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Abstract

I suggest a unifying new approach to moral hazard. Once local incentive
compatibility (L-IC) is satis�ed, the problem of verifying global incentive com-
patibility (G-IC) is shown to be isomorphic to the well-understood problem of
comparing two classes of distribution functions. The su¢ cient conditions for
the validity of the �rst-order approach (FOA) provided by Rogerson and Jewitt
are related to �rst and second order stochastic dominance, respectively. New
conditions, among them one in the spirit of third order stochastic dominance,
are presented. Conlon�s multi-signal justi�cations can also be understood with
this approach. New multi-signal conditions that rely on the more tractable or-
thant orders are provided. Even when the standard FOA is invalid, a modi�ed
FOA may be valid on the set of implementable actions. This resolves Mirrlees�
famous �counterexample�.
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1 Introduction

The principal-agent model of moral hazard is among the core models of microeco-
nomic theory and central to the economics of information. The problem is conceptu-
ally simple; a principal must design a contract to induce the agent to take the desired
action. From the agent�s point of view the intended action must be made preferable
to all other actions. Thus, a multitude of incentive compatibility constraints must
be satis�ed. Unfortunately, it is generally di¢ cult to determine which constraints
bind and to make robust predictions about the structure of optimal contracts.
In response, much of the literature has focused on environments where the only

binding constraint is the �local� incentive compatibility constraint (L-IC). In such
cases, ensuring the agent has no incentive to deviate marginally from the intended
action guarantees global incentive compatibility (G-IC), i.e. larger deviations can be
ruled out too. Indeed, the classic �rst-order approach (FOA) simply uses the agent�s
�rst-order condition to summarize G-IC. The optimal contract is then easily derived.
The FOA has a long history, dating back to Holmström (1979) and Mirrlees (1976,
1999). Rogerson (1985) and Jewitt (1988) have provided su¢ cient conditions under
which the FOA is valid. However, although there are similarities in the structure of
their proofs, the techniques they use are quite di¤erent. Moreover, despite criticizing
the stringency of his assumptions, most textbooks on the topic prove Rogerson�s
result, but, as Conlon (2009a) observes, none even state Jewitt�s. In short, Jewitt�s
result may be underappreciated and there is little in the current literature to unify
the two results. Similarly, Conlon (2009a) uses two di¤erent approaches to obtain his
generalizations of Rogerson�s and Jewitt�s conditions to multi-signal environments.1,2

With these observations in mind, the objective of this paper is to propose an
accessible and unifying approach to the moral hazard problem. From this method-
ological contribution �ows two distinct sets of insights that enable previous results to
be extended in several di¤erent directions. First, it provides a uni�ed methodology
to understand Rogerson�s, Jewitt�s, and Conlon�s classic results on the validity of
the FOA.3 Indeed, several new justi�cations of the FOA are provided, for both the

1An earlier paper by Sinclair-Desgagné (1994) also extended Rogerson�s conditions to the multi-
signal model. However, Conlon (2009a) relaxes Sinclair-Desgagné�s assumptions. Jewitt (1988) also
o¤ered two di¤erent multi-signal justi�cations of the FOA. Conlon further generalized one of these.

2Ke (2011a) proposes a �xed-point method for justifying the FOA. Araujo and Moreira (2001)
propose a general Lagrangian approach to solve moral hazard problems when the FOA is not valid.
See also Ke (2011b).

3Jewitt�s (1988) original proof is made complicated by the fact that it relies on results in an un-
published working paper. The full proof is published in Conlon (2009b). In the existing literature,
Conlon (2009a) comes closest to methodologically unifying Rogerson�s and Jewitt�s results. Specif-
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one-signal and multi-signal models. Secondly, it is also possible to obtain insights
into environments where the FOA is not valid and to establish a modi�ed FOA that
is valid in some cases.
The approach relies on �translating� the problem of verifying global incentive

compatibility into a problem that is familiar to, and well-understood by, any econo-
mist. In particular, I will show that checking G-IC (once L-IC is satis�ed) is iso-
morphic to the problem of comparing two classes of risky prospects, or two classes
of distribution functions. Once this equivalence has been established, many of the
results follow by simply calling upon well-known results from the literature on sto-
chastic dominance. The remainder of this introduction outlines the main results.
Any contract translates into a distribution of wages (where the distribution is

determined in part by the agent�s action). For brevity, I will refer to a contract as
nondecreasing or monotonic if the agent�s utility is nondecreasing in the outcome
or state. A contract is concave if the agent�s utility is concave in the state. With
this terminology, Rogerson�s (1985) and Jewitt�s (1988) proofs can be decomposed
into two concise parts. In Rogerson�s case, the �rst part is to identify conditions
under which any monotonic and L-IC contract is also G-IC. The second part is
then to identify additional conditions under which the candidate contract is in fact
monotonic. In Jewitt�s case, contracts are both monotonic and concave.
The two �rst columns in the top row of Table 1 summarize the conclusions in

step 1 of Rogerson and Jewitt, respectively. For future reference, the third column
identi�es a natural extension. In comparison, the second row summarizes the notions
of �rst, second, and third order stochastic dominance (FOSD, SOSD, and TOSD,
respectively) between two lotteries, G and H.4 Note that Jewitt weakens Rogerson�s
assumption on the distribution function, but in exchange has to strengthen the as-
sumptions imposed on the shape of the contract. This trade-o¤ is remarkably similar
to the one encountered when FOSD and SOSD are compared. This is of course no
coincide, and much can be gained from exploring the relationship between the two
rows in Table 1. As the third column in Table 1 reveals, once the pattern is identi�ed
it becomes easy to develop a third set of conditions to validate the FOA.5 Obviously,

ically, Conlon (2009a, footnote 7) observes that Rogerson�s proof relies on integration by parts,
and that a second round of integration by part can be used to prove Jewitt�s result. He does not
ask, for instance, what can be obtained from further rounds of integration by parts. As mentioned,
Conlon�s (2009a) multi-signal results rely on two di¤erent approaches.

4See Hadar and Russell (1969), Rothschild and Stiglitz (1970), Whitmore (1970), and Menezes
et al (1980). For textbooks on stochastic orders, see Müller and Stoyan (2002) and Shaked and
Shantikumar (2007).

5To make the second step in the proof work, assumptions on the agent�s utility function and on
the likelihood ratio are also needed. There is an appealing pattern in those assumptions as well.
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in�nitely many extensions to higher order stochastic dominance are possible. More-
over, by appealing to related stochastic orders (the increasing convex orders), it is
possible to obtain another in�nite sequence of justi�cations of the FOA in models
where contracts are convex.

[TABLE 1 ABOUT HERE (SEE THE LAST PAGE)]

Conlon (2009a) generalizes Rogerson�s and Jewitt�s conditions to the multi-signal
model. Both Jewitt and Conlon encounter obstacles in the multi-signal model, and
they are unable to present succinct conditions in the standard Mirrlees formulation
of the model. These di¢ culties can be explained by the direction in which they
seek to extend the results into higher dimensions. Indeed, there are several ways in
which FOSD and SOSD can be extended from one dimension to many dimensions.
Some are more tractable than others. This simple insight allows a number of new
multivariate justi�cations of the FOA to be derived. These are based on the so-
called orthant orders.6 Unlike Conlon�s conditions, the new justi�cations presented
here have the compelling property that the FOA remains valid as more and more
independent signals are added, provided each signal satis�es Rogerson�s or Jewitt�s
one-signal conditions.
It is well-known that the FOA is not always valid. The second contribution of the

paper is to examine such environments. It is straightforward to characterize a subset
of actions for which L-IC is guaranteed to be su¢ cient for G-IC among di¤erent
subsets of contracts. In general, however, the set of actions for which L-IC implies
G-IC is a subset of the set of implementable actions. However, I identify a model
where the two sets coincide. Here, it is valid to apply the FOA on the �feasible
set�of implementable actions. Speci�cally, this method of analysis is valid whenever
Grossman and Hart�s (1983) spanning condition is satis�ed. Though this simple
model was proposed three decades ago, no complete analysis has been o¤ered until
now. Again, the crucial step is an examination of the link between L-IC and G-IC.
As a special case, the modi�ed FOA is valid in textbook settings with two states
(but a continuum of actions). The method also resolves Mirrlees� (1999) original
�counterexample�, the purpose of which was to demonstrate that the standard FOA
may fail. Indeed, a conceptually much simpler �counterexample�can be constructed
using the insights of this part of the paper. Finally, the leading example in Araujo
and Moreira (2001) also succumbs to the modi�ed FOA.

