To understand the nature of the difficulty involved in proving this result, notice that, if a

2Note that C is typically larger than the set of bundles purchased by the consumer at some observation;

for example, if the consumer is observed to buy qt “ pxt, ztq at observation t and qs “ pxs, zsq at observation

s, then qt and qs are in C, and so is pxt, zsq, but this last bundle may not be purchased at any observation.
3More generally, the test we develop could be used to test the hypothesis that the rationalizing utility

function exhibits weak separability over several disjoint subsets of goods (rather than just the subset X).
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data set tppptX , p
t
Zq, px

t, ztqqutPT admits such a rationalization, then the ‘restricted’ data set

tptX , x
tqutPT must obey GARP and, by Afriat’s Theorem, could be rationalized by a well-

behaved utility function sU . To establish the result, however, we need to go further: it is

necessary and sufficient that we find a well-behaved function F such that pūt, ztq, where

ūt “ Ūpxtq, maximizes F pu, zq in the constraint set

B̄t
S “ tpu, zq : u “ sUpxq and px, zq P Bt

S u (6)

(with Bt
S given by (3). Of course, there are many possible sub-utility functions sU that

rationalize tpptX , x
tqutPT , so the issue is to construct the sub-utility function that admits

such a function F . This task is facilitated by a recent result of Forges and Minelli (2009)

which generalizes Afriat’s Theorem to non-linear constraint sets. Translated to our context,

their result says that F exists so long as the set tpput, ztq, B̄t
SqutPT obeys a generalized version

of GARP. The nontrivial part of our proof consists precisely in showing that, whenever there

exists a separable preference on C that rationalizes the data, then we can construct a sub-

utility function sU such that tpput, ztq, B̄t
SqutPT obeys generalized GARP.

To construct the correct sub-utility functions, we rely on a sharper version of Afriat’s Theo-

rem which is proved in Section 2. Typical formulations of Afriat’s Theorem simply specify a

well-behaved utility function that rationalizes the data, without paying too much attention

to the ranking this utility function induces on the set of observed bundles X . Our version

of Afriat’s Theorem says that every preference ordering on X that is consistent with the

data could be extended to a well-behaved utility function on R`
` and provides an explicit

way of constructing a well-behaved utility function with this property. In a corollary to this

result, we also show how to construct a well-behaved utility function that simultaneously ra-

tionalizes the data and controls for levels of indirect utility at some finite set of price-income

combinations outside the set of observed data. Apart from its use in proving our main result,

this sharper version of Afriat’s Theorem could be useful in other situations. For example,

while the data itself may not reveal that some observed bundle xt is preferred to another

observed bundle xs, the modeler may have some other information which suggests that that

is true. In that case, he may like to construct a utility function rationalizing the data that

has this added feature, and our theorem allows him to do precisely that.

It is well-known that the rationalizing utility function provided by Afriat’s Theorem is not

just well-behaved but also concave. In our main theorem, the rationalizing function we con-
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struct, G (as defined by (2)), is such that U is a concave function but F need not be a concave

function. We give an example of a data set which can be rationalized by a well-behaved util-

ity function that is separable on X, but in which U and F cannot be simultaneously concave.

This example also highlights the difference between our main theorem and the revealed pref-

erence test of weak separability developed by Varian (1983). Varian provides necessary and

sufficient conditions under which a data set is rationalized by a utility function G such that

U and F are well-behaved and concave. The concavity assumption that he imposes on both

functions makes for a relatively short proof of the validity of his conditions using concave

programming.4 The example we provide shows that rationalization in the sense of Varian is

substantively different from the one considered in this paper.

The rest of the paper is organized as follows. Section 2 re-presents and extends Afriat’s The-

orem; Section 3 extends the Forges-Minelli Theorem along lines analogous to our extension

Afriat’s Theorem; using the results in Sections 2 and 3, Section 4 presents our characteriza-

tion of data sets that admit rationalization with well-behaved separable utility functions.

2. An extension of Afriat’s Theorem

Let O “ tppt, xtqutPT be a finite set, where pt P R`
`` and xt P R`

`. We interpret O as a set of

observations, where xt is the observed bundle of ` goods chosen by the agent (the demand

bundle) at the price vector pt. Given a price vector p P R`
`` and income w ą 0, the agent’s

budget set is defined as the set Bpp, wq “ tx P R`
` : p ¨x ď wu. A function U : R`

` Ñ R is said

to rationalize the set O if, at all t P T , Upxtq ě Upxq for all x ą 0 such that pt ¨ x ď pt ¨ xt.

In other words, xt is the bundle that maximizes the agent’s utility function U within the

budget set Bppt, wtq, where wt “ pt ¨ xt.

We are interested in finding conditions under which O is rationalizable by well-behaved utility

function U ; by this we mean that U is continuous and strongly monotone (i.e. Upx1q ą Upxq

whenever x1 ą x). For this purpose, it is useful to introduce a number of concepts. Denote

the set of observed demands by X , i.e., X “ txtutPT . (X includes, if necessary, multiple

copies of the same vector.) For xt, xs P X , we say that xt is directly revealed preferred to xs

if pt ¨ xs ď pt ¨ xt; when this inequality is strict, we say that xt is directly revealed strictly

4However, there are serious computational challenges involved in implementing Varian’s test; for a recent

treatment see Cherchye, Demuynck, and de Rock (2011).
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preferred to xs. We denote these relations by xt ľ˚˚ xs and xt Ï˚˚ xs respectively. We

say that xt is revealed preferred to xs (and denote it by xt ľ˚ xs) if there are observations

t “ 1, 2,..., n such that xt ľ˚˚ x1, x1 ľ˚˚ x2, ..., xn´1 ľ˚˚ xn, and xn ľ˚˚ xs; x
t is said to

be revealed strictly preferred to xs (denoted by xt Ï˚ xs) if any of the direct preferences in

this sequence is strict. If xt ľ˚ xs and xs ľ˚ xt, then we say that xt and xs are revealed

indifferent and denote it by xt „˚ xs. We refer to ľ˚, Ï˚, and „˚ as the revealed relations

(or revealed preference relations) of O.

Let ľ be a preorder on X , i.e., a relation that is reflexive, transitive, and complete. We

write x ą y if x ľ y but y ń x and x „ y if x ľ y and y ľ x. A preorder on X is said to be

consistent with the revealed relations of O if it has the following two properties: (i) x ľ y

whenever x ľ˚ y and (ii) x ą y whenever x Ï˚ y.5 Note that (i) also implies that x „ y if

x „˚ y. It is clear that to check that (i) and (ii) holds, we need only check these properties

for the direct relations ľ˚˚ and Ï˚˚.

The following result (whose simple proof we shall skip) gives the motivation for introducing

the concept of a consistent preorder: it says that the existence of such a preorder on X is

necessary for rationalizability by a well-behaved utility function.

Proposition 1 Suppose that O is drawn from an agent who maximizes a locally non-

satiated utility function U .6 Then the preorder ľU on X induced by U (i.e., xt ľU xs if

Upxtq ě Upxsq) is consistent with the revealed relations of O.

When does O admit a preorder on X that agrees with its revealed relations? It is quite easy

to see that the generalized axiom of revealed preference (GARP) is a necessary and sufficient

condition. The set O is said to obey GARP if whenever there are observations ppt, xtq (for

t “ 1, 2, ..., n) satisfying

p1
¨ x2

ď p1
¨ x1; p2

¨ x3
ď p2

¨ x2; . . . ; pn´1
¨ xn ď pn´1

¨ xn´1; and pn ¨ x1
ď pn ¨ xn

then all the inequalities have to be equalities. One could re-formulate GARP in terms of the

revealed relations: the data set O obeys GARP if whenever there are observations ppt, xtq

5Note it does not say that x „ y implies that x „˚ y nor does it say that x ą y implies that x Ï˚ y.
6Local non-satiation means that, at any bundle x P R`

` and any open neighborhood of x, there is x1 in

that neighborhood such that Upx1q ą Upxq. Note that any well-behaved utility function is strongly monotone

and hence locally non-satiated.
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(for t “ 1, 2, ..., n) satisfying

x1 ľ˚˚ x2, x2 ľ˚˚ x3, ..., xn´1 ľ˚˚ xn, and xn ľ˚˚ x1, (7)

then none of direct revealed preferences in this sequence can be replaced with the strict

preference Ï˚˚.7 The following result is proved in the Appendix.

Proposition 2 The set O admits a preorder that is consistent with its revealed relations if

and only if it obeys GARP.

The next result is the main result of this section and the converse of Proposition 4; it says

that the existence of a consistent preorder on X is also sufficient for rationalizability.

Theorem 1 Suppose O admits a preorder ľ (on X ) that is consistent with its revealed

relations. Then there exists a well-behaved and concave function U : R`
` Ñ R with the

following properties: (i) it rationalizes O and (ii) the preorder on X induced by U coincides

with ľ, i.e., Upxtq ą p“qUpxsq if and only if xt ą p„qxs for xt, xs in X .

Given Proposition 2, part (i) of Theorem 1 is equivalent to the following: O can be ratio-

nalized by a strongly monotone, continuous and concave utility function if it obeys GARP.

