
Consistency requirements and pattern methods in cost sharing

problems with technological cooperation

Eric Bahel∗ Christian Trudeau†

This draft:‡January 2013

Abstract

Using the discrete cost sharing model with technological cooperation, we
investigate the implications of a number of consistency requirements. In a con-
text where the enforcing authority cannot prevent agents (who seek to reduce
their cost shares) from splitting or merging their demands, the methods used
must make such manipulations unprofitable. The paper introduces a family
of rules that are immune to these demand manipulations, the pattern meth-
ods. For each of these methods, the associated production pattern indicates
how to use the different technologies in order to meet the agents’ demands.
Within this family, two rules stand out: the public Aumann-Shapley rule never
rewards technological cooperation; and the private Aumann-Shapley rule gen-
erates the maximum technological rent for homogeneous problems. The paper
also studies the sharing methods that are not affected by manipulations of the
technology. A useful axiomatization of the public Aumann-Shapley rule en-
sues: it is the unique flow method that is immune to demand maneuvers and
technology manipulations.

JEL classification numbers: C71, D63

Keywords: cost sharing, demand, technology, manipulations, flow method, pro-
duction pattern.

∗Department of Economics, Virginia Polytechnic Institute and State University, Blacksburg, VA
24061, USA. Email: erbahel@vt.edu

†Department of Economics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario,
Canada. Email: trudeauc@uwindsor.ca

‡We thank Yves Sprumont for stimulating conversations and Hervé Moulin for useful comments
and suggestions.

1

1 Introduction

We examine discrete cost sharing problems where each coalition of agents is endowed
with a specific technology. This setting, introduced by Bahel and Trudeau (2012),
extends the traditional cost sharing model —Moulin (1995) and van den Nouweland et
al. (1995)— by allowing the cost of meeting a given demand profile to vary depending
on the agents who participate in the production process. In particular, some agents
may demand zero while making their technology available to produce the others’
demands. Minimum cost spanning trees —see for instance Bird (1976)— and network
problems provide examples of situations where the cost of satisfying a fixed demand
profile varies depending on the agents who cooperate. In such situations, it makes
sense to allow for negative cost shares. Indeed, subsidizing an agent who improves
the technology (and whose demand does not affect the cost) is acceptable, and even
necessary, as soon as some basic fairness properties are required.

It is shown in Bahel and Trudeau (2012) that, provided three basic requirements
are met, the same system of weights —or unit flow— can be used (for all cost func-
tions) to compute the cost shares. The first requirement, the well-known additivity,
states that the cost shares should be additive in the cost function. The second axiom,
strong dummy, requires that the share of an agent whose technology (demand) does
not affect the cost be nonnegative (nonpositive). The third property, monotonicity
with respect to demand-increment costs, says that the cost share of an agent should
not decrease as her demand becomes costlier. The representation in terms of a flow
provides a counterpart to the result shown by Wang (1999) in the standard model.

The present paper studies cost sharing rules that are immune to manipulations of
the demand or the technology by the agents involved. In a context where the authority
assigning the shares cannot observe individual demands, agents have the option to
merge or split their demands in order to reduce their cost shares. A consistent
sharing method must therefore prevent such manipulations from being profitable.
Following this line of idea, Sprumont (2005) provided an interesting axiomatization of
the Aumann-Shapley cost sharing rule.1 It is the only addititve and dummy method
that is immune to merging or splitting maneuvers. Interestingly, under our more
general framework, we find that an infinite number of flow methods are immune to
manipulations of the demand. For these methods, the cost shares are computed using
production patterns, which indicate how to mix the technologies available in order
to produce the agents’ demands. Two noticeable pattern methods are examined: the
public Aumann-Shapley method, which never compensates technological cooperation,
and the private Aumann-Shapley method.

Likewise, if the designer of the sharing mechanism cannot monitor the production

1Aumann-Shapley cost shares are computed using the Shapley value of the cooperative game
where each unit demanded is viewed as a single player. Each agent then has to pay the sum of the
prices assigned to the units they demand. This widely-used pricing rule was introduced in Aumann
and Shapley (1974). One can consult Haimanko and Tauman (2002) for a survey of the results
relating to the Aumann-Shapley method.

2

process, groups of agents will find profitable to understate some of their technologies
in order to claim the rewards granted for technological improvements. Indeed, agents
will sabotage their production if they get to pay lower cost shares as a result. It is well
understood in the cost sharing literature that methods vulnerable to sabotage result
in output loss and inflated production costs —see for example Moulin and Sprumont
(2007). We show that the public Aumann-Shapley rule is the unique flow method
that is immune to splitting and merging maneuvers involving either the demand or
the technology. These results suggest that rewarding technological cooperation (while
preventing manipulations) requires that the planner be able to perfectly monitor the
production process. We do not consider manipulations where agents overstate their
technology; it would be redundant to do so, since our characterization yields the
public Aumann-Shapley rule (which is obviously immune to overstatements of the
technology).

Focusing on the class of homogeneous problems (for which the cost is a multi-
plicatively separable function of the number of agents and the aggregate demand),
we show that the public and private Aumann-Shapley rules are diametrically opposed
within the family of pattern methods. The former minimizes the rent allocated to
technological cooperation, whereas the latter maximizes it. Our results provide addi-
tional arguments in favor of the use of the Aumann-Shapley rule and its adaptations.
Indeed, very few works offer axiomatizations of the discrete Aumann-Shapley rule.
Besides Sprumont (2005), we know only of the axiomatization proposed by Santos and
Calvo (2000), which is based on the concept of balanced contributions —introduced
by Myerson (1980).

The paper is structured as follows. Section 2 presents the basic definitions and
properties. The reader familiar with the model of Bahel and Trudeau (2012) may
skip it and jump to Section 3, which formally introduces the consistency require-
ments needed to prevent profitable manipulations. Pattern methods and the related
results are discussed in Section 4. In Section 5 we compare the public and private
Aumann-Shapley methods in the light of homogeneous problems. Section 6 proposes
an axiomatization of the public Aumann-Shapley rule. Finally, our concluding com-
ments are made in the discussion of Section 7.

2 Basic definitions and properties

Throughout the paper, we use the following convention for vector inequalities:

• x̄ = (x̄1, ..., x̄m) ≤ x̃ = (x̃1, ..., x̃m) iff x̄i ≤ x̃i, for every i = 1, ...,m;

• x̄ = (x̄1, ..., x̄m) < x̃ = (x̃1, ..., x̃m) iff [x̄ ̸= x̃ and x̄i ≤ x̃i, for every i = 1, ...,m].

Moreover, for any vector x̄ = (x̄1, ..., x̄m) ∈ IRm
+ , let N0(x̄) ≡ {i ∈ {1, ...,m}| xi = 0}

and N(x̄) ≡ {1, ...,m} \N0(x̄).
The framework we use is essentially that of Bahel and Trudeau (2012). In ad-

dition, since the present paper examines cost sharing problems with technological

3

cooperation and variable population, we use the set of agents (beside the demand
vector and the cost function) to describe any such problem. Let us denote by IN
(resp. IN++) the set of nonnegative integers (resp. the set of natural numbers). De-
fine N as the set containing all finite subsets of IN++ that are constituted of at least
two agents.

For any N ∈ N , x ∈ NN and S ⊆ N , let xS ∈ NS denote the vector whose
coordinates are the demands of the agents in S. The cost function C(S, ·) is defined
over the set NS. For any xS ∈ NS, C(S, xS) ∈ R+ represents the cost of supplying
the demand xS when all the agents in S cooperate on its production. Note that some
agents in S might demand zero while cooperating to produce the positive demands
of the other agents in S. We make the following assumptions on these cost functions:

1. C (S1, xS1) ≥ C
(
S2,
(
xS1 , 0S2\S1

))
, where S1 ⊆ S2 ⊆ N, xS1 ∈ NS1 and(

xS1 , 0S2\S1

)
∈ NS2 (the technology weakly improves as the number of active

agents increases; that is, for a fixed demand profile to be produced, the cost
cannot increase with the size of S).

2. C(S, x̄S) ≤ C(S, x̃S) for any x̄S, x̄S ∈ NS s.t. x̄S ≤ x̄S (for a fixed technology,
the cost is nondecreasing in the demand profile).

3. C(S, 0S) = 0 for any S ⊆ N (for any technology, the cost of producing nothing
is zero).

Note that we assume an agent has to make her technology available whenever
her demand is positive. This is a natural assumption when looking for example at
network problems, where an agent has to make her location available to be connected.

Let Γ(N) be the set of cost functions C(·, ·) that satisfy conditions 1, 2 and 3 when
the set of agents is N . A cost sharing problem is a triple (N, x,C) such that N ∈ N ,
x ∈ INN and C ∈ Γ(N). We denote by P the set of such cost sharing problems.

Let us define x(S) ≡
∑
i∈S

xi, for any S ⊆ N . The following example describes a

sharing problem where the cost function varies depending on the agents who partic-
ipate in the project.

Example 1 Consider the network problem —described by Figure 1— where country
C0 (the source) owns a fixed pipeline that supplies the distribution centers D1 and
D2.

2 At each distribution center Dk (k ∈ {1, 2}), there is a set of consumers Ik;
and consumer i has the demand xi ∈ IN. The demand profile to transport is thus
(xI1 , xI2). Each consumer has the option to use a transportation method other than
the pipeline for her demand.3 Let us assume that, for k ∈ {1, 2}, the cost of shipping
the joint demand of the agents in Ik via this alternative means of transportation is

2Pipelines are widely used for the transportation of crude oil and natural gas for example. A
good illustration is the case of Russian natural gas (and oil) pipelines that go through Ukraine to
supply many European countries.

3For instance, if pipeline facilities are not available, crude oil can be trucked or shipped.

4

Figure 1: Map of countries and distribution centers

given by δk
∑
i∈Ik

xi, where δk > 0. On the other hand, it costs γk
∑
i∈Ik

xi to carry the

aggregate demand of Di through the pipeline (when it is available), with 0 < γk < δk.
Note that although Country 1 hosts no distribution center, it does affect the cost

function of the project. Indeed, the agents in I2 —but not those in I1— have to use
their alternative route, and thus pay the cost δk

∑
i∈Ik

xi, if Country 1 does not agree

to lend its territory. If C0 (the owner of the pipeline) does not participate in the
transportation project, then all agents in I1 ∪ I2 must use alternative routes to ship
their demands. The total cost of transporting the demand profile x depending on the
agents S = I1 ∪ I2 ∪ T (with T ⊆ {C0, C1}) who participate is:4

C(S, x) =


γ1x(I1) + γ2x(I2), if T = {C0, C1};
γ1x(I1) + δ2x(I2), if T = {C0};
δ1x(I1) + δ2x(I2), if C0 /∈ T.