6Jewitt presents a second multi-signal justi�cation for settings with two independent signals.
This justi�cation is in fact based on the lower orthant order, and is thus further generalized here.
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2 Model and preliminaries

A risk averse agent takes a costly action that is not veri�able to others. The set
of possible actions is some closed and bounded interval, [a; a]. The agent�s action
determines the joint distribution of n � 1 veri�able signals, denoted x = (x1; :::; xn).
If the action is a, the cumulative distribution function is F (xja), where it is assumed
that the domain, X = �ni=1 [xi; xi], is convex, compact and independent of a. De�ne
x = (x1; :::; xn) and x = (x1; :::; xn).

7 It is assumed that F (xja) has no mass points
and is continuously di¤erentiable in x and a to the requisite degree, with f(xja)
denoting the density for �xed a. Assume that f(xja) is strictly positive. Let F (xja)
denote the survival function, i.e. the probability that the vector of signals is greater
than x. Generally, F (xja) 6= 1� F (xja) when there are two or more signals.
The agent faces a contract that, to him, is �xed. He receives wage w(x) if the

outcome is x, in which case utility is v(w(x)) � a.8 The agent�s expected utility
(assuming it exists) given action a is then

EU(a) =

Z
v(w(x))f(xja)dx� a: (1)

Evidently, costs are assumed to be linear in the action. For instance, think of the
agent�s action, a, as being his choice of what cost of e¤ort to incur. The linearity is
convenient since it implies that only the �rst term in (1) has curvature, which simpli-
�es the search for necessary and su¢ cient conditions (which is pursued in Section 6).
Incidentally, Rogerson (1985) chose this parameterization too, although he only pur-
sued su¢ cient conditions. Conlon (2009a, footnote 3) also observes that curvature
in the cost function can be important, and thus chooses the same parameterization.
The agent�s utility function v(w) is strictly increasing and di¤erentiable to the

requisite degree. Moreover, the agent is strictly risk averse, or v00(�) < 0. The domain
of the utility function is some interval which may or may not be the entire real line.
Finally, utility is unbounded below and/or above. The latter assumption is invoked
only in Section 6.

7The assumption that X is a hyperrectangle is for simplicity. If it is not a hyperrectangle, then
let �ni=1 [xi; xi] be the smallest hyperrectangle for which X 2 �ni=1 [xi; xi]. In the one-signal case,
the support is simply denoted [x; x].

8Additive separability is important. While it is a standard assumption in the literature, there
are exceptions. Alvi (1997) and Fagart and Fluet (2012) provide conditions that justify the FOA
without additive separability.

4



2.1 Incentive compatibility

If the principal wishes to induce action a� 2 [a; a], this action must provide the agent
with higher expected utility than any other action, or

EU(a�) � EU(a) for all a 2 [a; a] ; (G-ICa�)

in which case the contract w(x) is said to be globally incentive compatible. If a� 2
(a; a), a minimum requirement is that EU(a) attains a stationary point at a�, orZ

v(w(x))fa(xja)dx� 1 = 0: (L-ICa�)

Of course, the stationary point may in principle be a local minimum or a saddle-
point. Nevertheless, I will refer to the condition EU 0(a�) = 0 as the local incentive
compatibility condition.9 Thus, any contract that satis�es EU 0(a�) = 0 will be
termed L-ICa� and any contract that satis�es EU(a�) � EU(a) for all a 2 [a; a] is
G-ICa�. The implementation of a and a is discussed in Section 4.
In practice, a contract may need to satisfy a number of other constraints as well.

Examples includes participation constraints, monotonicity of the principal�s rewards,
minimum wages, and the like. In the next section, any such constraints are simply
ignored. The reason is that the question of when L-ICa� implies G-ICa� has little
to do with these other constraints. Note, in particular, that the next section is not
directly concerned with the design of optimal contracts. The participation constraint
is added in Section 4, when optimal contracts and the FOA is analyzed.

3 From local to global incentive compatibility

This section focuses on the implications of local incentive compatibility. In particular,
it will be argued that some valuable inferences can be drawn from the restrictions
that L-IC on its own place on the contract.
The �rst step is to develop an alternative approach to the moral hazard problem.

This device is useful because it provides a framework that not only conceptually
uni�es most results in the literature but which can also be used to guide the search
for further generalizations.

9Note that I restrict attention to contracts that give the agent bounded utility. In principle,
if v is unbounded above, any action could be implemented by specifying a contract that provides
unbounded utility to the agent. Hence, contracts are assumed to yield bounded utility and to be
integrable. Note that any monotonic contract must be bounded since X is compact,
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3.1 An auxiliary problem

To develop the new approach, an auxiliary problem is introduced. Consider a� 2
(a; a) �xed. Think of this as the action the principal seeks to implement.
Next, �x x and think of a as a variable. Let

fL(xja; a�) = f(xja�) + (a� a�)fa(xja�) (2)

and
FL(xja; a�) = F (xja�) + (a� a�)Fa(xja�) (3)

be the tangent lines to f(xja) and F (xja), respectively, at a = a�.
Now switch the roles of x and a. Holding a (and a�) �xed, consider the function

FL(xja; a�). Note that FL(xja; a�) is not necessarily monotonic in x, nor is it nec-
essarily bounded between 0 and 1. Nevertheless, the following though experiment
is proposed. Think of fL(xja; a�) and FL(xja; a�) as (admittedly odd) density and
distribution functions, respectively. It is easy to see that FL can be obtained by
integrating fL over x. Now consider an arti�cial problem where the agent faces
distribution function FL(xja; a�) rather than F (xja).
In defence of these unusual �distributions�, note, for now, that FL does in fact

have the key properties that FL(xja; a�) = 0 and FL(xja; a�) = 1.10 Recall, for
instance, that the standard proof of the equivalence between the two de�nitions of
univariate FOSD in Table 1 relies only on G(x) = H(x) = 0, G(x) = H(x) = 1, and
the relative magnitudes of G and H, but not on monotonicity nor on the fact that
proper distribution functions are bounded between 0 and 1. See also the discussion
following Proposition 1, below.
�Expected utility�in the auxiliary problem is simply

EUL(aja�) =
Z
v(w(x))fL(xja; a�)dx� a; (4)

or

EUL(aja�) = EU(a�) + (a� a�)
�Z

v(w(x))fa(xja�)dx� 1
�
: (5)

Evidently, the last term disappears if L-ICa� is satis�ed, in which case EUL(aja�) =
EU(a�) for all a. It now follows that G-ICa� can equivalently be expressed as the
requirement that

EUL(aja�) � EU(a) for all a 2 [a; a]
10The claim follows from Fa(xja) = Fa(xja) = 0. Note also that

R
fa(xja)dx = 0 becauseR

f(xja)dx = 1 for all a.
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or Z
v(w(x))fL(xja; a�)dx �

Z
v(w(x))f(xja)dx for all a 2 [a; a] . (6)

In essence, the continuum of incentive compatibility constraints in the original prob-
lem has been replaced with a continuum of comparisons of risky prospects. For
instance, if v(w(x)) is monotonic, it is fruitful to ask whether FL �rst order sto-
chastically dominates F . The point is that such comparisons are commonplace in
economics, and that a large literature may now be accessed to inform the analysis.
Proposition 1 records this conclusion.

Proposition 1 Fix a� 2 (a; a). Any L-ICa� contract is G-ICa� if and only if (6)
holds.

Note that (6) is satis�ed if and only ifZ
v(w(x))

�
�+ "fL(xja; a�)

�
dx �

Z
v(w(x)) [�+ "f(xja)] dx for all a 2 [a; a] (7)

and all " > 0 and all �. It is trivial to select � and " > 0 in such a manner that both
bracketed terms are proper densities, i.e. they are strictly positive and integrate
to one. Now, all the stochastic orders invoked in this paper are integral stochastic
orders, meaning that they can be expressed as follows: G dominates H if G is
preferred toH for all utility functions in some class U . For an introduction to integral
stochastic orders, see Müller and Stoyan (2002). For these orders, positive a¢ ne
transformations of the densities are obviously innocent; (6) and (7) are equivalent.
The important implication is that even though fL is not a proper density, stochastic
dominance results can still be invoked. Thus, I will frequently abuse terminology
and say that fL dominates f in some (integral) stochastic order.

3.2 An illustration

To illustrate the approach, consider the one-signal case. Note that if F (xja) is
convex in a, then its tangent line, FL(xja; a�), lies everywhere below the function
itself. Thus, FL(�ja; a�) �rst order stochastically dominates F (�ja) for all a. It follows
that any monotonic and L-ICa� contract must be G-ICa�. Moreover, the argument
holds regardless of a�. If it can be established that the FOA candidate contract is
in fact monotonic then the FOA is itself valid. Figure 1 exempli�es the auxiliary
problem and the approach suggested here.

