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Abstract

Policy-making is a dynamic process in which policies can be changed in each period but con-

tinue in the absence of new legislation. We study a dynamic legislative bargaining game with an

endogenous status quo where in each period a dollar is allocated with a proposal voted against

the allocation in the previous period. We characterize for any initial status quo a class of simple

Markov perfect equilibria (MPE) with dynamic coalitions, where a dynamic coalition is a deci-

sive set of legislators whose members support the same policy, or set of policies, in at least two

consecutive periods. In the basic model a dynamic coalition persists throughout the game, and

coalition members share the dollar equally in every period. If uncertainty is associated with the

implementation of a policy, there is a continuum of allocations supported by coalition MPE in

which the originator of the coalition receives a share larger than the coalition partner receives but

smaller than in sequential legislative bargaining theory. These coalition equilibria have the same

allocation in every period when the coalition persists, but with positive probability the coalition

dissolves due to the uncertainty. Coalition MPE also exist in which members tolerate a degree of

implementation uncertainty resulting in coalition allocations that can change from one period to

the next. The dynamic coalitions are minimal winning, form in the first period, and, if a coalition

dissolves, a new coalition is formed in the next period. The predictions of the theory are compared

to experiment results.
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1 Introduction

Most laws and government programs are continuing and remain in effect in the absence of new

legislation. Rules promulgated by regulatory commissions also remain in effect until modified or

rescinded. Social security, welfare, and other distributive programs are typically continuing, and

distributions are governed by formulas that are changed only infrequently. Tax rates also continue in

the absence of new legislation. At the state level, legislatures establish continuing policies including

Medicaid eligibility and benefits as well as other state distributive programs. State regulatory

commissions establish prices, rules governing lifeline and other cross-subsidization programs, and

environmental and energy-efficiency policies. These programs have the property that the policy

adopted or in place in the current period becomes the status quo for the next period. Policy choice

thus can be viewed as a dynamic legislative bargaining game with an endogenous status quo in

which a legislature has the opportunity to choose the policy in every period and agenda-setting

power can change over time. Despite their dynamic nature and the opportunities for change, many

policies are stable over time and are supported by a coalition that persists from period to period.

This paper presents a theory of dynamic legislative bargaining with a focus on dynamic coalitions

and the policies they adopt. Coalitions that persist over time are natural when the preferences of

legislators are aligned, so to provide a strong test for dynamic coalitions, the policies considered

are purely distributive with the preferences of legislators directly opposing.

A dynamic coalition is a decisive set of legislators whose members support the same policy, or set

of policies, over time and receive a positive allocation. We characterize Markov perfect equilibria

(MPE) that support dynamic coalitions beginning from any initial status quo. The game is an

extension of the sequential legislative bargaining game introduced by Baron and Ferejohn (1989).

In the stationary equilibrium in that static game a bargain is reached with the first proposal, and

the decisive set supporting the bargain is minimal-winning. The proposer captures what otherwise

would be the allocation of those legislators excluded from the decisive set and does not share the

gains with other members of the decisive set. In the dynamic game with a dollar allocated in every

period and an endogenous status quo, the equilibria exhibit some of the properties of the sequential

game but not others. In the basic dynamic game with a sufficiently high discount factor, a dynamic

coalition is formed in the first period and persists thereafter. The dynamic coalition adopts the

same allocation in every period, so policy is stable. The dynamic coalition is minimal-winning, and
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the originator of the coalition shares proposal power equally with the other coalition members, so

all coalition members receive the same allocation.

The MPE concept has several desirable attributes. First, the equilibria are simple with strategies

depending only on a state variable, and dynamic coalition MPE are particularly simple. Second, the

set of dynamic coalition MPE is strictly smaller than the set of subgame perfect equilibria. Third,

strategies depend only on payoff relevant information and not on other components of the history

of play that may be strategy relevant. This means that player-specific, or selective, punishment

strategies cannot be used. MPE is thus a stringent equilibrium concept for the establishment of

dynamic coalition equilibria, since it does not allow selective punishments in response to deviations

from the coalition strategies.

In dynamic coalition MPE coalition members propose the status quo when it is a coalition

allocation and otherwise randomize among potential coalition partners in forming a new coalition. If

a coalition dissolves, its members are collectively punished, since randomization gives all legislators,

including legislators outside the coalition, the same payoff. This payoff is less than the payoff from

preserving the coalition, and this difference allows the coalition to be supported as an MPE.

The coalition MPE are focal because they are simple, exhibit policy and coalition stability,

and could be coordinated through straightforward communication between the originator of the

coalition and potential coalition partners. The equilibrium allocation in the basic model is unique

and is the same in every period.1 It is also an equilibrium with risk averse legislators, since it

involves perfect smoothing over time.

Many policies have a degree of uncertainty associated with their implementation, and this

uncertainty can affect the allocation in a period and hence the status quo in the next period. The

uncertainty could be due to exogenous factors or to endogenous factors associated with delegation

to an administrative agency or regulatory commission or to choices made by those affected by the

policy. To examine the robustness of dynamic coalitions, the basic model is extended to include

implementation uncertainty that can cause allocations to differ from those in the adopted policy.

A class of dynamic coalition MPE is characterized in which a coalition and its allocation persist as

long as implementation uncertainty is not realized, so policy has a degree of stability. A coalition

is formed in the first period, and if it dissolves as a result of realized implementation uncertainty, a

new coalition is formed in the next period. The coalition implements the same policy in each period,

1The basic game is identical to Kalandrakis (2004).
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and the originator of the coalition shares the gains from proposal power with the coalition partner

but not necessarily equally. These specific-policy coalition equilibria support a set of allocations

and that set is increasing in the discount factor.

A specific-policy coalition dissolves when implementation uncertainty changes the allocation,

but a coalition could tolerate some changes in the allocation due to implementation uncertainty.

A coalition MPE exists that supports a set of tolerated allocations where the coalition persists

if the allocation remains in the set and dissolves if it is outside the set. A tolerant coalition is

more valuable to its members than is the corresponding specific-policy coalition to its members.

A tolerant coalition forms in the first period, and if it dissolves as a result of implementation

uncertainty, a new coalition is formed in the next period. The originator of the coalition shares

proposal power with the coalition partner, and because of the realized implementation uncertainty,

the coalition partner could in a period have a larger allocation than the originator.

The allocations supportable by dynamic coalition equilibria are determined by stability con-

siderations. A coalition can be threatened externally by a proposal from a non-coalition member

intended to induce a coalition member to deviate from the coalition strategies. In the basic model

the external threat determines a bound on the discount factor such that coalition members reject

any proposal by an out legislator. A coalition also faces the internal threat that a coalition mem-

ber might propose a more favorable allocation than called for in the equilibrium or vote against a

coalition proposal when the status quo is favorable. This threat is present at all discount factors in

the basic model and requires the originator of the coalition to share proposal power with the other

coalition members.

Coalition equilibria exhibit policy stability and hence have substantive implications that differ

from those in other theories. The rotating dictator equilibrium established in Kalandrakis (2004)

predicts that distributive policies change depending on which legislator is recognized as the pro-

poser, whereas the coalition equilibria identified here have stable policies. Moreover, a dynamic

coalition has the same decisive set in every period, whereas the decisive sets change in a rotating

dictator equilibrium.

Epple and Riordan (1987) characterize subgame perfect equilibria in a model of distributive

policy with a deterministic rule for selecting the proposer, whereas we characterize a set of coalition

MPE where the proposer is randomly selected. Baron (1996) considers a unidimensional policy and

proves a dynamic median voter theorem. A number of recent papers have considered legislative
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bargaining games with an endogenous status quo, including Baron and Herron (2003), Bernheim,

Rangel and Rayo (2006), Anesi (2010), Dziuda and Loeper (2010), Bowen (2011), Diermeier and

Fong (2011), Zápal (2012), Nunnari (2012), Piguillem and Riboni (2012), and Bowen, Eraslan and

Chen (2012). Policies in these papers are not purely distributive with the exception of Bernheim,

Rangel and Rayo, which has a finite horizon.

Kalandrakis (2004), Kalandrakis (2010), Bowen and Zahran (2012), Richter (2011), Battaglini

and Palfrey (2012), and Anesi and Seidmann (2012) consider Markov perfect equilibrium in a

distributive game with an endogenous status quo similar to the game considered here. Kalandrakis

was the first to characterize Markov perfect equilibria in this setting, where in equilibrium a rotating

dictator has all the bargaining power in a period. Bowen and Zahran (2012), Richter (2011), and

Anesi and Seidmann (2012) identify equilibria that exhibit compromise where more than a minimal

majority receive an allocation. Dynamic coalitions are present in Anesi and Seidmann and in Bowen

and Zahran but only for particular initial status quos. Bowen and Zahran find compromise with

risk-averse legislators, and Battaglini and Palfrey (2012) also find compromise in a quantal response

equilibrium with risk-averse players. By allowing part of the dollar to be wasted, Richter (2011)

identifies MPE in which all legislators share benefits. Duggan and Kalandrakis (2012) provide

a general existence result for dynamic legislative bargaining games with an endogenous status

quo and uncertainty over legislators’ preferences. In the environment considered here, legislators’

preferences are fixed, so existence is shown constructively.2

Cooperation or policy moderation in a dynamic policy-making environment has been studied in

Dixit, Grossman and Gul (2000) and Lagunoff (2001). Battaglini and Coate (2007), Battaglini and

Coate (2008), Acemoglu, Egorov and Sonin (2012), and Baron, Diermeier and Fong (2012) show

that dynamic incentives can lead to inefficiency. In contrast to these papers we consider purely

distributive policy, where there is no natural incentive to form coalitions or induce cooperation.

Battaglini and Palfrey conducted experiments that implemented the dynamic game considered

here. Their findings are consistent with dynamic coalition MPE, although participants in the

experiment exhibit a number of behaviors that may not correspond to an equilibrium.

The basic model is introduced in the next section, and a coalition MPE is defined and illustrated.

Section 3 introduces implementation uncertainty, and coalition equilibria in which the originator

2Duggan (2012) proves a general existence result for MPE in noisy stochastic games that requires norm-continuity
of state transition probabilities. Norm-continuity is violated with voting, so this result is not applicable to dynamic
legislative bargaining games.
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of the coalition receives a greater share than the coalition partner are characterized in Section

4. Section 5 considers coalitions that tolerate a degree of implementation uncertainty. Section 6

compares the dynamic coalition equilibria to the results of the Battaglini and Palfrey experiments.

Conclusions are provided in the final section.

2 The Model and Coalition Equilibrium Concept

2.1 The Basic Model

The model represents a legislative process with an endogenous status quo where in each period

a 3-member legislature can choose a new policy or leave the status quo policy in place. In each

period a legislator is selected at random to propose a policy, which is then voted against the

status quo policy from the previous period. The winner becomes the policy in place in the current

period and the status quo for the next period. The process is repeated for an infinite number of

periods. The legislators allocate a dollar in every period, so the policy space in each period is

X = {x|
∑3

i=1 xi = 1, xi ≥ 0, i = 1, 2, 3}. A proposal by legislator i in period t is a policy yti ∈ X,

and the status quo policy at the beginning of period t is denoted qt−1 with q0 the initial status

quo. The agenda on which legislators vote is {qt−1, yti}. Legislator i is assumed to have a linear

utility function Ui(x) = xi in each period and maximizes the expectation of the discounted, infinite

stream of utilities
∑∞

t=1 δ
t−1Ui(x

t
i), where xti is the ith component of the policy xt in period t and

δ ∈ [0, 1) is a common discount factor.

A MPE is a subgame perfect equilibrium in which strategies depend only on the payoff-relevant

state variable, which at a proposal stage is the status quo qt−1 at the beginning of period t. A

strategy for legislator i is a pair of functions (σi, ωi), where σi : X → X is a proposal strategy

for legislator i and ωi : X × X → {0, 1} is legislator i’s voting strategy.3 Legislator i’s proposal

strategy σi(q
t−1) = yti selects a proposal yti conditional on the status quo. Legislator i’s voting

strategy ωi(q
t−1, yt`) assigns a vote conditional on the proposal and the status quo, where ` denotes

the proposer and ωi(q
t−1, yt`) = 1 denotes a vote for the proposal. A simple majority is required,

so the proposal is approved if and only if
∑3

i=1 ωi(q
t−1, yt`) ≥ 2. The status quo qt ∈ X in period

3We abuse notation slightly by writing proposal strategies as pure strategies. The coalition MPE we characterize
involves mixing, but the mixing among pure strategies is simple so for clarity we use pure strategy notation.
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t+ 1 is then

qt =

 qt−1 if
∑3

i=1 ωi(q
t−1, yt`) < 2

yt` if
∑3

i=1 ωi(q
t−1, yt`) ≥ 2.

The state thus evolves as proposals are made and votes are cast.

Letting σ and ω denote the profiles of strategies, the dynamic payoff Vi(σ, ω|qt−1) for i depends

on t only through the state and is defined by

Vi(σ, ω|qt−1) = Et[Ui(q
t) + δVi(σ, ω|qt)],

where Et denotes expectation with respect to the selection of the proposer and any uncertainty

affecting payoffs and transitions.

Voting strategies are required to be stage undominated, i.e., a legislator votes for the alternative

he strictly prefers regardless of whether he is pivotal. That is,

ωi(q
t−1, yt`) =

 1 if Et[Ui(y
t
`) + δVi(σ, ω|yt`)] > Et[Ui(q

t−1) + δVi(σ, ω|qt−1)]

0 if Et[Ui(y
t
`) + δVi(σ, ω|yt`)] < Et[Ui(q

t−1) + δVi(σ, ω|qt−1)].
(1)

If the dynamic payoffs are equal, legislator i votes according to an indifference rule that is specified

below as part of the equilibrium construction.