This example will be recalled further on for illustration purposes. Let us now
define the central notion of the paper.

Definition 1 A cost sharing method (CSM) y is a mapping defined from P to RN

such that
∑

i∈N yi(N, x, C) = C(N, x), for any (N, x, C) ∈ P.

A CSM is thus a mechanism which, for every cost sharing problem, assigns a cost
share to each of the agents, with the requirement that the shares sum up to the cost
of producing the demand x when all the agents are cooperating. Next, we introduce
the basic properties used in this model.

Additivity A CSM y meets Additivity if y(N, x, C1+C2) = y(N, x, C1)+y(N, x, C2),
for any N ∈ N , C1, C2 ∈ Γ(N) and x ∈ INN .

4Note that, just as S, the set Ik (k = 1, 2) of agents located at Dk may vary.

5

Definition 2 For the cost function C ∈ Γ(N), we say that agent i is a

• demand-dummy if C(S∪{i} , (t, a))−C(S∪{i} , (t, a−1) = 0 for all S ⊆ N\ {i},
t ∈ NS and a = 1, 2, ...;

• technology-dummy if C(S ∪ {i} , {t, 0}) − C(S, t) = 0 for all S ⊆ N\ {i} and
t ∈ NS;

• dummy if she is both demand-dummy and technology-dummy.

Strong Dummy: A CSM y meets Strong Dummy if, for any problem (N, x, C) and
any i ∈ N , we have the following properties:

i) yi(N, x, C) ≤ 0, if agent i is demand-dummy for C;
ii) yi(N, x, C) ≥ 0, if agent i who is technology-dummy for C.

To allow for a unit-flow representation of cost sharing rules, let us re-express every
cost function in Γ(N) as follows. We define a vector z that encompasses both techno-
logical cooperation and demand: the first unit of zi represents agent i’s technological
cooperation, the following units represent agent i’s demand. One can interpret any
z ∈ NN \ {0N} as follows: if zi > 0, then agent i cooperates to the production; her
demand (whether or not she cooperates) is xi = max(0, zi − 1).

Let eS ∈ NN be such that eSj = 1 if j ∈ S and eSj = 0 otherwise. For i ∈ N ,
we will often write i instead of {i}. Note that the mapping Φ which, to any (S, x)
s.t. ∅ ̸= S ⊆ N and x ∈ NS, assigns z = (x, 0N\S) + eS is one-to-one. Indeed,
recalling that N(z) = {i ∈ N | zi > 0}, one can see that the (unique) inverse image
of any z ∈ NN \ {0N} is given by (S, x) s.t. S = N(z) and x = (z − eN(z))N(z).
For any z ∈ NN \ {0N}, we define N1(z) ≡ {i ∈ N | zi = 1} as the set of agents
i who participate to the production process while demanding xi = zi − 1 = 0. In
addition, for any demand profile x ∈ INN , we define zx ≡ Φ(N, x). This implies that
N1(z

x) = N0(x).
The transformation Φ allows to have a cost function C∗ = C ◦ Φ−1 with a single

argument z that accounts for both demand and technology, which proves to be con-
venient in the remainder of the paper. Observe that the domain of C∗ is NN \ {0N}.

Let Γ∗(N) be the set of all cost functions that can be written as C∗ = C ◦ Φ−1,
where C ∈ Γ(N). Note that the properties 1, 2 and 3 that characterize the cost
functions in Γ(N) come down to:

C∗(a+ ei) ≤ C∗(a) if ai = 0;

C∗(a+ ei) ≥ C∗(a) if ai > 0;

C∗(a) = 0 if a ∈
]
0N , eN

]
.

We may now state an additional axiom, which expresses the idea that an agent
whose demand increments become costlier (ceteris paribus) should not pay less. For
any C∗ ∈ Γ∗(N), i ∈ N and t ≥ ei, let ∂iC

∗(t) ≡ C∗(t)− C∗(t− ei).

6

Monotonicity with respect to Demand-increment Costs (MDC)
A CSM y meets MDC if, ∀x ∈ NN , ∀Ĉ, C̄ ∈ Γ(N) such that Ĉ(N, x) ≥ C̄(N, x) and
any agent i, we have

yi(N, x, Ĉ) ≥ yi(N, x, C̄) if

{
∂iĈ

∗(t) ≥ ∂iC̄
∗(t) ∀t s.t. ti ≥ 2 and

∂iĈ
∗(t) = ∂iC̄

∗(t) ∀t s.t. ti = 1.
(1)

The transformation of (S, x) into z allows the use of flows methods (as in the
traditional model) to compute the shares.

Definition 3
• A (unit) flow to a demand profile z ∈ INN is a mapping f(z, .) : [0N , z] → IRN

+ that
satisfies the following properties:

(i) fi(z, t) = 0 if ti = 0

(ii)
∑
i∈N

fi(z, ei) = 1

(iii)
∑
i∈N

fi(z, t) =
∑

i∈N̂(z,t)

fi(z, t+ ei) ∀t ∈]0N , z],

where N̂(z, t) = {i ∈ N | ti < zi}.
• A flow (system) is a list f = {f(z, .), z ∈ ∪N∈N INN}, where f(z, .) is a flow to z.

The following result, which is proved in Bahel and Trudeau (2012), shows that any
CSM satisfying Additivity, Strong Dummy and MDC can be represented by a flow.

Theorem 1 (Bahel and Trudeau, 2012)
A CSM y satisfies Additivity, Strong Dummy and MDC if and only if there exists a
(unique) flow f such that, for any (N, x, C) ∈ P and i ∈ N , we have

yi(N, x, C) =
∑

r∈[ei,zx]

fi(z
x, r)∂iC

∗(r).

In the remainder of the paper, we use the phrases “flow method” and “CSM
satisfying Additivity, Strong Dummy and MDC” interchangeably.

3 Demand (technology) manipulations and consis-

tency requirements

This section introduces the axioms that we examine in the present work. Let us
consider the following example, which illustrates the fact that the cost sharing rule
used by the enforcing authority must exhibit some consistency properties.

7

Example 2 Consider the cost sharing problem P = (N, x, C), where N = {1, 2, 3}, x =
(2, 1, 0), and C is the cost function defined by

C(S, tS) =

{
2
∑

i∈S t
2
i , if 3 /∈ S∑

i∈S\{3} t
2
i , if 3 ∈ S.

In case agent 1 decides to split into two distinct agents (a and b) who each demand 1
and own her initial technology, we obtain a new cost sharing problem P ′ = (N ′, x′, C ′)
with 4 agents. Precisely, we have

N ′ = {a, b, 2, 3}, x′ = (x′
a, x

′
b, x

′
2, x

′
3) = (1, 1, 1, 0),

C ′(S, tS) =


C(S, tS) if S ∩ {a, b} = ∅
C
(
{1} ∪ (S ∩ {2, 3}), (ta, tS∩{2,3})

)
if S ∩ {a, b} = {a}

C
(
{1} ∪ (S ∩ {2, 3}), (tb, tS∩{2,3})

)
if S ∩ {a, b} = {b}

C
(
{1} ∪ (S ∩ {2, 3}), (ta + tb, tS∩{2,3})

)
if S ∩ {a, b} = {a, b}.

Note that the function C ′ expresses the fact that the demands of agents a and b in P ′

are homogeneous, that is to say, only their sum matters in determining the cost.
Suppose that the cost sharing rule ŷ adopted by the planner is such that

ŷ1(P) = 4, ŷ2(P) = 2, ŷ3(P) = −1

ŷa(P
′) = ŷb(P

′) = ŷ2(P
′) = 5/3, ŷ3(P) = 0

Since ŷ1(P) = 4 > ŷa(P
′) + ŷb(P

′) = 10/3, agent 1 will find profitable to split into
two agents so as to transform P into P ′.

On the other hand, if we instead had ŷ1(P) < ŷa(P
′) + ŷb(P

′), then the agents
a, b would find profitable to merge into the single agent 1 so as to transform P ′ into
P . In order to avoid these (merging or splitting) manipulations, a method y should
hence satisfy y1(P) = ya(P

′) + yb(P
′).

In what follows, we generalize the idea presented in Example 2 by adapting the
axiom No Merging or Splitting, which was introduced in Sprumont (2005), to our
framework. In the case where the enforcing authority can observe the technology,
but not the individual demands, it has to foster a CSM that prevents manipulations
of the demand. Let us introduce some terminology.

Definition 4 Consider two cost sharing problems P = (N, x, C), P ′ = (N ′, x′, C ′) ∈
P. We say that P ′ is a demand-splitting manipulation of P available to
agent i ∈ N if:

1- N ′ = (N \ i) ∪ I, for some I ∈ N s.t. (N \ i) ∩ I = ∅;

2- x′
N\i = xN\i and

∑
i′∈I

x′
i′ = xi (with xi′ ≥ 1, ∀i′ ∈ I);

8

3- C ′ (S, tS) = C (S, tS) and C ′ (S ∪R, (tS, tR)) = C
(
S ∪ i,

(
tS,
∑

i′∈R ti′
))
, for all

S ⊆ N \ i, ∅ ̸= R ⊆ I, tS ∈ INS, tR ∈ INR.

Whenever two problems P, P ′ satisfy the three conditions in Definition 4, we
equivalently say that P ′ is a demand-merging manipulation available to the agents in
I. The agents in I have homogeneous demands in the sense that only the sum of their
demands matters in determining the cost. Also note that in case one of the agents in
I is active, she inherits the full technology of agent i (as opposed to a technology less
efficient than that of i, which –as will be seen– may occur with an arbitrary splitting
manipulation). The following axiom requires that such demand manipulations be
unprofitable.

Weak No merging or splitting for demand (WNMSD)
A CSM y meets weak no merging or splitting for demand if, for any P = (N, x,C), P ′ =
(N ′, x′, C ′) ∈ P such that and P ′ is a demand-splitting manipulation of P available
to agent i ∈ N [with N ′ = (N \ i) ∪ I], we have

yi(N, x, C) =
∑
i′∈I

yi′(N
′, x′, C ′).

With a sharing rule that satisfies WNMSD, agents do not directly benefit from
splitting or merging manipulations. In the following example we show that, in a con-
text where side payments are possible, demand-splitting manipulations could involve
multiple agents.

Example 3 Recall the problems P, P ′ of Example 2 and suppose now that the planner
uses the CSM ȳ such that

ȳ1(P) = 4, ȳ2(P) = 2, ȳ3(P) = −1

ȳa(P
′) + ȳb(P

′) = 4, ȳ2(P
′) = 1, ȳ3(P

′) = 0.