This is, of course, well-known and corresponds to a part of Afriat’s Theorem. Part (ii) of

Theorem 1 appears to be new. It strengthens Afriat’s Theorem by saying that any preorder

on X which is consistent with the revealed relations could be extended into a preorder on

R`
` which is representable by a strongly monotone, continuous and concave utility function.

In other words, no consistent preorder on X can be eliminated by rationality. Our proof of

this theorem gives an explicit procedure for constructing a utility function extending (to the

consumption space R`
`) any given consistent preorder on X in a way that also rationalizes

O.

This sharper version of Afriat’s Theorem, and the even sharper version we develop in Corol-

lary 1, play a crucial role in helping us develop a test for separable preferences. Theorem 1

may also be of interest in itself. For example, it may be the case that a modeler has some

information on the agent’s preference over X , in addition to that revealed by the agent’s

demand at different price vectors; Theorem 1—or rather the algorithm for constructing the

utility function given in the proof—gives a precise way of incorporating such information.

7To say the obvious, even if xt ľ˚ xs and xs ń xt we do not obtain xt Ï xs.
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The proof of Theorem 1 requires the following lemma. This lemma is well-known but we

include it here for completeness. The inequalities (8) and the form of U in this lemma were

both introduced by Afriat.

Lemma 1 Given the data set O, suppose there are numbers φt and λt ą 0 (for every t P T )

that obey the Afriat inequalities, i.e.,

φt
ď φk

` λkpk ¨ pxt ´ xkq for all k ‰ t. (8)

Then the function U : Rl
` Ñ R given by

Upxq “ min
ppt,xtqPO

tφt ` λtpt ¨ px´ xtqu (9)

rationalizes O and satisfies Upxtq “ φt. This function is strongly monotone and concave.

Proof: The fact that Upxtq “ φt follows immediately from the definition of U and the Afriat

inequalities. Note that U is a strongly monotone utility function since λt ą 0 for all t and

it is concave because it is the minimum of a family of concave functions. To see that it

generates the observations in O, let x satisfy ps ¨ x “ ps ¨ xs. It follows from the definition of

U that Upxq ď φs and so Upxq ď Upxsq. Therefore, xs P arg maxxPBpps,ps¨xsq Upxq. QED

Proof of Theorem 1: With no loss of generality, write X “ tx1, x2, ..., xNu, where either

xn`1 ą xn or xn`1 „ xn, for n “ 1, 2, ...N ´ 1. All we need to do is to find numbers φs and

λs ą 0 (for s “ 1, 2, ..., N) that (a) obey the Afriat inequalities and (b) satisfy φn`1 ą p“qφn

if xn`1 ą p„qxn. Then Lemma 1 guarantees that U (as defined by (9)) rationalizes the data

set and satisfies Upxnq “ φn for n “ 1, 2, ..., N . Note that the latter property, together with

(b), guarantee that (ii) holds, i.e., the restriction of U to X coincides with ľ. We shall find

φn and λn with a step-by-step approach, explicitly constructing the numbers φn and λn one

at a time.

Denote pi ¨ pxj ´ xiq by aij. Choose φ1 to be any number and λ1 to be any positive number.

Since xj ľ x1 for all j ą 1, we have xj ć x1 and so

a1j
“ p1

¨ pxj ´ x1
q ě 0

(because if not, x1 Ï˚˚ xj and x1 ą xJ by the consistency of ľ). Suppose x2 ą x1; then

minją1 a1j ą 0. This is because if a1J “ 0 for some J ą 1, then x1 ľ xJ (again, by the
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consistency of ľ), which is impossible since xJ ą x1. So there is φ2 such that

φ1
ă φ2

ă min
ją1
tφ1

` λ1a1j
u. (10)

On the other hand, if x2 „ x1, then we can choose φ2 such that

φ1
“ φ2

ď min
ją1
tφ1

` λ1a1j
u. (11)

Now choose λ2 ą 0 sufficiently small so that

φ1
ď φ2

` λ2a21.

Clearly this is possible if a21 ě 0. If a21 ă 0, then x2 ą x1 (by consistency of ľ), in which

case φ2 ą φ1, and the inequality is still possible for a λ2 sufficiently small.

We now go on to choose φ3 and λ3. It follows from xj ľ xi for all j ą 2 and i “ 1, 2 that

xj ć xi and so

aij “ pi ¨ pxj ´ xiq ě 0 for i “ 1, 2.

Once again we consider two cases: when x3 ą x2 ľ x1 and when x3 „ x2 ľ x1. In the case

of the former, we know that minją2 a
2j ą 0 since, if a2J “ 0 for some J ą 2, then x2 ľ xJ

which contradicts xJ ą x2. Therefore,

φ2
ă min

ją2
tφ2

` λ2a2j
u.

Similarly, minją2 a
1j ą 0; if a1J “ 0 for some J ą 2, then x1 ľ xJ which contradicts xJ ą x1.

Therefore,

φ2
ă min

ją2
tφ1

` λ1a1j
u;

this is the case because either φ2 was chosen to satisfy (10) or φ2 “ φ1. We conclude that

there is φ3 such that

φ2
ă φ3

ă min

"

min
ją2
tφ1

` λ1a1j
u, min

ją2
tφ2

` λ2a2j
u

*

.

We turn to the case where x3 „ x2 ľ x1. It follows from (10) and (11) that φ2 ď minją2tφ
1`

λ1a1ju. We also know that a2j ě 0 for all j ą 2. Therefore, we can choose φ3 such that

φ2
“ φ3

ď min

"

min
ją2
tφ1

` λ1a1j
u, min

ją2
tφ2

` λ2a2j
u

*

.
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Now choose λ3 ą 0 sufficiently small so that

φi
ď φ3

` λ3a3i for i “ 1, 2.

Clearly this is possible if a3i ě 0. If a3i ă 0, then x3 ą xi, in which case φ3 ą φi, and the

inequality is still possible for a λ3 sufficiently small.

Repeating this argument, we can choose φk (for k “ 2, 3, ..., N) such that if xk ą xk´1 then

φk´1
ă φk

ă min
sďk´1

"

min
jąk´1

tφs
` λsasju

*

(12)

and if xk „ xk´1 then

φk´1
“ φk

ď min
sďk´1

"

min
jąk´1

tφs
` λsasju

*

; (13)

and λk ą 0 (for k “ 2, 3, ..., N) such that

φi
ď φk

` λkaki for i ď k ´ 1. (14)

For any fixed m, (12) and (13) guarantee that φm ď φs ` λsasm for s ă m (setting k “ m

and letting j “ m), while (14) guarantees that this inequality holds for s ą m (with k “ s

and i “ m). In other words, we have found λs and φs to obey the Afriat inequalities. QED

Our final objective in this section is to develop a sharper version of Theorem 1 that allows us

to control utility levels at price-income combinations outside the set of observations. While

this result may be independently interesting, our reason for proving it is to use it later

in Section 4 to establish the validity of our revealed preference test for separability. The

basic message of Corollary 1 is easy to explain. Given the utility function U , the indirect

utility at pp, wq P R`
`` ˆ R` is the highest utility achievable in the budget set Bpp, wq,

i.e., IUpp, wq “ maxtUpxq : x P Bpp, wqu. Suppose U rationalizes O and agrees with some

consistent preorder ľ. Clearly, IUpp, wq ě Upxtq for all xt P Bpp, wqXX . The corollary goes

further by saying that we could always choose U such that, if xs is ranked (by ľ) above all

bundles in Bpp, wq XX , then IUpp, wq ď Upxsq. In other words, IUpp, wq could be chosen so

that it will not be higher than the utility of any bundle which it is not ‘required’ (by ľ) to

be higher.

It is necessary to introduce a number of concepts formally before we state the result. For

any pp, wq P R`
`` ˆR` such that Bpp, wq X X is nonempty, we define

βpp, wq “ tx1 P Bpp, wq X X : x1 ľ x @x P Bpp, wq X X u. (15)
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This is the set of elements that are ranked by ľ (at least weakly) ahead of the other elements

in Bpp, wq X X ; clearly it is nonempty so long as Bpp, wq X X is nonempty. If Bpp, wq X X
is empty, we let βpp, wq “ t0u. We define

sβpp, wq “ tx2 P X : x2 ą βpp, wq and if y P X obeys y ą βpp, wq then y ľ x2 u. (16)

In other words, this is the set of elements in X ranked just above βpp, wq. Note that this set

is empty if Bpp, wq contains a highest ranked element of X (according to ľ).

Corollary 1 Suppose O admits a preorder ľ on X that is consistent with its revealed

relations. For any finite set tppm, wmqumPM Ă R`
``ˆR`, there is a well-behaved and concave

utility function U : R`
` Ñ R satisfying (i) and (ii) in Theorem 1 and also the following

property:

Upsβppm, wm
qq ą IUpp

m, wm
q ě Upβppm, wm

qq for all m PM (17)

and Upβppm, wmqq “ IUpp
m, wmq if pm ¨ x “ wm for all x P βppm, wmq.