A perfect equilibrium requires that in every subgame for each t every legislator’s dynamic payoff

is optimal given the equilibrium strategies of the other legislators. That is, a profile (σ∗, ω∗) is a

Markov perfect equilibrium in stage undominated voting strategies if and only if

Vi(σ
∗, ω∗|qt−1) ≥ Vi((σ∗−i, σi), (ω∗−i, ωi)|qt−1),∀(σi, ωi), i = 1, 2, 3.

A dynamic coalition is defined as a decisive set of legislators each of whom receives a positive

allocation and support the same policy, or set of policies, in at least two consecutive periods. A

dynamic coalition MPE is an equilibrium that supports a dynamic coalition. The focus here is on

equilibria that support dynamic coalitions for all initial status quos q0 ∈ X.

Two models are considered. In the basic model in Section 2.2 payoffs and transitions are

deterministic, and the unique allocation supported by a coalition MPE has equal division of the

dollar within a minimal winning coalition in every period. The equilibrium is presented for three

legislators and a simple majority, and an extension to n legislators and any decisiveness rule is
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presented in Section 2.5. In Section 3 implementation uncertainty is introduced, and in Section 4

a class of specific-policy coalition equilibria is characterized where in every period the originator

of the coalition receives a greater share than the coalition partner receives. In Section 5 coalition

members tolerate moderate implementation uncertainty, and the equilibrium supports allocations

in which the coalition members receive unequal shares that can vary from period to period.

2.2 The Coalition MPE

A dynamic coalition MPE, or coalition MPE for short, is introduced and illustrated in this section

for the model in which payoffs and transitions are deterministic. Consider a set Z = {z12, z21, z13, z31, z23, z32}

of coalition allocations, where z12 = z21 = (12 ,
1
2 , 0), z13 = z31 = (12 , 0,

1
2), and z23 = z32 = (0, 12 ,

1
2).

Consider the coalition proposal strategy σ∗i (q
t−1) for legislator i selected as the proposer in period

t given by

σ∗i (q
t−1) =

 qt−1 if qt−1 ∈ {zij , zik}

zi`, ` = j, k,with probability 1
2 if qt−1 /∈ {zij , zik}.

(2)

The proposer thus proposes the status quo if it is favorable and, if not, proposes a favorable policy,

randomizing among the other two legislators.

These strategies identify the coalition as the legislator selected as the proposer in the first

period and the other legislator to whom 1
2 is offered. Thereafter, the coalition members propose

the coalition allocation and choose to maintain the coalition whenever they are the proposer.

The following proposition identifies a coalition MPE that exists for all initial status quo when

the future is sufficiently important.

Proposition 1. There exists a δo < 1 such that for all δ > δo and any q0 ∈ X: (i) The con-

tinuation values v`(zij), where ` ∈ {i, j} is the proposer, are vi(zij) = vj(zij) = 1
2(1−δ) and

vk(zij) = 0, k 6= i, j. The continuation value for qt−1 /∈ Z is v̂ = 1
3(1−δ) for i = 1, 2, 3. (ii)

The strategies {(σ∗i (qt−1), ω∗i (qt−1, σi(qt−1))), i = 1, 2, 3, } in (1) and (2) with legislators voting for

the status quo when indifferent between it and a proposal constitute a MPE.

A sketch of the main steps of the argument is presented here, and in Section 4 Proposition 1 is

formally proven. In the equilibrium the coalition persists because a deviation results in a collective

punishment in which all legislators receive v̂ = 1
3(1−δ) , whereas the coalition members receive

vi(zij) = vj(zij) = 1
2(1−δ) on the equilibrium path. The identity of the coalition is determined by
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which legislator is selected as the first proposer. Suppose that the proposer in the first period is

legislator 1 and proposes z12, so the coalition is {1, 2}. Thereafter, the coalition members propose

z12 and vote for qt−1 = z12.
4 The continuation value v`(z12) on the equilibrium path is then

v`(z12) =
1

2
+ δv`(z12),

which yields

v`(z12) =
1

2(1− δ)

establishing the first part of (i). Since all legislators are in symmetric positions, the dynamic payoff

from randomization must be v̂ = 1
3(1−δ) , establishing the second part of (i).5 To identify the bound

δo on the discount factor, consider an initial status quo q0 = (1, 0, 0). Legislator 1 can propose

(1, 0, 0) and obtain 1 in the first period, and the status quo for period 2 is q1 = q0 = (1, 0, 0). Given

q1 /∈ Z, whichever legislator is recognized in period 2 randomizes. Legislator 1 prefers to propose

z12 in the first period rather than (1, 0, 0) if and only if

1

2
+ δv1(z12) > 1 + δv̂,

which is satisfied if and only if δ > δo = 3
4 . Legislator 1 cannot offer less than 1

2 to legislator 2,

since then q1 /∈ {z12, z13} and legislators would randomize in the next period, in which case the

continuation value would be v̂.

Next, suppose that q1 = z12 and legislator 3 is selected as the proposer in period 2. If legislator

3 proposes y3 /∈ Z, coalition members strictly prefer q1 to that proposal for δ > δo. Suppose 3

proposes z23, which gives 1
2 to coalition member 2, and if 2 votes for the proposal, legislators 2 and

3 would constitute a coalition thereafter. Legislator 2 is indifferent between voting for the status

quo and the proposal, and, according to the indifference rule, votes against the proposal and for

the present coalition {1, 2}. This shows (ii) in Proposition 1.

The coalition equilibrium in Proposition 1 exists because coalition members each receive 1
2 on

the equilibrium path, and although a coalition member selected as proposer can obtain (almost) 1

by offering the out legislator a positive allocation, doing so results in a status quo outside Z. In the

4On the equilibrium path the coalition members could make any proposal and then vote for the status quo against
the proposal, so there is a continuum of equilibria that support a dynamic coalition and the equal division allocation.

5This is proven formally in Lemma 1 below.
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following period the proposer randomizes in selecting a coalition partner resulting in a continuation

value v̂ = 1
3(1−δ) for all legislators. A coalition member who so deviates thus is punished by all

legislators by the difference δ
2(1−δ) −

δ
3(1−δ) = δ

6(1−δ) . For δ > δo = 3
4 the current period gain

of 1 − 1
2 = 1

2 is less than the punishment. This punishment is not selective, since both coalition

members are punished, and it is implemented with Markov strategies.

The coalition equilibrium in Proposition 1 has equal allocations for the coalition members,

and the following proposition establishes that no other allocation can be supported as a coalition

equilibrium.

Proposition 2. Only allocations in Z can be supported by an MPE with coalition proposal strategies

when legislators vote for the status quo when indifferent.

Proof. Consider coalition proposal strategies in (2) supporting coalition allocations for a set Ẑ with

typical element ẑij = (12 + β, 12 − β, 0) where the proposer proposes to take a share 1
2 + β, β > 0,

and offer 1
2 − β to another legislator selected at random. The two legislators vote for the status

quo if it gives them 1
2 + β and 1

2 − β, respectively. Suppose the initial proposer is legislator 1 and

2 is the coalition partner. When 2 is selected as the proposer, she has a strict incentive to propose

1
2 +β for herself and offer 1

2 −β to legislator 3. Both 2 and 3 vote for the proposal, so only if β = 0

is there a coalition MPE. �

The dynamic coalition equilibrium established in Proposition 1 has a minimal winning coalition

that forms in the first period and continues thereafter. The policy selected by the originator of the

coalition is unique and stable, which are also the predictions of sequential legislative bargaining

theory. In the dynamic model, however, the only allocation that can be supported as a coalition

equilibrium is equal division, so the proposer and the coalition partner share proposal power equally.

2.3 The Indifference Rule

The indifference rule used in Proposition 1 specifies that a legislator votes for the status quo when

indifferent. This rule supports a coalition MPE in which coalition members receive equal shares

of the dollar in every period. The role of the indifference rule is to preclude a coalition member

from deviating to an apparently equivalent proposal by a non-coalition legislator. Legislator 3

could propose
(
0, 12 ,

1
2

)
, and if the continuation value to legislator 2 were 1

2(1−δ) as it would be in

a coalition of legislators 2 and 3, legislator 2 would be indifferent between the status quo and the
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proposal. If legislators were to vote for a proposal when indifferent, however, a dynamic coalition

cannot be supported as a MPE using coalition proposal strategies, since legislator 3 can make

a proposal that induces legislator 2 to defect from the coalition {1, 2}. Then, the continuation

value for a coalition member would be less than 1
2(1−δ) . The indifference rule of voting against

the proposal when indifferent thus is needed to support a coalition equilibrium in the dynamic

legislative bargaining game. As shown in Sections 4 and 5, this indifference rule is not needed to

support coalition equilibria when there is implementation uncertainty that affects current period

payoffs and transitions.

The indifference rule typically used in game theoretic models is for a player to vote for a proposal

when indifferent between it and another alternative, in this case the status quo.6 This indifference

rule is used to avoid open set issues where if a legislator would not vote for the proposal when

indifferent, the proposer would simply increase its offer by a small amount and the player would

then vote for it. As Battaglini and Palfrey (p. 750) observe, “the [Kalandrakis] equilibrium must

have voters voting in favor of the proposal when they are indifferent. (Otherwise, the proposer

would have an incentive to sweeten the offer [to a player receiving 0] by an infinitessimal amount).”

In the equilibria presented here, a coalition member votes for the alternative with the higher

dynamic payoff (current-period allocation plus the discounted continuation value) but if indifferent

between the proposal and the status quo legislators vote for the status quo rather than the proposal.

A legislator not in the coalition cannot sweeten the offer because no more than the entire dollar

can be offered, and with the discount factor sufficiently high the entire dollar is not enough to elicit

a vote for the proposal. The out member thus cannot overturn the coalition MPE for any initial

status quo. As Proposition 2 indicates, the indifference rule is not innocuous in a dynamic game.

Indifference rules thus can support at least two MPE. If legislators vote for the proposal when

indifferent, a rotating dictatorship is a MPE. If the legislators vote no when indifferent, a coalition

equilibrium exists with equal division and a rotating dictator is not a MPE. Which equilibrium

is a better predictor of how people would play this dynamic game is an empirical matter, and

the experiments by Battaglini and Palfrey provide evidence about that play. They conclude that

the experiment results do not support the rotating dictator equilibrium and do support a Markov

Logistic Quantal Response Equilibrium (MLQRE) (Mckelvey and Palfrey (1995) McKelvey and

6The MPE established by Kalandrakis, Bowen and Zahran, Duggan and Kalandrakis, and others specify that if a
legislator is indifferent between the status quo and the proposal, he votes for the proposal.
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Palfrey (1998)) when players are sufficiently risk-averse. The payments to the participants in the

experiment were small, and whether players were actually risk averse is not clear. In Section 6 we

show that the Battaglini and Palfrey experiment show evidence of dynamic coalition behavior. The

principal difference between the experiment results and the predictions of the coalition equilibrium

is the frequency with which a universal allocation results, since the universal allocation is never a

coalition Markov perfect equilibrium even for highly risk-averse players. The universal allocation

can, however, be supported by a subgame perfect equilibrium, and that equilibrium is a dynamic

coalition equilibrium.7

2.4 Communication

Several experiments implementing the static sequential legislative bargaining game introduced by

Baron and Ferejohn find behavior that only weakly supports the theory.8 Agranov and Tergiman

(2012) show that allowing participants in a legislative bargaining experiment to communicate results

in behavior that strongly supports the theory. The cheap talk communication allowed in the

experiment takes place after a proposer has been selected, and any player can send a message.

Participants in the experiment used the communication opportunity to learn about the reservation

values of the other players and to induce the proposer to include them in the majority.

Simple communication could allow legislators to coordinate on a coalition equilibrium. Suppose

that the status quo is qt−1 = (1, 0, 0) and legislator 1 in the experiment is selected as the proposer.

Legislator 1 could propose (1, 0, 0) as in a rotating dictatorship and receive 1 in the current period

with qt = (1, 0, 0) the next status quo. Legislator 1 could alternatively propose (12 ,
1
2 , 0) accompanied

by the following message to legislator 2. “I am offering you 1
2 in the hope that you will also propose

(12 ,
1
2 , 0) when you are selected and along with me vote for this allocation in every period and against

any other proposal. I cannot commit to vote for this allocation nor to propose it in the future, but

you should understand that it is in my, and your, interest to do so, and it is in my interest to have

you believe that I will do so. I will have an incentive to vote for it, since I am sufficiently patient

that I cannot be tempted away from following through on my intentions even if I were offered 1 by

legislator 3. I also understand that legislator 3 could propose (0, 12 ,
1
2), but you can do no better

7The MLQRE predicts that a universal allocation in which all players receive at least one-quarter of the dollar
can occur with high probability when players are risk averse.

8See Frechette, Kagel and Lehrer (2003), Frechette, Kagel and Morelli (2005a), and Frechette, Kagel and Morelli
(2005b).
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than to vote for (12 ,
1
2 , 0) when it is the status quo, so I believe you will stick with me. I signaled

my confidence in you by sacrificing in the current period to initiate this coalition.” The simplicity

of the coalition MPE should facilitate communication, making this an appealing equilibrium.

2.5 Extensions

The coalition MPE in Proposition 1 can be extended in a straightforward manner to an n-member

legislature and to legislators with preferences exhibiting risk aversion. These extensions are de-

scribed briefly here along with a direction in which the equilibrium cannot be extended.

For a legislature with n members and m ∈ [n+1
2 , n) votes to approve a proposal, the legislator

selected in the first period offers 1
m to herself and any m− 1 other legislators selected randomly. A

member of the coalition votes for the coalition allocation over any other allocation if

1

m
+ δ

1

m(1− δ)
> 1 + δ

1

n(1− δ)
,

where 1
n(1−δ) is the continuation value corresponding to randomization. If a coalition member is

indifferent between the status quo and a proposal, he votes for the status quo when it is the coalition

allocation. A coalition MPE then exists for all δ > δo = n(m−1)
m(n−1) .