Although ȳ does not violate WNMSD, agent 1 could still benefit from splitting into
the two agents a, b by coordinating with agent 2. Indeed, the splitting of agent 1 into
a and b decreases the cost share of agent 2 from 2 to 1. Agent 1 could thus solicit a
transfer of τ ∈ (0, 1) from agent 2 in order to split; and agent 2 would accept since
the splitting of 1 would yield her the amount 1− τ > 0 in net savings.

The previous example shows that when transfers between agents are possible, a
method is immune to demand manipulations if: (a) it does not change the overall
share of the splitting agent, (b) it does not increase the share of some other agents.
Combining the budget-balance condition with the requirements (a) and (b) suggests
that all shares must be unaffected by merging or splitting manipulations for the CSM
to be incentive compatible. This requirement is stated by the following.

9

No merging or splitting for demand (NMSD)
A CSM y meets no merging or splitting for demand if, for any P = (N, x, C), P ′ =
(N ′, x′, C ′) ∈ P such that P ′ is a demand-splitting manipulation of P available to
agent i ∈ N [with N ′ = (N \ i) ∪ I], we have

yN\i(P) = yN\i(P
′) and yi(P) =

∑
i′∈I

yi′(P
′).

Obviously, no merging or splitting for demand is a stronger condition than WN-
MSD since it requires that all cost shares —as opposed to the mere share of the
splitting agent— be unaffected by splitting or merging manipulations of the demand.

Note that a particular demand manipulation available to agent i ∈ N is to change
her name to i′ ∈ N \ i. In this case, we have I = {i′}. Using this argument
repeatedly, one can easily show that NMSD implies a symmetry property, which is
stated by the following remark. Let σij be the permutation that transposes the ith
and jth coordinates. We say that agents i and j are symmetric for the cost function
C if C(S, σij(x)) = C(S, x) for any S ⊇ {i, j} and any x ∈ INS (that is to say, if C is
invariant under the transformation σij).

Remark 1 Any CSM y that satisfies no merging or splitting for demand necessarily
meets the following symmetry property: for any problem (N, x, C) such that i, j ∈ N
are symmetric for C and xi = xj > 0, we have

yi(N, x, C) = yj(N, x, C).

In a context where the enforcing authority cannot monitor the production process,
some agents will sabotage their own technology if doing so turns out to be profitable.
Note first that, because of the nonnegativity of the flow, it is never profitable for a
single agent to pretend her technology is less efficient than it actually is. However,
an individual who splits her demand between two distinct agents could benefit from
understating the technology of one of them. This may occur if the method used
does not exhibit some consistency properties as to the remuneration of technological
cooperation. The following example illustrates this fact.

Example 4 Consider two firms (providing the same good) that generate pollution
due to their respective production activities. The firms (1 and 2) are required by law
to clean up their emissions; and they are contemplating a cost sharing agreement. The
emission levels are (x1, x2) = (3, 2). Suppose that firm 1 owns a technology allowing
to clean up emissions (generated by either firm) at a unit cost of 1. Firm 2 does not
own such a technology: its only alternative is to hire an outside firm to clean up. The
outside firm charges a price of 2 per unit of emissions. The resulting problem between
1 and 2 is therefore P = (N, x, C) such that N = {1, 2}, x = (x1, x2) = (3, 2); and
∀S ⊆ N(with S ̸= ∅), ∀tS ∈ INS,

C(S, tS) =

{
2
∑

i∈S ti = 2t2, if 1 /∈ S∑
i∈S ti, if 1 ∈ S.

10

Firm 1 has the option to separate its production (firm a) and cleaning operations
(firm b), either by splitting into two firms or by transferring its cleaning technology
to a subsidiary. If firm 1 uses that option, the resulting problem is P ′ = (N ′, x′, C ′)
such that: N ′ = {a, b, 2}, x′ = (x′

a, x
′
b, x

′
2) = (3, 0, 2); and, for all S ⊆ N ′ (with S ̸= ∅)

and tS ∈ INS,

C ′(S, tS) =

{
2
∑

i∈S ti, if b /∈ S∑
i∈S ti, if b ∈ S.

Suppose that the CSM y used to compute the cost shares satisfies

y1(P) = 2, y2(P) = 3;

ya(P
′) = 5, yb(P

′) = −4, y2(P
′) = 4.

One can then see that firm 1 benefits from splitting into a and b, since it reduces its
cost share by doing so: ya(P

′) + yb(P
′) = 1 < 2 = y1(P).

If one instead starts from the problem P ′ with a method y such that the shares
satisfy ya(P

′) + yb(P
′) > y2(P), then firms a and b will find profitable to merge into

firm 1.

Let us now introduce some terminology allowing to generalize the manipulations
depicted by Example 4.

Definition 5
Consider two cost sharing problems P = (N, x, C), P ′ = (N ′, x′, C ′) ∈ P. We say
that P ′ is a splitting manipulation of P available to agent i ∈ N if:

1- N ′ = (N \ i) ∪ I, for some I ∈ N s.t. (N \ i) ∩ I = ∅;

2- x′
N\i = xN\i and

∑
i′∈I

xi′ = xi;

3- (a) C ′ (S, tS) = C (S, tS) and (b) C
′ (S ∪R, (tS, tR)) ≥ C

(
S ∪ i,

(
tS,
∑

i′∈R ti′
))
,

for all S ⊆ N \ i, tS ∈ INS, R ⊆ I, tR ∈ INR [where (b) is satisfied with equality
whenever R = I].

From the problem P = (N, x, C) to the problem P ′ = (N ′, x′, C ′), the demand
of agent i is split between the agents in I. As stated by 3-(a), the cost is the same
(under C or C ′) when the participating agents are all in N \ i. Although the agents
in I jointly own the same technology as i, they may choose to report a less efficient
technology than i’s, which is stated by 3-(b). To prevent such manipulations, the
cost share assigned to agent i (for the problem P) should not exceed the sum of the
shares paid by the agents in I (for the problem P ′).5

Equivalently, whenever the conditions 1, 2 and 3 are satisfied for two problems P
and P ′, we will say that P is a merging manipulation of P ′ available to the agents

5Observe from Definitions 4 and 5 that a demand-splitting manipulation is a particular type of
splitting manipulation.

11

in I. Indeed, the agents in I will find it profitable to merge into the single agent i if
the sum of their shares in the problem P ′ is greater than the share paid by agent i
in the problem P . In this case, agent i’s technology (in the problem P) is obtained
by combining the respective technologies of the agents in I.

From what precedes, it is straightforward to see that, whenever the conditions
1, 2 and 3 hold, requiring agent i’s cost share in P to be exactly equal to the sum
of the shares of the agents in I is necessary to prevent both splitting and merging
manipulations. The following axiom states this requirement.

No merging or splitting (NMS)
A CSM y meets no merging or splitting if, for any P = (N, x, C), P ′ = (N ′, x′, C ′) ∈ P
such that P ′ is a splitting manipulation of P available to agent i ∈ N with N ′ =
(N \ i) ∪ I, we have

yi(N, x, C) =
∑
i′∈I

yi′(N
′, x′, C ′).

Note that, unlike what was done for the axiom NMSD, we do not require (under
no merging or splitting) the shares of all agents other than i to be unaffected by i’s
splitting manipulations. Indeed, as will be seen in Section 6, adding this requirement
would essentially lead to the same characterization result and would therefore be
redundant.

Within our framework, there are (at least) two natural adaptations of the Aumann-
Shapley method that satisfy the axiom NMSD; and one of them trivially satisfies
NMS. The first one treats the most efficient technology as public; and therefore as-
signs cost shares by computing the Shapley price of each unit demanded when all
agents participate in the production. We call this method the public Aumann-Shapley
rule and use the notation ASpub. Note that ASpub trivially satisfies NMS, since it
never rewards technological improvements.

The second adaptation considers the Shapley value of the game where each unit
demanded, coupled with the technology of the agent who owns it, is viewed as a single
player, as well as each agent who simply lends their technology (while demanding
zero). Let us call this method the private Aumann-Shapley rule and use the notation
ASpr. It is useful to start with the following example illustrating these two rules,
which are formally defined in the next section.

Example 5 Recall the pipeline described by Example 1. Specifically, we have the cost
sharing problem P = (N, x, C) where N = {C0, C1} ∪ I1 ∪ I2, x = (0C0 , 0C1 , xI1 , xI2)
and , for all S = I1 ∪ I2 ∪ T (with T ⊆ {C0, C1}),

C(S, x) =


γ1x(I1) + γ2x(I2), if T = {C0, C1};
γ1x(I1) + δ2x(I2), if T = {C0};
δ1x(I1) + δ2x(I2), if C0 /∈ T.

It is not difficult to see that technological manipulations are irrelevant in this context,
since the countries (C0) cannot merge or split their territories (the pipeline). On

12

the other hand, demand manipulations are very much a concern: the agents at the
respective centers D1 and D2 will split or merge their demands (in order to reduce
their overall share) in case they do not pay the same unit price.

Recall that, under the public Aumann-Shapley rule, the pipeline and C1’s territory
are made available (for free) to produce the positive demands (xI1 , xI2). Therefore, the
agents C0 and C1 each receive a technological rent of zero. That is to say, ASpub

C0
(P) =

ASpub
C1

(P) = 0. It is then easy to see that —for any permutation of the x(I1) + x(I2)
units demanded— each unit transported to the center Dk will be charged a Shapley
price of γk. Thus, each agent i ∈ Ik pays the cost share ASpub

i (P) = γkxi (k ∈ {1, 2}).
As one might expect, it is more complicated to compute the private Aumann-

Shapley cost shares —which are obtained from the Shapley value of the game where
C0, C1 and each of the x(I1) + x(I2) units demanded are viewed as distinct players.
Let nk = x(Ik), for k = 1, 2. Performing some combinatorial analysis and simplifying
then gives:

ASpr
i (P) = xi(γ1 + δ1)/2, ∀i ∈ I1;

ASpr
j (P) = xj

n2∑
k=0

2(n2 − k + 1)

n2(n2 + 1)(n2 + 2)
[kγ2 + (n2 − k)δ2] , ∀j ∈ I2;

ASpr
C1
(P) = (γ2 − δ2)

n2∑
k=0

(n2 − k + 1)(n2 − k)

(n2 + 1)(n2 + 2)
< 0;

ASpr
C0
(P) = n1

γ1 − δ1
2

+ (γ2 − δ2)

n2∑
k=0

(n2 − k + 1)(n2 − k)

(n2 + 1)(n2 + 2)
< 0.

In the above Example 5, it is easy to see that demand manipulations are unprof-
itable under both rules. Arguably, in this context where technological manipulations
are irrelevant, the private Aumann-Shapley rule is the most appropriate method: it
divides surpluses equitably between agents while preventing demand manipulations.