Remark 1: Since any rationalization of O must satisfy IUpp
m, wmq ě UpXppm, wmqq, the

nontrivial part of (17) lies in the claim that U can be chosen such that IUpp
m, wmq is bounded

above by UpX̄ppm, wmqq.

Remark 2: We prove this result in the Appendix. Like the proof of Theorem 1, this proof

provides an explicit procedure for constructing U .

3. A revealed preference test for non-linear budget sets

There are a number of results that extend Afriat’s Theorem to account for budget (more

generally, constraint) sets that are nonlinear, including Matzkin (1991), Chavas and Cox

(1993) and Forges and Minelli (2009). The last of these is most relevant for our purposes.

Forges and Minelli consider a scenario where an observer has access to a set of observations,

with each observation consisting of a (possibly) nonlinear constraint set and a choice from

that set. There is a natural and obvious generalization of the GARP property for such a

set of observations; Forges and Minelli pointed out that this generalized GARP property

is necessary and sufficient for the observations to be rationalizable. The utility function

they construct for the rationalization has a form similar to the classic Afriat-form (see (9));

in particular, it is the minimum of a finite family of functions, though that family is no
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longer linear in x. Therefore, this utility function need not be concave and indeed one could

construct data sets where any rationalizing utility function must not be concave. In other

words, Afriat’s Theorem has a general extension to nonlinear constraint sets, so long as we

do not require the concavity of the utility function rationalizing the data.

In this section we re-present and generalize the Forges-Minelli Theorem. This generalization

is similar to our generalization of Afriat’s Theorem in Theorem 1. Our version of the result

emphasizes the flexibility of the utility function rationalizing the data set; in particular, it

is possibe to construct a utility function that agrees with any consistent preorder on the

observed choices. We will apply this result later in Section .

A set K Ă R`
` is said to be a regular if it has the following properties: (i) there is x " 0

such that x P K; (ii) K is monotone, i.e., if x P K then any x1 P R`
` such that x1 ď x is also

in K; and (iii) K is compact (iv) if x is on the upper boundary of K, (i.e., if, for all y " x,

y R K) then λx is not on the upper boundary of K for all λ P r0, 1q; and (v) if x is on the

upper boundary of K, then y R K for all y ą x. In our formulation of the Forges-Minelli

Theorem, we shall be requiring the constraint sets to be regular. Clearly, the classical budget

set Bpp, wq (for p " 0 and w ą 0) is a regular set.8

It is straightforward to check that when K is regular, then for every nonzero x P R`
`, there

is a unique µ ą 0 such that µx is on the upper boundary of K. Define g : R`
` Ñ R by

gpxq “ 1{µ for x ą 0 and gp0q “ 0; we shall refer to g as K’s gauge function. This function

is continuous, 1-homogeneous and—because of (iv)—it is strongly monotone.9 Lastly, the

set K can be characterized by the gauge function, .e., K “ tx P R`
` : gpxq ď 1u.

Let O “ tpKt, xtqutPT be a finite set, where Kt Ă R`
`` is a regular set and xt is on the upper

8Forges and Minelli imposed conditions (i) to (iv) on their constraint sets, but not (v). Notice, for example,

that conditions (i) to (iv) will permit a constraint set of the form r0, 1s ˆ r0, 1s but r0, 1s ˆ r0, 1s Y tp0, rq :

r P r1, 2su is excluded by (iv). Neither is a regular set; in particular, the former is excluded by (v). We add

assumption (v) here because it is convenient for our purposes (specifically in the application of Theorem

2 in the next section). This added assumption leads to a stronger conclusion: the rationalizing utility

function in Theorem 2 is continuous and strongly monotone, while the rationalizing function in Forges and

Minelli’s version of this result (Proposition 3 in their paper) is continuous and monotone, i.e., if x1 " x then

Upx1q ą Upxq. If we drop (v), then the same proof we give for Theorem 2 will still go through, except that

it leads to a monotone (rather than strongly monotone) utility function.
9Suppose x1 ą x but gpx1q “ gpxq “ 1{m. This implies that mx1 and mx are both on the upper boundary

of K, which is excluded by (v) since mx1 ą mx.
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boundary of Kt. We interpret O as a set of observations, where xt is the observed bundle of

` goods chosen by the agent from the constraint set Kt. The function U : R`
` Ñ R is said

to rationalize the set O if xt P arg maxtUpxq : x P Ktu for all t P T .

We are interested in finding conditions under which O is rationalizable. For this purpose,

it is useful to re-introduce the revealed preference relations in this more general setting.

Denote the set of observed demands by X , i.e., X “ txtutPT . For xt, xs P X , we say that xt

is directly revealed preferred to xs if xs P Kt; if there is λ ą 1 such that λxs P Kt (so xs is not

on the upper boundary of Kt), we say that xt is directly revealed strictly preferred to xs. We

denote these relations by xt ľ˚˚ xs and xt Ï˚˚ xs respectively. From these we may construct

the revealed preferred (ľ˚), revealed strictly preferred (Ï˚q, and revealed indifference („˚)

relations, in exactly the same way as in Section 2.

It is clear that Proposition 4 remains true in this setting, i.e., if some locally non-satiated

utility function U rationalizes O then it induces a preorder on X that is consistent with

the revealed relations of O. And there is an analog to Proposition 2 as well, namely the

existence of a consistent preorder is equivalent to GARP. In this context, O is said to obey

GARP if the following holds: whenever there are observations pKt, xtq (for t “ 1, 2, ..., n)

satisfying x2 P K1, x3 P K2,..., xn P Kn´1, and x1 P Kn, then x2 is on the upper boundary

of K1, x3 is on the upper boundary of K2,..., and x1 is on the upper boundary of Kn. More

succinctly, if x1 ľ˚˚ x2, x2 ľ˚˚ x3,..., xn´1 ľ˚˚ xn, and xn ľ˚˚ x1, then none of the direct

revealed preferences can be replaced with the strict preference Ï˚˚.

Last but not least there is an analog to Theorem 1 in this setting.

Theorem 2 Suppose O “ tpKt, xtqutPT admits a preorder ľ (on X ) that is consistent with

its revealed relations. Then there exists a well-behaved utility function U : R`
` Ñ R with the

following properties: (i) it rationalizes O and (ii) the preorder on X induced by U coincides

with ľ, i.e., Upxtq ą p“qUpxsq if and only if xt ą p„qxs for xt, xs in X . The utility

function U can be chosen to take the form

Upxq “ min
tPT

 

φt
` λtpgtpxq ´ 1q

(

(18)

where gt : R`
` Ñ R` is the gauge function of Kt and φt, λt P R with λt ą 0. Furthermore,

φt
ď φk

` λkpgkpxtq ´ 1q for all k ‰ t (19)

so that Upxtq “ φt.
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Remark: This result includes Theorem 1 as a special case, where Kt “ Bppt, pt ¨ xtq. With

no loss of generality, we may normalize pt so that pt ¨ xt “ 1 for all t P T ; the gauge function

of Kt is then simply gtpxq “ pt ¨x, so (18) has precisely the same form as (9) and (19) reduces

to the Afriat inequalities (8).

Proof: We need to find φt and λt to satisfy (19) and with φt ą p“qφs if xt ą p„qxs. Then it

is clear that U , as defined by (18), rationalizes O. (To see this, adapt the proof of Lemma 1

in the obvious way and use the fact that xt is on the upper boundary of Kt so gtpxtq “ 1.)

Furthermore Upxtq “ φt for all t P T , so the preorder on X induced by U agrees with ľ.

Since gt (for all t P T are continuous and strongly monotone functions, the same is true of

U .

With no loss of generality, write X “ tx1, x2, ..., xNu, where either xn`1 ą xn or xn`1 „ xn,

for n “ 1, 2, ...N ´ 1. Denote gipxjq ´ 1 by aij. Note that if aij ď 0 then xi ľ˚˚ xj and so

(by the consistency of ľ) xi ľ xj. Similarly, if aij ă 0 then xi Ï˚˚ xj and so the consistency

of ľ guarantees that xi ą xj. Therefore, aij has precisely the same properties as aij defined

in the proof of Theorem 1. The proof given for Theorem 1 works equally well as a proof for

this result, once we substitute this more general formula for aij. Using that method, we can

construct φ1 and λ1, φ2 and λ2, and so forth. QED

4. Weakly separable preferences

We assume that the agent chooses from a finite set of goods Q which can be divided into

three non-overlapping subsets X, Y and Z, consisting of `X goods, `Y goods, and `Z goods

respectively. We denote the agent’s consumption bundle by q “ px, y, zq P R`X
` ˆR`Y

` ˆR
`Z
` .

The agent faces the price vector p “ ppX , pY , pZq P R
`X
`` ˆR

`Y
`` ˆR

`Z
``, where the subvector

pX gives the prices of the X-goods, etc.

At price pt “ pptX , p
t
Y , p

t
Zq, we observe the agent purchasing the bundle qt “ pxt, yt, ztq. Let

O “ tppt, qtqutPT be a finite set of observations. The set of observed consumption bundles

of goods is denoted by Q, i.e., Q “ tqtutPT . The set of observed consumption bundles of

X-goods is denoted by X ; i.e., X “ txtutPT . In a similar way, we define Y and Z. As in the

previous section, we allow for multiple copies of the same vector.

