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Abstract
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1 Introduction

Activities and events, such as sports, promotions within organizations, school admissions, political

elections and R&D races, can be viewed as contests. Contests, as a well established institution,

essentially incentivize economic agents to exert costly and irreversible e¤ort by awarding prizes to

the winners.

In a contest, the contest organizer often has a �xed amount of prize budget, and uses it to

induce contestants to exert the maximum amount of e¤ort. For example, the privately funded

Loebner Prize provides a cash reward to the most human-like chatterbot in the annual contest in

arti�cial intelligence. The European Information Technology Society annually awards prizes worth

600,000 euros in total to promote novel products with high information technological contents and

evidenced market potentials. These contest organizers, with predetermined budgets, aim to �nd

certain contest rules to achieve their objective of eliciting the most e¤orts from the contestants

with privately known abilities. This optimal contest design problem with incomplete information

about the contestants is the focus of this paper.

There are many similarities between the optimal contest design with incomplete information

(where the abilities of the contestants are their private information) and the optimal auction design

with incomplete information (where the valuations of the bidders are their private information).

The abilities of the contestants in a contest can be mathematically translated into the valuations of

the bidders in an auction. The prizes in the contest can be reinterpreted as the winning probabilities

in the auction. Meanwhile, e¤orts from the contestants in the contest can be treated as payments

from the bidders in the auction. Therefore, maximizing the total e¤orts from the contestants by

optimally allocating the prizes is equivalent to maximizing the total payments from the bidders

by optimally allocating the winning probabilities. As such, we can make use of the well developed

techniques on optimal auction design to analyze the optimal contest design problem.

To emphasize these similarities, in this paper we will carry out our analysis in an environment

similar to the one in Myerson [25] and adopt a mechanism design approach. Suppose that there

are a �xed number of risk neutral contestants. These contestants di¤er in their abilities, which are

their own private information. We focus on the case where the contestants�abilities (i.e., types)

are independently distributed.1 In a direct mechanism, a contest designer has a �xed prize budget

that he can allocate to these contestants (in the form of prizes) based on their reported types. The

designer�s goal is to elicit the maximum amount of total e¤orts from these contestants.

There is one di¤erence, however, that sets contests apart from auctions. In contests, prizes

can be negative. For example, the FCC-organized contest to set the standard for high-de�nition

1 If the contestants�types are correlated, then a full surplus extraction result can be established similarly to Crémer
and McLean [10] and McAfee and Reny [19].
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television was open to any �rm but with a $200,000 entry fee (see Taylor [31]). Golf tournament

often involves a signi�cant amount of registration fee. As a result, the losers in these contests end

up with a negative prize as they pay a fee and win nothing. A negative prize can be equivalently

regarded as a punishment. Punishments can exist in contests but not in auctions. Using our par-

allel approach to mechanism design, negative prizes are technically equivalent to negative winning

probabilities in auctions. The former is feasible, while the latter is not. If prizes are not allowed to

be negative, then the optimal contest design problem is mathematically equivalent to the optimal

auction design problem. When negative prizes are allowed, however, the two problems are no longer

the same. The contest design problem is a more relaxed problem, as it imposes no restrictions on

the prizes, as opposed to its auction counterpart. In this case, Myerson�s [25] technique is no longer

adequate for providing a solution to this relaxed problem.

In our analysis, since both positive prizes and negative prizes are allowed, the contest designer

can use them concurrently to elicit the most e¤orts from the contestants. This �exibility in prizes

poses some challenges in the analysis, but it di¤erentiates our paper from other papers in the

contest design literature.2

In the optimal auction design problem, as Myerson [25] has demonstrated, the bidder with the

highest virtual valuation (if it is higher than the seller�s reservation value) should have a winning

probability equal to 1 and all other bidders should have zero probability of winning.3 Allowing

negative prizes is equivalent to allowing negative probabilities of winning. It creates an additional

venue to increase the seller�s revenue (or the contestants�e¤orts in our case). Allocating a negative

prize to a contestant with a lower (including negative) virtual valuation would increase the positive

prize to a higher virtual valuation contestant by the same amount while keeping the total prize

budget unchanged. This kind of leveraging on the contestants�virtual valuations relaxes the original

optimization constraints and obviously increases the total level of e¤orts elicited. Of course, we

need to ensure that the lower ability contestants still have incentive to participate and therefore

need to award them with positive prizes sometimes. The optimal contest mechanism �nds the

optimal balance between these incentives to maximize the total e¤orts exerted by the contestants.

In this paper, we characterize the optimal contest mechanism in our model using the techniques

of continuous linear programming. We obtain two surprising results. First, we �nd that an optimal

contest mechanism does not exist. Second, any level of total e¤orts arbitrarily close to the utmost
total e¤orts (i.e. highest total e¤orts that can be induced when all contestants are of the highest

2Most papers in the contest literature do not allow the prizes to be negative. In a recent paper, Moldovanu et al
[24] analyze negative prizes in a contest model, but their analysis is limited to rank-ordered tournaments. This paper
will be discussed in details later.

3 In the auction literature, a bidder�s virtual valuation can be interpreted as the marginal revenue that can be
elicited from the bidder, according to Bulow and Roberts [2]. Similarly, in our contest setting, a contestant�s virtual
valuation can be interpreted as the marginal e¤ort that can be elicited from the contestant using one unit of prize.
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possible ability) can be achieved by an incentive compatible contest mechanism that involves ex-

ploding negative contingent prizes for contestants of the lower abilities. In the contest mechanism

that we will construct in the paper, there exists a threshold level of ability near the highest possible

ability. If the highest ability among the contestants is above this threshold, the contestant with this

ability will receive the maximum prize, which is equal to the original prize budget of the contest

designer plus the extra money collected from the punishments (negative prizes) imposed on other

contestants. If the highest ability of the contestants is below the threshold, then all of the con-

testants share the original prize budget equally. The incentive to participate for the lower ability

contestants is thus maintained by the positive prizes when no contestant is above the threshold.

In the equilibrium of this mechanism, those contestants with abilities below the threshold exert

zero e¤ort. Meanwhile, contestants with abilities higher than the threshold exert a large amount

of e¤orts. The level of total expected e¤orts converges to the utmost total e¤orts and full surplus

extraction can be achieved in the limit. Note that in our model, the abilities of the contestants

are distributed independently. In the optimal auction design literature, the bidders�types have to

be correlated in order to extract the full surplus from them. Therefore, our result illustrates that

an optimal contest is very di¤erent from an optimal auction. (Almost) full surplus extraction is

feasible in contests but not in auctions when players have independent private information.

In the optimal contests we discussed above, the contestants are sometimes hit with an extra-

ordinarily large negative prize. This kind of �nancial punishment is not always feasible. Con-

testants have �nancial constraints, governments have regulations, and societies have laws limiting

the amount of punishment one can impose. In the paper, we address this issue by analyzing a

bounded punishment problem. In the analysis, we assume that any punishment (negative prize)

cannot exceed a bound which is common to all contestants. Again, using the techniques of con-

tinuous linear programming, we completely characterize the optimal contest mechanism under this

situation.