Finally, let us introduce another consistency property which relates to the axioms
ordinality —discussed in Moulin (1995) and Moulin and Sprumont (2007)— and
irrelevance of dummy units —Sprumont (2008). In the traditional model, these
properties essentially state the idea that costless units may be eliminated from the
problem without the cost shares being affected.

Irrelevant demand
A CSM y meets the axiom irrelevant demand if, for any (N, x, C) ∈ P and any i ∈ N
that is demand dummy for C (with xi > 0), we have:

y(N, x, C) = y(N, (0i, xN\i), C).

In essence, this axiom requires the demand of an agent who is demand dummy
to be irrelevant to the determination of the cost shares. Indeed, since the units
demanded by such an agent i are costless, the shares should not change if they are

13

eliminated (which means that we have a new problem, where i cooperates to produce
the others’ demands). The axioms NMSD and irrelevant demand can be used to
characterize the family of rules presented in the next section.

4 Pattern methods: definition and properties

In what follows we examine the set of methods that satisfy the axiom NMSD, that
is to say, the set of cost sharing rules that are immune to demand manipulations
with side payments between the agents. In addition, we require these CSM to satisfy
irrelevant demand.

Let us first introduce some new concepts. Recall that a path γ to z ∈ INN
++ is a

mapping from
{
0, 1, ...,

∑
i∈N zi

}
to [0N , z] such that: (i) γ(

∑
i∈N zi) = z and (ii) for

each k ∈
{
1, ...,

∑
i∈N zi

}
, γ(k) is identical to γ(k− 1) in all coordinates but one, say

the ith, for which γi(k) = γi(k − 1) + 1. The associated flow to z, fγ(z, .), is such
that fγ

i (z, r) = 1 if r and r − ei belong to γ (with fγ
i (z, r) = 0 otherwise).

Definition 6 (a) Let N ∈ N and consider z ∈ {1, 2}N . We call production pat-
tern to z any sequence s : {1, ...,

∑
i∈N zi} → {T,D} that satisfies the following

properties:

• |s−1(D)| = |{i ∈ N : zi = 2}|;

• |{m : m < k and s(m) = T}| ≥ 1 + |{m : m < k and s(m) = D}|, for any
k ∈ {1, ...,

∑
i∈N zi} such that s(k) = D.

(b) We say that a path to z ∈ {1, 2}N follows the production pattern (to z) s if:
[γ(k)− γ(k− 1) = ei and s(k) = T] ⇔ γi(k) = 1, for any k ∈ {1, ...,

∑
i∈N zi}, i ∈ N .

(c) For every production pattern s to z = 2eN , let us define f s(z, .), the ele-
mentary flow to z associated with s, as the average of all the path methods that
follow the production pattern s to z.

The first condition in Definition 6-(a) states the fact that each D in the pattern
corresponds to a unit of demand. The second condition recalls that the technology
of an agent must be activated before the production of her unit of demand, if any.
Definition 6-(b) states the fact that two paths which follow the same production
pattern to z always produce the same number of units before activating an additional
technology. In the case where z = 2eN , this means that the two paths to z are
permutations of one another. Definition 6-(c) is illustrated by the following example.

Example 6 As an illustration of Definition 6, when z = (2, 2, 2), a particular pro-
duction pattern to z is TTDTDD, and a path (to z) that follows this production
pattern is γ = (03, e1, e1 + e2, 2e1 + e2, 2e1 + e2 + e3, 2e1 + 2e2 + e3, 2e1 + 2e2 + 2e3).
One can then see that the associated elementary flow to z is the one depicted by Figure

14

Figure 2: Elementary flow to (2,2,2) for the production pattern TTDTDD

2.6 The four other patterns to z = (2, 2, 2) and the corresponding elementary flows
are presented in Figure 3 (see Appendix).7

It is useful to note the observation below.

Remark 2 Every elementary flow is symmetric in the following sense. For all z =
2eN , t ∈ [0N , z], and i, j ∈ N : f s

i (z, t) = f s
j (z, σij(t)), where σij is the permutation

that transposes the ith and jth coordinates of any vector t.

Together, Figures 2 and 3 illustrate the symmetry of the 5 elementary flows to z =
(2, 2, 2). Next, let us explain how patterns can be used to construct flow methods.
Consider N ∈ N ; z, z′ ∈ INN

++ (with z ≤ z′); and f(z′, .) that is a flow to z′; and
define the flow f [z′](z, .) to z by: for all i ∈ N ,

f
[z′]
i (z, r) =

 fi(z
′, r), if Ji(r) = ∅;∑

t∈[zJi(r),z
′
Ji(r)

]

fi(z
′, (t, rN\Ji(r))), otherwise; (2)

where Ji(r) = {j ∈ N \ i : rj = zj}. In words,8 f [z′](z, .) is the flow to z resulting from
the projection of f(z′, .) on the box [0N , z].

9 Note that if z = z′, then f [z′](z, .) =
f(z′, .).

6In Figure 2 (and the following ones) we do not represent the part of the flow that is included in
[03, (1, 1, 1)]. We adopt this convention to lighten the diagram —recall that these branches of the
flow are irrelevant to the computation of the shares, since the cost is 0 for any t ∈ [03, (1, 1, 1)].

7The interested reader can also consult Bahel (2011), where elementary (fixed) flows are studied.
8It is not difficult to see that f [z′](z, .) meets the properties of a flow to z.
9See for example Sprumont (2008), where this projection is used to define fixed flows.

15

Suppose now that the flow method f is such that, for any z′ = 2eN , the cost
shares are computed according to f s(z, .), where s is some pattern to 2eN . Using the
projection above, we extend the flow f to profiles z ∈ {1, 2}N (that is, for any z such
that zi ≤ 2 for all i) by requiring that f(z, .) = f [2eN](z, .), for any z ∈ [0N , 2eN].
This allows to define the flow to all demand profiles such that some agents i demand
zero (that is, zi = 1).

In order to fully define the cost sharing method represented by f , it remains to
specify the flow to demand profiles where some agents i demand more than 1 unit
(that is, some zi ≥ 2). For any m ≥ 1, let

w(m) =

{
1, if m = 1;
(2, ..., 2) ∈ INm−1, if m > 1.

Let η(z) = |N1(z)|+
∑

i∈N(zi− 1) and ∆(z) = {1, ..., η(z)}. We define the projection
p by:

p(z) = (w(z1), ..., w(z|N |)) ∈ INη(z), for any z ∈ ∪N∈N INN
++.

In words, when all demands are positive, p(z) is the vector obtained by firstly splitting
the demand zi − 1 of each agent i into individual demands of 1, which are each
combined with the technology of i (this explains the 2 in the expression of w(m)),
and secondly putting the resulting vectors side by side.10 In addition, observe that the
set of indices in ∆(z) = {1, ..., η(z)} associated with agent i is given by the recursive
formula

Ĩ(i, z) =

{
{1, ...,max(1, zi − 1)}, if i = 1;
{max I(i− 1) + 1, ...,max I(i− 1) + max(1, zi − 1)}, if i = 2, ..., |N |.

Next, for any given z ∈ INN
++, consider the multi-valued function v = (vi(z, .))i∈N

defined on [0η(z), p(z)] by

vi(z, t) =

 0, if ti = 0 ∀i ∈ Ĩ(i, z);
1 +

∑
k∈Ĩ(i,z)

max(tk − 1, 0), otherwise. (3)

In essence, given t ∈ [0η(z), p(z)], the vector v(z, t) ∈ [0N , z] generates the profile of
unitary demands t following the splitting of the agents’ demands.

Finally, for any z ∈ INN
++ (with N ∈ N) and any f(p(z), .) that is a flow to p(z),

let f̄(z, .) be the flow to z such that,11 for all r ∈ [0N , z] and i ∈ N , we have

f̄i(z, r) =
∑
t∈Λ(r)

∑
k∈Ĩ(i,z)

fk(p(z), t), (4)

10The mapping p is indeed a projection: it is not difficult to see that p(p(z)) = p(z) is always
satisfied, since we have p(z′) = z′ as soon as z′ ∈ ∪N∈N {1, 2}N .

11One can easily check that f̄(p(z), .) satisfies the properties of a flow to p(z).

16

where Λ(r) = v−1({r}). That is to say: ri = vi(z, t), for any r ∈ [0N , z], t ∈ Λ(r) and
i ∈ N .

The operator · can be used to define the flow to any demand profile z, provided
that the flow to p(z) —the corresponding vector of unitary demands— is known.
Figure 4 in the Appendix depicts an example where f s(z, .) is derived from f s(p(z), .),
given z = (2, 3) and s = TTDTDD.

We are now set to fully define the flow method generated by a pattern.

Definition 7 We say that a flow method f is a pattern method if, for any N ∈ N
and z ∈ INN

++, we have

f(z, .) = (f s)[p(z)+eN1(z)](z, .) =

{
f s(z, .), if z ≥ 2eN ;

(f s)[2e∆(z)](z, .), otherwise;

for some s that is a production pattern to p(z) + eN1(z) = 2e∆(z).

From the above definition, every pattern method is uniquely characterized by a se-
quence of patterns of the form

(
s(z), z ∈ ∪N∈N

{
2eN

})
. Some noticeable patterns

allow to define two interesting adaptations of the well-known Aumann-Shapley rule.

Definition 8 • The public Aumann-Shapley rule, denoted by ASpub, is the pattern
method associated with the sequence of patternss(z) = T...T︸ ︷︷ ︸

|N | times

|N | times︷ ︸︸ ︷
D...D , for all z = 2eN s.t. N ∈ N

 . (5)

• The private Aumann-Shapley rule, denoted by ASpr, is the pattern method associ-
ated with the sequence of patternss(z) =

|N | times︷ ︸︸ ︷
TD...TD, for all z = 2eN s.t. N ∈ N

 . (6)

The above patterns (5) and (6) formally defines the two rules introduced in Exam-
ple 5. Note that ASpub always activate all technological units before the production of
any unit of demand (this means that technological cooperation is never remunerated).
On the other hand, with unitary demands, ASpr always activate a new technology
in order to produce an additional unit of demand. Further on, an axiomatization is
proposed for each of these distinguished methods.

More generally, pattern methods form a subclass of the family of flow methods,
and their interpretation is quite intuitive: for every one of them, the associated flow
is computed according to a specific production schedule which describes how to use
the different technologies available in order to produce the agents’ demands. It is

17

shown in what follows that pattern methods possess some remarkable consistency
properties.

For any cost sharing problem P = (N, x, C), let Pu = (Nu, xu, Cu) denote the
problem such that

Nu = ∆(z), zxu = p(zx) + eN0(x) = 2eNu (7)

C∗
u(t) = C∗

(
(min(ti, 1))i∈N0(x)

, (vi(z
x, t))i∈N(x)

)
, ∀t ∈ [0η(zx), p(z

x + eN0(x))] (8)

The problem Pu is obtained from P by: (a) adding a costless unit to the demand
of each agent in N0(x); and (b) splitting every agent’s demand into separate (yet
homogeneous) unitary demands that are each coupled with i’s technology. Thus,
the agents in Pu all have demands of 1 (that is zi = 2). Using Pu, the following
preliminary result can be shown.