We are interested in conditions under which the data set O can be rationalized by a weakly
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separable utility function (or, more briefly, by a separable utility function). By this we mean

that there are strongly monotone and continuous functions U : R`X
` Ñ R` and V : R`Y

` Ñ R`

and G : R`X
` ˆ R`Y

` ˆ R`Z
` which rationalize (respectively) the sets OX “ tpp

t
X , x

tqutPT and

OY “ tpp
t
Y , y

tqutPT and O “ tppt, qtqutPT , where

Gpx, y, zq “ F pUpxq, V pyq, zq (20)

for some strongly monotone and continuous function F : R3
` Ñ R. Clearly there is no loss

of generality in assuming that Up0q “ V p0q “ 0 (so that Upxq ą 0 and V pyq ą 0 all non-

zero bundles x and y) and we shall be imposing this convenient condition throughout this

section.10

The special structure of G makes it possible for the agent’s decision to be decomposed into

a decision on the consumption of X-goods, a decision on the consumption of Y -goods and

an overall decision on the allocation of income over the three good categories. To be precise,

we define, at price p “ ppX , pY , pZq " 0 and income w ą 0, the sets

Kpp, wq “ tpu, v, zq P R2
` ˆR

`Z
` : u “ Upxq, v “ V pyq, and px, y, zq P Bpp, wqu (21)

Lpp, wq “ tpwX , wY , zq P R
2
` ˆR

`Z
` : wX ` wY ` pZ ¨ z ď wu (22)

Kpp, wq gives the possibilities open to the agent at pp, wq in terms of the bundle of Z-goods

and the utility derived from the X-goods and Y -goods, while Lpp, wq identifies the budget

possibilities for the agent in terms of the expenditure devoted to X-goods and Y -goods, wX

and wY respectively, and the bundle of Z-goods. The next result is well-known and has a

straightforward proof which we shall omit.

Proposition 3 Suppose that G has the form given by (20) where U , V , and F (and thus

G) are well-behaved functions. Then the following are equivalent:

[1] px̄, ȳ, z̄q P arg maxtGpqq : q P Bpp, wqu

[2] x̄ P arg maxtUpxq : x P BppX , pX ¨ x̄qu, ȳ P arg maxtV pyq : y P BppY , pY ¨ ȳqu, and

10Note that while we allow for the separation of two subsets of goods, X and Y , the same arguments go

through if there is just one subset of goods over which there is separable utility (which is the case discussed

in the Introduction) or if there are more than two disjoint subsets of goods with separable utility. Our

treatment of the case with two separable sets, X and Y , together with a residual set of goods Z, covers all

the mathematically substantive issues. Note also that the analysis allows for Z to be empty. In other words,

we also provide a test for rationalization with utility functions of the form F pUpxq, V pyqq.
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pUpx̄q, Upȳq, zq P arg maxtF pu, v, zq : pu, v, zq P Kpp, wqu;

[3] x̄ P arg maxtUpxq : x P BppX , pX ¨ x̄qu, ȳ P arg maxtV pyq : y P BppY , pY ¨ ȳqu, and

ppX ¨ x̄, pY ¨ ȳ, z̄q P arg maxtF pIUppX , wXq, IV ppY , wY q, zq : pwX , wY , zq P Lpp, wqu.

Statement [3] in Proposition 3 says that the decision making of this agent can be thought

of as consisting of two parts. First, the agent’s choice of X-goods must maximize U at that

level of expenditure on X-goods; similarly, the bundle of Y -goods is chosen to maximizes

V at that level of expenditure on Y -goods. Second, the expenditure on X and Y -goods

(wX and wY respectively) are determined by maximizing F , after taking into account the

indirect utilities IUppX , wXq and IV ppY , wY q. The formulation [2] is closely related to [3], but

imagines the agent as choosing from the constraint set Kpp, wq, having first worked out the

sub-utilities derived from the X and Y -goods; this formulation of the agent’s choice problem

turns out to be useful for our purposes.

Our objective is to provide necessary and sufficient conditions on O to guarantee that the

observations are rationalizable by a separable utility function. We would like a result that

has a similar structure to Theorem 1, though the conditions we require of O must be stronger

since the restrictions on the utility function are more stringent. As in the last section, we

begin with a discussion of the revealed preference relations.

Let C “ X ˆ Y ˆ Z; in other words, a typical element q in C may be written as pxr, ys, ztq

where xr is the consumption bundle of X-goods at the observation r P T , ys the consumption

bundle of Y -goods at the observation s P T (possibly different from r), etc. Note that Q Ă C.

Given bundles q “ px, y, zq and q1 “ px1, y1, z1q in C, we say that q is directly revealed preferred

to q1 under separability (and denote this relation by q ľ˚˚ q1) if any one of the conditions

hold:

(S1) q “ pxt, yt, ztq for some t P T (in other words, q P Q)) and pt ¨ q1 ď pt ¨ q or

(S2) (a) z “ z1, y “ y1 and x ľ˚˚
X x1 where ľ˚˚

X is the direct revealed preference relation (on

X ) induced by OX “ tpp
t
X , x

tqutPT .

(S2) (b) z “ z1, x “ x1 and y ľ˚˚
X y1 where ľ˚˚

Y is the direct revealed preference relation (on

Y) induced by OY “ tpp
t
Y , y

tqutPT .

We say that q is directly strongly revealed preferred to q1 under separability (denoted q Ï˚˚ q1)

if (S1) is satisfied with a strong inequality or (S2)(a) is satisfied with Ï˚˚
X in place of ľ˚˚

X or

16



(S2)(b) is satisfied with Ï˚˚
Y in place of ľ˚˚

Y . The bundle q is said to be revealed preferred

to q1 under separability if there are bundles q1, q2,...,qn in C such that q ľ˚˚ q1, q1 ľ˚˚ q2,...,

qn´1 ľ˚˚ qn, and qn ľ˚˚ q1. If any of the revealed preferences in this (finite) sequence are

strong, then we say that q is strongly revealed preferred to q1 under separability. The revealed

preference and revealed strong preference of q over q1 are denoted by q ľ˚ q1 and q Ï˚ q1

respectively. The bundles q and q1 are said to be revealed indifferent under separability if

q ľ˚ q1 and q1 ľ˚ q; this relation is denoted by q „˚ q1. We shall refer to ľ˚, Ï˚ and „˚ as

the revealed separability relations.

A relation ľ on C is said to be separable if it obeys the following properties:

(a) it is transitive and reflexive;

(b) for every y1 P Y and z1 P Z, the relation on x P X given by the restriction of ľ to

the elements px, y1, z1q is a preorder (i.e., it is transitive, reflexive and complete) and this

preorder is independent of y1 and z1;

(c) for every x1 P X and z1 P Z, the relation on y P Y given by the restriction of ľ to the

elements of the form px1, y, z1q is a preorder and independent of x1 and z1;

(d) ľ is a preorder when restricted to the set of observed consumption bundles Q.

We denote the preorder induced by ľ on X and Y by ľX and ľY respectively. Note that

(a), (b), and (c) imply that if x ľX x1 and y ľY y1 then

px, y, zq ľ px1, y, zq ľ px1, y1, zq (23)

and if, in addition, either x ąX x1 or y ąY y1 then px, y, zq ą px1, y1, zq. The separable

relation ľ on Q is said to be consistent with the revealed separability relations or simply

consistent with revealed separability if q ľ q1 whenever q ľ˚ q1 and q ą q1 whenever q Ï˚ q1.

The former property also guarantees that q „ q1 whenever q „˚ q1. Clearly, if ľ is a

consistent separable relation then ľX (ľY ) is also consistent with the revealed relations of

OX (OY ).

Note that if the revealed separability relations (ľ˚, Ï˚, and „˚) are such that it admits

a separable and consistent relation ľ, then ľ can be chosen to minimal; by this we mean

that whenever q ľ q1, there exists qi (i “ 1, 2, ...pn ´ 1q) such that q “ q0 ľ q1, q1 ľ q2,

q1 ľ q2,..., qn´1 ľ qn “ q1, such that either both qi and qi`1 are in Q, the vectors qi and qi`1

differ only in their X-subvectors or Y -subvectors, or qi ľ˚˚ qi`1. This is clear since if q ľ q1

but no such property holds then this particular relationship between q and q1 can simply
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be removed. The ‘remaining’ relation will still be separable and consistent with revealed

separability. It is also possible for us to move in the other direction: if ľ is consistent with

revealed separability then ľ can be chosen to be a preorder on C. This is clear because we

can always complete ľ in a way that preserves reflexivity and transitivity, and any such

completion will be separable and consistent with revealed separability.

Example 1: Consider a data set with the following two observations, drawn from an agent

who is choosing a consumption bundle out of two X-goods and two Z-goods.

p1
X “ p1, 3{2q, p

1
Z “ p2, 1q, x

1 “ p1, 0q, z1 “ p2, 1q, w1 “ 6

p2
X “ p3{2, 1q, p

2
Z “ p2, 1q, x

2 “ p0, 1q, z2 “ p1, 2q, w2 “ 5.