The coalition equilibrium strategies for a three-member legislature yield a payoff of 1
2 in every

period for the coalition members, so there is perfect risk smoothing over time. The equilibrium

strategies then constitute a MPE for risk averse legislators with δ sufficiently high. Letting U`(x) =

u(x), ` = i, j, k, be a strictly concave utility function, the lower bound δou on the discount factor is

δou =
3u(1)−3u( 1

2
)

3u(1)−2u( 1
2
)−u(0) . Since risk smoothing over time benefits the coalition members, the discount

factor δou is strictly less than δo for risk averse legislators.

The coalition equilibria in Proposition 1 have the same allocation in every period, but with

risk-neutral legislators allocations that are unbalanced within a period but balanced over time as

each member of the coalition is selected as the proposer would provide equivalent payoffs. This

conjecture, however, cannot be a coalition equilibrium when legislators vote against the proposal

when indifferent. To show this, consider a coalition of legislators 1 and 2 with legislator 1 when

selected proposing z12(z) = (1−z, z, 0) and legislator 2 when selected proposing z21(z) = (z, 1−z, 0),

where z ∈ [0, 12). Legislator 3 proposes any y ∈ X, and legislators 1 and 2 vote against that proposal

for δ sufficiently high. The continuation values for the conjectured equilibrium for coalition member

13



1 when qt−1 = z12(z) are given by

v1(z12(z)) =
1

3
(z + δv1(z21(z))) +

2

3
(1− z + δv1(z12(z)))

v1(z21(z)) =
2

3
(z + δv1(z21(z)) +

1

3
(1− z + δv1(z12(z))) ,

which yield

v1(z12(z)) =
1 + (1− z)(1− δ)

(3− δ)(1− δ)

and

v1(z21(z)) =
1 + z(1− δ)

(3− δ)(1− δ)
.

Similarly, v2(z12(z)) = v1(z21(z)) and v2(z21(z)) = v1(z12(z)).

Consider the votes by legislators 1 and 2. Suppose qt−1 = z12(z), and legislator 2 is the proposer

and proposes z21(z). Legislator 1 votes for z21(z) if and only if

z + δv1(z21(z)) > 1− z + δv1(z12(z)),

which simplifies to

−δ(1− 2z) > 1− 2z,

which is satisfied only if z > 1
2 . Since z ∈ [0, 12), legislator 1 votes against legislator 2’s proposal

when the status quo favors 1. Similarly, legislator 2 also votes against 1’s proposal when the status

quo favors 2. Consequently, there is no unbalanced, alternating-allocation coalition equilibrium.

3 Implementation Uncertainty

The unique coalition equilibrium allocation in the deterministic dynamic game has equal division

and the supporting equilibrium requires an indifference rule in which coalition members vote against

a proposal and for the status quo when indifferent. If there is publicly-observable uncertainty

resulting from the implementation of a policy, however, there are coalition equilibria that support

a set of unequal allocations and legislators can vote arbitrarily when indifferent between a proposal

and the status quo. Uncertainty can affect not only the payoff in the current period but also the

status quo for the following period.

14



Uncertainty resulting from implementation represents the observation that policy does not

always work as intended. The implementation of legislation is typically delegated to administrative

agencies or regulatory commissions that develop the details of the application of the legislation. A

degree of uncertainty can be associated with that delegation, and legislators take that uncertainty

into account in choosing a policy. The uncertainty could also be associated with the response

to the enacted policy by those affected by it, and the realization of that uncertainty can affect

the status quo and the strategies of legislators in the future. As an extreme example, with the

support of the American Association of Retired Persons Congress overwhelmingly enacted the

Medicare Catastrophic Coverage Act of 1988 which provided generous benefits for catastrophic

care under Medicare and financed the benefits through increases in Medicare premiums. Before the

change could be fully implemented, Medicare recipients began protesting the forthcoming premium

increases, and, facing a revolt, Congress quickly repealed the Act it had passed in the previous

session.

Uncertainty is also an integral part of dynamic legislative bargaining theory. In their MLQRE

Battaglini and Palfrey assume that players use behavioral strategies that place positive probability

on every available action (on a grid). That probability is proportional to the continuation value, and

as that proportion increases the limit points correspond to MPE. This uncertainty affects strategies

and hence payoffs but does not affect state transitions other than through the strategies. Duggan

and Kalandrakis (2012) show the existence of stationary MPE in pure strategies for a class of

dynamic games that accommodate uncertainty in the current period payoffs and in the transitions

from one state to another. Uncertainty that affects the transitions is necessary for existence with an

infinite policy space, and preference uncertainty is needed to show uniqueness of optimal proposals.

The uncertainty considered here affects the implemented policy and hence both the payoffs in the

current period and the status quo for the next period. Since the uncertainty affects the policy that

is implemented, the status quo can move away from the coalition allocations in which case the

legislators as proposers all randomize in forming new coalitions.

The following two sections identify coalition equilibria with unequal allocations among coalition

members when there is uncertainty associated with the implementation of proposals. The uncer-

tainty reflects factors that intervene between the passage of a policy and the consequences once

the policy is implemented. This uncertainty affects the allocation when a coalition continues and

when it dissolves. The uncertainty could be greater when a policy different from the status quo is
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implemented than when the status quo policy continues in place. This uncertainty allows coalition

MPE with unequal allocations to coalition members. In Section 4 this is established for coalitions

that implement the same, unbalanced allocation in every period and in Section 5 for coalitions that

tolerate allocations that can vary from one period to the next. When there is no implementation

uncertainty, in both cases the unique equilibrium policy has a balanced allocation in which coalition

members receive equal shares of the dollar in every period, as characterized in Proposition 1.

Consider a set Z(z) of coalition allocations that is analogous to the set Z in the equal allocation

case. Let zij(z) denote the allocation where i receives 1−z, j receives z, and k receives 0. Let Z(z) =

{z12(z), z13(z), z21(z), z23(z), z31(z), z32(z)} denote the set of proposals of this form, where z ∈ [0, 12 ].

The model of implementation uncertainty is chosen to facilitate comparative statics analysis of the

set of allocations supported as coalition equilibria and to simplify the analysis of the incentive

constraints. Implementation uncertainty is assumed to be present with a positive probability, η

or γ, in Assumption 1 below, and with the complementary probability there is no uncertainty

and hence the allocation equals the policy adopted by the legislature. When implementation

uncertainty is realized, its magnitude is represented by a continuous, mean zero, random shock.

The former specification allows comparative statics analysis in terms of a single parameter, and the

latter specification means that the probability is zero that the shocked allocation equals the policy

adopted by the legislature. A legislator cannot receive more that 1 or less than 0, so the shocked

allocation may be truncated with a reallocation of the truncated amount to other legislators.

The following assumptions specify the representation of the implementation uncertainty.

Assumption 1. If a proposal yti = qt−1 is adopted, with probability 1 − η the policy implemented

equals the proposal, and with probability 1 > η ≥ 0 the policy is distorted by a uniformly distributed

shock θ̃t with mean zero and support [−θ, θ]. (i) For yti ∈ Z(z), if the realization θt is such that

z − θt ≥ 0, the legislators in the coalition receive 1 − z + θt and z − θt, respectively. If z − θt < 0

for legislator `, ` receives 0 and the other coalition member `′ receives 1. (ii) For a proposal

yti = qt−1 /∈ Z(z), if a legislator ` receives 1 in yti and 1 + θt ≥ 1, ` receives 1. If 1 + θt < 1, `

receives 1 + θt and one other legislator selected at random receives −θt. If only two legislators `

and `′ receive positive allocations in yti = (1− x`, x`, 0), where 0 < x` ≤ 1
2 , they receive 1− x` + θt

and x` − θt, respectively, if x` − θt ≥ 0. If x` − θt ≤ 0, ` receives 1 and `′ receives 0. If all three

legislators receive positive allocations in yti , the allocations with the shock are x` + α`θ
t, ` = i, j, k,

where |α`| ≤ 1, ` = i, j, k, and αi + αj + αk = 0. If x`′ + α`′θ
t ≤ 0 for some `′, `′ receives 0 and
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−α`′θt is allocated randomly among the other legislators.

If a proposal yti 6= qt−1 is adopted, with probability 1 − γ the policy implemented equals the

proposal, and with probability 1 > γ ≥ 0 the policy is distorted from the proposal by a uniformly

distributed shock ε̃t with support [−ε, ε]. (iii) For yti ∈ Z(z) the allocations are as in (i) with the

realization εt replacing θt. (iv) For yti /∈ Z(z) the allocations are as in (ii) with the realization εt

replacing θt.

Assumption 2. Implementation of a new policy yti 6= qt−1 has a higher probability of a shock than

implementing the status quo policy, i.e., γ ≥ η, and a stochastically larger shock, i.e., ε ≥ θ.

4 Specific-Policy Coalition MPE with Implementation Uncertainty

This section shows by construction the existence of a coalition MPE that supports a specific policy

with unequal allocations of the form (1−z, z, 0), z < 1
2 , where the coalition persists with probability

1− η and dissolves with probability η when implementation uncertainty is realized. The following

bound on the shocks to the policy facilitates the exposition by simplifying the expressions for the

continuation values.

Assumption 3. ε ≤ 1
3 .9

The equilibrium strategies for a specific-policy coalition MPE are identified in the following

proposition.

Proposition 3. Under Assumptions 1-3, the following strategies constitute a specific-policy coali-

tion MPE for some parameter values and some z ∈ (0, 12 ]:

σ∗i (q
t−1) =

 qt−1 if qt−1 ∈ {zij(z), zji(z), zik(z), zki(z)}

zi`(z), ` ∈ {j, k},with probability 1
2 if qt−1 /∈ {zij(z), zji(z), zik(z), zki(z)}.

(3)

If γ = η, legislators vote no when indifferent. If γ > η, legislators vote no or yes when indifferent.

The strategies in Proposition 3 identify a class of specific-policy coalition equilibria that are

indexed by the share z of the dollar going to the the coalition partner, where the originator of the

9The requirement that ε ≤ 1
3

assures that the payoffs to coalition members are in [0, 1] with probability 1. This
is shown in Corollary 4 in the Appendix.
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coalition receives the larger share 1− z. For z = 1
2 and γ = η = 0 (no uncertainty), the strategies

in Proposition 3 are the same as strategies in Proposition 1.

The equilibrium strategies in Proposition 3 support minimal winning dynamic coalitions that

form in the first period and continue to the next period with probability 1−η and with probability

η dissolve as a result of the implementation uncertainty. That is, when implementation uncertainty

is present, with probably 1 the shock moves the policy outside the set Z(z), so that the coalition

dissolves. A new coalition then forms in the next period.

The originator of a specific-policy coalition has proposal power but may not share it equally with

the coalition partner. In an experiment, a specific-policy coalition equilibrium could be coordinated

by communication among the legislators, as in the experiment by Agranov and Tergiman.

The strategies in Proposition 3 are shown in four steps to constitute a coalition MPE. In Lemma

1 the continuation values corresponding to the equilibrium strategies are derived. In Lemma 2

bounds on z and δ are established such that the strategies are impervious to one-step deviations.

Lemma 3 establishes restrictions on the implementation uncertainty such that the bound on δ

identified in Lemma 2 is less than one. In Lemma 4 existence is shown of a non-empty set of z ≤ 1
2

that satisfy the bounds identified in Lemma 2, which completes the proof.

Let v`(y
t), ` = 1, 2, 3, denote the continuation value corresponding to the equilibrium strategies

in Proposition 3 when the proposal yt is implemented and no shock is realized. Let v`(y
εt) denote

the continuation value when yt is implemented with a shock εt, and v`(y
θt) denote the continuation

value when yt is implemented when a shock θt is realized.

Lemma 1. For qt−1 /∈ Z(z) the strategies in Proposition 3 yield continuation values

v̂ =
1

3(1− δ)
, i = 1, 2, 3.

For qt−1 = zij(z) ∈ Z(z) the strategies in Proposition 3 yield continuation values v`(z
θt
ij ) = v`(z

εt
ij ) =

v̂, ` = 1, 2, 3, conditional on receiving a shock, and continuation values v`(zij(z)), ` = 1, 2, 3, condi-
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tional on not receiving a shock, where

vi(zij(z)) =
3(1− δ)(1− z) + ηδ

3(1− δ)(1− δ(1− η))
(4)

vj(zij(z)) =
3(1− δ)z + ηδ

3(1− δ)(1− δ(1− η))
(5)

vk(zij(z)) =
ηδ

3(1− δ)(1− δ(1− η))
. (6)

The proof is presented in the Appendix.

The incentive for the coalition members to preserve the coalition is the same as that identified

in the sketch of the proof of Proposition 1. The originating coalition member receives a payoff of

1 − z ≥ 1
2 every period in which the coalition persists, whereas outside the coalition he receives

this payoff only with probability 1
3 . The continuation value vi(zij(z)) is decreasing in η, but the

difference vi(zij(z)) − v̂ is positive, which provides a collective punishment for deviating from the

coalition strategies. In addition, the dynamic payoff from switching coalitions is lower because the

implementation uncertainty is greater when a policy changes.

The continuation value vi(zij) for the originating coalition member i is greater than the con-

tinuation value vj(zij) of the coalition partner. Although the coalition partner j has a lower

continuation value, the continuation value for remaining in the coalition is greater than when the

coalition dissolves, provided that z > 1
3 . It is the difference between vj(zij(z)) and v̂ that creates

the incentive to accept the lower payoff .

The values v`(zij(z)) of the game on the equilibrium path have the expected comparative statics

properties. A higher probability η of implementation uncertainty reduces the probability of staying

on the equilibrium path, since it reduces the continuation value to the coalition members and

increases the continuation value to the out legislator. The continuation values are increasing in δ

and independent of γ.

When z is not too small and the discount factor is high enough, the coalition partner has an

incentive both to accept the coalition proposal and to maintain the status quo once the coalition

has formed. Lemma 2 identifies the bounds on the coalition equilibrium allocations.