Lemma 1 Let y be a pattern method. Consider a cost sharing problem P = (N, x, C)
and i ∈ N such that xi ≥ 1. Then we have:

(i) yi′(Pu) = yi′′(Pu), for any i′, i′′ ∈ Ĩ(i, zx);

(ii) yi(P) = xiyi′(Pu), for any i′ ∈ Ĩ(i, zx).

Proof. Suppose y is a pattern method represented by the flow system f ; and consider
P = (N, x, C), i ∈ N such that xi ≥ 1. Given that y is a pattern method and zxu =
2e∆(zx), we have: (a) f(zxu , .) = f s(zxu , .), where f s(zxu , .) is the elementary flow
associated with some s that is a production pattern to zxu = 2e∆(zx); (b) f(zx, .) =

(f s)[zxu](zx, .).
(i) Recall from Remark 2 that f s(zxu , .) is symmetric. Hence, it follows from

Theorem 1 that any two agents i′, i′′ who are symmetric for Cu —i.e., ∂i′C
∗
u(t) =

∂i′′C
∗
u(σij(t)), ∀t ∈ [ei′ , z

xu]— have exactly the same cost share under y. Given that
any i′, i′′ ∈ Ĩ(i, zx) are symmetric for Cu, we have the desired result: yi′(Pu) = yi′′(Pu).

(ii) Noting that ∂i′C
∗
u(t) = ∂iC

∗(r) for any r ∈ [ei, zx], t ∈ Λ(r) and i′ ∈ Ĩ(i, zx),
one can write

yi(P) =
∑

r∈[ei,zx]

fi(z
x, r)∂iC

∗(r) =
∑

r∈[ei,zx]

(
(f s)[zxu]

)
i
(zx, r)∂iC

∗(r)

=
∑

r∈[ei,zx]

∑
t∈Λ(r)

∑
i′∈Ĩ(i,zx)

(f s
i′)

[zxu](p(zx), t)∂iC
∗(r)

=
∑

i′∈Ĩ(i,zx)

 ∑
r∈[ei,zx]

∑
t∈Λ(r)

(f s
i′)

[zxu](p(zx), t)∂iC
∗(t)


=

∑
i′∈Ĩ(i,zx)

∑
t∈[ei′ ,zxu]

f s
i′(z

xu , t)∂i′C
∗
u(t)

=
∑

i′∈Ĩ(i,zx)

yi′(Pu)

18

Plugging the result of statement (i) into this sum then gives the desired result:

yi(P) =
∑

i′∈Ĩ(i,zx)

yi′(Pu) = |Ĩ(i, zx)|︸ ︷︷ ︸
xi

yi′(Pu) = xiyi′(Pu), for any i′ ∈ Ĩ(i, zx).�

This result allows to prove that pattern methods satisfy the axiom NMSD, which
is stated by the following theorem.

Theorem 2 Every pattern method satisfies the axiom no merging or splitting for
demand.

Proof. Suppose y is a pattern method represented by the flow system f , and consider
P = (N, x, C), P ′ = (N ′, x′, C ′) ∈ P such that P ′ is a demand-splitting manipulation
of P available to some agent i ∈ N , with N ′ = (N \ i) ∪ I.

First, let us show that Pu = P ′
u. To this end, observe that p(zx) = p(zx

′
) and

Ĩ(i, zx) = ∪i′∈I Ĩ(i
′, zx

′
). Indeed, recall that (a) zxj = zx

′
j = xj + 1, ∀j ∈ N \ i, (b)

xi =
∑
i′∈I

xi′ . Also note that w(z
x
i) = (

xi times︷ ︸︸ ︷
2, ..., 2) = (

(2,...,2)∈INx′
i′︷ ︸︸ ︷

w(zx
′

i′))i′∈I . Hence Nu = N ′
u and

xu = x′
u. In addition, using the third condition in the definition of a demand-splitting

manipulation, one can see that Cu = C ′
u.

Next, fixing j ∈ Ĩ(i, zx) = ∪i′∈I Ĩ(i
′, zx

′
) and using Lemma 1-(i),12 we have:

yk(P
′
u) = yk(Pu) = yj(Pu), for any i′ ∈ I and k ∈ Ĩ(i′, zx

′
) ⊂ Ĩ(i, zx). Invoking

Lemma 1-(ii) repeatedly, we can write∑
i′∈I

yi′(P
′) =

∑
i′∈I

x′
i′yj(Pu) =

(∑
i′∈I

x′
i′

)
yj(Pu) = xiyj(Pu) = yi(P).

In addition, given that xN\i = x′
N\i, we have Ĩ(l, zx) = Ĩ(l, zx

′
), for any l ∈ N \ i.

Finally, using the fact that Pu = P ′
u gives:

yl(P) =
∑

i′∈Ĩ(l,zx)

yi′(Pu) =
∑

i′∈Ĩ(l,zx′)

yl(P
′
u) = yi′(P

′
u), ∀l ∈ N \ i.

This shows that an arbitrary splitting manipulation available to i does not change
the share of the agents in N \ i either.�

Theorem 2 shows that the requirement NMSD is met by the class of pattern meth-
ods. An immediate corollary of this result is that all convex combinations of pattern
methods also meet this property. The issue that naturally arises is to determine
whether the set of rules satisfying the axiom NMSD is wider than the family we have
just described. The next result shows that the property is satisfied by some other
flow methods, which are more complex than mere convex combinations of pattern
methods.

12Recall from the second condition in Definition 4 that xi′ ≥ 1, ∀i′ ∈ I if P ′ is a demand-splitting
manipulation of P .

19

Theorem 3 A flow method f satisfies the axioms no merging or splitting for demand
and irrelevant demand if and only if: for any z ∈ INN (with N ∈ N) we have

f(z, .) =
Kz∑
k=1

αk(z)(f sk)[2e∆(z)](z, .),

where each sk is a production pattern to p(z) + eN1(z) = 2e∆(z), Kz ∈ IN++ and
α(z) ∈ IRKz

+ is such that
∑Kz

k=1 αk(z) = 1.

Proof. See Appendix.

Theorem 3 states the fact that any flow method meeting NMSD can be written as
a “pointwise” convex combination of pattern methods. Note that in the case where
zi ≥ 2 ∀i ∈ N , we have p(z)+eN1(z) = p(z) and the result of the theorem comes down
to f(z, .) =

∑Kz

k=1 αk(z)f sk(z, .), with each sk being a production pattern to p(z). Also
observe that both the number Kz of pattern methods in the decomposition and the
vector of weights α(z) vary with the profile z. It follows that the class of pattern-
generated methods described in Theorem 3 contains (as a proper subset) the family
of convex combinations of patterns methods, for which the patterns and the weights
used in the decomposition do not vary with z.

5 Homogeneous problems and the private Aumann-

Shapley method

Let us now examine the compensation of technological cooperation within the fam-
ily of pattern-generated methods (described by Theorem 3). We argue that, with
regard to this criterion, the public Aumann-Shapley rule —see (5)— and the pri-
vate Aumann-Shapley method —see (6)— lie at the two extremes of this family.
As already pointed out, since it does not reward technological cooperation, ASpub

minimizes the rent paid to “technological agents”, who demand zero while making
their technology available to the group. In what follows we show that ASpr is in
some regard the best sharing rule for these agents because it generates the highest
technological rent.

Definition 9 We say that a problem P = (N, x, C) is homogeneous if there exist a
nonincreasing function M : IN++ → IR+ and a nondecreasing function C̃ : IN → IR+

such that

C(S, t) = M (|S|) C̃

(∑
i∈S

ti

)
,

for any S ⊆ N and t ∈ [0S, xS].

20

Homogeneous problems are quite natural: the cost function is multiplicatively
separable, and the production cost depends only on the sum of the demands and the
number of agents who cooperate to the production.13 Many authors have examined
problems with homogeneous goods —see for instance Moulin and Shenker (1994),
Friedman and Moulin (1999). In the traditional model, homogeneous cost functions
depend only on the sum of the demands (since the technology does not vary at all):
it is well known in that context that the (standard) Aumann-Shapley rule assigns
cost shares in proportion to the agents’ demands, which is referred to as average cost
pricing for homogeneous goods. Under our more general framework, the counterpart
of this property is stated by the following result.

Theorem 4 Let P = (N, x, C) be a homogeneous problem, and y be a CSM satisfying
irrelevant demand and no merging or splitting for demand. Then, there exist two real
numbers θ0y(P) ≥ 0 and θuy (P) ≥ 0 such that:

yi(P) =

{
θuy (P)xi, if i ∈ N \N0(x);
−θ0y(P), if i ∈ N0(x).

The proof is omitted. The result is easily derived from the combination of Theo-
rem 3, Lemma 1, and the fact that all units of demand (technology) are symmetric
in every homogeneous problem.

Theorem 4 shows that, for all pattern-generated methods, agents who demand
homogeneous goods are charged in proportion to their demands. Furthermore, all
technological agents receive the same rent θ0y(P). Observe that, for any fixed ho-
mogeneous problem P , the cost shares are entirely characterized by one of the two
parameters θuy (P), θ0y(P). Indeed, the budget-balance requirement allows to derive
one from the other:

θuy (P) x(N)− |N0(x)| θ0y(P) = M(|N |) C̃(x(N))︸ ︷︷ ︸
C(N,x)

. (9)

Note in particular that the public Aumann-Shapley rule is characterized by θ0pub(P) =
0 (for any problem P), since it never compensates technological improvements. On
the other hand, performing some (tedious but straightforward) combinatorial analysis
shows that in a homogeneous problem P = (N, x, C), the technological rent assigned
by ASpr to every agent i ∈ N0(x) is

θ0pr(P) =
∑

S⊆N\i

∑
t∈

[
e
S\N0(x)
S ,xS

] β(S, t) [M(|S|)−M (|S|+ 1)] C̃ (t(S)) , (10)

where β(S, t) = (|S∩N0(x)|+t(S))! (η(zx)−|S∩N0(x)|−t(S)−1)!
(η(zx))!

∏
i∈S\N0(x)

xi!
ti!(xi−ti)!

.

The next result claims that, within the class of rules described by Theorem 3, ASpr

maximizes (minimizes) the rent (cost share) allocated to technological contributions.

13We thank Hervé Moulin for drawing our attention to this class of cost functions.