In this case, X “ tx1, x2u, C “ tpx1, z1q, px1, z2q, px2, z1q, px2, z2qu, and Q “ tpx1, z1q, px2, z2qu.

The non-trivial direct revealed separability relations on C are precisely the following: px1, z1q Ï˚˚

px1, z2q and px1, z1q Ï˚˚ px2, z2q. Therefore, any separable relation on C consistent with re-

vealed separability must satisfy px1, z1q ą px1, z2q and px1, z1q ą px2, z2q. To complete the

specification of ľ as a separable relation, we need to specify the relation between x1 and

x2. It is straightforward to check the following specifies a minimal and consistent separable

relation ľ on C: each element is related to itself, px1, z1q ą px1, z2q, px1, z1q ą px2, z2q,

px1, z1q ą px2, z1q, and px1, z2q ą px2, z2q.

The next result says that if a data set is drawn from an agent who maximizes a separable

utility function, then the data set will admit a separable relation which is consistent with the

revealed separability relations. This is not hard to show. The result following that is more

substantial and is the main result of the paper. It says that the admissibility of a consistent

separable relation is also sufficient for rationalization with a separable utility function.

Proposition 4 Suppose that O is drawn from an agent who maximizes a utility function

G of the form (20), where U and V are locally non-satiated and F is strongly monotone.

Then the preorder ľ on C induced by G is a separable relation and it is consistent with the

revealed separability relations.

Proof: It is clear that ľ is a separable relation (in fact, it is a preorder on C). So only

consistency needs to be checked. If q ľ˚˚ q1 because (S1) holds, then q is the bundle chosen

at some observation t (when price is pt) and clearly Gpqq ě Gpq1q, because otherwise the agent

is better off choosing q1. Now suppose q ľ˚˚ q1 because (S2)(a) holds, i.e., x ľ˚˚ x1. Suppose
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x “ xs for some observation s. We claim that Upxq ě Upx1q. If not, F pUpx1q, V pysq, zsq ą

F pUpxsq, V pysq, zsq (because F is strongly monotone) and so the bundle px1, ys, xsq does

not cost more than qs “ pxs, ys, zsq at the price vector ps and gives higher utility, which

contradicts the optimality of qs at observation s. So Upxq ě Upx1q and thus Gpqq ě Gpq1q

(again by the strong monotonicity of F ). A similar argument can be applied if q ľ˚˚ q1

because (S2)(b) holds.

Suppose q Ï˚˚ q1 because (S1) holds with a strict inequality, i.e., pt ¨ q1 ă pt ¨ q, assuming

that q “ qt “ pxt, yt, ztq is the bundle chosen at observation t. We need to show that

Gpqq ą Gpq1q. Since U is locally non-satiated, there is some bundle x̂ such that Upx̂q ą Upx1q

(where q1 “ px1, y1, z1q) and q̂ “ px̂, y1, z1q satisfies pt ¨ q̂ ď pt ¨ q. So Gpq̂q ą Gpq1q since F

is strongly monotone and if Gpq1q ě Gpqq, we obtain Gpq̂q ą Gpqq which contradicts the

optimality of q at t. Now suppose q Ï˚˚ q1 because (S2)(a) holds with a strict inequality,

i.e., x Ï˚˚
X x1. Write q “ px, y, zq and suppose x “ xs for some observation s. We claim

that Upxq ą Upx1q; if not, by the local non-satiation of U , there is some bundle x2 such

that psX ¨ x
2 ď psX ¨ x such that Upx2q ą Upx1q ě Upxq. Since F is strongly monotone,

F pUpx2q, V pysq, zsq ą F pUpxsq, V pysq, zsq and the bundle px2, ys, zsq costs no more than

pxs, ys, zsq at price ps, which contradicts the optimality of qs. A similar argument can be

applied if q Ï˚˚ q1 because (S2)(b) holds with a strict inequality. QED

Our main result is the converse of Proposition 4.

Theorem 3 Suppose there exists a separable relation ľ on C that is consistent with revealed

separability. Then there is a well-behaved function F , and well-behaved and concave functions

U and V such that G (as defined by (20)) rationalizes O. The preorder induced by U on

X coincides with ľX , the preorder induced by V on Y coincides with ľY , and the preorder

induced by G on Q coincides with the restriction of ľ to Q. Furthermore, if ľ is minimal

then the preorder induced by G on C coincides with the restriction of ľ to C.

Proposition 3 guarantees that in any rationalization with a separable utility function, U and

V must also rationalize (respectively) OX “ tpp
t
X , x

tqutPT and OY “ tpp
t
Y , y

tqutPT . Theorem

3 assumes that these data sets obey GARP (because the preorders ľX and ľY induced by

ľ are consistent with the revealed relations of OX and OY respectively), so the existence

of well-behaved and concave functions U and V rationalizing OX and OY is guaranteed by
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Theorem 1. The delicate part of the proof of Theorem 3 consists of a careful construction

of U and V so that, in addition to these rationalizations, we also have

pO “ tpKppt, pt ¨ qtq, put, vt, ztqqutPT (24)

obeying GARP (where ut “ Upxtq and vt “ V pytq and K is defined by (21)). Theorem 2

then guarantees the existence of F that rationalizes pO. That the resulting G rationalizes O
then follows from Proposition 3.

pO obeys GARP if and only if there exists a preorder pľ on the set pQ “ tput, vt, ztqutPT that

is consistent with the revealed relations of pO. An obvious candidate for pľ is the following:

put, vt, ztqpľpus, vs, zsq if pxt, yt, ztq ľ pxs, ys, zsq. (25)

Note that this relation is a well-defined preorder on pQ “ tput, vt, ztqutPT . Given than ľ is

a preorder on Q (property (d) in our definition of ľ), it suffices to check the following: if

there are t, t̄ P T such that put, vt, ztq “ put̄, vt̄, z t̄q, then

pxt, yt, ztq „ pxt̄, yt̄, z t̄q. (26)

Since U rationalizes tpptX , x
tqutPT , if ut “ ut̄ then xt „ xt̄; similarly, yt „ yt̄ and so (26)

follows from (23). What is less clear is the consistency of pľ with pO’s revealed relations.

Given the definition (26), and denoting the direct revealed preference and revealed strong

preference relations of pO by pľ
˚˚

and pÏ
˚˚

, consistency holds if and only if

for all q̂t, q̂s P pQ, if q̂t pľ
˚˚
ppÏ

˚˚
q q̂s then put, vt, ztq ľ pąq pus, vs, zsq. (27)

This property does not hold for every well-behaved U and V rationalizing OX and OY and

requires a more careful construction of U and V . The following example brings out some of

the subtleties involved in the construction of U and V .

Example 2: Consider a data set with the following two observations, drawn from an agent

who is choosing a consumption bundle out of two X-goods and two Z-goods.

p1
X “ p2, 1q, p

1
Z “ p1, 3{2q, x

1 “ p0, 1q, z1 “ p1, 2q, w1 “ 5

p2
X “ p1, 2q, p

2
Z “ p3{2, 1q, x

2 “ p1, 0q, z2 “ p2, 1q, w2 “ 5.

We claim that this data set can be rationalized by a separable utility function. It is easy

to check that px1, z1q Ï˚˚ px1, z2q but px1, z1q ń˚˚ px2, z2q and px2, z2q Ï˚˚ px2, z1q but
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px2, z2q ń˚˚ px1, z1q. Any consistent separable relation must satisfy px1, z1q ą px1, z2q and

px2, z2q ą px2, z1q. The separable relation must also relate x1 and x2. Note that we are not

completely free to choose this relation. In particular, it is not possible to specify x1 „X x2,

because this creates the following cycle:

px1, z1
q ą px1, z2

q „ px2, z2
q ą px2, z1

q „ px1, z1
q.

So we are left with either x1 ąX x2 or x2 ąX x2. Given the symmetry in this example, we

could confine our analysis to the former; the latter case will be analogous.

Assuming that x1 ąX x2, this leads to

px1, z1
q ą px1, z2

q ą px2, z2
q

and we obtain the following minimal and consistent separable relation on C: every element is

related to itself, px1, z1q ą px1, z2q, px1, z2q ą px2, z2q, px1, z1q ą px2, z2q, px2, z2q ą px2, z1q,

px1, z2q ą px2, z1q, and px1, z1q ą px2, z1q.

We could check directly that O can be rationalized with a separable utility function whose

restriction to C agrees with ľ. To do this we need to find U that rationalizes OX such that

pO “
 `

Kpp1, w1
q, pUpx1

q, z1
q
˘

,
`

Kpp2, w2
q, pUpx2

q, z2
q
˘(

obeys GARP. It is then clear (given that pO consists of just two elements), that there is a

strongly monotone and continuous function F that rationalizes pO.

More formally, we require U to satisfy several properties. We require (i) x1 to be optimal in

Bpp1
X , 1q and x2 to be optimal in Bpp2

X , 1q (under U); we also require (ii) Upx1q ą Upx2q.