Lemma 2. For δ > δo ≡ 3− 3
2
ηθ

4−γ−3η− 3
2
(1−η)ηθ , there is no incentive for a legislator to deviate from the
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strategies given in Proposition 3 if and only if z satisfies10

max{z∗, zo} ≤ z ≤ min

{
ẑ1,

1

2

}
, (7)

where

z∗ =
3− 2δ(γ − η)

3(2− δ(γ − η))

zo =
3− δ(2 + γ − 3η)− 3

4ηθ(1− δ(1− η))

3(1− δ(γ − η))

ẑ1 =
2δ(1− γ) + 3

4ηθ(1− δ(1− η))

3(1− δ(γ − η))
.

(8)

The proof of Lemma 2 is presented in the Appendix.

The lower bound z∗ ensures that the coalition partner j has no incentive to propose (or accept)

zji(z) or zjk(z) if the status quo is zij(z). Legislator j has a higher allocation 1 − z in zji(z)

and zjk(z), but changing the policy results in increased implementation uncertainty and a lower

expected dynamic payoff. The bound z∗ indicates the importance of the implementation uncertainty

for sustaining unbalanced coalition allocations, since z∗ = 1
2 for γ = η = 0, in which case the only

coalition allocation that can be supported has equal sharing of proposal power.

The bound zo ensures that the coalition partner accepts the coalition proposal for status quos

not in Z(z). Remaining at a status quo outside Z(z) has a continuation value of v̂ = 1
3(1−δ) , and

for z ≥ zo, the coalition partner prefers to vote for the proposal and obtain z + δvj(zij(z)) with

probability 1−γ. The upper bound ẑ1 is the coalition originator’s analogue of zo, and the intuition

is similar.

It remains to determine if δo < 1. Consider a status quo allocation (0, 1, 0) for which legislator

1 makes the proposal (12 ,
1
2 , 0). The status quo is very attractive for legislator 2, so with sufficient

uncertainty about the new allocation relative to the status quo (γ high relative to η), legislator

2 could reject this proposal regardless of the discount factor. The following lemma establishes

conditions on γ and η such that δo < 1.

Lemma 3. For (γ, η) ∈ R(θ) ≡
{

(γ, η)|γ ∈ [0, 1], η ∈ [0, γ], and 1− γ − 3η
(

1− ηθ
2

)
> 0
}

, δo < 1.

Proof. Since δo =
3− 3

2
ηθ

4−γ−3η− 3
2
(1−η)ηθ , it is straightforward to show that δo < 1⇔ (γ, η) ∈ R(θ). �

10Assumption 3 simplifies the expressions for the continuation values and the incentive constraints by keeping the
shocked allocation in [0, 1]. Lemma 2 indicates that the assumption can be weakened to ε ≤ min{z∗, zo} for δ > δo.
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When γ = η, z∗ = 1
2 and for η small enough (η, η) ∈ R(θ), so δo < 1 and zo ≤ 1

2 . So when

γ = η the unique allocation that a coalition equilibrium supports is z = 1
2 by Lemma 2.11 Hence

the equal allocation coalition equilibrium can be supported when the probability of implementation

is the same if the policy remains the same or changes.

The following lemma establishes that for δ ∈ (δo, 1) there exists a z that satisfies (7).

Lemma 4. For δ ∈ (δo, 1), there exists a z ≤ 1
2 satisfying (7). That is,

max{z∗, zo} ≤ 1

2
, and

ẑ1 >
1

2
.

The proof is provided in the Appendix. Lemma 4 establishes that if legislators are sufficiently

patient, there is a non-empty set of allocations that can be supported by the strategies given in

Proposition 3. That is, the left side of (7) is no greater than one-half and the right side is at least

one-half. This completes the proof of Proposition 3.

To summarize, Lemma 2 shows that for δ > δo there is no incentive to deviate from the strategies

in Proposition 3 for z ≤ 1
2 satisfying (7). Lemma 3 states that δo < 1 for (γ, η) ∈ R(θ). Lemma

4 shows that for δ ∈ (δo, 1) a non-empty set of z ≤ 1
2 satisfying (7) exists. Since z ≤ 1

2 , the

right-hand side of (7) is non-binding and the upper bound on z is 1
2 . Hence the allocations that

can be supported as a specific-policy coalition MPE are all z ∈ [z+, 12 ], where z+ = max{z∗, zo}.

Both z∗ and zo are strictly decreasing in δ, which establishes the following corollary.

Corollary 1. The set of allocations supported by specific-policy MPE is strictly decreasing in δ for

δ ∈ (δo, 1).

The least upper bound and the greatest lower bound on the set of z for which the strategies

constitute an equilibrium are characterized in Lemma 5 in terms of a cut-point on δ and in Lemma

6 in terms of a cut-point on γ. The following lemma establishes that z+ = z∗ for sufficiently high

discount factors and γ not too large. That is, z∗ is the greater lower bound on z for δ sufficiently

high.

11A more complete statement is presented in Corollary 2.
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Lemma 5. For γ ≤ 2
3 , z+ = z∗ for δ ≥ δ+ and z+ = zo for δ < δ+, where δ+ > δo and

δ+ ≡
(4(1− η) + 3

4ηθ(2 + γ − 3η))

2(γ − η)(2− γ − η − 3
4ηθ(1− η))

(9)

−

√
(4(1− η) + 3

4ηθ(2 + γ − 3η))2 − 4(3− 3
2ηθ)(γ − η)(2− γ − η − 3

4ηθ(1− η))

2(γ − η)(2− γ − η − 3
4ηθ(1− η))

.

Proof. The difference z∗ − zo is increasing in δ for γ ≤ 2
3 . To show this, differentiation yields

∂(z∗ − zo)
∂δ

= − γ − η
3[2− δ(γ − η)]2

+
(2− 3

4ηθ)(1− δ(1− η))

3[1− δ(γ − η)]2

> − γ − η
3[2− δ(γ − η)]2

+
(2− 3

4ηθ)(1− δ(1− η))

3[2− δ(γ − η)]2
. (10)

If γ = η, the first line of (10) is positive. If γ = η, the second line is positive if 2−3γ+η[1− 3
4θ(1−

γ)] > 0, which is the case for γ ≤ 2
3 . The greater lower bound is then z∗ if and only if δ ≥ δ+,

where δ+ in (9) is obtained by equating zo and z∗ in (8). �

The following proposition characterizes z+ in terms of the probability γ of implementation

uncertainty with z+ = z∗ for low γ and z+ = zo for higher γ.

Lemma 6. z+ = z∗ for γ ≤ γe and z+ = zo for γ > γe, where

γe ≡ 1 +
1

8δ
[3ηθ(1− δ(1− η))]

− 1

8δ

[
(8− 3ηθ)[1− δ(1− η)] [16 + (8− 3ηθ)[1− δ(1− η)]]

1
2 . (11)

Proof. The bound z∗ is decreasing in γ, and zo is increasing in γ, so the difference z∗ − zo is

decreasing in γ. The greater lower bound is then z∗ if and only if γ ≥ γe, where γe in (11) is

obtained by equating zo and z∗ in (8). �

Lemmas 5 and 6 establish that the lower bound on the set of specific-policy coalition equilibrium

is z∗ when δ ≥ δ+ and γ ≤ 2
3 or when γ ≤ γe, and the lower bound is zo otherwise. When the

discount factor is high (δ ≥ δ+) or the probability of implementation uncertainty when the policy

changes is low (γ ≤ γe), the binding dynamic incentive constraint (that establishes the lower bound

z∗) is for the coalition partner to stay on the equilibrium path; i.e., to accept the allocation z and not

propose a policy in Z(z) that would yield 1− z. When δ ∈ (δo, δ+) or γ > γe, the binding incentive
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constraint is for the potential coalition partner to accept the coalition originator’s offer for any

status quo. The former represents an internal threat to the coalition, whereas the latter represents

an external threat. The binding incentive constraints thus are associated with the coalition member

who receives the lower allocation.

In a specific-policy coalition equilibrium with z < 1
2 the originator of the coalition does not share

proposal power equally with the coalition partner. Both z∗ and zo are greater than 1
3 , however, so

the coalition partner receives more in each period than in sequential legislative bargaining theory.

The dynamic incentive arising from internal and external threats from the coalition partner force

the proposer to take less than in sequential bargaining theory.

The following corollary shows that when the probability of implementation uncertainty is the

same when the policy changes as when it remains the same, the set of allocations supported by a

coalition equilibrium is a singleton with equal division among the coalition members.

Corollary 2. For γ = η, the set of z that can be supported as a coalition MPE is the singleton {12}

for η < 1
3θ [4− 2(4− 3

2θ)
1
2 ].

Proof. Substituting γ = η into z∗ given in (8) gives z∗ = 1
2 , so the only allocation that can be

supported by a specific-policy coalition MPE has equal division between the coalition members.

The condition η < 1
3θ [4 − 2(4 − 3

2θ)
1
2 ] implies (η, η) ∈ R(θ), so δo < 1 by Lemma 3 and hence

zo < 1
2 . �

Corollary 2 establishes that when γ = η, the lower bound z∗ = 1
2 , so the only allocation sup-

ported by a coalition equilibrium is an equal division of the dollar among the coalition members.

The equal division equilibrium in Proposition 1 is thus robust to implementation uncertainty pro-

vided that the probability that uncertainty is realized is the same when the policy is changed as

when it remains the same.

Proposition 1 then follows from Corollary 2.

Proposition 1(ii) (restated). If γ = η = 0, the strategies in Proposition 3 are the same as the

strategies in Proposition 1(ii) for z = 1
2 and are a coalition MPE for 1 > δ > δo = 3

4 .

Proof. Corollary 2 implies that only z = 1
2 is supported with γ = η. For γ = η = 0, (0, 0) ∈ R(θ)

and δo = 3
4 . Then z+ = 1

2 , and by Lemma 5 the strategies in Proposition 3 are a coalition MPE

for 1 > δ > δo. �
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For γ = η = 0, the unique coalition MPE allocation has z = 1
2 . By Lemma 1 when γ = η = 0,

the continuation values for qt−1 = zij(
1
2) are vi(zij(

1
2)) = vi(zij(

1
2)) = 1

2(1−δ) , and vk(zij(
1
2)) = 0,

and for qt−1 /∈ Z, v̂ = 1
3(1−δ) . Hence, Lemma 1 provides the formal proof of part (i) of Proposition

1.

5 Tolerant Coalitions

The specific-policy coalition in Proposition 3 dissolves if implementation uncertainty is realized and

moves the implemented policy away from the coalition allocation and hence off the equilibrium path.

A coalition could, however, tolerate some changes in policy due to implementation uncertainty. This

section identifies tolerant coalition MPE in which coalition members tolerate a degree of change

in the coalition allocation, i.e., the coalition persists if the allocation remains in a tolerated set of

allocations and dissolves if it is outside the set.

The value of a tolerant coalition is greater than the value of a corresponding coalition that

dissolves with probability one when there is implementation uncertainty, since if the realized un-

certainty leaves the allocation in the tolerated set, the coalition persists. This is formalized in

Proposition 5 below. Tolerant coalitions are also more durable than coalitions that dissolve when-

ever the implemented policy differs from the policy adopted. As shown in Proposition 7, the set of

allocations for which there is a tolerant coalition equilibrium can be strictly smaller, however, than

the set of allocations characterized in Proposition 2 for specific-policy coalitions that do not tolerate

any deviation from the coalition allocation. This results because toleration of a set of allocations

strengthens the incentive of the coalition partner to deviate from the coalition strategies.

A tolerant coalition equilibrium has allocations in Z(z) for z ∈ ζm ≡ [zm, 1−zm], zm ≤ 1
2 , so the

coalition continues when the realization θt of the implementation uncertainty satisfies z − θt ∈ ζm.

The following assumption assures that the implementation uncertainty is sufficiently great that the

coalition can dissolve for all z ∈ ζ in any period from either a very high or a very low realization

of θ̃t. This simplifies the expressions for the continuation values and facilitates the comparison

between tolerant coalitions and specific-policy coalitions.

Assumption 4. 1− 2zm ≤ θ ≤ ε ≤ zm.

The following proposition identifies tolerant coalition MPE strategies.
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Proposition 4. Under Assumptions 1, 2, and 4 the following strategies constitute a tolerant coali-

tion MPE for some zm ∈ [0, 12 ], where the set of zm is characterized in Lemma 9:

yti =

 qt−1 if qt−1 ∈ {zij(z), zik(z), zji(z), zki(z), z ∈ ζm}

zi`(z
m), ` = j, k,with probability 1

2 otherwize

If γ = η, legislators vote no if indifferent. If γ > η, legislators vote no or yes if indifferent.

Tolerant coalition equilibria exist and are simple with coalition members in period t+1 proposing

the status quo when the payoff z − θt to a coalition member in period t is in ζm. If the realized

implementation uncertainty θt is such that z − θt is not in ζm, the coalition dissolves and the

legislator i selected in the next period proposes a policy zi`(z
m) in which i receives 1−zm. Tolerant

coalitions thus form immediately with the composition of the coalition determined by the selection

of a proposer and the random selection of the coalition partner. As with a specific-policy coalition,

the originator of a tolerant coalition receives a larger share than the coalition partner. After the

first period of a coalition, however, the coalition partner could have the larger share as a result of

the realization of the implementation uncertainty.

Proposition 4 is proven through a series of lemmas with Lemma 8 identifying the proposal

made when a coalition forms and Lemma 9 identifying the set of zm such that the strategies in

Proposition 4 are an equilibrium. Lemma 7 establishes the continuation values corresponding to

the conjectured equilibrium strategies in Proposition 4, and its proof is presented in the Appendix.