21

Theorem 5 On the set of flow methods satisfying the axioms irrelevant demand and
no merging or splitting for demand, the private Aumann-Shapley rule is the unique
method that maximizes the technological rent for all homogeneous problems. More
precisely, for every CSM y:

|ASpr
i (N, x,C)| ≥ |yi(N, x, C)|,

for any problem P = (N, x, C) that is homogeneous and any agent i ∈ N0(x) —with
the strict inequality for at least one problem P if y ̸= ASpr.

Proof. See Appendix.

Thus, for homogeneous problems, ASpr is the most preferred rule from the per-
spective of the agents who lend their technology to produce the others’ demands. As
such, it is diametrically opposed to ASpub, which is obviously the least preferred rule
of these technological agents.

6 NoMerging and Splitting and the public Aumann-

Shapley method

As already pointed out, NMS is a compelling requirement if the designer cannot
monitor the production process and the agents’ demands and technologies are prone
to merging and splitting manipulations. In this section we investigate the implications
of NMS. The following lemma shows that this requirement is not compatible with
the remuneration of technological cooperation.

Lemma 2 Suppose that the CSM y, which satisfies NMS, is represented by the flow
system f . Then we have:

(a) fi(z
x, 2ei) = 0, ∀N ∈ N , x ∈ INN , i ∈ N such that zx ≥ 2ei and |N | ≥ 3;

(b) fi(z
x, eS + 2ei) = 0, ∀N ∈ N , ∅ ⊆ S (N \ i, x ∈ INN , i ∈ N such that zx ≥ 2ei

and |N | ≥ 3;

(c) fi(z
x, 2ei) = 0 ∀N ∈ N , x ∈ INN , i ∈ N such that zx ≥ 2ei and |N | = 2.

Proof. See Appendix.

From the above Lemma 2, one can see that NMS prohibits any positive techno-
logical rent. In fact, as stated by the following result, NMS singles out a unique flow
method: the public Aumann-Shapley rule.

Theorem 6 The public Aumann-Shapley rule is the unique CSM that satisfies Ad-
ditivity, Strong Dummy, MDC and NMS.

22

Proof. It is not difficult to check that the public Aumann-Shapley rule satisfies
each of the four axioms.14 Conversely, we have to show that any method satisfying
these four axioms necessarily coincides with the public Aumann-Shapley rule.

We know from Theorem 1 that Addivity, Strong Dummy and MDC characterize
the family of flow methods. It is thus sufficient to show that any flow f that satisfies
NMS is necessarily the flow associated with the public Aumann-Shapley method. We
proceed in two steps.

Step 1: note that fi(z
x, r) = 0, for any r ∈ [0, zx] s.t. ri = 1 and rj ≥ 2 for some

i, j ∈ N . This follows easily from the combination of flow conservation and Lemma
2. Hence, only “public” flow methods (which do not reward technological improve-
ments) might satisfy NMS. Note that flow conservation then implies the following:∑

j∈N fj(z
x, eN) = 1.

Step 2: show that fi(z
x, r) =

zxi −ri+1

zx(N)−r(N)+1

∑
j∈N(r−ei) fj(z

x, r − ei) for all r ∈[
eN + ei, z

]
which, along with

∑
j∈N fj(z

x, eN) = 1, characterizes the public Aumann-
Shapley method. We do not explicitly spell out the argument as it can be found in
the literature. Indeed, since the technology of the grand coalition is available to every
subgroup of agents at no cost (this is the result of Step 1), we may use the traditional
cost sharing model.15 One can then follow the steps described in the Appendix of
Sprumont (2005) to show that, among public flow methods, only the flow associated
with the Aumann-Shapley rule meets NMS.�

The result of Theorem 6 shows in particular that preventing all possible ma-
nipulations is incompatible with remunerating technological cooperation. In case the
authority in charge of allocating the shares can observe neither the technology nor the
individual demands of the agents, then the only incentive-compatible flow method is
the public Aumann-Shapley rule, which prevents all manipulations but gives a weight
of zero to any technological improvement.

Note from the result of Theorem 6 that it would be redundant (in the statement of
the axiom NMS) to add the requirement that the shares of other agents be unaffected
by splitting manipulations available to (any) agent i. Either formulation of the axiom
leads to the same flow method (the public Aumann-Shapley rule), which is why
we adopt the more economical way of stating the property. Likewise, it would be
redundant to adopt the additional requirement that the shares be unaffected by
manipulations where some agents overstate their technology, since that (stronger)
version of the axiom would single out the same public Aumann-Shapley rule.

14Under public Aumann-Shapley pricing, manipulations of the technology are obviously unprof-
itable, since technological improvements are not rewarded. In addition, as a pattern method, ASpub

meets NMSD and, therefore, NMS. Finally, ASpub satisfies the other three axioms because it is a
flow method (see Theorem 1).

15Observe that in the case where the technology is the same for any coalition of agents, our version
of NMS and the one in Sprumont (2005) coincide. If the technology instead varies depending on
the agents who cooperates, our version of the axiom is stronger because it prevents manipulations
of the technology (in addition to demand manipulations).

23

7 Discussion

The paper introduces and characterizes some remarkable cost sharing rules in the con-
text where technological cooperation between agents is possible. These rules can be
seen as extensions of the Aumann-Shapley method, which is the unique flow method
that is immune to demand manipulations in the traditional model (see Sprumont,
2005). In our context we find an infinity of sharing methods satisfying this require-
ment, the pattern-generated methods. They differ from one another in the way they
combine the multiple technologies available in order to produce the demanded output
profile. It is also shown that pattern methods satisfy irrelevant demand, a property
close to the axioms ordinality and independence of dummy changes discussed respec-
tively in Moulin (1995) and Sprumont (2008): units of demand that do not affect the
cost can be ignored. Irrelevant demand is important to the characterization result
in Theorem 3. Indeed, removing this requirement from the statement would leave us
with flows that are not fully defined in the case where some agents demand zero while
making their technology available. Obviously, the axiom no merging or splitting for
demand is the key ingredient to our characterization in Theorem 3. Without it we
would be left with only the fixed-flow property allowing to compute the shares when
some of the demands are null.

Within the class of pattern methods, two distinguished elements stand out. The
first one, public Aumann-Shapley pricing, always considers the technology as pub-
lic. As a consequence, it minimizes the remuneration of technological agents. In
contrast, for the class of homogeneous problems, private Aumann-Shapley pricing
maximizes the rent paid to technological agents. It is therefore the best rule in case
the mechanism designer wants to promote technological cooperation and innovation.
In addition, a useful formula —which allows to compute the private Aumann-Shapley
shares in homogeneous problems— is proposed.

Our two adaptations of the standard Aumann-Shapley rule (and the pattern meth-
ods in general) are compelling in situations where the technological contribution of
each agent is perfectly observable by the designer (see for instance Examples 1 and
5). In the case where the technology is not perfectly observable, the designer is
left only with the public Aumann-Shapley rule —which does not reward technolog-
ical improvements— as the unique flow method that prevents manipulations of the
technology or the demand (see Theorem 6). Note that the four axioms in the char-
acterization of Theorem 6 are independent. It is shown in Bahel and Trudeau (2012)
that Additivity, Strong Dummy and MDC are independent in problems with fixed
population. Using essentially the same arguments, one can show that any of these
three axioms is not implied by the combination of the other two and no merging or
splitting (when population is variable). In addition, given that some flow methods do
not meet no merging or splitting,16 it is not implied by the combination of Additivity,
Strong Dummy and MDC.

16For example, flow methods that compute the cost shares according to a given path (that depends
on the demand profile x) do not meet NMS.

24

As illustrated by some of the examples in the text, our framework applies to the
study of distribution networks (such as pipelines) and the compensation of technologi-
cal cooperation between countries or firms. Other possible applications of our results
relate to the pricing of public utilities —see for example Billera et al. (1978) and
de Frutos (1998), the design of patent licensing agreements —Tauman and Watan-
abe (2007), the allocation of pollution abatement costs between regions or countries
—Petrosyan and Zaccour (2003), etc.

References

[1] Aumann R J, Shapley L (1974) “Values of Nonatomic Games”, Princeton, NJ:
Princeton University Press.

[2] Bahel E (2011) “The implications of the ranking axiom for discrete cost sharing
methods”, International Journal of Game Theory 40: 551–589.

[3] Bahel E, Trudeau C (2012) “A discrete cost sharing model with technological
cooperation”, International Journal of Game Theory, in print.

[4] Billera L, Heath D, Raanan J (1978) “Internal telephone billing rates: A novel
application of nonatomic game theory”, Operations Research 26: 956-965.

[5] Bird C (1976) “On cost allocation for a spanning tree: A game theoretic ap-
proach”, Networks 6: 335–350.

[6] Calvo E, Santos J C (2000) “A value for multichoice games”, Mathematical Social
Sciences 40: 341-354.

[7] Friedman E, Moulin H (1999)“Three Methods to Share Joint Costs or Surplus”,
Journal of Economic Theory 87:275-312.

[8] de Frutos M-A (1998) “Decreasing serial cost sharing under economies of scale”,
Journal of Economic Theory 79: 245-275.

[9] Haimanko O, Tauman Y “Recent Developments in the Theory of Aumann-
Shapley Pricing, Part I: The Nondifferentiable Case”, Game Theory and Re-
source Allocation: The Axiomatic Approach, NATO ASI Series, W. Thomson
(Ed.), forthcoming.

[10] Moulin H (1995) “On additive methods to share joint costs”, Japanese Economic
Review 46: 303-332.

[11] Moulin H, Shenker S “Distributive and additive costsharing of an homogeneous
good”, Games and Economic Behavior 27: 299-330.

25

[12] Moulin H, Sprumont Y (2007) “Fair allocation of production externalities: recent
results”, Revue d’Économie Politique 117: 7-37.

[13] Myerson R (1980) “Conference structures and fair allocation rules”, Interna-
tional Journal of Game Theory 9: 169-182.

[14] van den Nouweland A, Potters J, Tijs S, Zarzuelo J (1995) “Cores and Related
Solution Concepts for Multi-Choice Games”, Mathematical Methods of Opera-
tions Research, 41,289-311.

[15] Petrosyan L, Zaccour G (2003) “Time-consistent shapley value allocation of pol-
lution cost reduction”, Journal of Economic Dynamics and Control. 27: 381-398.

[16] Sprumont Y (2005) “On the discrete version of the Aumann-Shapley cost-sharing
method”, Econometrica 73: 1693–1712

[17] Sprumont Y (2008) “Nearly serial sharing methods”, International Journal of
Game Theory 37: 155-184.

[18] Tauman Y, Watanabe N (2007) “The Shapley value of a patent licensing game:
the asymptotic equivalence to non-cooperative results”, Economic Theory 30:
135-149.

[19] Wang Y (1999) “The additivity and dummy axioms in the discrete cost sharing
model”, Economics Letters 64:187–192.