Since px1, z1q Ï˚˚ px1, z2q, we have pUpx1q, z2q P Kpp1, w1q, which implies that pUpx2q, z2q P

Kpp1, w1q and not on its upper boundary (in other words, pUpx1q, z1q Ï˚˚ pUpx2q, z2q). Thus,

for pO to obey GARP, it is necessary and sufficient that pUpx1q, z1q R Kpp2, w2q. This means

that at pp2, w2q, if the agent chooses to buy z1, then the money left for buying X-goods,

which is w2 ´ p2 ¨ z1 “ 1.5, must not give him a utility greater than the bundle x1. In other

words, it is necessary and sufficient that (iii) Upx1q ą IUpp
2
X , 1.5q. It is not hard to see that

one could draw in convex indifference curves representing U on R2
` such that (i), (ii), and

(iii) are satisfied.

The next result (Lemma 2) spells out the properties on U and V that are sufficient for our

purpose and guarantees that U and V with those properties exist. The proof is an application
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of Corollary 1 so in fact it provides a way of explicitly constructing U and V . Following

that, Lemma 3 says that when U and V have the properties listed in Lemma 2, then pľ, as

defined by (26) is a preorder consistent with the revealed preference relations of pO.

For any p P R`X
`` and x P X , we define x̄pp, xq “ arg mintp ¨ x1 : x1 P X and x1 ľX xu. In

other words, at price p, x̄pp, xq are the cheapest bundles in X that are weakly preferred to

x. We define ȳpp1, yq (for p1 P R`Y
`` and y P Y) in a similar way.

Lemma 2 Suppose there exists a separable relation ľ on C that is consistent with revealed

separability. Then there exists strongly monotone, continuous, and concave functions U :

R`X
` Ñ R` and V : R`X

` Ñ R` with the following properties:

(P1) U rationalizes OX “ tpp
t
X , x

tqutPT and its restriction to X agrees with ľX ;

(P2) V rationalizes OY “ tpp
t
Y , y

tqutPT and its restriction to Y agrees with ľY ;

(P3) If pt ¨ qt ą ptZ ¨ z
s but there does not exist wX ě 0 and wY ě 0 such that pt ¨ qt “

ptZ ¨ z
s ` wX ` wY with ptX ¨ x̄pp

t
X , x

sq ď wX and ptY ¨ ȳpp
t
Y , y

sq ď wY , then there exists

w1X ě 0 and w1Y ě 0 such that pt ¨ qt “ ptZ ¨ z
s ` w1X ` w1Y , with IUpp

t
X , w

1
Xq ă Upxsq and

IV pp
t
Y , w

1
Y q ă V pysq

(P4) If x „ xs for all x P x̄pptX , x
sq and y „ ys for all y P ȳpptY , y

sq and there is w1X and w1Y

such that pt ¨ qt “ ptZ ¨ z
s ` w1X ` w

1
Y with ptX ¨ x̄pp

t
X , x

sq “ w1X and ptY ¨ ȳpp
t
Y , y

sq “ w1Y , then

IUpp
t
X , w

1
Xq “ Upxsq and IV pp

t
Y , w

1
Y q “ V pysq.

Proof: We say that pt, sq P H Ă T ˆT if pt ¨ qt ą ptZ ¨ z
s but there does not exist wX ą 0 and

wY ą 0 such that pt ¨qt “ ptZ ¨z
s`wX`wY with ptX ¨ x̄pp

t
X , x

sq ď wX and ptY ¨ ȳpp
t
Y , y

sq ď wY .

In this case, we can find wXpt, sq ě 0 and wY pt, sq ě 0 such that pt ¨ qt “ ptZ ¨ z
s `

wXpt, sq `wY pt, sq, with wXpt, sq ă ptX ¨ x̄pp
t
X , x

sq and wY pt, sq ă ptY ¨ ȳpp
t
Y , y

sq. We say that

pt, sq P H 1 Ă T ˆ T if x „ xs for all x P x̄pptX , x
sq and y „ ys for all y P ȳpptY , y

sq and

there is w1X and w1Y such that pt ¨ qt “ ptZ ¨ z
s ` w1X ` w1Y , with ptX ¨ x̄pp

t
X , x

sq “ w1X and

ptY ¨ ȳpp
t
Y , y

sq “ w1Y . In this case, we define wXpt, sq “ w1X and wY pt, sq “ w1Y .

Notice that, by our design, xs ąX βpptX , wXpt, sqq for pt, sq P H, so that xs ľX β̄pptX , wXpt, sqq.

(Recall the definitions of β and β̄ in (15) and (16).) For pt, sq P H 1, xs P x̄pptX , x
sq “

βpptX , wXpt, sqq and xs ąX x for all x P X such that ptX ¨x ă wXpt, sq. Furthermore, ľX is con-

sistent with the revealed relations of OX (ľ˚
X and Ï˚

X). By Corollary 1, there is U rationaliz-

ing OX such that IUpp
t
X , wXpt, sqq ă Upxsq for all pt, sq P H and IUpp

t
X , wXpt, sqq “ Upxsq for

all pt, sq P H 1. In a similar way, we can guarantee the existence of V obeying the prescribed
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properties. QED

Lemma 3 Suppose there exists a separable relation ľ on C that is consistent with revealed

separability and U and V are chosen to satisfy the conditions of Lemma 2. Then the relation

pľ on pQ defined by (25) is a preorder and it is consistent with the revealed preference relations

of pO “ tpKppt, pt ¨ qtq, put, vt, ztqqutPT .

Proof: We have already shown that pľ is a preorder, so only consistency (the property (27))

needs to be checked. Suppose q̂t “ put, vt, ztqpľ
˚˚
q̂s “ pus, vs, zsq; then there is ŵX ě 0 and

ŵY ě 0 such that pt ¨qt “ ptZ ¨z
s`ŵX`ŵY with IUpp

t
X , ŵXq ě Upxsq and IV pp

t
Y , ŵY q ě Upysq.

So there cannot be w1X and w1Y satisfying their required properties in (P3) (of Lemma 2). It

follows from Lemma 2 that there are wX ě 0 and wY ě 0 such that pt ¨qt “ ptZ ¨z
s`wX`wY ,

with ptX ¨ x̄pp
t
X , x

sq ď wX and ptY ¨ ȳpp
t
Y , y

sq ď wY . Therefore, pxt, yt, ztq ľ˚˚ px, y, zsq for

all x P x̄pptX , x
sq and all y P ȳpptY , y

sq (by the (S1) condition on ľ˚˚). The consistency of ľ

then guarantees that

pxt, yt, ztq ľ px, y, ztq. (28)

We also have

px, y, zsq ľ pxs, ys, zsq (29)

(see (23)). The transitivity of ľ guarantees that pxt, yt, ztq ľ pxs, ys, zsq, so we have shown

one half of (27).

Next we modify the argument to show the other half of property (27): if q̂t “ put, vt, ztqpÏ
˚˚
q̂s “

pus, vs, zsq then pxt, yt, ztq ą pxs, ys, zsq. If q̂t pÏ
˚˚
q̂s, then there are ŵX ě 0 and ŵY ě 0 such

that pt ¨ qt “ ptZ ¨z
s` ŵX ` ŵY , with IUpp

t
X , ŵXq ą Upxsq and IV pp

t
Y , ŵY q ą Upysq. It follows

from (P3) in Lemma 3 that there are wX ě 0 and wY ě 0 such that pt ¨qt “ ptZ ¨z
s`wX`wY ,

with ptX ¨ x̄pp
t
X , x

sq ď wX and ptY ¨ ȳpp
t
Y , y

sq ď wY . It is not possible for the latter two in-

equalities to be equations and for Upxq “ Upxsq for all x P x̄pptX , x
sq and V pyq “ V pysq for

all y P V pȳpptY , y
sqq because in that case (P4) in Lemma 3 guarantees IUpp

t
X , wXq “ Upxsq

and IV pp
t
Y , wY q “ Upysq (and so it is impossible for IUpp

t
X , ŵXq ą Upxsq and IV pp

t
Y , ŵY q ą

Upysq). We are left with two cases: (i) either ptX ¨ x ă wX for some x P x̄pptX , x
sq or

ptY ¨ y ă wY for some y P ȳpptY , y
sq; or (ii) either x ą xs for some x P x̄pptX , x

sq or y ą ys for

some y P ȳpptY , y
sq. In case (i), we conclude that there is px, yq P px̄pptX , x

sq, ȳpptY , y
sqq such

that pxt, yt, ztq Ï˚˚ px, y, zsq (by (S1)), from which we obtain pxt, yt, ztq ą px, y, zsq. In case
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(ii), we conclude that there is px, yq P px̄pptX , x
sq, ȳpptY , y

sqq such that px, y, zsq ą pxs, ys, zsq

(see (23)). Note that (28) and (29) continue to hold and so the transitivity of ľ guarantees

that pxt, yt, ztq ą pxs, ys, zsq. QED

Proof of Theorem 3: Choose U and V to satisfy the conditions of Lemma 2. In particular,

U rationalizes OX and the preorder induced by U on X coincides with ľX ; V has analogous

properties. Lemma 3 guarantees that pľ is a preorder on pQ consistent with the revealed

preference relations of pO. Note also that Kppt, pt ¨ qtq is a regular constraint set (for all

t P T ). By Theorem 2 there is a well-behaved function F that rationalizes pO and such that

the preorder induced by F coincides with pľ on pQ. Therefore, at price pt, xt P arg maxtUpxq :

x P BpptX , p
t
X ¨ x

tqu, yt P arg maxtV pyq : y P BpptY , p
t
Y ¨ y

tqu, and

pUpxtq, V pytq, ztq P arg maxtF pu, v, zq : pu, v, zq P Kppt, pt ¨ pxt, yt, ztqqu

By Proposition 3, qt “ pxt, yt, ztq P arg maxtGpqq : q P Bppt, pt ¨ qtqu. We conclude that G

rationalizes O. Furthermore, by the definition of pľ (see (25)), if

qt “ pxt, yt, ztq ľ pąq pxs, ys, zsq “ qs,

then put, vt, ztqpľ ppąq pus, vs, zsq. Since the preorder induced by F coincides with pľ, we obtain

Gpqtq “ F put, vt, ztq ě pąqF pus, vs, zsq “ Gpqsq.