Lemma 7. (i) For all qt−1 6= zij(z) for any z ∈ ζm, the strategies in Proposition 4 yield a

continuation value v̄`(q
t−1) for all legislators given by

v̄`(q
t−1) = v̂ =

1

3(1− δ)
. (12)

(ii) For qt−1 = zij(z), z ∈ ζm, the strategies in Proposition 4 yield continuation values v̄`(zij(z))

given by
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v̄i(zij(z)) =
3(1− δ)(1− z) + ηδ + 3(1− δ)ηδν(zm)

3(1− δ)(1− δ(1− η))
(13)

v̄j(zij(z)) =
3(1− δ)z + ηδ + 3(1− δ)ηδν(zm)

3(1− δ)(1− δ(1− η))
(14)

v̄k(zij(z)) =
ηδ − 6(1− δ)ηδν(zm)

3(1− δ)(1− δ(1− η))
, (15)

where

ν(zm) =
1− 2zm

6[2θ(1− δ(1− η))− δη(1− 2zm)]
. (16)

(iii) ν(zm) ≥ (>)0 if 1− 2zm ≥ (>)0.

The continuation value for a specific-policy coalition corresponding to z+ can be compared to

the continuation value for a tolerant coalition with zm = z+.

Proposition 5. Consider a zm = z+ < 1
2 such that both a specific-policy coalition equilibrium

and a tolerant coalition equilibrium exist. If η > (=)0, the continuation value in (4) or (5) for a

specific-policy coalition member i or j is strictly less than (equal to) the continuation value in (13)

or (14) for tolerant coalition members i and j.

Proof. The difference between the continuation values in (13) and (4) for the coalition originator i

is

v̄i(zij(z
m))− vi(zij(zm)) =

δην(zm)

1− δ(1− η)
, (17)

which is positive for η > 0 and zm < 1
2 . If η = 0, the continuation values are the same. The same

argument establishes the result for the coalition partner j. �

With η = 0 in a specific-policy coalition equilibrium, once formed the coalition continues with

probability one, as does a tolerant coalition. The continuation values thus are the same in the two

equilibria. For η > 0 the shocked allocation has a positive probability of remaining in ζm in which

case the coalition continues. A tolerant coalition thus is more valuable to its members than is the

corresponding specific-policy coalition.

When qt−1 /∈ zij(z) for any z ∈ ζm, the proposer i can choose any z′ ∈ ζm and have a

coalition form. The proposer benefits from a low z′, but a low z′ means that the probability that

the coalition dissolves is higher than if z′ were lower. The following lemma shows that the first
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incentive dominates.

Lemma 8. For qt−1 6= zij(z), z ∈ ζm, the optimal proposal by the originator i of a tolerant coalition

is yti = zi`(z
m), ` = j, k.

Proof. Legislator i proposes zij(z) ∈ Z(z), z ∈ ζm, which yields an expected utility EUi(z) given

by

EUi(z) = (1− γ) (1− z + δv̄i(zij(z))) + γ
(

1− z + Etε̃t + δv̄i(z
εt

ij )
)
, (18)

where v̄i(zij(z)) is given in (13) and v̄i(z
εt
ij ) is given in (55) in the Appendix. From Lemma 11 in

the Appendix, v̄i(z
εt
ij ) does not depend on z, so differentiating (18) yields

dEUi(z)

dz
= −1− δ(1− γ)

1− δ(1− η)
< 0.

Consequently, i prefers the lowest z ∈ ζm, so z = zm is optimal. �

The bound zm of the set ζm is obtained from the tolerant coalition incentive constraints as in the

proof of Lemma 2 in the Appendix. The incentive constraints identify a set of bounds zm ∈ [ẑm, 12 ]

on the tolerated allocations, where ẑm is the analogue to z+ in the specific-policy equilibrium. The

analogue z∗∗ of z∗ in (8) is given by12

z∗∗ = z∗ −
δ
(
δη(γ − η)− (1− δ(1− η))

(
γ θε − η

))
ν(z∗∗)

2− δ(γ − η)
, (19)

and the analogue zoo of zo is

zoo = zo −
δ
(

(1− γ)ηδ + γ(1− δ(1− η)) θε

)
ν(zoo)

1− δ(γ − η)
. (20)

The analogue z`` of z` defined in the proof of Lemma 2 in the Appendix is

z`` = z` − ηδν(z``), (21)

which is derived from the constraint corresponding to the coalition partner’s incentive to deviate

to a policy not in Z(z), z ∈ ζm. Note that zoo and z`` are less than their counterparts with a

12The bound z∗∗ is derived from the incentive of a player who receives the allocation z = zm, since that provides
the strongest incentive to deviate from the coalition proposal strategy.
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specific-policy coalition allocation, so zoo < 1
2 and z`` < 1

2 for δ > δo. It is straightforward to show

that z∗∗ < 1
2 for all δ.

The set of tolerant coalition equilibria is characterized in the following lemma.

Lemma 9. For δ > δo a tolerant coalition equilibrium exists with ζm = [zm, 1 − zm], where zm

satisfies

zm ∈
{
z|max{z∗∗, zoo, z``} ≤ z ≤ 1

2

}
. (22)

The most tolerant equilibrium has ζ̂m = [ẑm, 1− ẑm], where ẑm is the minimum zm of the class of

tolerant equilibria. That is,

ẑm ≡ min
z

{
z|max{z∗∗, zoo, z``} ≤ z ≤ 1

2

}
. (23)

The strategies in Proposition 4 then are immune to deviations for z ∈ ζm, zm ≥ ẑm.

The proof that the upper bound in (22) and (23) is 1
2 is given in the Appendix. The proof of

Lemma 9 parallels that for Proposition 2. Moreover, an argument analogous to that for Lemma

5 establishes that there is a non-empty set of parameter values such that tolerant coalition MPE

exist.

A tolerant coalition equilibrium corresponding to each zm satisfying (22) exists, so there is a

continuum of tolerant coalition equilibria. The most tolerant equilibrium corresponds to ẑm in

(23). The characterization of ẑm is complex, so the following section considers the case in which

γ > η = 0. A closed-form characterization of ẑm is provided and the underlying intuition is

developed.

For γ = η and ε = θ the unique tolerant coalition allocation has equal shares for the coalition

members, so the coalition is no more tolerant than the specific-policy coalition in Proposition 3.

This is formalized in the following corollary.

Corollary 3. For γ = η and ε = θ, z∗∗ = z∗ = 1
2 , so a tolerant coalition is no more tolerant than

the specific-policy coalition.

When a tolerant coalition forms with z = zm , the probability that it dissolves due to implemen-

tation uncertainty is 1
2η, since the distribution of θ̃t is symmetric about 0. If the coalition persists

beyond the first period, the probability that it dissolves in the next period is smaller, since z ≥ zm.

Also, when a tolerant coalition forms, the originator of the coalition receives a strictly greater
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allocation than the coalition partner, but following a tolerated realization of the implementation

uncertainty, the allocation to the other coalition member and the corresponding continuation value

can be the larger. When the coalition approves a policy equal to the status quo and implementation

uncertainty is tolerated, the coalition supports the new status quo policy in the next period.

5.1 Implementation Uncertainty Only When Policy Changes (η = 0)

To provide a further characterization of tolerant coalition equilibria, consider the case in which

there is implementation uncertainty (γ > 0) associated with a change in policy but no implemen-

tation uncertainty (η = 0) when the status quo policy is continued. This will allow a complete

characterization of the set of allocations supported by a tolerant coalition equilibrium as well as

the comparative statics properties on the bound on that set. The most tolerant coalition for high

discount factors is determined by the constraint arising from the incentive of the coalition member

with the smaller allocation in the status quo to propose a policy different from the status quo.

The bound on the most tolerant coalition is decreasing in the discount factor and in the probabil-

ity γ that implementation uncertainty is realized when the policy is changed. The most tolerant

coalition, however, results in allocations that are a strict subset for the allocation supported by

specific-policy equilibria. A comparison between the set of specific-policy coalition equilibria and

the set of tolerant coalition equilibria is also given.

As in Lemma 2, the most tolerant coalition has ẑm in (23) equal to z∗∗, zoo, or z``. Solving (19)

for z∗∗ yields

z∗∗ =
3− δγ(2− 1

4ε)

3(2− δγ(1− 1
6ε))

. (24)

Solving (20) for zoo yields

zoo =
3− 2δ − δγ(1 + 1

4ε)

3(1− δγ(1 + 1
6ε))

. (25)

Similarly, z`` = z` from (21).

The following lemma identifies the discount factors such that the equilibrium allocation of the

most tolerant coalition is identified by z∗∗.

Lemma 10. There exists a δζ < 1 such that for all δ > δζ the set of allocations supported by a

tolerant coalition MPE is Z(z), z ∈ ζ∗∗ = [z∗∗, 1− z∗∗].
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Proof. The difference between z∗∗ and zoo is

z∗∗ − zoo =
3− 2δγ + δγ

4ε

3(2− δγ(1− 1
6ε))
−

3− δ(2 + γ)− δγ
4ε

3(1− δγ(1 + δγ
6ε ))

. (26)

Evaluating (26) at δ = 0 yields (z∗∗ − zoo)|δ=0 = −1
2 . Taking the limit as δ → 1 yields

sup
δ→1

(z∗∗ − zoo) =
(1− γ)2 + γ

12ε

9(2− γ(1− 1
6ε))(1− γ(1 + 1

6ε))
> 0.

By the mean value theorem there exists one or more solutions to z∗∗ − zoo = 0 in (0, 1). Let the

largest of these be denoted by δ∗.

Similarly, z∗∗− z` is positive as δ → 1 and negative for δ = 0. Let z` ∈ (0, 1) denote the largest

δ such that z∗∗ − z` = 0.

The difference z∗∗ − z∗ is positive, since

z∗∗ − z∗ =
3− 2δγ + δγ

4ε

3(2− δγ) + δγ
2ε

− 3− 2δγ

3(2− δγ)

=
δ2γ2

36ε(2− δγ)(3(2− δγ) + δγ
2ε )

> 0. (27)

To determine the relation between δo and δ∗, evaluate the difference z∗∗ − zoo at δ = δo = 3
4−γ ,

which yields

(z∗∗ − zoo)|δ=δo = − γ

2(8− 5γ + γ
2ε)

< 0. (28)

This implies that δ∗ > δo.13 Since δ∗ > δo, z∗ > z` from the proof of Lemma 2, so z∗∗ > z`.

Then, for δ > δζ ≡ max{δ∗, δ`}, z∗∗ is the greatest lower bound in (23). �

For some δ < δζ there are equilibria for some zm ∈ [zoo, z∗∗). For δ ≥ δo = 3
4−γ the lower bound

for allocations for specific-policy equilibria is zo ≤ 1
2 , and the same is true for the bound zoo for

tolerant coalition equilibria. That is,

(zoo)|δ=δo =
1

2
, (29)

13The lower bound θ of the support of θ̃t ensuring that a coalition can dissolve for all z ∈ ζm is 1− 2z∗∗ for δ > δ∗,
and evaluating the lower bound yields

1− 2z∗∗ =
δγ

3(2− δγ(1− 1
6ε

))
,

which is less than γ
3(2−γ) . For example, if γ = 1

2
, the lower bound 1− 2z∗∗ is less than 1

9
.
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and zoo is strictly decreasing in δ. Consequently, for δ in at least some subset of (δo, δζ) the lower

bound in (23) is zoo.

The allocation proposed by the originator i of the coalition is thus zij(z
∗∗) = (1 − z∗∗, z∗∗, 0)

for δ > δζ . The following proposition characterizes the allocation.

Proposition 6. For δ > δζ and γ > 0, the allocation z∗∗ to the coalition partner is (i) strictly less

than 1
2 , (ii) strictly greater than 1

3 , (iii) strictly decreasing in γ, and (iv) strictly decreasing in δ.

Proof. To prove (iii) and (iv), differentiate z∗∗ to obtain

dz∗∗

dδ
=
δ

γ

dz∗∗

dγ
= − γ

3(2δγ(1− 1
6ε))

2
< 0. (30)

Properties (i) and (ii) are also straightforward to show. �

The originator of a tolerant coalition thus receives a strictly larger share of the dollar in the

first period of the coalition than does the coalition partner, but that share is less than in sequential

legislative bargaining theory. The proposer in a tolerant dynamic coalition thus shares proposal

power with the coalition partner, but the implementation uncertainty allows the originator to take

the larger share but limits that share. The allocation to the originator is greater the more important

is the future and hence the more valuable is the coalition to the coalition partner. As with specific-

policy coalition equilibria, the set of allocations supported by the most tolerant coalition with z∗∗

is increasing in the discount factor. Similarly, the coalition is more valuable the greater is the

probability γ that policy uncertainty materializes when the coalition dissolves because of a change

in the policy.

Specific-policy equilibria, however, can support a larger divergence between the allocation to

the coalition originator and the partner than in the most tolerant coalition equilibrium.

Proposition 7. For γ > η = 0, q0 ∈ X, (γ, 0) ∈ R(θ) and δ > max{δζ , δ+}, the set [z∗, 12 ] of

coalition partner allocations supported by the class of specific-policy MPE strictly contains the set

[z∗∗, 12 ] of coalition partner allocations supported by a tolerant coalition MPE.

Proof. The difference z∗∗ − z∗ is positive from (27), and the result follows from Lemmas 5 and

10. �

For γ > η = 0 and (γ, 0) ∈ R(θ) the set of allocations supported by the most tolerant coalition

equilibrium is strictly contained in the corresponding set for specific-policy equilibria, so tolerant
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coalition equilibria can have less disparity in the allocations than can specific-policy equilibria. The

proposal power of the originator of the coalition is shared more evenly in the most tolerant coalition

equilibrium than in the most disparate specific-policy equilibrium.

The intuition underlying Proposition 7 is as follows. When η = 0 the value of a specific-

policy coalition corresponding to zm equals the value of a tolerant coalition corresponding to zm,

since once on the equilibrium path the allocation does not change provided no coalition member

deviates from the equilibrium strategies.14 A deviation from the tolerant coalition equilibrium

strategies, however, is not as costly to the coalition members as is a deviation from the specific-

policy equilibrium strategies because the former deviation could result in an allocation in the set ζm

as a result of the realization of εt, whereas with a specific-policy coalition the shocked allocation

equals zm with probability 0.15 The incentive constraint is thus tighter for a tolerant coalition

equilibrium than for a specific-policy coalition equilibrium, so z∗∗ > z∗.