26

Appendix

A Figures

Figure 3: The 4 other elementary flows to (2,2,2)

27

In this figure we have for instance that Λ(0, 2) = {(0, 2, 0), (0, 0, 2)},
Λ(2, 3) = {(2, 2, 2)}; and Ĩ(1, (2, 2, 2)) = {1}, Ĩ(2, (2, 2, 2)) = {2, 3}.

Figure 4: The flow f s(z, .) to z=(2,3) generated by the production pattern
s=TTDTDD to p(2, 3) = (2, 2, 2)

B Proofs

B.1 Theorem 3

It is routine to check that all flow methods which can be written as “pointwise”
convex combinations of pattern methods satisfy no merging splitting for demand and
irrelevant demand. The proof of the necessity part of the statement unfolds in four
steps.

Fix a cost sharing rule y (represented by the flow system f) and assume that it
satisfies both no merging or splitting for demand and irrelevant demand.

Step 1: let us show that, for any N ∈ N and x ∈ INN , we have f(zx, .) = f(p(zx), .),
where · is the operator introduced in (4).

Consider an arbitrary problem P = (N, x, C) and let N \ N0(x) = {i ∈ N | xi >
0} = {i1, ..., im}. Since y meets no merging or splitting for demand, we can write

yi1(P) =
∑
i′∈I1

yi′(P
(1)), and yN\i1(P) = yN\i1(P

(1)), (11)

28

where P (1) is the problem obtained from P by splitting the demand of agent i1 into
xi1 distinct demands of 1. have: P (1) = (N (1), x(1), C(1)), where

N (1) = (N \ i1) ∪ I1 (with |I1| = xi1);

x(1) = (2, ..., 2︸ ︷︷ ︸
I1

, xN\i1);

C(1)∗(tI1 , tN\i1) = C∗

(∑
i′∈I1

ti′ , tN\i1

)
.

By the same token, starting from the problem P (1) and splitting the demand of
agent i2 into xi2 unitary demands gives:

yi2(P
(1)) =

∑
i′∈I2

yi′(P
(2)), and yN(1)\i2(P

(1)) = yN(1)\i2(P
(2)). (12)

Combining (11) and (12), one can see that

yi1(P) =
∑
i′∈I1

yi′(P
(2)), yi2(P) =

∑
i′∈I2

yi′(P
(2)) and yN\{i1,i2}(P) = yN\{i1,i2}(P

(2)). (13)

Using the same argument repeatedly (m = |{i1, ..., im}| times, in fact), we get:

yi1(P) =
∑
i′∈I1

yi′(P
(m)), ..., yim(P) =

∑
i′∈Im

yi′(P
(m)) (14)

yj(P) = yj(P
(m)), ∀j ∈ N \ {i1, ..., im}, (15)

where P (m) = (N (m), x(m), C(m)) is such that

N (m) = {1, ...η(zx)};
zx

(m)

= p(zx);

C(m)∗(tN0(x), tNu\N0(x)) = C∗
(
tN0(x), (vi(z

x, t))i∈N\N0(x)

)
.

Recall that the function vi(z, t) was introduced in (3).
Given that Ĩ(i1, z

x) = Ii1 , ..., Ĩ(im, z
x) = Iim and Ĩ(j, zx) = {j} for all j ∈ N \

{i1, ..., im}, equations (14) and (15) come down to

yi(P) =
∑

i′∈Ĩ(i1,zx)

yi′(P
(m)),∀i ∈ N. (16)

Since y is represented by the flow system f , we have yi(P) =
∑

r∈[ei,zx]
fi(z

x, r)∂iC
∗(r),

and yi′(P
(m)) =

∑
t∈[ei′ ,p(zx)]

fi′(p(z
x), t)∂i′C

(m)∗(t), equation (16) can be rewritten as:

29

∑
r∈[ei,zx]

fi(z
x, r)∂iC

∗(r) =
∑

i′∈Ĩ(i1,zx)

∑
t∈[ei′ ,p(zx)]

fi′(p(z
x), t)∂i′C

(m)∗(t),∀i ∈ N

=
∑

i′∈Ĩ(i,zx)

 ∑
r∈[ei,zx]

∑
t∈Λ(r)

f s
i′(p(z

x), t)∂i′C
(m)∗(t)


=

∑
r∈[ei,zx]

∑
t∈Λ(r)

∑
i′∈Ĩ(i,zx)

f s
i′(p(z

x), t)∂iC
∗(r),

where the last equality stems from the fact that ∂i′C
(m)∗(t) = ∂iC

∗(r) for any i ∈ N ,
r ∈ [ei, zx], t ∈ Λ(r) and i′ ∈ Ĩ(i, zx).

Therefore, we get the identity:17

∑
r∈[ei,zx]

fi(z
x, r)∂iC

∗(r) =
∑

r∈[ei,zx]


fi(p(zx),r)︷ ︸︸ ︷∑

t∈Λ(r)

∑
i′∈Ĩ(i,zx)

f s
i′(p(z

x), t)

 ∂iC
∗(r), (17)

which gives the desired result, f(zx, .) = f(p(zx), .).

In case N0(x) = ∅, we proceed to step 3. Otherwise, step 2 is needed.

Step 2: we show that, for anyN ∈ N and x ∈ INN , f(p(zx), .) = f [p(zx)+eN0(x)](p(zx), .).

Fix x ∈ INN and let C∗ (defined on INNu) represent an arbitrary cost function
C. Consider a cost function C̄ such that: (a) C∗ and C̄∗ coincide on the set {t ∈
INNu| tN0(x) ≤ eN0(x)}; (b) all agents i ∈ N0(x) are demand-dummy for C̄. Given that
y meets irrelevant demand, we have y(Nu, xu, C) = y(Nu, xu + eN0(x), C̄),18 which
(using the flow f) is equivalent to the following: for any i ∈ Nu,

19∑
r∈[ei,p(zx)]

fi (p(z
x), r) ∂iC

∗(r) =
∑

r∈[ei,p(zx)+eN0(x)]

fi
(
p(zx) + eN0(x), r

)
∂iC̄

∗(r), (18)

Given that p(zx)+ eN0(x) = 2eNu , we have Ji(r) = {k ∈ N0(x) \ i|rk ≥ 1}.20Moreover,

17Equation (17) is an identity because it holds true for any cost function C. Also recall that the
flow f(z, .) to z used to compute the shares under y is unique.

18We are implicitly using the well-known result that, for any flow method, the shares associated
with the cost function C̄ and the demand profile p(zx) depend only on the restriction of C̄∗ to the
box [0, p(zx)]. This easily follows from Theorem 1.

19Remark that zxu+eN0(x)

= p(zx) + eN0(x) = 2eNu

20The notation Ji(r) was introduced after Equation 2.

30

since all i ∈ N0(x) are demand-dummy for C̄, one can then see that

∂iC̄
∗(r) = 0 if i ∈ N0(x), and ri = 2;

∂iC̄
∗(r︸︷︷︸

∈[0,p(zx)]

) = ∂iC
∗(r) if Ji(r) = ∅ and (i /∈ N0(x) or ri ≤ 1);

∂iC̄
∗(r) = ∂iC

∗(eJi(r), rN\Ji(r)︸ ︷︷ ︸
∈[ei,p(zx)]

) if Ji(r) ̸= ∅ and (i /∈ N0(x) or ri ≤ 1).

Equation (18) then becomes∑
r ∈

[
ei, p(zx)

] fi (p(z
x), r) ∂iC

∗(r) =
∑

r ∈
[
ei, p(zx)

]
Ji(r) = ∅

fi
(
p(zx) + eN0(x), r

)
∂iC

∗(r) (19)

+
∑

r ∈
[
ei, p(zx)

]
Ji(r) ̸= ∅

∑
t∈[eJi(t),2eJi(t)]

fi
(
p(zx) + eN0(x), (t, rNu\Ji(r))

)
∂iC

∗(r)

Since the identity (19) gives two expressions of the cost share (for every i ∈ Nu and
any C∗ defined on INNu), it follows from Theorem 1 that

fi (p(z
x), r) =


fi
(
p(zx) + eN0(x), r

)
, if Ji(r) = ∅;∑

t∈[eJi(t),2eJi(t)]
fi
(
p(zx) + eN0(x), (t, rNu\Ji(r))

)
, otherwise.

This, by Equation (2), yields the desired result.

Step 3: next, observe that the flow f(zxu , .) is necessarily symmetric. Indeed, given

that y meets NMSD and zxu = p(zx) + eN0(x) = 2eNu , we get from Remark 1 that

yi(Nu, xu, C) = yj(Nu, xu, C), (20)

for any i, j in Nu and any C for which all agents in Nu are symmetric. It follows from
(20) that f(zxu , r) = f(zxu , σij(r)), for any r ∈ [0Nu , 2eNu] and i, j ∈ Nu.

Step 4: given that f(zxu , .) is a symmetric flow to zxu = 2eNu , it can be written as

a convex combination of elementary flows to zxu , i.e. f(zxu , .) =
∑Kzx

k=1 αkf
sk(zxu , .),

where each sk is a pattern to zxu = 2eNu , Kzx ∈ IN++, and α ∈ IRKzx satisfies∑Kzx

k=1 αk(z
x) = 1.

Combining the four steps above, one can finally write:

f(zx, .) =

Kx
z∑

k=1

αk(zx)(f sk)[zxu](zx, .) =

Kx
z∑

k=1

αk(z
x)(f sk)[2e∆(zx)](zx, .).�

31

B.2 Theorem 5

Fix a homogeneous problem P = (N, x, C), with C(S, tS) = M(|S|)C̃(t(S)), and
suppose i ∈ N0(x) ̸= ∅. Using Theorem 3, it is sufficient to show that |ysi (P)| ≤
|ASpr

i (P)|, for any pattern s to 2e∆(zx). To ease on notation, we will write z for zx

throughout this proof.
Note first that, by definition, any pattern s to 2e∆(z) satisfies |s−1({T})| =

|∆(z)| = η(z).21 Let then s−1(T) ≡ {ks
1, ..., k

s
η(z)} be the ordered inverse image of

T for the pattern s: that is to say, 1 = ks
1 < ... < ks

η(z) ≤ 2η(z) − 1 and s(ks
j) = T ,

for j = 1, ..., η(z).22

Next, consider i ∈ ∆(z) and a path γ that follows the pattern s to 2e∆(z). Let jγi
be the unique index in {1, ..., η(z)} such that γ(ks

jγi
)−γ(ks

jγi
−1) = ei. In words, on the

path γ, the technology of i is the jγi th to be activated. In addition, note that there
exists a unique path γ̄ to 2e∆(z) such that: (a) γ̄ follows the pattern spr(z) = TD...TD︸ ︷︷ ︸

η(z) times

;

(b) j γ̄i = jγi , for any i ∈ ∆(z). Essentially, γ̄ is the unique path such that each unit
demanded by an agent j ∈ ∆(z) is produced immediately after the activation of j’s
technology, with the order of activation of the technologies remaining the same as
under γ.