7



F(x|a)

a*

F(x'|a)

aa'

Figure 1: A new approach to moral hazard.

Note: Step 1: Fix a�. For each x, construct the tangent line to F (xja) at a� (moving
horizontally). Step 2: For each a 6= a�, like a0, move vertically to trace out the cdf in
the auxiliary and real problems. Here, FL FOSD F (FL lies always below F ). Thus,
any monotonic and L-ICa� contract yields EU(a�) = EUL(a�) = EUL(a0) � EU(a0).
Step 3: To validate the FOA, the conclusion in step 2 must hold regardless of a�.

For convenience, the following easy lemma notes necessary and su¢ cient condi-
tions for FL to ith order stochastically dominate F , i = 1; 2; 3; regardless of (a; a�).
Obviously, the characterization can be extended to higher stochastic orders.

Lemma 1 Assume there is a single signal. FL(�ja; a�) ith order stochastically domi-
nates F (�ja) for all a 2 [a; a] and all a� 2 [a; a] if and only if the following conditions
are satis�ed for i = 1; 2; 3, respectively:

1. Faa(xja) � 0 for all x 2 [x; x] and all a 2 [a; a].

2.
R x
x
Faa(yja)dy � 0 for all x 2 [x; x] and all a 2 [a; a].

3.
R x
x

R z
x
F (yja)dydz � 0 for all x 2 [x; x] and all a 2 [a; a] and

R x
x
Faa(yja)dy � 0

for all a 2 [a; a].
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Proof. The �rst part follows from the fact that a function is convex if and only
if it lies everywhere above its tangent line. For the second part, note �rst that the
tangent line to

R x
x
F (yja)dy at a = a� isZ x

x

F (yja�)dy + (a� a�)
Z x

x

Fa(yja�)dy =
Z x

x

FL(yja; a�)dy:

The proof then concludes as in the �rst part. The proof for i = 3 is analogous.
Many results of the type presented in Lemma 1 are utilized in the analysis. Since

the proofs are trivial and in any event analogous to the proof of Lemma 1, I will for
the most part omit the formal proofs.
Of course, Rogerson�s (1985) assumption is exactly that Faa(xja) � 0. His proof

of the validity of the FOA is based on the observation that, in the one-signal case,
integration by parts yields

EU(a) = v(w(x))�
Z x

x

F (xja)dv(w(x))� a; (8)

and it follows that EU(a) is concave when the contract is monotonic (or dv � 0).
The condition

R x
x
Faa(yja)dy � 0 is Jewitt�s (1988) assumption (2.10a).11 Conlon

(2009a) points out that a second round of integration by parts can be used to prove
concavity in Jewitt�s model.
In fact, all the new justi�cations of the FOA that will be presented in Sections

4 and 5 can be shown to imply concavity. However, proving concavity in some
cases requires repeated (and remarkably tedious) application of integration by parts.
The method of proof I pursue is di¤erent and substantially less labor-intensive; the
strategy is simply to invoke various stochastic orders. Indeed, the new results were
discovered precisely by searching for usable stochastic orders, but it would be possible
to rewrite the proofs in a more conventional manner by proving concavity directly.
Incidentally, note that Lemma 1 signi�es that not only are Rogerson�s and Jewitt�s

conditions su¢ cient, they are in fact the weakest conditions that can be imposed to
ensure that L-IC implies G-IC for all a when the only characteristics of the contracts
that are exploited are monotonicity or monotonicity and concavity. Thus, their
results cannot be strengthened without imposing more structure on the contract
(Section 6 contains a formal proof). In other words, the one-way implications (+)
in the �rst row of Table 1 can be converted into two-way implications (m), thereby

11Jewitt also imposes another assumption, (2.10b), but this assumption is redundant; see Conlon
(2009a, 2009b). Assumptions (2.11) and (2.12) are used in the other step of his proof (see below).
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cementing the analogy between the two rows.
Section 6 examine environments where L-ICa� does not imply G-ICa� for all a�,

or where the agent�s expected utility is not necessarily concave in a. In such cases,
the FOA may be invalid.

4 Justifying the �rst-order approach: One signal

Thus far, focus has been on interior a�, where L-IC is necessary for utility maximiza-
tion. However, boundary actions must be considered too, and so this section starts
by clearing that technicality.
Thus, consider the corners, a and a. With Rogerson�s assumption, EU 0(a) = 0

(or L-ICa) is su¢ cient for G-ICa among monotonic contracts. Indeed, if EU 0(a) � 0,
it follows from (5) that EUL(aja) = EU(a) � EUL(aja) for all a 2 [a; a]. Then,
G-ICa follows if EUL(aja) � EU(a). However, as long as the FOA contract is
monotonic, (6) proves this is the case. Hence, at a, any monotonic contract that satis-
�es EU 0(a) � 0 is G-ICa. Similarly, any monotonic contract that satis�es EU 0(a) � 0
is G-ICa (a constant-wage contract is a special case).
Hence, given Rogerson�s assumption, it is meaningful to replace the global incen-

tive compatibility constraint in the principal�s maximization problem with the more
concise condition that

EU 0(a�)

8<:
� 0 if a� = a

= 0 if a� 2 (a; a)
� 0 if a� = a

: (9)

A more general conclusion can be obtained. Speci�cally, if enough structure is im-
posed on F to ensure that L-ICa� implies G-ICa� for any interior a� �among whatever
subset of contracts is being considered �then that structure also implies that actions
at the corners are easily handled too. One version of the FOA is then to replace G-
ICa� with L-ICa�, solve the principal�s problem, and then compare the solution to the
optimal implementation of a and a using EU 0(a) � 0 and EU 0(a) � 0, respectively.
For expositional simplicity, I will assume the second best action is in the interior, but
this assumption is evidently innocent and easily checked. Rogerson (1985) makes a
similar assumption (see his Assumption A.10).
Returning to the main task at hand, justifying the FOA, recall the proof strategy.

In the �rst step, su¢ cient conditions are given for L-ICa to imply G-ICa among a
subset of contracts, for any a. In the second step, su¢ cient conditions are derived
to ensure the FOA solution belongs to the relevant subset of contracts. Lemma 1
reveals the conditions required to invoke FOSD, SOSD, and TOSD, respectively. It
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remains to match these conditions with another set of assumptions that guarantees
that the contract takes a form such that these stochastic orders are useful.
To this end, recall the equivalent de�nitions of these stochastic orders. Assuming

di¤erentiability, the distribution G is said to ith order stochastically dominate dis-
tribution H if the former is preferred to the latter for all utility functions u(x) with
the property that the �rst i derivatives of �u(�x) are positive. I will refer to such
functions as i-antitone. This terminology is inspired by a multivariate concept; see
Section 5. Note that the derivatives of u(x) alternates in sign, i.e. (�1)s�1u(s) � 0
for all s = 1; 2; :::; i, where u(s) denotes the sth derivative. Using di¤erence operators,
it is also possibly to extend the de�nition to utility functions that are not necessar-
ily di¤erentiable; see e.g. Müller and Stoyan (2002, Section 1.6). These stochastic
orders are sometimes referred to as the i-increasing concave (i-icv) orders. That is,
1-icv, 2-icv, and 3-icv are just di¤erent names for FOSD, SOSD, and TOSD, respec-
tively. For future reference, a related set of orders, the i-increasing convex orders
(i-icx), apply to situations in which the �rst i derivatives of u(x) are all positive.
Such functions will be said to be i-monotone. The next step is to make sure that the
endogenous function v(w(x)) falls within one of these classes of functions.
As in Jewitt (1988), assume the principal is risk neutral. Let B(a) denote the

expected gross bene�t to the principal if the agent chooses action a. In many ap-
plications of the one-signal model, B(a) is simply the expected value of x. Apart
from incentive compatibility, the only other constraint is a participation constraint.
Let u denote the agent�s reservation utility. It will be assumed the constraint-set
is non-empty, i.e. that there exists a contract that satis�es both the participation
constraint and L-IC for some a.
The FOA relies on L-IC being su¢ cient for G-IC. If this is the case, the principal�s

problem can be written as follows:

max
w;a

B(a)�
Z x

x

w(x)f(xja)dx

st:

Z x

x

v(w(x))f(xja)dx� a � uZ x

x

v(w(x))fa(xja)dx� 1 = 0:

Assume the likelihood-ratio

l(xja) = fa(xja)
f(xja)
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is bounded below. As in Rogerson and Jewitt, assume that the monotone likelihood
ratio property (MLRP) is satis�ed, or lx(xja) � 0. This assumption in fact implies
Fa(xja) � 0, i.e. higher actions make low signals less likely. Finally, assume, in
this section and the next, that it is optimal to o¤er a wage w(x) in state x that is
in the interior of the domain of v(�). For a �xed utility function, this assumption
is typically satis�ed if the agent�s reservation utility is high enough.12 In this case,
w(x) is characterized by a �rst order condition which can be written

1

v0(w(x))
= �+ �l(xja�); (10)

where � > 0 is the multiplier of the participation constraint and � � 0 the multiplier
of the local incentive compatibility constraint. If a� = a, a �at wage is optimal
(� = 0). However, if a� > a then � > 0 and so, by the MLRP, the wage schedule
is monotonic.13 These conclusions are due only to the assumptions that v0(�) is
decreasing in w and l(xja�) is increasing in x. Thus, the function v(w(x)) is both
1-isotone and 1-monotone. Hence, FOSD can be invoked.
Jewitt (1988) imposes more substantial joint conditions on the utility function

and likelihood ratio. To aid the analysis, Jewitt de�nes the function

!(z) = v(v0�1(1=z)); z > 0:14

Note that !0(z) > 0 if and only if v00(w) < 0, which has already been assumed. Jewitt
adds the assumption that !00(z) � 0 and lxx(xja) � 0. From (10),

v(w(x)) = ! (�+ �l(xja�)) :

Hence, Jewitt�s assumptions imply that any contract that v(w(x)) is increasing and
concave, or 2-isotone. SOSD can now be invoked. As the next lemma shows, it
turns out that the pattern can be continued. Conditions are imposed on the inner
function l(xja) and the outer function !(z) to guarantee that the composite function
v(w(x)) = ! (�+ �l(xja�)) has desirable properties

12See e.g. Jewitt et al (2008), and in particular Gutiérrez (2012) for a detailed discussion. As
can be seen from (10), below, this also explains why l(xja) must be bounded.

13One of the contributions in Rogerson (1985) and Jewitt (1988) is to establish that � > 0. In
fact, Jewitt�s (1988) paper appears to be cited more often for this result (and its very elegant proof)
than for his conditions justifying the FOA. As in Conlon (2009a), I omit the proof here. Rogerson
(1985) allows the principal to be risk averse. It is considerable harder to allow a risk averse principal
in Jewitt�s framework; see Conlon (2009a).

14To clarify, v0�1(�) refers to the inverse of v0(�).

12



Lemma 2 (i) ! (�+ �l(xja)) is i-monotone in x if ! is i-monotone and l(xja) is
i-monotone in x. (ii) ! (�+ �l(xja)) is i-isotone in x if ! is i-isotone and l(xja) is
i-isotone in x.

Proof. Repeated di¤erentiation yields the result.
Thus, if lxxx(xja) � 0 and !000(z) � 0, then v(w(x)) is 3-isotone and TOSD can

be invoked.
Table 2 summarizes the main conclusions thus far. The �rst row identi�es su¢ -

cient conditions for L-ICa (or rather (9)) to imply G-ICa among contracts that are
1-isotone, 2-isotone, and 3-isotone, respectively, for all a. The second row identi�es
su¢ cient conditions for the FOA candidate solution in (10) to be such a contract.
The validity of the FOA follows by imposing both sets of assumptions.

[TABLE 2 ABOUT HERE (SEE THE LAST PAGE)]

Proposition 2 Assume the second best action is in (a; a). Assume the joint condi-
tions in one of the columns of Table 2 are satis�ed. Then, the FOA is valid.

Obviously, Table 2 and Proposition 2 can be extended to stochastic dominance of
higher order (4-icv, 5-icv, etc.). In fact, there is a well-de�ned limit to the sequence
of higher order stochastic dominance, namely the Laplace transform order. See e.g.
Müller and Stoyan (2002).
Evidently, the assumptions in the �rst row of Table 2 become weaker as one

moves rightward from one column to the next. As for the second row, consider the
following possible utility functions:

v1(w) = lnw, v2(w) = 1� e��w, v3(w) = w�,

where �; � > 0. The domains of the functions are (0;1), (�1;1), and [0;1),
respectively (or convex subsets thereof). For these functions, !(z) can be shown to
be

!1(z) = ln z, !2(z) = 1�
1

�z
, and !3(z) = (�z)

�
1��

respectively. Thus, the �rst two functions are 3-isotone. The third function satis�es
!03(z) > 0, !003(z) � 0 if and only if � 2 (0; :5], i.e. if the agent is su¢ ciently
risk averse. However, for � in this range it is also the case that !0003 (z) � 0. In
fact, with this restriction, ! is i-isotone for any i � 1 in all three examples. Thus,
in these examples, the assumptions on !(z) in the third column of Table 1 are
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not any stronger than those in the second column. Hence, the main strengthening
from Jewitt�s conditions to the new conditions in the third column is in the added
requirement that lxxx(xja) � 0. Incidentally, all Jewitt�s (1988, page 1183) examples
have the feature that l(xja) is i-isotone for any i � 1.
However, extensions in other directions beckon. Except for Rogerson�s conditions,

the conditions mentioned above assume that the composite function ! (�+ �l(xja))
is increasing and concave. Now consider the possibility that it is convex. Note that
the outer function ! may be convex even if v is concave; indeed v must be concave
for ! to be increasing. The i-icx orders, de�ned above, are relevant for such cases.
Note that the utility function v3(w) mentioned above leads to an i-monotone !(z)
function if and only if � 2 [ i�1

i
; ).

For distribution functions G and H, an equivalent de�nition of 1-icx is that
G(x) � H(x) for all x 2 [x; x]. An equivalent de�nition for 2-icx is thatZ x

x

G(z)dz �
Z x

x

H(z)dz for all x 2 [x; x] ;

and so on for higher increasing-convex orders. The orders 1-icx, 2-icx, and 3-icx are
the counterparts to FOSD, SOSD, and TOSD, respectively, for utility loving agents.15

Note that 1-icx in fact coincides with FOSD (or 1-icv), meaning that Rogerson�s con-
ditions can also be seen as the starting point to the sequence of conditions developed
next. The following proposition, and its proof, is analogous to Proposition 2. It can
of course also be extended to higher icx orders.16

Proposition 3 Assume the second best action is in (a; a). Assume the joint condi-
tions in one of the columns of Table 3 are satis�ed. Then, the FOA is valid.

[TABLE 3 ABOUT HERE (SEE THE LAST PAGE)]

5 Multi-signal justi�cations of the FOA

Jewitt�s (1988) Theorem 2 and Theorem 3 were the �rst attempts at providing multi-
signal justi�cations for the FOA. These results assume there are exactly two signals,

15Note that the random variable X dominates the random variable Y in the s-icx order if and
only if �Y dominates �X in the s-icv order.

16Jewitt o¤ers a supremely convincing argument for his concavity assumption on
R x
x
F (zja)dz in

the special case where the signal x is production. Proposition 3 thus covers other cases.
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and that the signals are independent. Moreover, as in Jewitt�s one-signal model, ! is
assumed to be concave. Sinclair-Desgagné (1994) generalized Rogerson�s conditions
to the case where there are multiple (not necessarily independent) signals. Finally,
Conlon (2009a) further generalized Rogerson�s conditions and o¤ered an extension
to Jewitt�s Theorem 3, which he refers to as �Jewitt�s (1988) main set of multisignal
conditions�.17

Here, I will verify that Conlon�s results can be understood as appealing to multi-
signal versions of FOSD and SOSD, respectively. Indeed, once the isomorphism in
Section 3 has been established, it invites the search for other useful multi-variate
stochastic orders. Thus, Jewitt�s Theorem 2 can be resurrected and extended once
the proper stochastic order, which turns out to be the lower orthant order, has been
identi�ed. Another related order, the upper orthant order, leads to complementary
results. By appealing to higher orthant orders, it turns out to be possible to o¤er
generalizations that are close in spirit to Jewitt�s Theorem 3 as well.