The continuation value in (13) for the originator of the coalition is greater than the continuation

value in (14) for the coalition partner, since zm < 1
2 , so proposal power is shared although not

equally. When a coalition persists, however, the allocation to the originator i of the coalition can

be less than the allocation to the other coalition partner j due to implementation uncertainty. The

continuation value for j is then given in (13), and the continuation value for i is then given in (14).

When η > 0, the probability that a tolerant coalition persists is higher than the probability

a specific-policy coalition persists since the former policy can remain in the set ηm. The higher

probability means that the continuation value for a tolerant coalition is higher. This effect is in the

opposite direction of the effect characterized in Proposition 7, and the bound z∗∗ can be lower than

z∗ for a specific-policy coalition. A tolerant coalition equilibrium thus can have greater inequality

in the allocation among the coalition members than in a specific-policy coalition.

6 The Battaglini-Palfrey Experiments

6.1 The Experiments

Battaglini and Palfrey conducted two types of experiments using the same deterministic model

considered here. In the first, referred to as the no-Condorcet winner (NCW) experiment, the

14Note that v`(zij(z
m)) = v`(zij(z

m)) for ` = i, j, k
15That is, v̄`(z

εt) > v`(z
εt) for coalition members ` = i, j.
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policy space consisted of four allocations, and the second, referred to as the continuous experiment,

was an approximation to the dynamic game considered here.16 The experiments provide evidence

about how people would actually play the game. As Battaglini and Palfrey note, “status quo

outcomes have great inertia,” and the theory presented here provides one explanation for the

inertia–the status quo is an equilibrium allocation. In the experiment players have the opportunity

to adopt coalition equilibrium strategies, but the game itself is complex and players may approach

strategy formulation myopically, which should make it more difficult to support coalition equilibria.

Battaglini and Palfrey find, for example, that players voted myopically for the alternative with

the higher current period payoff. Players may also use non-Markov strategies or non-equilibrium

strategies that can result in allocations not supported as MPE. Despite these qualifications players

frequently used coalition strategies.

6.2 NCW Discrete Allocation Space Experiment

The NCW experiment consisted of two sessions separated by 2 months, and the subjects were

undergraduate students at Princeton University. The first session consisted of 10 matches in which

9 participants were randomly assigned to 3-person committees, and the second session consisted

of 10 matches with 12 participants randomly assigned to three-person committees for a total of

70 committees. Each match continued to the next round (period) with probability 0.75, and

matches lasted between 1 and 10 rounds for a total of 291 rounds. Each committee played the

same stage game in every round with the status quo equal to the policy in place at the end of

the previous round. The initial status quo was chosen randomly from among the alternatives. In

every round each player chose a provisional proposal, and one proposal was selected randomly from

those provisional proposals. In each round each committee had 60 units of experiment currency to

allocate by majority rule. There was no communication among the participants.

In the NCW experiment the alternatives were the allocations {(30, 30, 0), (0, 30, 30), (30, 0, 30), (20, 20, 20)}.

The NCW experiment is of interest because it provides evidence about the formation and persis-

tence of coalitions in a simplified game. It also provides direct evidence about whether players

behave in a manner consistent with the indifference rule; i.e., whether they voted for the status quo

when indifferent between it and a proposal. A dynamic coalition for the NCW experiment is a set

16Battaglini and Palfrey also conducted a discrete allocation experiment with one of the alternatives a Condorcet
winner. That experiment is not considered here.
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of players such that a policy persists and gives them the same payoff in at least two consecutive

periods.

A MPE exists for the set of discrete allocation for all δ ∈ [0, 1), where the player selected proposes

keeping 30 and allocates 30 to another player selected at random. Players use stage undominated

voting strategies and vote for the proposal if indifferent. Battaglini and Palfrey show that voting

myopically for the alternative giving the strictly higher current round payoff and randomizing when

the allocations are the same is also a MPE. With either far-sighted or myopic voting strategies the

allocations can change when a player is recognized, and each player has a continuation value of 20
1−δ .

On the equilibrium path of play it is not possible to distinguish between myopic and farsighted

voting.

A dynamic coalition MPE also exists for all δ ∈ [0, 1) with the player selected proposing qt−1

if the allocation gives the proposer 30 and, if the allocation gives the proposer 0 or 20, proposing

keeping 30 and allocating 30 randomly to one of the other players. The coalition MPE voting

strategy is to vote for the alternative with the strictly greater dynamic payoff and to vote for the

status quo when indifferent.17 This is also a coalition MPE with players voting myopically but for

the status quo when indifferent. Allocations do not change after the first round, and farsighted and

myopic voting yield the same behavior.

The equilibria in the NCW game thus depend on the indifference rule. In the experiment there

is nothing that tells a player how to vote when indifferent between two alternatives in which she

receives 30, so the players could be thought of as randomizing between the two alternatives. An

allocation then would persist from one period to the next with probability one-third (since the

universal allocation policy never results in equilibrium). With an indifference rule of voting for the

status quo when indifferent, the coalition equilibrium prediction is that an allocation should persist

from one period to the next with probability one.

The two indifference rules and the corresponding theories can be assessed using the frequency

with which policies persist from one period to the next. The MPE identified by Battaglini and

Palfrey should have coalitions persisting with probability one-third, whereas the coalition MPE

should have coalitions present with probability one. Any statistical test would reject the coalition

MPE, since coalitions are not present in all rounds. Coalitions are present in 74.2% of the rounds,

17If the allocation space is augmented to include the three dictatorial allocations in which the legislator selected
proposes to keeps 60, this is also a dynamic coalition MPE for δ ≥ 3

4
.
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and if the rounds with a universal initial status quo are excluded, 78.5% of the rounds have coalitions

with policies that persist from one round to the next. Table 4 in Battaglini and Palfrey gives the

frequency with which an allocation persisted from one round to the next. The frequencies for

coalitions {12}, {13}, and {23} were 0.77, 0.79, and 0.75, respectively, so coalitions were present

in approximately 77% of the rounds. The frequency with which coalitions persist is closer to the

coalition MPE prediction than to the Battaglini and Palfrey MPE prediction, providing a degree

of support for the coalition MPE prediction.

A stronger test for the presence of a coalition is for the players favored by the status quo to vote

against any proposal that differs from the status quo. Battaglini and Palfrey report that almost

all (96%) of the votes cast by participants were for the alternative offering the larger payoff in

the round. They conclude that voting was myopic and self-interested. To examine the voting and

the alternative selection rules in more detail, the votes have been examined for those players who

were indifferent between a proposal and the status quo when the two allocations differed. In those

rounds one player voted for the status quo in 23 of 35 rounds, a second player in 27 of 53 rounds,

and the third player in 19 of 30 rounds. In the aggregate, the players voted for the status quo with

probability 0.585. For those rounds in which a coalition was present, the corresponding numbers

are 20 of 27, 24 of 45, and 16 of 23, respectively, so in the aggregate the players in a coalition voted

for the status quo with probability 0.632.18 Then, under the indifference rule of voting for the

proposal when indifferent, only 36.8% of the participants voted for the proposal. These data also

provide a degree of support for the indifference rule of voting for the status quo when indifferent

between it and a proposal.

Table 1 presents data on the duration of coalitions. The 70 committees experienced 78 coalitions.

Forty-seven coalitions lasted only 1 or two rounds, and of those 18 were due to the match ending.

Note that a coalition cannot be present in the first round if the initial status quo is (20,20,20), so

the probability that a coalition could form in the first round is bounded above by three-quarters.

The longest lasting coalitions were one of 9 rounds and 3 of 8 rounds. For 2 of the coalitions with

8 rounds the game ended with the 8th round. Twenty-two coalitions lasted throughout the match.

The longest-lived coalition was formed in the second round and continued for 9 rounds until the

match ended.

18For rounds in which a player who was indifferent between the proposal and the status quo and the coalition was
preserved, that player was always pivotal since indifference can only be between two minimal winning majorities. In
all such cases the player voted for the status quo.
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A coalition with an allocation equal to the status quo qt−1 can result for one of two reasons.

First, the proposal could equal qt−1, in which case the vote does not matter. Second, the proposal

could be different from the status quo, but a majority votes for the status quo. The experiment

provides evidence on the reason for the persistence of a coalition. For the rounds in which the

status quo benefits the first player, 68.5% of that player’s proposals equaled the status quo, and

for the other two players the corresponding figures were 74.6% and 70.6%, respectively, for an

average of 71.2%. The frequency with which some coalition member was selected as the proposer

was approximately two-thirds, so in approximately 47% of the rounds the proposal should equal

the status quo. In the experiment the observed frequency was 45.7%. In 28.5% of the rounds,

the proposal was different from the status quo and was rejected, so 52.5% of the proposals that

differed from the status quo were rejected. (Note that 45.7+28.5 = 74.2.) Consequently, in about

half the rounds in which there was a coalition, the coalition persisted because the status quo was

proposed, and in about half the rounds it persisted because a proposal different from the status

quo was rejected by the coalition members.

Three-player coalitions were present in 5 of 70 committees, and all but one resulted from an

initial status quo of (20, 20, 20). The universal allocation is not a MPE, but playing it in every

period yields the same average payoff as does rotating or random minimal winning majorities.

Moreover, the universal allocation is also supported as a subgame perfect equilibrium of the game

in the discrete experiment for δ ≥ 1
3 . The universal allocation is more prevalent in the first

experiment session than in the second, and the explanation may be that in the first session the

initial status quo was the universal allocation for one of the three committees in each of the first

five matches, whereas in the second session the universal allocation was not an initial status quo

for any of the four committees for the first 4 matches.19 The universal allocation resulted in only

21 of the 291 rounds or 7.2% of the rounds. Two committees sustained the universal coalition for

4 rounds and another for 6 rounds. For the two committees with coalitions that lasted 4 rounds

the universal allocation was the initial status quo.

19The universal allocation was the initial status quo for 8 committees in each experiment.
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6.3 Continuous Allocation Space Experiment

The continuous allocation space experiment was implemented with a discrete grid with 60 available

units allocable in increments of one and a discount factor of δ = 5
6 .20 With this richer set of

allocations participants would likely be more uncertain about how the status quo is likely to evolve.

The experiment consisted of 10 matches in which 12 participants were randomly assigned to three-

person committees.21

With this more complex allocation space, participants played the universal allocation of (20, 20, 20)

with frequency 0.37. The universal allocation is never a MPE, even with risk averse players, nor

is it a subgame perfect equilibrium when only collective punishments are available.22 The univer-

sal allocation, however, can be supported as a subgame perfect equilibrium for sufficiently high δ.

The participants in the experiment could have been playing a universal allocation subgame perfect

equilibrium, but they could also be playing a natural focal allocation in which each player receives

the same payoff. This focal allocation yields the same dynamic payoff as the expected payoff of a

rotating dictator equilibrium or randomized proposals with myopic voting, but the expected payoff

is strictly less than in a coalition equilibrium.

Majoritarian allocations were played more frequently than the universal allocation, and Table

2 presents the transition probabilities for majoritarian, universal, and dictator allocations. A

universal allocation has each player receiving at least 15, a dictator allocation has one player

receiving at least 50, and for the other allocations the majoritarian allocation Mij has i and j

receiving at least as much as k.23 The definition of a majoritarian set corresponds to a tolerant

coalition MPE, although the third member can receive a positive allocation in Mij . The probability

of transitioning to the same majoritarian allocation allocation set, which is then interpreted as a

coalition, was 0.522 for M12 and 0.582 for M13. The transition probability for M23 was only 0.313,

presumably due to randomness, and the probability of transitioning to the universal allocation

was 0.281.24 Battaglini and Palfrey use somewhat larger sets Mij and report (Table 3) transition

20Battaglini and Palfrey also conducted an experiment with δ = 3
4
, but δo = 3

4
, so there is no coalition MPE

corresponding to the experiment.
21A programming error resulted in the loss of the initial status quo in 4 of the 10 matches, so the data discussed

here include only the 6 matches for which the initial status quo is known.
22Battaglini and Palfrey show that allocations in which all players receive between 20 and 40 occurs with high

probability in a logistic quantal response equilibrium when players are highly risk averse. Richter (2011) shows that
the universal allocation can be supported by a MPE in a model in which part of the dollar can be wasted off the
equilibrium path.

23These definitions are slightly different from those used by Battaglini and Palfrey.
24The transition probabilities for Mij are much lower for the δ = 3

4
experiment than for the δ = 5

6
experiment, as
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probabilities of 0.55, 0.67, and 0.39 for M12, M13, and M23, respectively. Both of these sets of

transition probabilities are consistent with the presence of dynamic coalitions. With the exception

of M23, the probabilities are substantially higher than with random transitions. In the experiment

none of the initial status quos was in the set Z, so first-period transitions should be random. Table

3 thus reports the transition probabilities for rounds after the first. The transition probabilities for

majoritarian coalitions are slightly higher than in Table 2 for M12 and M13, and slightly lower for

M23. In Tables 2 and 3 the transition probabilities for the universal coalition are 0.848 and 0.875,

respectively.

The continuous allocation experiment provides a degree of support for coalition behavior, al-

though the actual allocations differ from those in coalition equilibria, particularly with respect to

the frequency of the universal allocation. As noted above, the logistic quantal response equilibrium

in which players’ best response functions are subject to random shocks predicts that the universal

allocation occurs with high probability when players are sufficiently risk averse.

As in the experiment by Agranov and Tergiman, communication among experiment participants

could increase the frequency with which dynamic coalitions are formed and extend their duration.