Finally, for i ∈ N1(z) = N0(x), define

qγ(i) ≡
∣∣∣{l ∈ ∆(z) \N1(z) : γ(k

s
jγi
)− 2el ≥ 0∆(z)

}∣∣∣ ;
tγ(i) ≡

∣∣∣{i′ ∈ N \ i : ∃l ∈ Ĩ(i′, z) s.t. γ(ks
jγi
)− el ≥ 0∆(z)

}∣∣∣ .
The integer qγ(i) gives the number of costly units to produce prior to the activation
of i’s technology on the path γ. It is easy to see that: qγ(i) ≤ qγ̄(i) = jγi − 1 , for any
path γ to 2e∆(z) and any i ∈ N1(z) = N0(x) [since jγi = j γ̄i and γ̄ follows spr]. As for
tγ(i), it stands for the actual number of technologies that are available before that of
agent i on the path γ.23 Observe from the definitions of γ̄ and tγ(i) that tγ(i) = tγ̄(i),
for any i ∈ N0(x) = N1(z).

Using the notation we have just introduced and the fact that C̃ is nondecreasing,
one can write i’s share for the path γ as:

yγi (P) = [

≤0︷ ︸︸ ︷
M(tγ(i))−M(tγ(i) + 1)]C̃(qγ(i))

≥ [M(tγ(i))−M(tγ(i) + 1)]C̃(qγ̄(i)) = [M(tγ̄(i))−M(tγ̄(i) + 1)]C̃(qγ̄(i))

= yγ̄i (P).

21Recall that ∆(z) = {1, ..., η(z)}.
22Observe that for any z and any pattern spr(z) = TD...TD︸ ︷︷ ︸

η(z) times

to 2e∆(z), we have: kprj = 2(j−1)+1,

for j = 1, ...η(z). The second condition of Definition 6-(a) then gives that ksj ≤ 2(j − 1) + 1 = kprj ,
for any arbitrary pattern s.

23Recall that each unit l ∈ Ĩ(i′, z) possesses the full technology of agent i′. Therefore, activating
two such units l, l′ ∈ Ĩ(i′, z) gives the sole technology of i′.

32

Since the elementary flow f s is defined as the average of all paths γ that follow the
pattern s to 2e∆(z), we have the desired result:

|ysi (P)| = − 1

(η(z))!

∑
γ that follow s

yγi (P) (21)

≤ − 1

(η(z))!

∑
γ that follow s

yγ̄i (P) = − 1

(η(z))!

∑
γ̄ that follow spr

yγ̄i (P) = |ASpr
i | .

To conclude the proof, note that the inequality in (21) is strict whenever C̃ is
increasing and qγ(i) < qγ̄(i), which will happen —for at least one homogeneous
problem (N, x,C), one pattern sk to 2e∆(z) in the decomposition of Theorem 3, and
one path γ (that follows sk)— as soon as y ̸= ASpr. �

B.3 Lemma 2

Statement (a). Let f be a flow method satisfying NMS. Fix N ∈ N , x ∈ INN , i ∈
N s.t. |N | ≥ 3, zx ≥ 2ei; and suppose that fi(z

x, 2ei) > 0. Let us consider the cost
function C such that C∗ is defined on INN by

C∗(t) =

{
1, if t = aei with a ≥ 2;
0, otherwise.

We have yi(N, x,C) = fi(z
x, 2ei) > 0 and yj(N, x, C) = −

zxi∑
a=2

fj(z
x, aei + ej), for any

j ∈ N \ i.
First, we show that yj(N, x, C) < 0, for any j ∈ N \ i. By way of contra-

diction, suppose yj(N, x,C) ≥ 0 for some j ∈ N \ i. Then, we necessarily have
yj(N, x, C) = 0, since j is demand-dummy for the cost function C. It follows that
yi(N, x, C)+yj(N, x,C) = fi(z

x, 2ei) > 0. Let us now consider the merging manipula-
tion (N ′, x′, C ′) (available to {i, j}) such that: N ′ = (N \{i, j})∪ i, x′

N\{i,j} = xN\{i,j}

and x′
i = xi + xj, C

′(t) = 0 for any t ∈ [0, zx
′
]. It is obvious that yi(N

′, x′, C ′) = 0.
Hence, yi(N

′, x′, C ′) < yi(N, x,C) + yj(N, x, C), which is a contradiction (since f
satisfies NMS by assumption).

Second, note that flow conservation implies

fi(z
x, 2ei) =

∑
j∈N\i

zxi∑
a=2

fj(z
x, aei + ej) = −

∑
j∈N\i

yj(N, x, C)︸ ︷︷ ︸
<0

. (22)

Since |N | ≥ 3, we have |N \ i| ≥ 2. Therefore, given a fixed j0 ∈ N \ i, Equation (22)
can be rewritten as

fi(z
x, 2ei)︸ ︷︷ ︸

=yi(N,x,C)

+yj0(N, x, C) = −
∑

j∈N\{i,j0}

yj(N, x, C)︸ ︷︷ ︸
<0

> 0.

33

Examine the merging manipulation -available to {i, j0}- (N ′, x′, C ′) such that N ′ =
(N \{i, j0})∪i, x′

N\{i,j0} = xN\{i,j} and x′
i = xi+xj0 , C

′(t) = 0 for any t ∈ [0, zx
′
]. One

can write yi(N
′, x′, C ′) = 0 < yi(N, x,C) + yj0(N, x, C), which once again violates

NMS.

Statement (b). We proceed by induction over S. Note that the statement (b) is

satisfied when S = ∅ —since the statement (a) has been proved.24 Fix N ∈ N , x ∈
INN , i ∈ N and S such that: ∅ ⊆ S (N \ i, zx ≥ 2ei, and |N | ≥ 3. Assume, by the
induction hypothesis, that (b) is satisfied for all S ′ (S.

Suppose that fi(z
x, eS+2ei) > 0 and consider the cost function C, with C∗ defined

on INN by:25

C∗(t) =


1, if tk ≥ 2 for some k ∈ S;
1, if tN\i ≤ eS and ti ≥ 2;
0, otherwise.

Observe that

yi(N, x, C) = fi(z
x, eS + 2ei) +

∑
S′:∅⊆S′(S

fi(z
x, eS

′
+ 2ei)︸ ︷︷ ︸

=0

= fi(z
x, eS + 2ei);

yj(N, x,C) = −
∑

S′:∅⊆S′⊆S

zxi∑
a=2

fj(z
x, eS

′
+ aei + ej), for any j ∈ N \ (S ∪ i).

However, since fi(z
x, eS

′
+ 2ei) = 0, flow conservation requires that

fj(z
x, eS

′
+ aei + ej) = 0 for any S ′ (S and j /∈ S ′ ∪ i.

Therefore,

yj(N, x, C) = −
zxi∑
a=2

fj(z
x, eS + aei + ej), for any j ∈ N \ (S ∪ i). (23)

Let us discuss the following two cases.
• First case: |N \ (S ∪ i)| ≥ 2
Note that we must have yj(N, x, C) < 0 for every j ∈ N \ (S ∪ i). Indeed, if
yj(N, x, C) ≥ 0 for some j ∈ N \ (S ∪ i), then the agents i and j can reduce their
positive joint share fi(z

x, eS + 2ei) + yj(N, x, C) to zero by merging according to the
manipulation N ′ = (N \ {i, j})∪ i′, x′

N\{i,j} = xN\{i,j} and x′
i′ = xi+xj, C

′(t) = 0 for

any t ∈ [0, zx
′
].

24This is because e∅ = 0N .
25C is such that producing any positive demand for some of the agents in S ∪ i entails a cost

of 1, except maybe when agent i has the only positive demand (in which case the technological
cooperation of any agent in N \ (S ∪ i) reduces the cost to zero).

34

Since |N \ (S ∪ i)| ≥ 2, for any fixed agent j0 ∈ N \ (S ∪ i), we then have

yj0(N, x,C) =−
zxi∑
a=2

fj0(z
x, eS + aei + ej0)

>−
∑

j∈N\(S∪i)

zxi∑
a=2

fj(z
x, eS + aei + ej)︸ ︷︷ ︸

>0

≥−
∑
j∈N\i

zxi∑
a=2

fj(z
x, eS + aei + ej)︸ ︷︷ ︸

≥0

= −fi(z
x, eS + 2ei),

where the last equality obtains from flow conservation. It follows that

yi(N, x, C)︸ ︷︷ ︸
=fi(zx,eS+2ei)

+yj0(N, x, C) > 0,

and agents i and j0, in violation of NMS, can decrease their positive joint cost share by
merging according to the manipulation P ′ = (N ′, x′, C ′) such thatN ′ = (N \ {i, j0})∪
i′; x′

i′ = xi, x
′
N\{i,j0} = xN\{i,j0}; C

′(t) = 1 if tk ≥ 2 for some k ∈ S, and C ′(t) = 0

otherwise. Indeed, since i′ is a dummy agent in P ′, we have yi′(N
′, x′, C ′) = 0 <

yi(N, x, C) + yj0(N, x, C). As a consequence, under this first case, we necessarily
have fi(z

x, eS + 2ei) = 0.
• Second case: |N \ (S ∪ i)| = 1
Let j be the unique agent in N \ (S ∪ i); that is to say, N = S ∪ {i, j}. Using
the same argument as under the first case,26 one can show that yj(N, x, C) < 0
(otherwise, agent i and j have a profitable merging manipulation).

Next, consider the problem P ′ = (N ′, x′, C ′) such that N ′ = (N \ j) ∪ {j, j′};
x′
N = xN , x

′
j′ = 0; and

C ′∗(t) =


1, if tk ≥ 2 for some k ∈ S;
1, if tN

′\i ≤ eS and ti ≥ 2;
0, otherwise.

It is not difficult to see that P = (N, x,C) is a merging manipulation of P ′ available
to {j, j′}. Since |N ′ \ (S ∪ i)| = 2, applying the result of the above first case to P ′

gives fi(z
x′
, eS + 2ei) = 0, and therefore yj(N

′, x′, C ′) = yj′(N
′, x′, C ′) = 0 (by flow

conservation). It thus follows that yj(N
′, x′, C ′) + yj′(N

′, x′, C ′) = 0 > yj(N, x,C),
which violates NMS.

Statement (c). When |N | = 2, taking S = ∅ and replicating the argument of
the second case in the proof of (b) proves statement (c). �

26Recall that we still have fi(z
x, 2ei) > 0, which we have assumed by way of contradiction.

35