5.1 Multivariate FOSD and related stochastic orders

Müller and Stoyan (2002) make the following very useful observation about extending
the common stochastic orders from a univariate setting to a multivariate environ-
ment. Speci�cally, comparing two distribution functions, G and H, there are three
equivalent de�nitions of FOSD in the univariate setting, namely: (i) G is preferred
to H for all non-decreasing utility function, (ii) G(x) � H(x) for all x, and (iii)
G(x) � H(x) for all x. The point is that none of these de�nitions are equivalent
when there are multiple signals. Consequently, there are three plausible ways of
extending FOSD, which leads to the following de�nitions:

1. G �rst order stochastically dominates H if G is preferred to H for all non-
decreasing utility functions.

2. G dominates H in the lower orthant order if G(x) � H(x) for all x.

3. G dominates H in the upper orthant order if G(x) � H(x) for all x.

Using Conlon�s (2009a) notation and terminology, let E be an increasing set.
A set is increasing if x 2 E and y � x implies y 2 E. It is well-known that an
equivalent de�nition of FOSD is that G has more probability mass in all increasing

17The results in Jewitt (1988), Sinclair-Desgagné (1994), and Conlon (2009) all rely on proving
that the agent�s expected payo¤ is concave in his action. Ke (2011a) takes an alternative approach
to justifying the FOA. See Section 6.
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sets than H does; see Müller and Stoyan (2002, Theorem 3.3.4). Thus, FOSD is
stronger than the orthant orders. However, all three orders can be used to derive
separate multi-signal justi�cations of the FOA.
Returning to the principal-agent model at hand, let

P (x 2 Eja) =
Z
x2E

f(yja)dy

denote the probability that the vector of signals is in the increasing set E, given
action a. Let PL(x 2 Eja; a�) = P (x 2 Eja�) + (a � a�)Pa(x 2 Eja�) denote
the counterpart in the auxiliary problem. Now, Conlon (2009a) proposes a concave
increasing-set probability (CISP) condition, speci�cally that Paa(x 2 Eja) � 0 for
all increasing sets and all a 2 [a; a]. Evidently, the CISP condition implies that
PL(x 2 Eja; a�) � P (x 2 Eja) for all all a 2 [a; a]. In other words, FL(xja; a�)
�rst order stochastically dominates F (xja). Hence, expected payo¤ in the auxiliary
problem is greater than in the original problem as long as the FOA contract is
monotonic, as continues to be the case as long as the (multivariate) MLRP holds.
This explains Conlon�s (2009a, Proposition 4) extension of Rogerson�s conditions.
Conlon (2009a) devotes considerable e¤ort to examining CISP and deriving su¢ -

cient conditions for its applicability. However, CISP can be weakened, even without
moving to conditions that can be used to invoke SOSD. In particular, recall that the
orthant orders are weaker than FOSD. They also have the desirable property that
their �maximal generators�can be identi�ed, which means that equivalent statements
of these orders can be given in term of the class of utility functions for which one
distribution is preferred to another. Speci�cally, it can be shown that G dominates
H in the upper orthant order if and only if G is preferred to H for all �-monotone
utility functions (Müller and Stoyan (2002, Theorem 3.3.15)). If the utility function
u(x) is n times di¤erentiable, then it is �-monotone if and only if

@k1+:::+knu(x)

@xk11 :::@x
kn
n

� 0

for all ki 2 f0; 1g, i = 1; :::; n, with k1 + ::: + kn � 1. In words, all the mixed
partial derivatives must be non-negative. See Müller and Stoyan (2002) for a formal
de�nition, in term of di¤erence operators, that allows u(x) to be non-di¤erentiable.
Similarly, G dominates H in the lower orthant order if and only if G is preferred to
H for all utility functions with the property that u(�x) is �-isotone, i.e. �u(�x)
is �-monotone. Note that the relationship between these orders is similar to the
relationship between the i-icv and i-icx orders in the univariate case.
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In the principal-agent model, the FOA implies that v(w(x)) = !(� + �l(xja)).
Jewitt (1988) and Conlon (2009a) observe that the multipliers remain positive in
the multi-signal model. The next Lemma summarizes some pertinent observations
about the composite function. The proof is straightforward and is thus omitted.

Lemma 3 (i) !(�+ �l(xja)) is �-monotone in x if l(xja) is �-monotone in x and
! is n-monotone. (ii) !(� + �l(xja)) is �-isotone in x if l(xja) is �-isotone in x
and ! is n-isotone.

Lemma 3 provides conditions under which the FOA candidate contract belongs
to one of the classes of functions that are useful when one of the orthant orders apply.
However, it remains to impose conditions on the distribution functions such that the
orthant orders can indeed be invoked. To this end, note that if Faa(xja) � 0 then
FL(xja; a�) dominates F (xja) in the lower orthant order. Likewise, if F aa(xja) � 0
then FL(xja; a�) dominates F (xja) in the upper orthant order. These conditions
coincide in the one-signal case, where they collapse to Rogerson�s condition. Finally,
Conlon�s (2009a) CISP condition implies both F aa(xja) � 0 and Faa(xja) � 0. Since
Sinclair-Desgagné�s (1994) condition is even stronger than CISP, it follows that his
condition also imply F aa(xja) � 0 and Faa(xja) � 0. New justi�cations of the FOA
are now possible.

Proposition 4 Assume the second best action is in (a; a). Then, the FOA is valid
if either:

1. F aa(xja) � 0 for all x and all a, l(xja) is �-monotone in x for all a, and ! is
n-monotone, or

2. Faa(xja) � 0 for all x and all a, l(xja) is �-isotone in x for all a, and ! is
n-isotone.

Proof. For the �rst part, F aa(xja) � 0 implies that FL(xja; a�) dominates F (xja)
in the upper orthant order. Hence, expected payo¤ in the auxiliary problem is
higher than in the original problem as long as utility is �-monotone. The remaining
conditions ensure this is the case, since they allow Lemma 3 to be invoked. The
proof of the second part of the proposition is analogous.
Note the rather pleasing similarities between the conditions on ! and l(xja), and

their pattern, in the univariate case (Propositions 2 and 3) and the multivariate case
(Proposition 4). Speci�cally, the conditions that must be added as another signal
becomes available are similar to the conditions that must be added in the univariate
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case when the stochastic order is weakened by one degree (see also Corollary 1,
below).
Conlon (2009a) makes the point that if the n signals are independent and each

satis�es Rogerson�s conditions, then the joint distribution function may nevertheless
fail the CISP condition. In this sense, the CISP condition is a strong assumption.
In contrast, the lower orthant order (though not the upper orthant order) is more
amenable to such extensions.

Corollary 1 Assume there are n � 2 independent signals, with distribution func-
tions F i(xija) and likelihood ratio li(xja), i = 1; 2; :::; n. Assume the second best
action is in (a; a). Then, the FOA is valid if

1. Each signal satis�es Rogerson�s condition; F iaa(xija) � 0 and lix(xija) � 0 for
all i = 1; 2; :::; n, and

2. ! is n-isotone.

Proof. The MLRP implies that F i is decreasing in a. Since F i is also convex, it
follows that the product F (xja) = �F i(xija) is also convex in a. When signals are
independent, l(xja) = �li(xija). Hence, l(xja) is �-isotone. The second part of
Proposition 4 can now be invoked.
Jewitt (1988, Theorem 2) reports a special case of this corollary, with n = 2.

In this case, the second condition requires ! to be increasing and concave, which is
of course precisely Jewitt�s one-signal condition. At �rst sight, Jewitt�s result may
seem peculiar because it combines Rogerson�s and Jewitt�s one-signal conditions.
Indeed, Conlon (2009a) does not devote much attention to this result. However,
he does supply the following generalization (with a proof in Conlon (2009b)), while
attributing it to Jewitt.
Assume there are two signals, and that the likelihood ratio is decreasing and

submodular in the two signals. Then, Conlon (2009b) proves the FOA is valid
if Faa(xja) � 0 (which he calls the lower quadrant convexity condition (LQCC)).
Submodularity means that the cross-partial derivative is non-positive. Thus, with
n = 2, l(xja) is �-isotone, and so Proposition 4 in fact applies. Nevertheless, Conlon
(2009a) concludes that �it is not clear how to extend this beyond the two-signal case.�
Note, however, that the submodular order and the lower orthant order coincide in the
bivariate case. As Proposition 4 demonstrates, the latter is well suited for extensions
to many signals.
Before proceeding to Jewitt�s and Conlon�s other results, it is worthwhile to

comment on one aspect of the previous results. The stochastic orders underlying
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these results are all integral stochastic orders, as de�ned in Section 3. The set F
is referred to as a generator of the stochastic order. For example, one generator for
FOSD is the set of all increasing functions. Importantly, the integral stochastic orders
invoked until now have well-de�ned �small� generators. In the case of univariate
FOSD, this is the set of step-functions, which can be thought of as being at the
�corner� of the set of increasing functions because any increasing function can be
approximated by a combination of step-functions. The existence of a small generator
is crucial in being able to obtain equivalent characterizations of an integral stochastic
order. For instance, step-functions are used to prove the equivalence between the two
de�nitions of univariate FOSD in Table 1. Unfortunately, not all integral stochastic
orders have small generators. In particular, this problem arises when multi-variate
SOSD is considered.