This optimal contest mechanism again features a threshold level of ability, and this threshold

depends on the bound on the punishment. When the bound is low, contestants cannot be punished

too severely, and the threshold level is exactly the same as the cut-o¤ level in the optimal auction

mechanism in Myerson [25]. When the bound is high, however, the threshold is strictly higher

than the cut-o¤ in Myerson [25]. When the abilities of all contestants are lower than the threshold,

all contestants share equally a portion (in the former case) or the total (in the latter case) of

the original prize budget. When the highest ability of the contestants is above the threshold, the

contestant with this ability will receive the maximum prize, which is equal to the original prize

budget plus the extra money collected from the punishments (negative prizes) imposed on other

contestants. This optimal contest mechanism can be implemented by a modi�ed all-pay auction

with the following features: an entry fee, a minimum bid, and a grand prize equal to the original
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prize budget plus the total entry fees. In this mechanism, the entry fee is equal to the bound for

the punishment.

There are a few distinctive features for the prize allocation rule in the optimal contest mecha-

nism. First, a maximal punishment is imposed on all contestants except the one with the highest

ability, unless all of them have abilities lower than the cut-o¤. Second, the pool of contestants

with abilities lower than the cut-o¤ are treated equally, regardless of their ability ranking. They all

win a positive prize when no contestant�s ability is above the cut-o¤. These two features together

ensure that the maximum incentive is generated for the high ability contestants to exert e¤ort while

the low ability contestants are still willing to participate (and provide the necessary cross-ability

subsidies). Third, similar to Myerson [25], a threshold value is de�ned, but in a somewhat di¤erent

way. The threshold in our optimal contest mechanism is always weakly higher than the threshold in

Myerson [25], and strictly higher if the bound for the punishment is su¢ ciently high. In particular,

our threshold would approach the upper limit of the support of the ability distribution when the

bound for punishment becomes higher and higher. Fourth, when the bound of punishment is low

and thus punishments are not allowed to be large, our threshold coincides with the one in Myerson

[25]. In this case, only a portion of the original prize budget is awarded to the contestants when

every contestant�s ability is below the threshold. This is necessary for maintaining the incentives

for those contestants with ability above the threshold. This partial award in our optimal contest

resembles the optimal supply reduction by a monopoly seller in an optimal auction, even when the

seller values the object at zero.

In the contest literature, many papers focus on the moral hazard issue in situations such as

veri�able outputs as noisy signals of unobservable e¤orts. Pioneer works on perfectly discriminatory

contests (i.e. all pay auctions) with incomplete contestant information but perfect e¤ort monitoring

include Moldovanu and Sela [21], and Moldovanu et al. [23], [24]. In these papers, the focus is on

the adverse selection issue. Our paper belongs to this latter line of research.

The rest of this paper is organized as follows. In the rest of this section, we review the related

literature. In Section 2, we present the model. In Section 3, we carry out our main analysis on the

optimal contest design. We �rst show that there exists no optimal mechanism. We then construct

mechanisms which can achieve almost the utmost total e¤orts. (These mechanisms require large

punishments to occur with positive probabilities.) Finally, in a sequence of analytical steps, we

characterize the optimal contest when punishments are bounded by K. In Section 4, we provide

some concluding remarks. An appendix collects some technical proofs.
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Related literature

Our paper is related to a few important strands of the literature. First, it obviously belongs

to the literature on optimal contest design with incomplete information. Fullerton and McAfee

[11] establish the optimality of shortlisting two most e¢ cient �rms in a single �xed-prize research

tournament, where the R&D �rms�research costs are the �rms�private information. Moldovanu

and Sela [21] are the �rst to study the optimal prize allocation problem within the all-pay contest

framework when contestants have private information. They establish the optimality of a winner-

take-all contest within a paradigm of �xed nonnegative prizes that are not contingent on the bid

pro�le. Minor [20] reexamines the same design problem when contestants have convex costs of e¤ort

and when the contest designer has concave bene�t of e¤ort. Moldovanu and Sela [22] investigate this

optimal prize allocation problem in a two-stage all-pay auction framework. Meanwhile, Moldovanu

et al [23] analyze the optimal contest design in an all-pay auction framework in which contestants

care about their relative status. Polishchuk and Tonis [28] and Chawla et al [3] adopt a mechanism

design approach to examine optimal contest designs, focusing on nonnegative prizes. Kirkegaard [13]

also uses a mechanism design approach to study the optimal favoritism in contest designs when the

type distributions for the contestants are asymmetric. Our paper di¤erentiates from these existing

studies by providing a complete analysis on the optimal contest design when negative prizes are

allowed. Similar to some of the existing studies, we also adopt a mechanism design approach. In

the analysis, we shed light on why negative prizes are necessary in the optimal mechanism and how

the optimal negative prizes can be utilized to leverage on the di¤erences in the virtual values of the

contestants. We �nd that we can achieve a level of total e¤orts arbitrarily close to the utmost total

e¤orts by making use of negative prizes contingent on the types of the contestants in the contest

mechanism we constructed in the paper.

Among the above-mentioned papers, our paper is most related to Moldovanu et al [24] who

study the optimal design of prizes that can be positive or negative in a multiple-prize all-pay

auction with incomplete information. There are two major di¤erences between our paper and

theirs. The �rst di¤erence is that our analysis can accommodate any contest rule that allocates the

budget contingent on the contestants�reported type pro�le, while theirs focuses on all-pay auctions.

The second di¤erence is that we model punishment di¤erently. In their paper, a punishment can

either be costly or costless to the organizer and it thus never helps the designer�s budget. In our

paper, both prizes and punishments are in monetary terms, and therefore the punishments collected

from some contestants can be added to prize budget to relax the designer�s budget constraint.

Second, our paper is related to the literature on full surplus extraction when players have

private information. Myerson [25] provides a full surplus extraction example in an auction with

two bidders with correlated valuations that can take only two values. Crémer and McLean [10]
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formally establish the full surplus extraction result in an auction environment, where bidders have

�nite private types which are correlated. McAfee and Reny [19] extend Crémer and McLean�s

result of full surplus extraction to a continuum of types in a general mechanism design setting.

Heifetz and Neeman [12] and Chen and Xiong [9] further examine the generality and robustness

of the full surplus extraction result. All of the above papers require that the types of the players

are correlated. When the types of the players are independently distributed, it is believed that full

surplus extraction cannot be achieved. In this paper, we show that if negative prizes are allowed,

almost full surplus extraction can be achieved in the contest environment when players�types are

independent.4

Third, in our paper, we implement the �almost�utmost total e¤orts using a modi�ed all-pay

auction. This complements Lazear and Rosen [16], even though they consider social e¢ ciency in

their paper and we are concerned with e¤ort level. They show that rank-ordered tournaments can

achieve the �rst best when the e¤ort cost functions of the contestants are public information. Riis

[29] demonstrates the same if contestants learn their private types after entering the contest. We

assume that the contestants�types are private information, comparing to the public information

assumption in Lazear and Rosen [16]. We also assume that the type information is endowed,

comparing to the ex post private information in Riis [29].

Finally, our paper is related to the literature on mechanism design with �nancially constrained

players. Che and Gale [4] consider the revenue ranking of standard auctions when bidders are

�nancially constrained. Benoit and Krishna [1] study the e¤ects of budget constraints in multi-

object auctions. La¤ont and Robert [15] and Maskin [18] analyze the optimal auction design when

bidders have a common �xed budget. Che and Gale [6] characterize the revenue maximizing pricing

scheme in an environment with a single buyer, whose willingness to pay and budget are both his

private information. Pai and Vohra [26] study the optimal auction with multiple bidders with

two dimensional (valuation and budget) private information. In our contest model, contestants are

�nancially constrained, and therefore the negative prizes have to be bounded in the optimal contest

design.