As in that experiment the participant recognized as the initial proposer could initiate communica-

tion before making a proposal, and that communication could explain the benefits of a coalition and

invite the other participants to join in a coalition, understanding that the coalition partner would

be selected at random. The other participants would then compete to be in the coalition, but the

proposer would not bargain them down because the resulting coalition would not be durable. The

proposer thus could simply announce the continuation value for a coalition partner with a speech

as in Section 2.4. An experiment could be extended by introducing implementation uncertainty to

study whether participants tolerated a degree of uncertainty.

7 Conclusions

Public policymaking is a dynamic process in which the opportunity to set the agenda gives legis-

lators temporary power that can be used to change policy to their advantage. Distributive policy

in particular could be prone to opportunistic behavior, and shifting agenda-setters could lead to

policy instability. Yet most policies exhibit a measure of stability that is unexplained by dynamic

would be expected from the theory developed here.
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legislative bargaining theory. This paper shows that dynamic coalitions can be expected to form

beginning from any status quo and once formed to support stable policies over time.

The originator of a dynamic coalition has agenda-setting or proposal power as in (static) se-

quential bargaining theory, but in contrast to that theory the originator of a dynamic coalition

must share proposal power with the other members of the coalition. Sharing is required to satisfy

dynamic incentive constraints resulting from the opportunity of coalition members to propose al-

ternative policies and to vote against the coalition policy when the status quo is favorable. In the

basic, deterministic model the dynamic incentives require the originator to share proposal power

equally with the coalition partner. The dynamic coalition is minimal winning, and the coalition

persists from one period to the next with coalition members receiving equal allocations in every

period. Despite changing agenda-setters, the coalition persists and its members vote for the coali-

tion policy over all policy alternatives when the future is sufficiently important. The equilibrium

allocation in the deterministic model is unique, since any other allocation generates an incentive to

break the coalition for some initial status quo.

Uncertainty can be associated with the implementation of policies, and that uncertainty can be

greater when the policy changes than when it remains unchanged. Dynamic coalition equilibria are

present with implementation uncertainty. The equal sharing allocation continues to be supported by

a coalition equilibrium, but other specific-policy coalition equilibria exist where in every period the

originator of the coalition receives more than the coalition partner. The originator shares proposal

power relative to the outcome in sequential legislative bargaining theory, but the coalition partner

accepts a smaller allocation than the originator receives rather than break the coalition and face

increased uncertainty when the policy changes. The set of allocations supported by specific-policy

coalition equilibria is increasing in the discount factor.

Coalitions in specific-policy equilibria dissolve when implementation uncertainty arises, but a

coalition could tolerate a degree of implementation uncertainty and continue to the next period

without dissolving. A coalition continues when the implemented policy remains in a set of toler-

ated policies, but if the implemented policy differs too much from the adopted policy, the coalition

dissolves. A tolerant coalition thus can persist over time, and policies have a degree of stability,

provided that the realized implementation uncertainty is not too large. A tolerant coalition equi-

librium supports a set of allocations, and those allocations can be a subset of the allocations that

are supported by some specific-policy equilibrium.
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Dynamic coalition equilibria have particularly simple strategies with legislators proposing either

the status quo or a new coalition with the coalition partner selected randomly. These equilibria all

have the property that coalitions are minimal winning, form in the first period, and dissolve only

when implementation uncertainty causes the implemented policy to fall outside the set of supported

coalition allocations. These equilibria could be expected to arise in real play, since the strategies

of legislators could be coordinated through straightforward communication between the originator

and potential coalition partners.

Dynamic coalition equilibria be extended in a number of directions. As in Section 2.5 the

specific-policy and tolerant coalition equilibria can be extended to a legislature with n members

and a majority requirement of m. In the theory presented here, legislators have been assumed to

be risk neutral, and if legislators were risk averse, the equal sharing equilibrium in the deterministic

model remains an equilibrium since it involves perfect smoothing over time. With implementation

uncertainty coalition equilibria should also exist with risk averse legislators who would prefer the

smaller uncertainty associated with the status quo policy. In the pure distribution game considered

here, the preferences of legislators are directly opposing yet coalitions can form and be stable, and

in an extension to a policy space in which preferences are partially aligned, dynamic coalitions

should also be present although their properties could differ. In particular, the extent to which

proposal power is shared would depend on the preference alignment, and coalition might not be

minimal winning. A natural extension is to quasi-linear preferences in which in every period the

legislature allocates resources between a public good and a distributive good.
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Appendix

Specific-policy equilibrium allocations

Proof of Lemma 1

Proof. The continuation value v̂ when qt−1 /∈ Z(z) for legislator 1 is given by

v̂ = (1− γ)

[
1

3

[
1

2
(1− z + δv1(z12(z)))

]
+

[
1

2
(1− z + δv1(z13(z)))

]]
+

1

3

[
1

2
(z + δv1(z21(z))) +

1

2
δv1(z23(z))

]
+

1

3

[
1

2
(z + δv1(z31(z))) +

1

2
δv1(z32(z))

]
+γ

[
1

3

[
1

2
(1− z + Etε̃t + δv1(z

εt

12)) +
1

2
(1− z + Etε̃t + δv1(z

εt

13))

]]
+

1

3

[
1

2
(z − Etε̃t + δv1(z

εt

21)) +
1

2
δv1(z

εt

23)

]
+

1

3

[
1

2
(z − Etε̃t + δv1(z

εt

31)) +
1

2
δv1(z

εt

32)

]
, (31)

and the continuation values for the other legislators are analogous. Given qt−1 /∈ Z(z), the allocation

zε
t

ij resulting from a proposal yt 6= qt−1 is not in Z(z) with probability one, so the continuation

values v`(z
εt
ij ) = v̂, `, i, j = 1, 2, 3, i 6= j. For qt−1 = zij(z) the allocation zθ

t

ij /∈ Z(z) with probability

one, so the continuation value v`(z
θt
ij ) = v̂, `, i, j = 1, 2, 3, i 6= j. For qt−1 ∈ Z(z) the dynamic

payoffs vi(z12(z)), i = 1, 2, 3, are given by

v1(z12(z)) = (1− η)[1− z + δv1(z12(z))] + η[1− z + Etθ̃t + δv1(z
θt

12)], (32)

v2(z12(z)) = (1− η)[z + δv2(z12(z))] + η[z + Etθ̃t + δv2(z
θt

12)], (33)

v3(z12(z)) = (1− η)δv3(z12(z)) + ηδv3(z
θt

12). (34)

Continuation values when the allocation is any element of Z(z) are defined analogously. Substitut-

ing v̂, vi(zij(z)), vj(zij(z)) and vk(zij(z)) from Lemma 1, into (31), (32), (33) and (34) verifies the

equilibrium conditions. �
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Proof of Lemma 2

Proof. The proof proceeds by checking incentives to deviate from the strategies in Proposition 2.

1. Consider qt−1 = zij(z).

(a) Consider voting strategies.

i. If i or j is the proposer, on the equilibrium path the agenda is A = {zij(z), zij(z)},

so qt = zij(z) regardless of the votes.

ii. If k is the proposer, the agenda is A = {zij(z), zki(z)} or A = {zij(z), zkj(z)}. As

shown below, legislators i and j reject both zki(z) and zkj(z) since these involve a

change in the status quo and do not provide higher continuation payoffs.

(b) Consider i’s incentives to propose a deviation.

i. Proposing zji(z) or zki(z) changes the status quo if approved, and since z ≤ 1
2 and

η ≤ γ, zij(z) is preferred by i. Formally,

(1− η)[1− z + δvi(zij(z))] + η[1− z + Etθ̃t + δvi(z
θt

ij )]

≥ (1− γ)[z + δvi(zji(z))] + γ[z − Etε̃t + δvi(z
εt

ji )].

ii. Proposing zik results in a change in the status quo if approved, so i prefers to propose

zij(z), since by stochastic dominance

(1− η)[1− z + δvi(zij(z))] + η[1− z + Etθ̃t + δvi(z
θt

ij )]

≥ (1− γ)[1− z + δvi(zik(z))] + γ[1− z + Etε̃t + δvi(z
εt

ik)].

iii. Proposing zjk or zkj changes the status quo if approved, and i prefers to propose

zij(z), since vi(zij(z)) > vi(zjk(z)) = vk(zij(z)) from (13) and (15). That is,

(1− η)[1− z + δvi(zij(z))] + η[1− z + Etθ̃t + δvi(z
θt

ij )]

≥ (1− γ)δvi(zjk(z)) + γδvi(zjk(z
εt)).

iv. The best proposal deviation for i outside the set Z(z) gives 1 to i with i and k
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voting for the proposal. Proposer i prefers not to deviate if and only if

(1− η)[1− z + δvi(zij(z))] + η[1− z + Etθ̃t + δvi(z
θt

ij )] ≥ 1− γ ε
4

+ δ
1

3(1− δ)
,

where 1− γ ε4 = 1− γ + γ
[∫ 0
−ε(1 + εt)dε

t

2ε +
∫ ε
0
dεt

2ε

]
is i’s expected truncated payoff

in period t. Then legislator i does not deviate if

z ≤ zu ≡ εγ(1− δ(1− η))

4
+

2δ(1− η)

3
.

(c) Consider j’s incentives to propose a deviation.

i. If j proposes zki or zik, these proposals give legislator j the same payoff since they

do not favor j. Legislator j will not deviate to these allocations since

(1− η)[z + δvj(zij(z))] + η[z + Etθ̃t + δvj(z
θt

ij )]

≥ (1− γ)[δvj(zki(z))] + γ[Etε̃t + δvj(z
εt

ki)].

ii. If j proposes zkj and it is approved, the status quo changes, which is worse than the

payoff under the equilibrium strategies, since γ ≥ η.

iii. If j proposes zji(z) or zjk(z) and it is approved, j receives 1 − z in expectation in

the current period, and with probability 1− γ the continuation value is vj(zji(z)) =

vi(zij(z)) and with probability γ the continuation value is v̂ = 1
3(1−δ) by Lemma 1.

Legislator j has no incentive to deviate if and only if

(1− η)[z + δvj(zij(z))] + η[z − Etθ̃t + δvj(z
θt

ij )]

≥ (1− γ)[1− z + δvj(zjk(z))] + γ[1− z + Etε̃t + δvj(z
εt

jk)]

⇔ z ≥ 3− 2δ(γ − η)

3(2− δ(γ − η))
= z∗. (35)

Note that z∗ = 1
2 for γ = η and z∗ < 1

2 for all δ ∈ (0, 1) if γ > η.

iv. If j proposes ytj /∈ Z(z), the best proposal gives 1 to j with j and k voting for the

proposal, and the expected truncated payoff is 1−γ ε4 + δ 1
3(1−δ) . Legislator j prefers
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the conjectured equilibrium strategies if and only if

(1− η)[z + δvj(zij(z))] + η[z − Etθ̃t + δvj(z
θt

ij )]

≥ 1− γ ε
4

+ δ
1

3(1− δ)

⇔ z ≥ z` ≡ 3− 2δ(1− η)

3
− εγ(1− δ(1− η))

4
. (36)

Note that z` + zu = 1.

(d) Consider k’s incentive to propose a deviation.

i. If z ∈ [max{z∗, zo}, 12 ], i and j prefer zij(z) to any other allocation. Hence, any

proposal by k different from zij(z) will be rejected. Legislator k’s payoff is the same if

he proposes zij(z) and it is accepted, or proposes another allocation that is rejected,

hence legislator k has no incentive to deviate from the equilibrium strategies.

2. Consider qt−1 /∈ Z(z)

(a) Consider j’s incentive to vote for the equilibrium proposal zij(z). The best status quo

for j, gives 1 to j. Legislator j votes for zij(z) rather than the status quo if and only if

1− η θ
4

+ δ
1

3(1− δ)
≤ (1− γ)[z + δvj(zij(z))] + γ[z − Etε̃t + δvj(z

εt

ij )], for γ > 0

where 1 − η θ4 = 1 − η + η
[∫ 0
−θ(1 + θt)dθ

t

2θ +
∫ θ
0
dθt

2θ

]
is the expected truncated payoff in

period t, and

1 + δ
1

3(1− δ)
< z + δvj(zij(z)), for γ = η = 0. (37)

Legislator j accepts the proposal if

z ≥
3− δ(2 + γ − 3η)− 3

4ηθ(1− δ(1− η))

3(1− δ(γ − η))
= zo, for γ > 0 .

For γ = η = 0, (37) is satisfied for z > zo = 1 − 2
3δ. From (35) at γ = η = 0, z∗ = 1

2 .

Hence if δ > 3
4 , zo < z∗ = 1

2 . More generally, for δ > δo =
3− 3

2
ηθ

4−γ−3η− 3
2
(1−η)ηθ , zo < 1

2 for

any value of γ and η. Hence for δ > δo, max{zo, z∗} = z∗ when γ = η = 0 and hence

(37) is satisfied if (35) is satisfied. The restriction δ > δo is necessary for zo < 1
2 so δo
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is the lower bound on δ for a coalition MPE to exist. The lower bound δo also assures

that there is no incentive to deviate if (7) is satisfied.

(b) Consider i’s incentive to make a proposal other than zij(z).

i. By vi(zij(z)), vj(zij(z)), vk(zij(z)) given in Lemma 1 zij(z) gives i the highest payoff

among proposals in Z(z), so there is no incentive to make any other proposal in

Z(z).

ii. The best proposal yti /∈ Z(z) gives 1 to i.

A. Assume that the status quo also gives 1 to i. Legislator i prefers zij(z) if and

only if

1− η θ
4

+ δ
1

3(1− δ)
≤ (1− γ)[1− z + δvi(zij(z))] + γ[1− z + Etε̃t + δvi(z

εt

ij )]

⇔ z ≤ ẑ1 ≡
2δ(1− γ) + 3

4ηθ(1− δ(1− η))

3(1− δ(γ − η))
.

Note that zo + ẑ1 = 1, so ẑ1 >
1
2 for δ > δo. It is also straightforward to show

that zu ≥ ẑ1 for ηθ ≤ γε, so zu is not binding. Since ηθ ≤ γε, zu ≥ ẑ1 and hence

zo ≥ z`, so z` is not binding.