5.2 Multivariate SOSD and related stochastic orders

Among the ingredients in Jewitt�s (1988, Theorem 3) second set of conditions and
Conlon�s (2009a, Proposition 2) extension thereof, are the assumptions that l(xja) is
increasing and concave in x and that ! is increasing and concave. These assumptions
imply that v(w(x)) is increasing and concave in x. Naturally, this points in the
direction of SOSD.
However, to close the proof, Jewitt and Conlon add conditions that on the surface

appear di¤erent in nature from those in all previous results. In particular, they utilize
the state-space formulation of the principal-agent model and assume that for each
realization of the state, #, each signal xi(a; #), is concave in a. The joint assumptions
then ensure that the agent�s problem is concave in a.
Conlon (2009a, p. 258) observes that �it is not immediately obvious how to

express the condition, that x (a; #) is concave in a, using the Mirrlees notation [where
everything is expressed in terms of F (xja)].�Indeed, Conlon (2009a, 2009b) goes to
great lengths to illustrate these di¢ culties. However, the reason that it is not obvious
how to translate the conditions into the Mirrlees notation is simple; it is impossible
to do so. As Müller and Stoyan (2002, p. 98) succinctly put it, �there is no hope of
�nding a �small�generator�for SOSD, and thus it is not possible to express SOSD
with a set of conditions directly on F (xja).18
There are, however, other stochastic orders that not only have a familiar �avor

but that are also better suited for the Mirrlees formulation. Consider the following

18Another way to �nish Jewitt�s and Conlon�s proofs would be to replace their assumption on
x (a; #) with the (somewhat facetious) assumption that (6) holds true for all increasing and concave
functions v(w(�)) and all pairs (a; a�), but that is hardly satisfying either.
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orders, de�ned in Shaked and Shantikumar (2007):

1. G dominates H in the lower orthant-concave order ifZ x1

x1

���
Z xn

xn

G(y1; :::; yn)dyn���dy1 �
Z x1

x1

���
Z xn

xn

H(y1; :::; yn)dyn���dy1 for all x.

2. G dominates H in the upper orthant-convex order ifZ x1

x1

���
Z xn

xn

G(y1; :::; yn)dyn���dy1 �
Z x1

x1

���
Z xn

xn

H(y1; :::; yn)dyn���dy1 for all x.

Denuit and Mes�oui (2010) examine these and related stochastic orders. It can be
shown that if G dominates H in the upper orthant-convex order then G is preferred
to H for any utility function for which

@k1+:::+knu(x)

@xk11 :::@x
kn
n

� 0

for all ki 2 f0; 1; 2g, i = 1; :::; n, with k1+ :::+kn � 1. Similarly, if G dominates H in
the lower orthant-concave order then G is preferred to H for any utility function for
which �u(�x) has the above property. In the univariate case, these orders obviously
reduce to 2-icx and SOSD, respectively. The following proposition then follows from
the usual logic.

Proposition 5 Assume the second best action is in (a; a). Then, the FOA is valid
if either:

1.
R
y�x F aa(yja)dy � 0 for all x and all a, ! is 2n-monotone, and

@k1+:::+knl(xja)
@xk11 :::@x

kn
n

� 0

for all a and for all ki 2 f0; 1; 2g, i = 1; :::; n, with k1 + :::+ kn � 1, or

2.
R
y�x Faa(yja)dy � 0 for all x and all a, ! is 2n-isotone, and

@k1+:::+kn (�l(�xja))
@xk11 :::@x

kn
n

� 0

for all a and for all ki 2 f0; 1; 2g, i = 1; :::; n, with k1 + :::+ kn � 1.
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Jewitt�s one-signal conditions imply the univariate function v(w(x)) has a nega-
tive second derivative. There are several ways in which this property can be extended
into higher dimensions; requiring multivariate concavity is but one of them. Conlon�s
aim was precisely to include concavity in the su¢ cient conditions, but the Mirrlees
formulation of the model was not up to the task. Thus, if the goal is su¢ cient
conditions in Mirrlees notation then the most fruitful concept of �curvature�in the
multi-signal model is not concavity. �Small�generators aside, to understand this re-
sult note that among the stochastic orders invoked in this paper, all but multivariate
SOSD can be de�ned in terms only of the sign of certain derivatives. For multivari-
ate SOSD, however, conditions must also be imposed upon the relative magnitude
of various second derivatives; multivariate concavity is a messier concept. This is a
signi�cant di¤erence, which on its own explains the di¤erence in tractability.
Proposition 5 thus illustrates the price of escaping Conlon�s conundrum. To

recover su¢ cient conditions in the Mirrless notation, Conlon�s implicit assumption
about the relative magnitude of second derivatives must be replaced by conditions
on the sign of higher-order derivatives.
A counterpart to Corollary 1 is also possible for the lower orthant-concave order.

The proof is analogous to the proof of Corollary 1 and is thus omitted.

Corollary 2 Assume there are n � 2 independent signals, with distribution func-
tions F i(xija) and likelihood ratio li(xja), i = 1; 2; :::; n. Assume the second best
action is in (a; a). Then, the FOA is valid if

1. Each signal satis�es Jewitt�s one-signal condition;
R x
x
F (yja)dy � 0; lix(xija) �

0, and lixx(xija) � 0 for all i = 1; 2; :::; n, and

2. ! is 2n-isotone.

Together, Corollary 1 and Corollary 2 o¤er an argument in favor of multi-signal
conditions based on the orthant orders, like Propositions 4 and 5 in the current
paper, over conditions based on the more demanding multivariate notions of FOSD
and SOSD, like Jewitt�s Theorem 3 or Conlon�s (2009a) propositions. In practice,
the orthant orders may also be easier to check. The second part of the corollaries
captures the other side of the trade-o¤, namely that more conditions must be imposed
on the underlying utility functions. However, the discussion following Proposition 2
reveals that this may be a small price to pay for a multi-signal extension.
Though it is not pursued here, there seems to be no conceptual obstacle to ex-

tending the result to higher orthant orders (i.e. imposing conditions on the anti-
derivatives of the antiderivatives, as in TOSD).
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6 A modi�ed �rst-order approach

As Mirrlees (1999) pointed out early on, the FOA is not always valid. For instance,
it is possible that the FOA would identify a contract for which L-IC is not su¢ cient
for G-IC. In this respect, note that the arguments in Section 3 can easily be modi�ed
to identify a subset of actions for which L-ICa� implies G-ICa� among e.g. monotonic
or monotonic and concave contracts. For instance, in the one-signal case, if F (xja)
coincides with its convex hull at a� for all x then it is easily seen that any monotonic
and L-ICa� contract is G-ICa�.19 Thus a �local�counterpart to Rogerson�s condition
is identi�ed. Rogerson required that F is always convex in a, which is equivalent
to requiring that F always coincides with its convex hull. For completeness, the
following Lemma states a stronger version of this result.

Lemma 4 Assume there is a single signal and that Fa(xja) < 0 for all x 2 (x; x)
and all a.20 Fix a� 2 (a; a). Then, any monotonic and L-ICa� contract is G-ICa� if
and only if F (xja) coincides with its convex hull at a� for all x.

Proof. As mentioned above, the �if� part is trivial in light of the discussion in
Section 3. For the other direction, assume there is some x such that F (xja) does
not coincide with its convex hull at a�. Note that such an x must necessarily be in
(x; x). It su¢ ces to �nd some monotonic and L-ICa� contract that is not G-ICa�.
Consider a step contract that delivers utility v0 if the outcome is worse than x, and
utility v1 otherwise. The agent�s expected utility is EU(a) = v1 + (v0 � v1)F (xja)
with EU 0(a�) = (v0 � v1)Fa(xja�). Since Fa(xja�) < 0 and utility is assumed to
be continuous and unbounded above and/or below, there exists a pair (v0; v1) that
satis�es L-ICa� and v1 > v0. However, because F (xja) does not coincide with its
convex hull at a� there is an alternative action that yields higher payo¤ for the
agent.
It is of course possible to obtain similar local versions of the other results in this

paper that can be characterized using the Mirrlees formulation.21

In an ambitious recent paper, Ke (2011a) notes that even when L-IC is not
su¢ cient for G-IC for all actions, the FOA may nevertheless still identify the optimal

19Recall that the convex hull of a function g(a) is the highest convex function that is always
below g(a); see Rockafellar (1970).