2 The model

A risk neutral contest designer has a total prize budget of V > 0 to elicit e¤orts from N � 2

risk neutral contestants in a contest. Each contestant has an ability for the contest. The cost for

4While our analysis shows the possibility of full rent extraction even when agents have independent and private
types, we assume risk neutrality, unlimited liability, no collusion among the agents, and no competing principal in
our model. Therefore, the critics on full rent extraction by Robert [30], La¤ont and Martimort [14], Che and Kim
[8], and Peters [27] remain valid.
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contestant i with ability ti to exert e¤ort ei � 0 is given by c(ei; ti) = ei=ti. This ability5, or type,
ti is the private information of contestant i, and it follows an independent and identical distribution

with cumulative distribution function F (�), and probability density function f(�) which is strictly
positive on support [a; b] with a > 0. Following convention, we assume that the distribution satis�es

the following regularity condition as in Myerson [25].

Assumption 1. The virtual value function J(t) = t� 1�F (t)
f(t) is strictly increasing in t.

The payo¤ of a contestant is equal to the prize he receives in the contest minus his cost of e¤ort.

The contest designer uses the prize budget V to induce e¤orts from the contestants. At the same

time, if there is money left in the budget, she values that money as well. To simplify the notation,

assume that there is a linear relationship between e¤ort and money for the contest designer. Let t0
denote the money to e¤ort ratio; 1 dollar is equivalent to t0 units of e¤ort. If the contest designer�s

objective is to maximize the total e¤orts, then t0 = 0. Assume that t0 is common knowledge.6

Note that the cost of 1 unit of e¤ort for the highest ability (b) contestant is 1=b, which must be less

than 1=t0, the value of 1 unit of e¤ort to the contest designer; otherwise, it is obviously optimal for

the designer not to spend any of the prize budget. Therefore, we assume that t0 < b.

According to the revelation principle, we can focus our analysis on direct mechanisms. Let
~ti 2 [a; b] be the report of contestant i regarding his own ability. Then we can de�ne contestant i�s
prize and e¤ort as functions of the pro�le of reports ~t = (~t1; � � � ; ~tN ) by vi(~t) and ei(~t), respectively.
Given the pro�le of reports ~t = (~t1; � � � ; ~tN ), the contest designer gives a prize of vi(~t) to contestant
i and demands an e¤ort of ei(~t) from him. This is equivalent to its counterpart in auction designs:

given the pro�le of type reports from the bidders, the auctioneer assigns the probability of winning

to a bidder and demands a payment from him. Similarly, a direct contest mechanism can thus be

denoted by (v(~t); e(~t)), where v(~t) = (v1(~t); � � � ; vN (~t)) and e(~t) = (e1(~t); � � � ; eN (~t)).

In the following section, we will examine the existence of the optimal mechanism and o¤er

remedies when it does not exist.

3 Optimal contest design

We will use Myerson�s [25] optimal auction approach to analyze this optimal contest design problem.

The model setup in the previous section hints on the connections between an optimal auction

problem and an optimal contest problem. In this section, in the process of analyzing the optimal

contest design, we will illustrate how the two distinguish themselves from each other.

5 In Moldovanu and Sela [21], a contestant�s ability is de�ned as ci = 1
ti
, which is mathematically equivalent.

6As we shall see later, this t0 is similar to the reservation value of a seller in the auction design problem.
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3.1 Prize and punishment

De�ne the expected prize of contestant i with report ~ti as

Vi(~ti) =

Z
t�i

vi(~ti; t�i)f�i(t�i)dt�i; (1)

where t�i = (t1; :::ti�1; ti+1; :::tN ) and f�i(t�i) denotes the density of t�i.

Given that other contestants truthfully report their abilities, contestant i�s expected payo¤

when reporting ~ti is

ui(~ti; ti) =

Z
t�i

vi(~ti; t�i)f�i(t�i)dt�i �
R
t�i
ei(~ti; t�i)f�i(t�i)dt�i

ti

= Vi(~ti)�
R
t�i
ei(~ti; t�i)f�i(t�i)dt�i

ti
: (2)

The contest designer maximizes the expected total e¤orts from the contestants plus the e¤ort

equivalent of any money left in the prize budget. In the rest of the analysis, this designer is to

maximize this total e¤ort equivalent (or total e¤orts for short), which is given by the following:

max
(v(�);e(�))

R =

Z
t

"X
i

ei(t)+t0(V �
X
i

vi(t))

#
f(t)dt (3)

subject to the following feasibility constraints

ui(ti; ti) � ui(~ti; ti);8~ti; ti;8i; (4)

ui(ti; ti) � 0;8ti;8i; (5)X
i

vi(t) � V;8t; (6)

ei(t) � 0;8t;8i: (7)

The feasibility constraints consist of four parts: (4) is the incentive compatibility constraint, (5)

is the participation constraint, (6) is the designer�s budget constraint, and (7) is the nonnegative

e¤ort constraint.

We are now ready to compare our optimal contest design problem with the optimal auction

design problem in Myerson [25]. There are three similarities. First, the prize allocations here

correspond to the object winning probabilities there. The sum of the winning probabilities in an
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auction must not exceed 1, while the sum of the prizes awarded in a contest must not exceed V .

(Note that the total prize budget V can be normalized to 1.) Second, the e¤orts here resemble the

transfer payments there. Third, the contest designer�s objective function here is equivalent to the

auction designer�s revenue there (with t0 being the seller�s reservation value).

Despite these similarities, there are two main di¤erences, both lie in the restrictions on the

choice variables. First, in an optimal auction design problem, the object winning probabilities

must be nonnegative. In our optimal contest design problem, the prizes for the contestants can

be positive or negative. A positive prize is a reward, while a negative prize is a punishment. This

enlarges the set of feasible mechanisms. Negative prizes provide a venue for further enhancing the

contest design by leveraging the di¤erences in the contestants�virtual values. For a given ability

pro�le t, the negative prizes to lower ability contestants can be used to increase the positive prizes

to higher ability contestants while still balancing the prize budget. This would improve the total

e¤orts exerted by the contestants even if the participation constraints for the lower types still need

to be satis�ed.

Second, the monetary transfers in the optimal auction design problem can be positive or nega-

tive. However, in our optimal contest design problem, e¤orts must be non-negative. This shrinks

the set of feasible mechanisms and thus reduces the amount of e¤orts that can be induced. Putting

these two con�icting e¤ects together, it is not clear whether the optimal contest can do better than

the optimal auction.

Allowing for negative prizes is seemingly a small deviation from the conventional auction design

literature. But it creates signi�cant technical challenges in the analysis. In the analysis for the

optimal contest design, there is no obvious way to optimally leverage the prizes assigned to di¤erent

virtual valuations of the contestants. In the rest of this section, we devote our analysis to solving

this optimal contest design problem.