B. Consider the case in which i does not receive 1 in qt−1. Legislator i prefers a

proposal zij(z) to a proposal that gives 1 to i if and only if

1− γ ε
4

+ δ
1

3(1− δ)
≤ (1− γ)[1− z + δvi(zij(z))] + γ[1− z + Etε̃t + δvi(z

εt

ij )],

⇔ z ≤ ẑ2 ≡
2δ(1− γ) + 3

4γε(1− δ(1− η))

3(1− δ(γ − η))
.

Note that ẑ1 ≤ ẑ2, since ηθ ≤ γε.

�

Given the restriction in (7) on z, assumption 3 is sufficient to guarantee that allocations in the

specific-policy equilibrium remain in [0, 1].

Corollary 4. ε ≤ 1
3 and θ ≤ 1

3 are sufficient for the coalition allocation to be in [0, 1].

Proof. It is straightforward to show that z∗ is decreasing in γ and increasing in η. Evaluating z∗

at γ = 1 and η = 0 yields z∗ = 3−2δ
3(2−δ) , which implies that z∗ > 1

3 , for all γ ∈ [0, 1) and η ∈ [0, 1).
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Consequently, if (1 − z, z, 0) is a coalition MPE proposal, z − ε > 0, and hence z − θ > 0, and

1− z + ε < 1, and hence 1− z + θ < 1. �

Proof of Lemma 4

Proof. The lower bound z∗ ≤ 1
2 for all γ ≥ η, δ > 0. The lower bound zo is strictly less than 1

2 for

δ ∈ (δo, 1). Since (γ, η) ∈ R(θ), there exists a δ ∈ (δo, 1) such that zo < 1
2 . Note that ẑ1 + zo = 1,

so ẑ1 >
1
2 for δ ∈ (δo, 1). �

Tolerant equilibrium allocations

Proof of Lemma 7

Proof. For z ∈ ζm the dynamic payoffs are given by

v̄i(zij(z)) = (1− η) [1− z + δv̄i(zij(z))] + η[1− z + Etθ̃t + δv̄i(z
θt

ij )] (38)

v̄j(zij(z)) = (1− η) [z + δv̄j(zij(z))] + η[z − Etθ̃t + δv̄j(z
θt

ij )] (39)

v̄k(zij(z)) = (1− η)δv̄k(zij(z)) + ηδv̄k(z
θt

ij ), (40)

where

v̄`(z
θt

ij ) =

∫ z+zm−1

−θ
v̄`(zij(z − θt))

1

2θ
dθt +

∫ z−zm

z+zm−1
v̄`(zij(z − θt))

1

2θ
dθt

+

∫ θ

z−zm
v̄`(zij(z − θt))

1

2θ
dθt. (41)

In the first and third integrals in (41), z− θt /∈ ζm, so v̄`(zij(z− θt)) = v̄`(zij(z
′)) for some z′ /∈ ζm,

where v̄`(zij(z
′)) is not a function of z or θ according to the equilibrium strategies.

In the second integral in (41) z−θt ∈ ζm. Conjecture that for z ∈ ζm, v̄i(zij(z)) is linear in 1−z,

v̄j(zij(z)) is linear in z, and these are given by v̄i(zij(z)) = ai + bi(1− z) and v̄j(zij(z)) = aj + bjz.

Then v̄i(zij(z − θt)) = ai + bi(1 − z + θt), and v̄j(zij(z − θt)) = aj + bj(z − θt). Conjecture that

v̄k(zij(z)) is constant in z. Then for ` = i, j

v̄`(z
θt

ij ) =
v̄`(zij(z

′))(2zm − 1 + 2θ)

2θ
+

(1− 2zm)(2a` + b`)

4θ
(42)

v̄k(z
θt

ij ) =
v̄`(zij(z

′))(2zm − 1 + 2θ)

2θ
+

(1− 2zm)ak
2θ

. (43)
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Substituting into (38)-(40) and matching coefficients gives

ai = aj =
δη(1− 2zm)

2[1− δ(1− η)][2θ(1− δ(1− η))− δη(1− 2zm)]
+ ak

ak =
δηvk(zij(z

′))(2zm − 1 + 2θ)

2θ(1− δ(1− η))− δη(1− 2zm)

bi = bj =
1

1− δ(1− η)
.

Substituting the coefficients and simplifying (42)-(43) gives

v̄`(z
θt

ij ) =
(1− 2zm)[1− 2v̄`(zij(z

′))(1− δ)]
2[2θ(1− δ(1− η))− δη(1− 2zm)]

+ v̄`(zij(z
′)) (44)

v̄k(z
θt

ij ) =
(1− 2zm)v̄k(zij(z

′))(1− δ)
2θ(1− δ(1− η))− δη(1− 2zm)

+ v̄k(zij(z
′)). (45)

Simplifying (38)-(40) gives

v̄i(zij(z)) =
1− z

1− δ(1− η)
+ βi (46)

v̄j(zij(z)) =
z

1− δ(1− η)
+ βj (47)

v̄k(zij(z)) = βk, (48)

where for ` = i, j,

β` =
ηδv̄`(zij(z

′))

1− δ(1− η)
+

ηδ(1− 2zm)[1− 2(1− δ)v̄`(zij(z′))]
2[1− δ(1− η)][2θ(1− δ(1− η))− δη(1− 2zm)]

and

βk =
ηδv̄k(zij(z

′))

1− δ(1− η)
+

ηδ(1− 2zm)(1− δ)v̄j(zij(z′))
[1− δ(1− η)][2θ(1− δ(1− η))− δη(1− 2zm)]

.

For qt−1 6= zij(z) for all z ∈ ζm, the continuation value v̄`(q
t−1) ≡ v̄`(q

t−1|qt−1 6= zij(z)) is,
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using the equilibrium strategies,

v̄`(q
t−1) = (1− γ)

[
1

3

[
1

2
(1− z + δv̄`(zij(z))) +

1

2
(1− z + δv̄`(zik(z)))

]
+

1

3

[
1

2
(z + δv̄`(zji(z))) +

1

2
δv̄`(zjk(z))

]
+

1

3

[
1

2
(z + δv̄`(zki(z))) +

1

2
δv̄`(zkj(z))

]]
+γ

[
1

3

[
1

2

(
1− z + Etε̃t + δv̄l(z

εt

ij )
)

+
1

2

(
1− z + Etε̃t + δv̄`(z

εt

ik)
)]

+
1

3

[
1

2

(
z − Etε̃t + δv̄`(z

εt

ji )
)

+
1

2
δv̄`(z

εt

jk)

]
+

1

3

[
1

2
(z − Etε̃t + δv̄`(z

εt

ki)) +
1

2
δv̄`(z

εt

kj)

]]
, (49)

where v̄`(zij(z)), ` = i, j, k, are given by (46)-(48) and

v̄`(z
εt

ij ) =

∫ z+zm−1

−ε
v̄`(zij(z − εt))

1

2ε
dεt +

∫ z−zm

z+zm−1
v̄`(zij(z − εt))

1

2ε
dεt

+

∫ ε

z−zm
v̄`(zij(z − εt))

1

2ε
dεt. (50)

In the first and third integrals in (50), z − εt /∈ ζm, so v̄`(zij(z − εt)) = v̄`(q
t−1). In the second

integral in (50) z−εt ∈ ζm, so v̄`(zij(z−εt)) is given by (46)-(48). Then substituting from (46)-(48)

and simplifying gives

v̄i(z
εt

ij ) =

(
1− 2zm

2ε

)
θ[1− 2(1− δ)v̄i(qt−1)]

2θ(1− δ(1− η))− δη(1− 2zm)
+ v̄i(q

t−1) (51)

v̄j(z
εt

ij ) =

(
1− 2zm

2ε

)
θ[1− 2(1− δ)v̄j(qt−1)]

2θ(1− δ(1− η))− δη(1− 2zm)
+ v̄j(q

t−1) (52)

v̄k(z
εt

ij ) = −
(

1− 2zm

3ε

)
θ(1− δ)v̄k(qt−1)

2θ(1− δ(1− η))− δη(1− 2zm)
+ v̄k(q

t−1). (53)

By symmetry v̄i(q
t−1) = v̄j(q

t−1) = v̄k(q
t−1) = v̄`(q

t−1). Substituting (51)-(53) into (49) and

solving gives

v̄`(q
t−1) = v̂ =

1

3(1− δ)
, ` = i, j, k. (54)

This proves part (i) of the lemma.

To prove part (ii), by part (i) v̂ = 1
3(1−δ) is the continuation payoff for any allocation such that

z /∈ ζm, hence v̄`(zij(z
′)) = v̂ = 1

3(1−δ) , for z′ /∈ ζm. Substituting v̄`(zij(z
′)) = 1

3(1−δ) into (46)-(48)
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yields (13)-(15).

To prove part (iii), first note that the numerator of (16) is nonnegative, since θ ≥ 1 − 2zm.

Using this inequality in the denominator of (16) yields

2θ(1− δ(1− η))− δη(1− 2zm) ≥ θ[2− δ(2− η)] > 0,

so ν(zm) ≥ 0. If zm < 1
2 , the numerator is strictly positive. �

The following lemma is used in Lemma 8 to identify the proposal made by the originator of the

coalition.

Lemma 11. If qt−1 6= zij(z) for all z ∈ ζm, v̄`(z
εt
ij ), the continuation value conditional on a shock

εt such that z − εt < zm occurring when proposal zij(z) is made, is given by

v̄i(z
εt

ij ) = v̄j(z
εt

ij ) =
1

3(1− δ)
+
θ

ε
ν(zm) (55)

v̄k(z
εt

ij ) =
1

3(1− δ)
− 2

θ

ε
ν(zm). (56)

Proof. This follows from substituting v̄`(q
t−1) = 1

3(1−δ) from (12) into (51)–(53). �

The continuation values v̄i(z
εt
ij ) = v̄j(z

εt
ij ) are greater than 1

3(1−δ) because a proposal zij(z) could

result in tolerant coalition allocation whereas it equals the specific-policy allocation with probability

0.

The following lemma identifies the continuation values when a coalition dissolves.

Lemma 12. If qt−1 = zij(z) for z ∈ ζm, the continuation value v̄`(z
θt
ij ) conditional on a shock θt

such that z − θt < zm occurring is given by

v̄i(z
θt

ij ) = v̄j(z
θt

ij ) =
1

3(1− δ)
+ ν(zm) (57)

v̄k(z
θt

ij ) =
1

3(1− δ)
− 2ν(zm). (58)

Proof. This follows from substituting v̄`(zij(z
′)) = 1

3(1−δ) from the proof of Lemma 7 into (44) and

(45) in the Appendix. �

Note that v̄`(z
θt
ij ) ≥ v̄`(z

εt
ij ), ` = i, j, and v̄k(z

θt
ij ) ≥ v̄k(z

εt
ij ), ` = i, j, since ε ≥ θ. If θ = ε,

v̄`(z
θt
ij ) = v̄`(z

εt
ij ), ` = i, j, k.
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Upper Bounds on zm and ẑm

The upper bounds are all greater than their single allocation counterparts because the coalition is

preserved with higher probability, and hence the payoffs from entering the equilibrium path and

staying on it are higher. Moreover, the payoff of the coalition partner is greater because he has the

opportunity to obtain more than zm. The upper bounds are

zuu ≡ zu + ηδν(zm). (59)

ˆ̂z1 ≡ ẑ1 +
δ ((1− γ)ηδ + γ(1− δ(1− η))) ν(zm)

1− δ(γ − η)
. (60)

ˆ̂z2 ≡ ẑ2 +
δ ((1− γ)ηδ + γ(1− δ(1− η))) ν(zm)

1− δ(γ − η)
. (61)

Note that zoo + ˆ̂z1 = zo + ẑ1 = 1, and zuu + z`` = zu + z` = 1. For δ > δo, z`` < 1
2 , so zuu > 1

2 ,

and zoo < 1
2 , so ˆ̂z1 >

1
2 . Since ẑ1 ≤ ẑ2, ˆ̂z1 ≤ ˆ̂z2, so ˆ̂z2 is not binding. Consequently, the least upper

bound on zm is 1
2 .
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Battaglini-Palfrey experiment results

Table 1: Duration of Coalitions

Frequency

Match # Rounds 1 2 3 4 5 6 7 8 9 10

1 10 3 2 0 1 0 1 0 0 0 0

2 4 1 1 1 0

3 10 1 0 0 0 1 0 0 0 1 0

4 5 1 0 0 2 1

5 2 1 2

6 1 2

7 8 0 0 0 0 0 0 1 2

8 1 2

9 3 0 1 2

10 5 0 0 0 2 1

11 7 0 2 0 2 0 1 1

12 2 2 1

13 1 0

14 5 2 0 0 2 1

15 3 2 3 0

16 5 1 1 0 2 1

17 1 3

18 2 3 1

19 7 3 3 2 0 0 0 0

20 3 2 1 2

Total 29 18 7 11 5 2 2 3 1 0

NB: 70 committees
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Table 2: Transition Probabilities – Continuous Experiment (All Rounds)

Outcome qt

Status quo qt−1 M12 M13 M23 U D
M12 (46) 0.522 0.130 0.217 0.087 0.043
M13 (55) 0.145 0.582 0.073 0.091 0.109
M23 (32) 0.063 0.250 0.313 0.281 0.094

U (92) 0.087 0.054 0.011 0.848 0.000
D (23) 0.217 0.130 0.087 0.043 0.522

Table 3: Transition Probabilities – Continuous Experiment (Rounds after First)

Outcome qt

Status quo qt−1 M12 M13 M23 U D

M12 (42) 0.524 0.119 0.214 0.095 0.048
M13 (47) 0.128 0.596 0.085 0.064 0.128
M23 (24) 0.083 0.333 0.292 0.208 0.083

U (88) 0.080 0.034 0.011 0.875 0.000
D (23) 0.217 0.130 0.087 0.043 0.522
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