20The (strict) version of the MLRP implies Fa(xja) < 0.
21Kadan and Swinkels (2012, Proposition 2) prove that any action can be implemented if there is

a set of outcomes, S, such that the probability that x 2 S is concave in the action (or equivalently
that the complementary probability is convex). Their proof can be modi�ed to establish that it is
su¢ cient that there exists a set of outcomes, S(a�), for each action possible action, such that a� is
on the convex envelope of Pr(x 2 S(a�)ja).
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contract. For instance, this occurs if the solution a� lies in the set identi�ed in the
previous paragraph. It may also occur if L-ICa� is not su¢ cient for G-ICa� for all
contracts but just happens to be su¢ cient with the speci�c contract identi�ed by the
FOA. Thus, Ke (2011a) proposes a �xed-point method designed to identify conditions
under which the FOA produces the correct solution.
The purpose of the remainder of this section is to propose a modi�ed FOA that

works in one speci�c, but important, model in which the FOA is not generally valid
and where none of the existing results solve the problem. I will also demonstrate that
the modi�ed FOA simpli�es the analysis of some classic examples in the literature.
As in the �rst part of the paper, the crucial step is to explore the link between L-IC
and G-IC.
For notational simplicity, assume there is a single signal. However, the analysis

does not rely on this assumption. The important assumption is that the distribution
function can be written as

F (xja) = p(a)G(x) + (1� p(a))H(x); (11)

where p(a) 2 [0; 1] for all a 2 [a; a] and G and H are non-identical distribution
functions with support [x; x], and strictly positive densities g(x) and h(x), respec-
tively. While this model is certainly too specialized to capture all principal-agent
relationships, it should be stressed that it does have a compelling interpretation. For
instance, p(a) could be the proportion of time the parts-supplier (the agent) spends
using the new and advanced technology G rather than the less reliable but more
user-friendly old technology, H. Given such interpretations of the model, the most
meaningful economic assumption is that p(a) is monotonic. Thus, as is common
in the literature, assume that p0(a) > 0 for all a 2 (a; a]. The case where p(a) is
non-monotonic is not that much more di¢ cult. It is discussed brie�y later.
Distributions of this form have been studied extensively. Grossman and Hart

(1983) say that the spanning condition is satis�ed if F (xja) can be written as in
(11). Since (11) is linear in p, Hart and Holmström (1987) refer to (11) as the Linear
Distribution Function Condition (LDFC). The signi�cance of the model and its place
in the literature is discussed in detail after the formal analysis.
Typically, additional assumptions are imposed on the curvature of p(a) as well

as on the relationship between G and H. For instance, Sinclair-Desgagné (1994,
2009) points out that the FOA is valid if p(a) is concave and g(x)

h(x)
is nondecreasing.

The latter assumption implies the MLRP, while the former ensures concavity of
the agent�s objective function when he faces a monotonic contract. The second
assumption also implies that G �rst order stochastically dominates H. Without
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assumptions on p(a), Grossman and Hart (1983) prove that if g(x)
h(x)

is nondecreasing
then any optimal contract must feature monotonic wages.22 Ke (2011a, Proposition
7) shows that the FOA is valid if p(a) is concave, even without the MLRP.
Here, I impose no such conditions on (11). For instance, p(a) may be concave

only locally, or not at all, and G and H may cross, as would be the case if H is
a mean-preserving spread over G. No restrictions are placed on the shape of the
contract either (apart from bounded utility).
Given the spanning condition, for any a� 2 (a; a), L-ICa� is

p0(a�)

Z
v(w(x)) (g(x)� h(x)) dx� 1 = 0: (12)

Since p0(a�) > 0, the integral must take the strictly positive value 1
p0(a�) in order to

satisfy (12). The agent�s expected utility can be written

EU(a) =
p(a)

p0(a�)
� a+

Z
v(w(x))h(x)dx;

should he take action a. It follows that

EU(a�)� EU(a) = (�p(a))� [�p(a�) + (a� a�) (�p0(a�))]
p0(a�)

(13)

for all a 2 [a; a]. The term in the square brackets is the tangent line to �p(a�). Let
ACp denote the set of actions in (a; a) for which �p(a) coincides with its convex hull.
By de�nition, a� 2 ACp if and only if (13) is non-negative for any a.

Proposition 6 Assume that p0(a) > 0 for all a 2 (a; a]. Then, there exists a G-ICa�
contract (that yields bounded utility) if and only if a� 2 ACp [ fa; ag.

Proof. Assume a� 2 (a; a) and a� =2 ACp . If there is a G-ICa� contract, then
that contract must necessarily be L-ICa�, and so (13) should apply. However, since
a� =2 ACp , there is some a 2 (a; a) for which (13) is strictly negative, which contradicts
G-ICa�.
For the other direction, assume a� 2 ACp . Since G and H are distinct, there is

some x 2 (x; x) for which G(x) 6= H(x), or Fa(xja�) 6= 0. Now, as in the proof
of Lemma 4, construct a step contract that satis�es L-ICa� (contrary to Lemma 4,

22In their discrete model, Grossman and Hart (1983) allow multiple incentive compatibility
constraints to bind. I will show, in the continuous model, that if a can be implemented then all
but the local incentive compatibility constraint are redundant.
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however, it is possible that v0 > v1). Since a� 2 ACp , (13) is everywhere non-negative.
Hence, the contract is G-ICa�.
Now assume a� 2 fa; ag. By modifying the steps that led to (13), it is easy to

see that a step contract that makes EU 0(a) su¢ ciently small or EU 0(a) su¢ ciently
large is G-ICa or G-ICa, respectively.
Thus, the spanning condition allows a succinct formulation of the �feasible set�of

implementable actions.23. Moreover, it should be clear from the proof of Proposition
6 that L-ICa� is in fact necessary and su¢ cient for G-ICa�, for any a� 2 ACp .

Proposition 7 Assume that p0(a) > 0 for all a 2 (a; a]. If a� 2 ACp then L-ICa� is
necessary and su¢ cient for G-ICa�.

Proof. Necessity is obvious. As in the proof of Proposition 6, su¢ ciency follows
from the fact that (13) is everywhere positive if a� 2 ACp .
As a consequence of Propositions 6 and 7, a modi�ed FOA suggests itself. In the

�rst step, the feasible set is identi�ed, ACp [ fa; ag. The feasible set is closed (but
not necessarily convex). In the second step, the FOA is applied to this set (i.e. with
the constraint that a 2 ACp [fa; ag). In a third step, the solution is compared to the
payo¤ from optimally implementing a and a. Whichever contract is superior is then
chosen.
To �nd the optimal contract that implements a or a, it turns out that the con-

tinuum of incentive compatibility constraints can again be summarized by one lone
condition. For instance, consider implementing a. Let ac = inf ACp if A

C
p is non-

empty and let ac = a otherwise. If a = ac, then EU 0(a) � 0 is su¢ cient for G-ICa.
On the other hand, if a < ac then it can be shown that any contract that leaves
no incentive for the agent to pick ac over a is G-ICa. To implement a, the relevant
counterpart to ac is ac = supACp when A

C
p is non-empty and a

c = a otherwise.

Proposition 8 Assume that p0(a) > 0 for all a 2 (a; a]. Then, it is possible to
implement the boundary actions, as follows:

1. If ac = a then EU 0(a) � 0 is necessary and su¢ cient for G-ICa. If ac > a then
EU(a) � EU(ac) is necessary and su¢ cient for G-ICa.

2. If ac = a then EU 0(a) � 0 is necessary and su¢ cient for G-ICa. If ac < a then
EU(a) � EU(ac) is necessary and su¢ cient for G-ICa.

23Hermalin and Katz (1991) use tools from convex analysis to characterize the set of imple-
mentable actions in a model with a �nite set of actions and a �nite set of outcomes. Note that their
analysis does not reveal when L-IC is su¢ cient for G-IC.
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Proof. Necessity is obvious. For su¢ ciency in the �rst part of the proposition,
consider �rst the �no-gap� case, ac = a. Here, the slope of �p(a) coincides with
the slope of its convex hull at a. As in the proof of Proposition 6, a modi�cation of
(13) then establishes that EU 0(a) � 0 is su¢ cient for G-ICa. However, this is not
necessarily true in the �gap�case, where ac > a. Note that

EU(a)� EU(a) = (a� a)
�
�p(a)� (�p(a))

a� a

Z
v(w(x)) (g(x)� h(x)) dx+ 1

�
;

and so EU(a) � EU(ac) implies that the term in brackets must be non-negative
when a = ac. If the integral is negative, then the term in brackets is positive for all
a, or EU(a) � EU(a) for all a. That is, the contract is G-ICa. If the integral is
positive, then the term in brackets is minimized at a = ac. This follows by de�nition
of the convex hull, since the line from (a;�p(a)) to (ac;�p(ac)) is steeper than the
line from (a;�p(a)) to any other point on �p(�). Hence, if EU(a) � EU(ac) then
EU(a) � EU(a) for all a 2 [a; a], thus implying G-ICa. The proof of the second part
of the proposition is analogous.
The assumption that p(a) is monotonic seems justi�ed on economic grounds.