De�ne ~ui(~ti; ti) = ti � ui(~ti; ti). Then

~ui(~ti; ti) = tiVi(~ti)�
Z
t�i

ei(~ti; t�i)f�i(t�i)dt�i: (8)

Constraints (4) and (5) can be rewritten in terms of ~ui(�; �). From (4) and the Envelope Theorem,

we have
d~ui(ti; ti)

dti
=
@~ui(~ti; ti)

@ti
j~ti=ti = Vi(ti);

which leads to

~ui(ti; ti)� ~ui(a; a) =
Z ti

a
Vi(s)ds:

Standard derivations such as those in Myerson [25] lead to the following lemma. The proof is
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omitted here.

Lemma 1 Mechanism (v(�); e(�)) is feasible if and only if the following conditions hold together
with (6) and (7):Z

t�i

ei(ti; t�i)f�i(t�i)dt�i = tiVi(ti)�
Z ti

a
Vi(s)ds� a � ui(a; a);8ti;8i; (9)

Vi(t
0
i) � Vi(ti); 8t0i > ti;8i; (10)

ui(a; a) � 0;8i: (11)

Condition (9) is a direct implication of the incentive compatibility constraint. It implies that

the contestants�expected e¤ort levels e(�) can be fully pinned down by the prize structure v(�).
In other words, two mechanisms with the same prize functions would generate the same total

expected e¤orts. Apparently, this result is parallel to the Revenue Equivalence Theorem in the

auction design literature. Condition (10) requires that the expected prize must be increasing in

a contestant�s ability, and it is parallel to the increasing expected winning probability condition

in an auction. Condition (11) implies that a contestant with the lowest ability must be willing to

participate, same as in an auction.

Note that in the optimal contest, ui(a; a) = 0, i.e., the lowest ability contestant must earn zero

informational rent. Otherwise, the contest designer can simply decrease the informational rent for

every ability and yield a higher expected total e¤ort level.

3.2 Optimal mechanisms and utmost total e¤orts

We are now ready to investigate the existence of an optimal mechanism.

3.2.1 Problem (P)

Given (1) and (9), we can replace e¤ort e(�) by the prize function v(�) and rewrite the contest
designer�s objective function as

max

Z
t

X
i

[J(ti)� t0] vi(t)f(t)dt+ t0V: (12)

Note that J(ti) = ti � 1�F (ti)
f(ti)

is assumed to be strictly increasing in Assumption 1. Therefore, the

contest designer�s optimization problem can be restated as maximizing (12), subject to (6), (7), (9)

and (10). We denote this maximization problem as problem (P) and the resulting mechanism as
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the optimal mechanism.

A useful benchmark e¤ort level is the utmost total e¤orts, which is the highest amount of
total e¤orts inducible given budget V . This level of e¤ort is achieved when all contestants are

of the highest ability b, and it is equal to bV . We can see this from the following arguments.

First, the total e¤orts induced cannot be higher than bV from the participation constraints of the

contestants. Second, the e¤ort level bV can be obtained by asking each of the N contestants to

exert e¤ort e = bV=N and awarding each of them a prize of V=N . In the rest of the analysis, we

will refer to this utmost total e¤orts from time to time.

We will approach problem (P) using the following method. We �rst examine a relaxed problem

and establish an upper bound for the expected total e¤ort level in this relaxed problem. Second,

we show that there exists no optimal mechanism in this relaxed problem. Third, we construct a

feasible mechanism in this relaxed problem and show that the expected total e¤ort level in this

mechanism can approach arbitrarily close to the utmost total e¤orts. Finally, we demonstrate that

the same conclusion holds for the original problem (P).

3.2.2 Problem (P-Relax)

We start by considering the following optimization problem, denoted as (P-Relax):

max

Z
t

X
i

[J(ti)� t0] vi(t)f(t)dt+ t0V (13)

subject to X
i

vi(t) � V; 8t; (14)

Vi(ti) =

Z
t�i

vi(ti; t�i)f�i(t�i)dt�i � 0; 8ti;8i: (15)

This is a relaxed problem of problem (P): the objective function is the same but the feasibility

constraints are less restrictive than the original ones. To see this, constraint (14) follows directly

from (6). We next argue that constraint (15) is implied by the feasibility constraints in (P). Note

that from the monotonicity condition (10), it is su¢ cient to show that Vi(a) � 0;8i. From (9),

evaluating at vi = a, we obtain aVi(a) =
R
t�i
ei(ti; t�i)f�i(t�i)dt�i, which is non-negative from the

non-negative e¤ort constraint (7).

The relaxed problem (P-Relax) is a continuous linear programming problem. We construct

the Lagrangian by applying multiplier �(t) to constraint (14) and �i(ti) to constraint (15) before

12



integrating them and adding them to the objective function:

L =

Z
t

X
i

[J(ti)� t0] vi(t)f(t)dt+ t0V +
Z
t
�(t)

"
V �

X
i

vi(t)

#
f(t)dt

+
X
i

Z
ti

�i(ti)

 Z
t�i

vi(ti; t�i)f�i(t�i)dt�i

!
f(ti)dti: (16)

Suppose that an optimal solution exists. Then it must satisfy the following Kuhn-Tucker con-

ditions:

[J(ti)� t0]� �(t) + �i(ti) = 0;8t;8i; (17)

�(t) � 0; V �
X
i

vi(t) � 0; and �(t)
"
V �

X
i

vi(t)

#
= 0;8t; (18)

�i(ti) � 0;
Z
t�i

vi(ti; t�i)f�i(t�i)dt�i � 0; and �i(ti)
Z
t�i

vi(ti; t�i)f�i(t�i)dt�i = 0;8ti;8i: (19)

Lemma 2 An optimal solution does not exist for problem (P-Relax).

Proof: From (17), �(t) should not depend on any t�i, 8i. Thus, �(t) must be a constant and
does not depend on t. Since �(t) = � is a constant, and since �i(ti) � 0, from (17) we must have

J(ti) � t0 � � for every ti. This means that � � b � t0 > 0, as J(b) = b. Since [J(ti)� t0] is
increasing, we have [J(ti)� t0] < b � t0 for all ti < b. Then �i(ti) = � � [J(ti)� t0] > 0 for all

ti < b;8i. Thus, (15) must be binding for all ti < b at the optimal solution. This implies that

Vi(ti) = 0; 8ti < b;8i.

Since � > 0, (14) must be binding for any t, which implies that
R
t

P
i vi(t)f(t)dt = V . We

thus have
P
i

R b
a Vi(ti)f(ti)dti = V . This means that at least one Vi(b) should be in�nity. However,

Vi(b) =1 is impossible. Thus an optimal solution does not exist for the relaxed problem (P-Relax).

�
Although the above lemma shows that an optimal contest mechanism does not exist for the

relaxed problem (P-Relax), we can nevertheless establish that the utmost total e¤orts bV is an

upper bound for the total e¤orts in all feasible mechanisms in problem (P-Relax). In problem

(P-Relax), the abilities of the contestants are usually less than b, and the total e¤orts elicited in

any feasible mechanism must be less than bV . We have the following lemma.

Lemma 3 The expected total e¤orts elicited in problem (P-Relax) are strictly less than bV .

Proof: See Appendix. �
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Next, we establish a sequence of feasible mechanisms (v(�;K); e(�;K)), with K � 0 in the

relaxed problem (P-Relax). When K goes to in�nity, these mechanisms achieve levels of total

e¤orts arbitrarily close to the upper bound bV .