So the preorder induced by G on Q coincides with the restriction of ľ to Q.

If C is minimal, then for q, q1 P C such that q ľ q1, there exists qi (i “ 1, 2, ...pn ´ 1q) such

that q “ q0 ľ q1, q1 ľ q2, q1 ľ q2,..., qn´1 ľ qn “ q1, where either both qi and qi`1 are

in Q or the vectors qi and qi`1 differ only in their X-subvectors or Y -subvectors. But in

these cases, we also Gpqiq ě pąqGpqi`1q if qi ľ pąq qi`1. Therefore, Gpqq ě pąqGpq1q if

q ľ pąq q1. QED

One may be tempted to think that so long as the revealed separability relations ľ˚ and Ï˚

display no cycles on C, then a consistent separable relation is admissible; in other words,

that there is some analog to Proposition 2, which relates GARP with the admissibility of a

consistent preorder on the finite data set. The next example shows that that is not the case.

Example 3: Consider a data set with the following four observations, drawn from an agent

who is choosing a consumption bundle out of two X-goods and four Z-goods.
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p1
X “ p1, 2q, p

1
Z “ p2.5, 1, 100, 100q, x1 “ p1, 0q, z1 “ p2, 1, 0, 0q, w1 “ 7

p2
X “ p2, 1q, p

2
Z “ p1, 1.5, 100, 100q, x2 “ p0, 1q, z2 “ p1, 2, 0, 0q, w2 “ 5

p3
X “ p2, 1q, p

3
Z “ p100, 100, 2.5, 1q, x3 “ p0, 1q, z3 “ p0, 0, 2, 1q, w3 “ 7

p4
X “ p1, 2q, p

4
Z “ p100, 100, 1, 1.5q, x4 “ p1, 0q, z4 “ p0, 0, 1, 2q, w4 “ 5.

The direct revealed separability relations on C are the following:

(i)px1, z1q Ï˚˚ px1, z2q and px1, z1q Ï˚˚ px2, z2q

(ii) px2, z2q Ï˚˚ px2, z1q

(iii) px3, z3q Ï˚˚ px3, z4q and px3, z3q Ï˚˚ px4, z4q

(iv) px4, z4q Ï˚˚ px4, z3q.

This is an exhaustive list of relations between distinct elements, there are no others.11 In

particular, there is no direct relation ľ˚˚
X between x1 “ x4 and x2 “ x3, so all the relation-

ships on the list are obtained through criterion (S1). Since there are no cycles in the direct

revealed preferences, GARP is satisfied, and the data can be rationalized by a monotone

utility function. However, we claim that there is no consistent separable relation on C, so

the data cannot be rationalized by a separable utility function.

First, notice that it is not possible for x2 ľX x1; if this were to hold,

px1, z1
q ą px2, z2

q ą px2, z1
q ľ px1, z1

q,

where the first relation follows from (i) and the second from (ii). Therefore, px1, z1q ą

px1, z1q, which is impossible since ľ is preorder. We conclude that x1 ąX x2; equivalently,

x4 ąX x3. This in turn leads to

px3, z3
q ą px4, z4

q ą px4, z3
q ą px3, z3

q,

where the first relation follows from (iii) and the second from (iv). We obtain px3, z3q ą

px3, z3q, which is again impossible.

In Theorem 3, while the rationalizing utility functions U and V can be chosen to be concave,

F was only only specified as well-behaved, i.e., strongly monotone and continuous. It is

natural to ask whether, in the case where a data set is rationalizable with a separable utility

function, then one could choose, not just U and V , but also F , to be concave. The following

example shows that that is not the case.

11Notice that no bundle involving z3 or z4 is affordable at p1 or p2; similarly, no bundle involving z1 or z2

is affordable at p3 or p4.
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Example 4: Consider a data set with the following six observations of an agent choosing

from two X-goods and one Z-good. Note that wt
X and wt denote the total expenditure on

the X-goods and the total expenditure over all goods respectively.

p1
X “ p1, 2q, p

1
Z “ 1, x1 “ p1, 1q, z1 “ 12, w1

X “ 3, w1 “ 15;

p2
X “ p1, 2q, p

2
Z “ 1, x2 “ p4, 4q, z2 “ 3, w2

X “ 12, w2 “ 15;

p3
X “ p1, 2q, p

3
Z “ 1, x3 “ p4, 0q, z3 “ 11, w3

X “ 4, w3 “ 15;

p4
X “ p2, 1q, p

4
Z “ 1, x4 “ p1, 1q, z4 “ 12, w4

X “ 3, w4 “ 15;

p5
X “ p2, 1q, p

5
Z “ 1, x5 “ p4, 4q, z5 “ 3, w5

X “ 12, w5 “ 15;

p6
X “ p2, 1q, p

6
Z “ 1, x6 “ p4, 0q, z6 “ 100, w6

X “ 8, w6 “ 108.

It is straightforward to check that the observations tpptX , x
tqu6t“1 obey GARP. Let U be any

strongly monotone, continuous, and concave utility function rationalizing the choice over the

X-goods.

While there are six observations, there are only three distinct budget sets. Observations 1,

2, and 3 are all associated with the budget set Bpp1, 2, 1q, 15q, though the choices made are

distinct. In z-u space (think of z and u on the horizontal and vertical axes respectively),

the chosen bundles are p12, Up1, 1qq, p3, Up4, 4qq, and p11, Up4, 0qq respectively. Since U

rationalizes tpptX , x
tqu6t“1, these points must lie on the upper boundary of K1 “ K2 “ K3.

Similarly, observations 4 and 5 are both associated with the budget set Bpp2, 1, 1q, 15q. In z-u

space, the chosen bundles are p12, Up1, 1qq and p3, Up4, 4qq; they lie on the upper boundary

of K4 “ K5. Notice that the upper boundaries of K1 and K4 intersect at two points at least.

Observation 6 is associated with a distinct budget set, Bpp2, 1, 1q, 106q and its chosen bundle

in z-u space is p100, Up4, 0qq; the very high level of income guarantees that K6 contains K1

and K4 in its interior.

We claim that the set tpKt, pzt, utqu6t“1 obeys GARP, so that there will be a strongly

monotone and continuous function F rationalizing those observations (and hence Gpx, zq “

F pUpxq, zq will rationalize tppt, pxt, ztqu6t“1). To check this, we note that K1 and K4 have

at least two intersections, at the chosen bundles p12, Up1, 1qq and p3, Up4, 4qq; to check that

GARP holds, all we need to do is check that p11, Up4, 0qq, which is also chosen at K3 “ K1

is not in the interior of K4. In fact, something stronger than this is true for any U because

IUpp2, 1q, 4q ă IUpp2, 1q, 8q “ Up4, 0q “ IUpp1, 2q, 4q,

where the strict inequality follows from the strong monotonicity of U , the first equality from
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observation 6, and the second equality from observation 3. So we obtain

p11, IUpp2, 1q, 4qq ă p11, Up4, 0qq (30)

where p11, IUpp2, 1q, 4qq is on the upper boundary of K4 and p11, Up4, 0qq on the upper

boundary of K1.

Therefore there is a strongly monotone and continuous function F that rationalizes tpKt, pzt, utqu6t“1.

However, such an F will never be quasiconcave, so long as U is concave. To see this, choose

t so that t3 ` p1 ´ tq12 “ 11. If F is quasiconcave, its indifference curves are convex;

since p3, Up4, 4qq, p12, Up1, 1qq, and p11, Up4, 0qq lie on the same convex indifference curve,

we obtain

tp3, Up4, 4qq ` p1´ tqp12, Up1, 1qq “ p11, tUp4, 4q ` p1´ tqUp1, 1qq ě p11, Up4, 0qq.

It follows from (30) that

tp3, Up4, 4qq ` p1´ tqp12, Up1, 1qq “ p11, tUp4, 4q ` p1´ tqUp1, 1qq ą p11, IUp2, 1q, 4q,

which is not possible since p3, Up4, 4qq, p12, Up1, 1qq and p11, IUpp2, 1q, 4qq are on the boundary

of K4 and K4 is concave (because U is concave).12

Appendix

Proof of Proposition 2: Suppose that O admits a preorder ľ that is consistent with its

revealed relations. To establish that GARP holds, let there be observations satisfying (7).