De�ne

t̂(K) = F�1((
NK

V +NK
)

1
N�1 ); (20)

where K � 0 is an arbitrary non-negative real number. De�ne set S = fj : tj > t̂g, and let t(1)

denote the �rst order statistics of t.

De�ne the following prize allocation function:

vi(t;K) =

8><>:
V
N ; if S = ;;
�K; if S 6= ; and ti < t(1);

V + (N � 1)K; if S 6= ; and ti = t(1):

(21)

In this function, ties are broken randomly and fairly.

One can verify that for this prize allocation function,

Vi(ti;K) =

(
0; if ti � t̂(K);
(V +NK)FN�1(ti)�K > 0; if ti > t̂(K):

(22)

and it is increasing in ti.

De�ne e¤ort functions from (9) with ui(a; a) = 0 as follows:

ei(t;K) = tiVi(ti)�
Z ti

a
Vi(s)ds

(
= 0; if ti � t̂(K);
> 0; if ti > t̂(K):

(23)

We have tiVi(ti)�
R ti
a Vi(s)ds > 0 for ti > t̂(K); as Vi(s) is strictly increasing given ti > t̂(K) and

a > 0.

It is straight-forward to verify that all constraints of (P-Relax) are satis�ed and therefore, the

above mechanism (v(�;K); e(�;K)) is feasible for every K � 0. The calculations are standard and
are omitted here. We have the following lemma.

Lemma 4 When K goes to 1, the expected total e¤orts elicited by mechanism (v(�;K); e(�;K))
go to bV and the expected payo¤s of the contestants go to zero.

Proof: See Appendix. �
This lemma shows that even when abilities of the contestants are their own private information

and their abilities are normally less than the upper limit b, the contest designer can still elicit
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almost the utmost total e¤orts bV using the above mechanisms. In each of these mechanisms, there

is a cut-o¤ ability. If none of the contestants have an ability higher than this cut-o¤, then every

contestant gets an equal share of the prize budget V . But if at least one of the contestants has

an ability higher than the cut-o¤, then every contestant will be punished by a negative prize �K,
except the highest ability contestant who gets the prize budget V plus the extra money generated

from the negative prizes of other contestants.

Lemmas 3 and 4 establish that for problem (P-Relax), there exists no optimal contest mech-

anism, but the contest designer can obtain an expected total e¤ort level arbitrarily close to the

utmost total e¤orts bV . The following proposition shows that the same result is valid for the

original problem (P) as well.

Proposition 1 There exists no optimal contest mechanism in problem (P). However, the contest

designer can achieve an expected total e¤ort level that is arbitrarily close to the utmost total e¤orts

bV and the contestants�surplus can be extracted arbitrarily close to the full extent.

Proof: Similar to Lemma 3, we can establish that the expected total e¤ort level in the original

problem (P) is also bounded by bV . We can also verify that the above constructed mechanisms are

also feasible in the original problem. Note that these mechanisms generate expected total e¤ort

levels arbitrarily close to bV . Therefore, if an optimal contest mechanism exists for problem (P),

then the expected total e¤orts elicited must be exactly bV . However, since problem (P-Relax) is a

relaxed problem of problem (P), that optimal contest mechanism must also be feasible for problem

(P-Relax) and generate expected total e¤orts bV . From Lemma 3, we know that it is not possible.

Therefore, there exists no optimal contest mechanism in problem (P). Lemma 4 implies the second

half of this proposition. �
The results in this proposition are seemingly contradicting to the full surplus extraction results

in the optimal auction literature. There, the valuations of the bidders must be interdependent. Full

surplus cannot be extracted if bidders�valuations are independent. Our results demonstrate that

almost full surplus extraction is feasible with independent valuations in contests. More surprisingly,

the utmost total e¤orts that correspond to the e¤ort level when ALL contestants have the upper

bound ability b can almost be reached. In auctions, the maximal achievable expected total revenue

is the expectation of the maximum virtual valuation. Even in the case where bidders�valuations

are common knowledge, the seller�s expected total revenue is just the maximum valuation. From

these di¤erences, we can see that an optimal contest problem is very di¤erent from an optimal

auction problem.
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3.3 Optimal contest design with bounded punishment

The previous subsection establishes a surprising �nding that the utmost total e¤orts bV can be

achieved asymptotically when we use larger and larger punishments (negative prizes). It is not

di¢ cult to imagine that large punishments are not practical. Contestants do not have an in�nite

amount of wealth to pay for the punishments. Furthermore, large punishments may not be lawful.

In this subsection, we investigate the optimal contest design problem when there is a bound on the

punishments.

3.3.1 Problem (P-K)

Suppose that the bound on any punishment for a contestant is K � 0. We impose this additional
restriction on the original Problem (P),

vi(t) � �K;8t;8i: (24)

We call this bounded punishment optimization problem (P-K).

We adopt a multi-step procedure to solve optimization problem (P-K). Here is our road map for

solving this problem. First, we consider a relaxed problem of problem (P-K), denoted by problem

(P-K-Relax), and establish some necessary conditions for the optimization. Second, we add these

necessary conditions to the constraints of problem (P-K-Relax) and obtain an equivalent problem of

the relaxed problem, denoted by problem (P-K-Relax-Equivalent). Note that the optimal solutions

of problems (P-K-Relax) and (P-K-Relax-Equivalent) are the same. Third, we further relax problem

(P-K-Relax-Equivalent) and examine problem (P-K-Relax-Equivalent-Relax). Fourth, we fully

characterize the solution to problem (P-K-Relax-Equivalent-Relax). Finally, we construct a feasible

mechanism of the original problem (P-K) that achieves the maximal e¤ort level of problem (P-K-

Relax-Equivalent-Relax).

In problem (P-K), de�ne t̂i = supftijVi(ti) = 0g. Note that Vi(ti) is nonnegative and increasing.
Without loss of generality, assume that Vi(ti) is left-continuous at t̂i. Therefore, Vi(ti) = 0 for ti � t̂i
and Vi(ti) > 0 for ti > t̂i.

3.3.2 Problem (P-K-Relax)

We start our analysis by considering the following relaxed optimization problem (P-K-Relax) of

problem (P-K):

max
fvi(t);t̂i;8ig

Z
t

X
i

[J(ti)� t0] vi(t)f(t)dt+t0V (25)
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subject to Z
t

X
i

vi(t)f(t)dt � V; (26)

Vi(ti) =

Z
t�i

vi(ti; t�i)f�i(t�i)dt�i = 0; 8ti � t̂i;8i; (27)

Vi(ti) =

Z
t�i

vi(ti; t�i)f�i(t�i)dt�i > 0; 8ti > t̂i;8i; (28)

vi(t) � �K; 8t;8i; (29)

a � t̂i � b;8i: (30)

This is a relaxed problem of problem (P-K). This is because the objective functions are the

same in both problems, and the feasibility constraints are less restrictive than those in problem

(P-K). To see this, constraint (26) follows from (6) by integrating over t. Constraints (27) and (28)

directly follow the de�nition of t̂i. Constraint (29) is the same as (24) in (P-K). Constraint (30)

allows for all possible threshold values of t̂i.

We next characterize a key property for the optimal solutions fv~i (t); t̂
~
i ;8ig of problem (P-K-

Relax).

Consider problem (P-K-Relax) for a �xed t̂i = t̂
~
i . We construct the Lagrangian by introducing

multipliers � for constraint (26), �i(ti) for constraints (27) and (28), and �i(t) for constraint (29):

L =

Z
t

X
i

[J(ti)� t0] vi(t)f(t)dt+ t0V + �
Z
t

"
V �

X
i

vi(t)

#
f(t)dt

+
X
i

Z
ti

�i(ti)

 Z
t�i

vi(ti; t�i)f�i(t�i)dt�i

!
f(ti)dti

+
X
i

Z
t
�i(t) [vi(t) +K] f(t)dt:

The Kuhn-Tucker conditions for the optimization are:

& i(t) = [J(ti)� t0]� �+ �i(ti) + �i(t) = 0;8t;8i;

� � 0; V �
Z
t

X
i

vi(t)f(t)dt � 0; and �
"
V �

Z
t

X
i

vi(t)f(t)dt

#
= 0;8t;
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�i(ti) � 0;
Z
t�i

vi(t)f�i(t�i)dt�i � 0; and �i(ti)
Z
t�i

vi(t)f�i(t�i)dt�i = 0;8ti;8i;

�i(t) � 0; vi(t) +K � 0; and �i(t) [vi(t) +K] = 0;8t;8i:

These Kuhn-Tucker conditions lead to the following important necessary conditions for the

optimal solutions fv~i (t); t̂
~
i ;8ig for problem (P-K-Relax).

Lemma 5 (i) t̂~i � ~t0 = F
�1(( K

V+NK )
1

N�1 );

(ii) For ti > t̂~i , we must have 0 < V
~
i (ti) � (V +NK)FN�1(ti)�K.

Proof: We claim v~i (ti; t�i) = �K for ti > t̂
~
i if there exists some contestant j 6= i such that tj > ti.

Suppose not, then v~i (ti; t�i) > �K, which means �i(t) = 0. In addition, we have �i(ti) = 0 from
the fact V ~i (ti) > 0. Thus [J(ti)� t0]� � = 0. Note [J(tj)� t0]� �+ �j(tj) + �j(ti; tj ; t�ij) = 0.
Thus J(tj) � t0 = � � �j(tj) � �j(ti; tj ; t�ij) � � = [J(ti)� t0], which contradicts the assumption
that J(�) is a strictly increasing function.

When ti is the highest among all contestants, contestant i can at most collect V + (N � 1)K;
when ti > t̂

~
i is not the highest, v

~
i (ti; t�i) = �K. For contestant i, when ti > t̂

~
i , we must have

0 < V ~i (ti) � [V + (N � 1)K]FN�1(ti)�K � (1� FN�1(ti)) = (V +NK)FN�1(ti)�K: (31)

(31) implies that t̂~i � ~t0 = F�1(( K
V+NK )

1
N�1 ). �

3.3.3 Problem (P-K-Relax-Equivalent)

Lemma 5 provides a set of necessary conditions for the optimal solution of (P-K-Relax). If we

add these necessary conditions to the constraints in (P-K-Relax), we obtain a revised optimiza-

tion problem (P-K-Relax-Equivalent). The solutions to these two problems are the same. This is

because the optimal solution of (P-K-Relax) must satisfy all of the constraints (the original fea-

sibility constraints and the additional necessary conditions) in problem (P-K-Relax-Equivalent).

Thus the solution to problem (P-K-Relax-Equivalent) cannot be worse than problem (P-K-Relax).

Meanwhile, problem (P-K-Relax-Equivalent) is more restrictive and therefore its solution cannot

be better than problem (P-K-Relax).

The equivalent problem (P-K-Relax-Equivalent) can be rewritten as follows:

max
fvi(t); t̂i;8ig

NX
i=1

Z b

a
[J(ti)� t0]Vi(ti)f(ti)dti+t0V (32)
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subject to
NX
i=1

Z b

a
Vi(ti)f(ti)dti � V; (33)

0 < Vi(ti) � (V +NK)FN�1(ti)�K, if ti > t̂i , 8i; (34)

Vi(ti) = 0, if ti � t̂i;8i; (35)

vi(t) � �K; 8t;8i; (36)

~t0 � t̂i � b;8i: (37)

3.3.4 Problem (P-K-Relax-Equivalent-Relax)

Problem (P-K-Relax-Equivalent) can be relaxed to problem (P-K-Relax-Equivalent-Relax) by drop-

ping constraint (36):

max
fVi(�); t̂i;8ig

NX
i=1

Z b

a
[J(ti)� t0]Vi(ti)f(ti)dti+t0V (38)

subject to
NX
i=1

Z b

a
Vi(ti)f(ti)dti � V; (39)

0 < Vi(ti) � (V +NK)FN�1(ti)�K, if ti > t̂i , 8i; (40)

Vi(ti) = 0, if ti � t̂i;8i; (41)

~t0 � t̂i � b;8i: (42)

Note that in problem (P-K-Relax-Equivalent-Relax), the choice variables are merely fVi(�);
t̂i;8ig.

We de�ne t� = max ft̂; tMg, where t̂ = F�1(( NK
V+NK )

1
N�1 ), and tM = J�1(t0) if J(a) � t0,

tM = a if J(a) > t0. Note that t� � t̂ � ~t0.

We are now ready to present the following lemma, which is the key to the analysis of the optimal

contest with bounded punishment.

Lemma 6 �Vi(ti) =

(
(V +NK)FN�1(ti)�K, if ti > t�,

0, if ti � t�:
8i; is an optimal solution to problem

(P-K-Relax-Equivalent-Relax).

Proof: See Appendix. �

19



Note that (P-K-Relax-Equivalent-Relax) is a relaxed problem of (P-K). Suppose that we �nd

a �vi(t) such that it generates �Vi(ti) and satis�es the constraints in the original problem (P-K).

Then fv�i (t); i = 1; 2; :::; Ng and the e¤ort functions fe�i (t); i = 1; 2; :::; Ng that support �vi(t) and
satisfy ui(a; a) = 0;8i would constitute an optimal solution to problem (P-K). The supporting

e¤ort functions fe�i (t); i = 1; 2; :::; Ng can be constructed based on (9) with ui(a; a) = 0.

We now construct a mechanism (v�(�); e�(�)) that meets the above requirements.

De�ne �(K) =

(
K

FN�1(t�)
�K , if K > 0;

0, if K = 0:
. When K = 0; we have �(K) = 0 � V

N . When

K > 0, as t� � t̂, we have 0 < �(K) � V
N , and �(K) =

V
N if and only if t� = t̂.

Let S� = fj : tj > t�g, and t(1) denote the �rst order statistics of t.

Proposition 2 The following is an optimal mechanism for problem (P-K). The prize allocation

function v�(�) is given by

v�i (t) =

8><>:
�(K), if S� = ;;

�K, if S� 6= ; and ti < t(1);
V + (N � 1)K, if S� 6= ; and ti = t(1):

(43)

The e¤ort function is given by

e�i (t) =

(
0; if ti � t�;

tiV
�
i (ti)�

R ti
t� V

�
i (s)ds; if ti > t

�:
(44)

Proof: It is easy to verify that the prize allocation function generates

V �i (ti) =

(
0, if ti � t�;

[(V +NK)FN�1(ti)�K] > 0, if ti > t�:
(45)

which is the optimal �Vi(ti) of Lemma 6. Note that V �i (ti) is discontinuous at ti = t
�.