The consistency of ľ (in particular, with ľ˚), guarantees that

x1 ľ x2 ľ x3 ľ ... xn´1 ľ xn ľ x1, (31)

and hence xt „ xt`1 for t “ 1, 2, ..., pn ´ 1q. Furthermore, ľ is consistent with Ï˚ and so

xt ­Ï˚˚ xt`1 in (7), as required by GARP.

12In other words, since U is concave, both K1 and K4 are convex sets and in fact K1 must be strictly

convex because of (30). Therefore, the indifference curve of F , which must pass through three points on K1

cannot be a convex curve.
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To prove the “if” part of this proposition, we first define an equivalence relation on X in the

following manner: the elements x and x1 are related to each other if x ľ˚ x1 and x1 ľ˚ x.

This relation partitions X into equivalence classes; we denote a typical equivalence class by

rxs. We shall prove this claim by induction on the number of equivalence classes in X . If X
consists of just one equivalence class, then we let x ľ x1 for any two elements in X . This

must agree with the revealed relations unless, for some xt and xt
1

in X , we have xt Ï˚ xt
1

,

which requires xt ą xt
1

; but GARP says it is not possible for xt Ï˚ xt
1

since we also have

xt
1

ľ˚ xt.

Suppose the claim is true whenever X has K equivalence classes or less. We will show

that the claim holds when X has K ` 1 equivalence classes. With an abuse notation, we

define a relation ľ˚ on the equivalence classes in X in the following manner: rxs ľ˚ rxs1

if there is xt P rxs and xt
1

P rxs1 such that xt ľ˚ xt
1

. Notice that this relation is transitive

and antisymmetric (the latter means that if rxs and rxs1 are distinct and rxs ľ˚ rxs1 then

rxs1 ń˚ rxs). It follows there must be an equivalence class rxs such that there is no other

distinct equivalence class rxs with rxs ľ˚ rxs. Denote the set of observations associated with

rxs by O, i.e., ppt, xtq P O if xt P rxs.

Now consider the set of observations Ō “ OzO, with the associated set of bundles X̄ “

X z rxs. Notice that the removal of the observations O does not affect the revealed preference

relations; by this we mean that for x1, x P X̄ , x1 is revealed preferred (revealed strictly

preferred) to x when the data set is O if and only if x1 revealed preferred (revealed strictly

preferred) to x when the data set is Ō. So the number of equivalence classes in X̄ is one less

than the number in X . By the induction hypothesis, there is a preorder ľ on X̄ that agrees

with the revealed relations generated by Ō. We can extend ľ to X by defining xt ą xs for

all xt R rxs and xs P rxs and xs „ xs
1

for xs, xs
1

P rxs. This relation is a preorder on X and

it agrees with the revealed relations of O. QED

The proof of Corollary 1 requires the following two lemmas.

Lemma 4 Suppose O admits a preorder ľ on X that is consistent with its revealed relations.

Given pp̂, ŵq P R`
`` ˆ R`, there exist x̂ P R`

` and a preorder ľ1 on X 1 “ X Y tx̂u such that

(a) ľ1 is consistent with the revealed relations of O1 “ O Y tpp̂, x̂qu; (b) ľ1 is an extension

of ľ; and (c) sβpp̂, ŵq ą1 x̂ ľ1 βpp̂, ŵq. We can choose x̂ P βpp̂m, ŵq if p̂ ¨ x “ ŵ for all

x P βpp̂, ŵq; in this case, X 1 “ X and ľ1“ľ.
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Proof: We first consider the case where there is xt
1

P βpp̂, ŵq such that p̂ ¨xt
1

ă w and choose

x̂ ą xt
1

. Let ľ1 be the extension of ľ such tat xt
2

ą1 x̂ and x̂ ą1 xt
1

(where xt
2

P sβpp̂, ŵq).

We need to show the consistency of ľ1 with the relations ľ˚ and Ï˚ induced by O1.

It is clear from our construction that if x̂ ľ˚˚ xt then x̂ ą1 xt, since x̂ ą1 xt
1

and xt
1

ľ1 xt.

Suppose that for some s, xs ľ˚˚ x̂. Then xs Ï˚˚ xt
1

, since x̂ ą xt
1

. By the consistency of ľ

(with respect to the revealed relations of O), xs ą xt
1

. Therefore, xs R Bpp̂, ŵq and we obtain

xs ľ xt
2

(by the definition of xt
2

). Since ľ1 is an extension of ľ, we also have xs ľ1 xt
2

and,

by construction of ľ1, xt
2

ą1 x̂. By the transitivity of ľ1, we obtain xs ą1 x̂.

We now turn to the case where x̂ “ xt
1

. We need to show that ľ remains consistent with the

revealed relations of O1. If x̂ ľ˚˚ xt, then x̂ “ xt
1

ľ xt by definition of xt
1

. If x̂ “ xt
1

Ï˚˚ xt

then x̂ “ xt
1

ą xt since there does not exist xt „ xt
1

with p̂ ¨ xt ă ŵ. Suppose that for some

s, xs ľ˚˚ pÏ˚˚q x̂ “ xt
1

. Then xs ľ pąq x̂ “ xt
1

, by the consistency of ľ (with respect to

the revealed relations of O). QED

Lemma 5 Suppose O admits a preorder ľ on X that is consistent with its revealed relations.

Given a finite set tppm, wmqumPM Ă R`
`` ˆ R`, there exist tx̂mumPM Ă R`

` and a preorder

ľ1 on X 1 “ X Y tx̂mumPM such that (a) ľ1 is consistent with the revealed relations induced

by X 1 “ X Y tx̂mumPM ; (b) ľ1 is an extension of ľ; (c)

sβppm, wm
q ą1 x̂m ľ1 βppm, wm

q for all m PM , (32)

where we can choose x̂m P βppm, wmq if pm ¨ x “ wm for all x P βppm, wmq.13

Proof: Let ĂM “ tm P M : pm ¨ x “ wm @x P βppm, wmqu. Choose m1 P ĂM and let

x̂m
1

“ xt
1

for some xt
1

P βppm
1

, wm1

q. By Lemma 4, ľ remains consistent with the revealed

relations of O1 “ OYtppm1

, x̂m
1

qu. Now choose another element m1 in ĂM (if one exists), x̂m
2

P

βppm
2

, wm2

q and Lemma 4 again guarantees that ľ is consistent with the revealed relations of

O2 “ O1Ytppm
2

, x̂m
2

qu. Repeating this procedure until all the elements of ĂM are exhausted,

we conclude that ľ is consistent with the revealed relations of rO “ O Y tppm, x̂mqumPĂM .

Now choose an element n P MzĂM . By Lemma 4, there is a bundle x̂n and a preorder ľ1

on X 1 “ X Y tx̂nu such that ľ1 extends ľ, ľ1 is consistent with the revealed relations of

13We deem sβppm, wmq ą1 x̂m to be satisfied if sβppm, wmq is empty. Note that β and sβ are defined with

respect to X .
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rO Y tppn, x̂nqu, and the following holds:

sβppn, wn
q ą1 x̂n ľ1 βppn, wn

q. (33)

Suppose there exists n1 ‰ n in MzM̃ , then by Lemma 4 again, there is x̂n
1

and a preorder

ľ2 extending ľ1 which is consistent with the revealed relations of rO Y tppn, x̂nq, ppn1

, x̂n
1

qu

and that satisfy

sβ1ppn
1

, wn1

q ą2 x̂n
1

ľ2 β1ppn
1

, wn1

q, (34)

where, by definition,

β1pp, wq “ tx1 P Bpp, wq X X 1 : x1 ľ x @x1 P Bpp, wq X X 1
u

and

sβ1pp, wq “ tx2 P X 1 : x2 ą β1pp, wq and if y P X 1 obeys y ą β1pp, wq then y ľ x2 u.

Significantly, since ľ2 is an extension of ľ1, we have sβppn
1

, wn1

q ľ2
sβ1ppn

1

, wn1

q and also

β1ppn
1

, wn1

q ľ2 βppn
1

, wn1

q. It follows from (34) that

sβppn
1

, wn1

q ą2 x̂n
1

ľ2 βppn
1

, wn1

q.

Since ľ2 is an extension of ľ1, (33) implies that

sβppn, wn
q ą2 x̂n ľ2 βppn, wn

q.

Clearly, we can repeat the procedure for the other elements of MzM̃ ; at each stage, we

augment the set of ‘observations’ by an additional element and apply Lemma 4. QED

Proof of Corollary 1: By Lemma 5, there is a preorder ľ1 on X 1 “ X Y tx̂mumPM satisfying

properties (a), (b), and (c) in the lemma. By Theorem 1, there exists U concave, continuous,

and strongly monotone that rationalizes U and the preorder induced by U on X 1 coincides

with ľ1. Therefore, (17) follows from (32) since x̂m maximizes U in Bppm, wmq and so

IUpp
m, wmq “ Upx̂mq. If pm ¨ x “ wm for all x P βppm, wmq, we can choose x̂m P βppm, wmq

and so IUpp
m, wmq “ Upβppm, wmqq. QED
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