As we noted earlier, the supporting e¤ort functions fe�i (t); i = 1; 2; :::; Ng can be constructed
using (9) with ui(a; a) = 0. We thus have

e�i (t) =

(
0; if ti � t�;

tiV
�
i (ti)�

R ti
t� V

�
i (s)ds; if ti > t

�.

Note that e�i (t), the e¤ort contestant i exerts, is independent of the types of other contestants.

We can therefore denote it as e�(ti) as the e¤ort function is also independent of contestants�iden-

tities. One can further verify that e�(ti) is strictly positive and increases with ti for ti > t�. Note
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also that because V �i (ti) is discontinuous at ti = t
�, e�(ti) is also discontinuous at ti = t�.

We can easily verify that all constraints in problem (P-K) are satis�ed in mechanism (v�(�); e�(�)).
We thus have established that (v�(�); e�(�)) is indeed an optimal solution for problem (P-K). �

The following corollary provides a condition for the prize budget V to be spent completely in

the optimal mechanism.

Corollary 1 The prize budget of the contest designer is always completely spent for every t when
and only when K > 0 and t� = t̂.

When K = 0; or K > 0 but t� > t̂, the budget constraint is not binding when every ti is lower

than t�. Note that this result holds even when the contest designer does not derive any bene�t

from any unspent prize budget, i.e. when t0 = 0.

The optimal mechanism we characterized in the above proposition can be implemented by a

simple all-pay auction with entry fees and minimum bids. De�ne e�(t�+) = limti!t�+ e
�(ti).

Proposition 3 The optimal mechanism (v�(�); e�(�)) can be implemented by a modi�ed all-pay
auction with entry fee K and minimum bid e�(t�+). The highest bidder wins V plus all entry

fees collected from all of the participants. When no one bids, all participants equally share prize

N�(K) � V ; all entry fees are still collected. All non-participants get zero prize.

Proof: It is straight-forward to verify that it is optimal for all types of contestants to pay K and

participate. For abilities above t�; the optimal bid (in terms of e¤ort) is given by e�i (t) that is

de�ned by (44). Contestants with abilities below t� participate but do not bid. Note that e�i (t)

depends only on ti and strictly increases with ti(> t�). �
Obviously, an optimal mechanism for a smaller K is also feasible when K becomes larger. We

thus can conclude that the expected total e¤orts elicited from problem (P-K) must be increasing

in K. When K = 0, negative prize is not allowed in the contest. In this case, the constraints in

the contest design problem (P-K) are more restrictive than those in the optimal auction design,

as negative e¤orts are not allowed in contests but negative payments are allowed in auctions.

However, the contest designer can do equally well in this case simply because the Myerson optimal

auctions need not involve negative monetary payments. These results are formalized in the following

corollary.

Corollary 2 (i) The expected total e¤orts elicited in the optimal contest mechanism of problem

(P-K) increase in K, the bound on punishments.

(ii) When K = 0 (i.e., when no punishment is allowed), the optimal contest mechanism resem-

bles the Myerson optimal auction. In particular, when J(a) � t0, the optimal contest mechanism
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can be implemented by a standard all-pay auction with a single prize V for the winner. (This is the

optimal mechanism in Moldovanu and Sela [21].)

4 Concluding remarks

In this paper, we examine the issue of optimal contest design with private information and com-

pletely characterize the optimal or almost optimal contests in various situations. In the model,

contestants di¤er in their abilities, which are their own private information. We adopt a mecha-

nism design approach to accommodate all possible prize allocation rules. We focus on the e¤ect

of negative prizes (punishments): our analysis allows for both positive and negative prizes given

a �xed prize budget. We �nd that the utmost total e¤orts can be achieved in the limit when the

size of punishments becomes larger and larger. In the limit, all surpluses from the contestants are

extracted. In addition, we fully characterize the optimal contest when there is a bound on the pun-

ishments. It is noteworthy that the (almost) full extraction result is obtained in an environment of

independent private information, in contrast to similar results in the auction literature that require

interdependent private information.

Compared to an optimal auction mechanism, one distinct feature of the optimal contest mech-

anism is worth highlighting. The prizes assigned to the contestants�di¤erent virtual valuations

are being leveraged in the optimal contest mechanism to achieve the e¢ ciency of the contest. The

adoption of negative prizes allows the contest designer to expand the original prize budget for the

more able contestants. The participation constraint for each type of contestants can be accom-

modated by using appropriately designed cross-type transfers. The incentives for the more able

contestants to exert e¤ort are enhanced by the cross-type transfers through positive and negative

prizes. Such transfers may dampen the incentive for the less able contestants to exert e¤ort. But

since it is more e¢ cient for the more able contestants to exert e¤ort, the overall e¤ects of cross-type

transfers unambiguously increase the expected total e¤orts in the mechanism.

Our current study provides a few possibilities for future research. First, in the analysis, we

consider symmetric contestants only. It is not trivial to generalize the analysis to accommodate

asymmetric contestants. Second, in the optimal contest with bounded punishments, we assume a

common and �xed bound for the negative prizes. In many situations, this bound is heterogenous

among the contestants. The bound can even be the private information of the contestants. Future

analysis might provide new insights on how optimal leveraging on di¤erent virtual valuations should

be applied according to these heterogeneities and private information. Third, similar to the optimal

auctions with risk averse players (c.f. Maskin and Reily [17]), one can investigate the optimal contest

design problem with risk averse contestants (or equivalently, with convex e¤ort cost functions).

Fourth, our analysis currently focuses on an environment with pure adverse selection. Extending
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the analysis to a setting of mixed adverse selection and moral hazard problem would be a natural

direction. Finally, alternative objective functions for the contest designer can be examined. For

example, the contest designer may value only the highest e¤ort among the contestants. All these

are interesting topics for future studies.
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5 Appendix

Proof of Lemma 3: We will establish that bV is an upper bound of the expected total e¤orts in

problem (P-Relax). First note thatZ
t

X
i

[J(ti)� t0] vi(t)f(t)dt =
X
i

Z
ti

[J(ti)� t0]Vi(ti)f(ti)dti:

Since Vi(ti) � 0, J(�) is increasing and t0 < b = J(b), we haveX
i

Z
ti

[J(ti)� t0]Vi(ti)f(ti)dti + t0V

� [J(b)� t0]
X
i

Z
ti

Vi(ti)f(ti)dti + t0V

= (b� t0)
Z
t
[
X
i

vi(t)]f(t)dt+ t0V

� (b� t0)
Z
t
V f(t)dt+ t0V

= bV:

This upper bound bV cannot be reached by any mechanism as Lemma 2 showed that an optimal

solution does not exist for problem (P-Relax). �
Proof of Lemma 4: The expected total e¤orts induced by mechanism (v(�;K); e(�;K)) are given
by

R = N

Z b

t̂(K)
[J(ti)� t0]Vi(ti;K)dF (ti) + t0V

= N

Z b

t̂(K)
[J(ti)� t0] [(V +NK)FN�1(ti)�K]dF (ti) + t0V

= N

Z b

t̂(K)
[J(ti)� t0]V FN�1(ti)dF (ti) +NK

Z b

t̂
[J(ti)� t0] [NFN�1(ti)� 1]dF (ti) + t0V:

When K ! +1, t̂(K) goes to b. Therefore, the �rst part in the last expression goes to zero. The
third part is a constant. To show that the expected total e¤orts converge to bV when K ! +1, it
su¢ ces to show that the second part converges to (b� t0)V when K ! +1. For the second part,
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note that FN�1(t̂(K)) = NK
V+NK . That leads to

dt̂(K)

dK
=

NV

(V +NK)2(N � 1)FN�2(t̂(K))f(t̂(K))
:

Therefore,

lim
K!+1

NK

Z b

t̂(K)
[J(ti)� t0] [NFN�1(ti)� 1]dF (ti)

= lim
K!+1

N

R b
t̂(K) [J(ti)� t0] [NF

N�1(ti)� 1]dF (ti)
1
K

= lim
K!+1

N
�[J(t̂(K))� t0][NFN�1(t̂(K))� 1]f(t̂(K)) dt̂dK

� 1
K2

(by L�Hospital�s rule)

= lim
K!+1

N
[J(t̂(K))� t0][NFN�1(t̂(K))� 1] NV

(V+NK)2(N�1)FN�2(t̂(K))
1
K2

= lim
K!+1

N
[J(b)� t0][NFN�1(b)� 1] NV

(V+NK)2(N�1)FN�2(b)
1
K2

= lim
K!+1

N(b� t0)(N � 1) NVK2

(V +NK)2(N � 1)

= (b� t0)V:

Hence, the expected total e¤orts R converge to bV .

We now turn to the contestants�expected payo¤s. Recall that the contestants�expected total

payo¤s are at most the di¤erence between V and the expected total e¤ort costs.7 Since expected

total e¤orts converge to bV , we must have the total e¤ort costs converge to bV=b = V since only

those types within a small neighborhood of b would exert positive e¤ort. It follows that the con-

testants�expected total payo¤s must converge to zero. �

Proof of Lemma 6: It is straight-forward to verify that �Vi(ti) satis�es all the conditions in the
maximization problem (P-K-Relax-Equivalent-Relax). We next consider two cases to show the

optimality of �Vi(ti). Case 1: t� = t̂, i.e., J(t̂) � t0. Case 2: t� = tM , i.e., J(t̂) � t0.

First, we consider Case 1 where J(t̂) � t0, i.e. t� = t̂ � tM . We shall show that for any

7When the budget constraint is binding, the contestants�expected total payo¤s are equal to the di¤erence between
V and the expected total e¤ort costs.
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functions Vi(ti) satisfying (39) to (42), we have

NX
i=1

Z b

a
[J(ti)� t0]Vi(ti)f(ti)dti �

NX
i=1

Z b

a
[J(ti)� t0] �Vi(ti)f(ti)dti =

NX
i=1

Z b

t�
[J(ti)� t0] �Vi(ti)f(ti)dti.

(46)

This is equivalent to

NX
i=1

Z t�

a
[J(ti)� t0]Vi(ti)f(ti)dti �

NX
i=1

Z b

t�
[J(ti)� t0] ( �Vi(ti)� Vi(ti))f(ti)dti: (47)

Note that Vi(ti) � 0. In addition, when ti > t� = t̂, �Vi(ti) = (V + NK)FN�1(ti) � K. So
�Vi(ti)� Vi(ti) � 0 for ti > t� = t̂.

Since J(�) is strictly increasing and J(t�) � t0; we have

NX
i=1

Z t�

a
[J(ti)� t0]Vi(ti)f(ti)dti � [J(t�)� t0]

NX
i=1

Z t�

a
Vi(ti)f(ti)dti;

and

[J(t�)� t0]
NX
i=1

Z b

t�
( �Vi(ti)� Vi(ti))f(ti)dti �

NX
i=1

Z b

t�
[J(ti)� t0] ( �Vi(ti)� Vi(ti))f(ti)dti:

Thus, in order for (47) to hold, we only need to show that

NX
i=1

Z t�

a
Vi(ti)f(ti)dti �

NX
i=1

Z b

t�
( �Vi(ti)� Vi(ti))f(ti)dti;

which is equivalent to
NX
i=1

Z b

a
Vi(ti)f(ti)dti �

NX
i=1

Z b

t�
�Vi(ti)f(ti)dti: (48)

According to constraint (39), the LHS of (48) must be bounded by V . For the RHS of (48), we
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have

NX
i=1

Z b

t�
�Vi(ti)f(ti)dti

= N

Z b

t�
[(V +NK)FN�1(ti)�K]f(ti)dti

= (V +NK)FN (ti)jbti=t� �NK(1� F (t
�))

= (V +NK)(1� FN (t�))�NK +NKF (t�)

= V � (V +NK)FN�1(t�)F (t�) +NKF (t�)

= V � (V +NK) � NK

V +NK
� F (t�) +NKF (t�)

= V:

Hence (48) holds.

Second, we consider Case 2: J(t̂) � t0, i.e. t̂ � t� = tM . We shall show that for any Vi(ti)

that satis�es (39) to (42), we have

NX
i=1

Z b

a
[J(ti)� t0]Vi(ti)f(ti)dti �

NX
i=1

Z b

a
[J(ti)� t0] �Vi(ti)f(ti)dti,

which is equivalent to

NX
i=1

Z b

t̂i

[J(ti)� t0]Vi(ti)f(ti)dti �
NX
i=1

Z b

tM
[J(ti)� t0] �Vi(ti)f(ti)dti:

Consider contestant i. Suppose that t̂i � tM . Note that when ti > tM , we have Vi(ti) �
(V +NK)FN�1(ti)�K = �Vi(ti) and [J(ti)� t0] > 0. Therefore,Z b

t̂i

[J(ti)� t0]Vi(ti)f(ti)dti =
Z b

tM
[J(ti)� t0]Vi(ti)f(ti)dti �

Z b

tM
[J(ti)� t0] �Vi(ti)f(ti)dti:

Now suppose that t̂i < tM . Note that [J(ti)� t0] < 0 when ti < tM . We have
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Z b

t̂i

[J(ti)� t0]Vi(ti)f(ti)dti

=

Z tM

t̂i

[J(ti)� t0]Vi(ti)f(ti)dti +
Z b

tM
[J(ti)� t0]Vi(ti)f(ti)dti

�
Z b

tM
[J(ti)� t0]Vi(ti)f(ti)dti

�
Z b

tM
[J(ti)� t0] �Vi(ti)f(ti)dti:

The last inequality holds because when ti > tM , Vi(ti) � (V + NK)FN�1(ti) � K = �Vi(ti) and

[J(ti)� t0] > 0.

To conclude, either when t̂i � tM or when t̂i < tM , we always haveZ b

t̂i

[J(ti)� t0]Vi(ti)f(ti)dti �
Z b

tM
[J(ti)� t0] �Vi(ti)f(ti)dti:

Thus,
NX
i=1

Z b

a
[J(ti)� t0]Vi(ti)f(ti)dti �

NX
i=1

Z b

a
[J(ti)� t0] �Vi(ti)f(ti)dti.

This completes the proof. �
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