However, it is possible to allow p(a) to be non-monotonic. First, note that the
argument following (13) remains valid if p0(a�) > 0 even if p0(a��) < 0 for some
a�� 6= a�. That is, a� can be implemented, and L-ICa� is su¢ cient, if and only if a� is
on the convex hull of �p(a�). By similar reasoning, a�� 2 (a; a) can be implemented,
and L-ICa�� is su¢ cient, if and only if a�� is on the convex hull of p(a��).24 Thus,
the set of implementable interior actions can be obtained by piecing together the
sets of implementable actions with p0(�) > 0 and p0(�) < 0, respectively. Of course,
if a� 2 (a; a) and p0(a�) = 0 then no L-ICa� contract exist (with bounded utility), as
can be seen from (12). Similarly, if p(a�) = p(a0), then a� cannot be implemented
if a0 < a� because it would be cheaper for the agent to pick a0 rather than a�.25

Note that such actions cannot be on the convex hull of either �p(a) or p(a) when
p0(a�) 6= 0.
The remainder of this section is devoted to demonstrating the signi�cance of the

spanning condition as well as illustrating some uses of the preceding characterization.
First, it is useful to recognize that the textbook case in which there are two

outcomes (but a continuum of actions) is in fact a special case of (11). Speci�cally,
this model corresponds to assuming that G and H are degenerate distributions, with

24This is easily seen by multiplying both numerator and denominator in (13) by �1.
25Consequently, once p(a) is allowed to be non-monotonic, it is no longer necessarily the case

that a can be implemented.
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all mass concentrated at opposite ends of the support. Hence, Propositions 6 �8
make it possible to reexamine some important examples in the literature.

Example 1 (Araujo and Moreira (2001)): Araujo and Moreira (2001) propose
a general Lagrangian approach to the moral hazard problem that applies when the
FOA is not valid. Their leading example is the following. There are two states, where
state 1 is the bad state and state 2 is the good state. The agent picks an e¤ort level,
e, from [e; e] � [0; 1]. With e¤ort e, the probability of the good state is q(e) = e3.
The cost of e¤ort is c(e) = e2. To reparameterize the model, let a � c(e) = e2

and p(a) = q(c�1(a)) = a
3
2 , a 2 [a; a] = [e2; e2]. Note that p(a) is increasing and

convex. Thus, �p(a) is concave and so ACp is empty. In other words, no interior
action can be implemented. Moreover, the boundary actions can be implemented,
and the only relevant incentive compatibility constraint is that the desired action
be preferable to the action on the opposite end of the support. Consequently, this
example essentially reduces to the textbook example with two outcomes and two
actions, a and a, and is therefore trivial to solve once a participation constraint is
added. In contrast, to use their general approach to solve the example, Araujo and
Moreira (2001) (having added assumptions on v(w) and on the principal�s payo¤)
construct an algorithm in Mathematica and use this to solve 20 non-linear systems
of equations. As expected, they �nd the optimal action is at a corner. While their
method is obviously powerful, using it on their leading example is overkill (not to
mention labor intensive) and obscures the intuition. Ke (2011b) proposes another
method to solve this problem. Though his method is simpler than that used by
Araujo and Moreira (2001), it remains more complicated than the method suggested
above. N

Mirrlees (1999) o¤ers a famous example to illustrate how the FOA may fail. In
their textbook, Bolton and Dewatripont (2005, p. 148) remark that: �This example
is admittedly abstract, but this is the only one to our knowledge that addresses
the technical issue.�Next, I will show that Mirrlees�(1999) example can be analyzed
using the techniques presented earlier in this section. In particular, the modi�ed FOA
correctly solves the problem. Thereafter, in the hope it will have some pedagogical
value, I will provide a more straightforward example of how the FOAmay fail. Again,
the modi�ed FOA allows the correct solution to be obtained.

Example 2 (Mirrlees (1999)): Consider an agent with payo¤ function

U(w; z) = we�(z+1)
2

�
�
�e�(z�1)

2
�
:
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It may be helpful to think of this example as a special environment with two out-
comes, where, for some reason, the wage in one state is exogenously �xed at 0. The
principal controls the �bonus�w (which may be positive or negative) if the other
state materializes. The agent�s action is z 2 R. Think of e�(z+1)2 roughly as the
probability of the state in which a bonus is paid out, and think of �e�(z�1)2 as the
cost function. This example �ts rather well with the model in (11). In particular,
with the spanning condition and only two states, the agent�s expected utility is sep-
arable in the action and the di¤erence between utility in the two states (the bonus).
Next, let a = �e�(z�1)2, and note that a 2 [�1; 0). Think of the agent as having
a two-dimensional problem. First, he has to decide which cost level, a, to incur,
and, second, whether to incur this cost with a z that is above or below 1 (since
z� = 1�

p
� ln (�a) and z+ = 1 +

p
� ln (�a) both yield the same a). Depending

on whether z < 1 or z > 1, expected utility can be written as V �(w; a) = wp�(a)�a
or V +(w; a) = wp+(a)� a, respectively, where

p�(a) = e
�
�
2�
p
� ln(�a)

�2
; and p+(a) = e�

�
2+
p
� ln(�a)

�2
; a 2 [�1; 0):

Clearly, p�(a) > p+(a). Hence, V �(w; a) > V +(w; a) if and only if w is strictly
positive. It is now possible to split the problem into two entirely conventional prob-
lems. In one, the principal is constrained to w � 0 and the agent�s payo¤ function
is e¤ectively V +(w; a). In the other, the constraint is w � 0 and the agent�s payo¤
function is V �(w; a).
For the �rst problem, it can be shown that p+(a) is decreasing. Hence, negative

wages are indeed necessary for L-IC. Moreover, p+(a) is convex and so coincides with
its convex envelope. It follows from Propositions 6 and 7 that any interior action
can be implemented and that the FOA is valid.
The second problem is more interesting. Here, p�(a) is increasing on [�1;�e�4),

and decreasing on (�e�4; 0). Since only non-negative wages can be used, there is
no permissible contract that satis�es L-IC for any a � �e�4 � �0:0183. On the
remaining support, �p�(a) coincides with its convex envelope if and only if a 2
[�1;�0:9982][ [�0:0217;�e�4). By Propositions 6 and 7, the modi�ed FOA is valid
on this set (and actions in (�0:9982;�0:0217) cannot be implemented).
Next, Mirrlees speci�es an objective function for the principal. There is no par-

ticipation constraint. The principal seeks to maximize �(z�1)2�(w � 2)2 or, equiv-
alently, ln (�a)� (w � 2)2. The agent�s �rst order condition yields w = 1=p�0(a) and
w = 1=p+0(a), respectively. Substituting this into the principal�s objective function
and plotting the resulting functions reveals that positive bonuses are superior to neg-
ative bonuses and that the solution is at a corner of the feasible set, speci�cally at
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w = 1 and a = �0:9982 (or z� = 0:957). This of course coincides with the solution
Mirrlees found, but not with the solution one would obtain from the standard FOA
(which yields a = �0:988 97 or z� = 0:895, as demonstrated by Mirrlees). N

Example 3 (Simplified counterexample): There are two outcomes. Let v1
be the agent�s utility (from wages) if the outcome is bad and v2 be his utility if the
outcome is good. The outcomes are worth x1 and x2 to the principal, respectively.
The probability of the good outcome is p(a), with p0(a) > 0. The participation
constraint and L-IC constraint yield the system

v1 + p(a)(v2 � v1)� a = u

p0(a)(v2 � v1)� 1 = 0

with solution

v1 = u+ a�
p(a)

p0(a)
, v2 = u+ a+

1� p(a)
p0(a)

:

If L-IC is su¢ cient, the risk-neutral principal�s expected payo¤ is

�(a) = (1� p(a))(x1 � v�1(v1))� p(a)(x2 � v�1(v2)):

Assume p(a) = a + 1
2
(a2 � a3), a 2 [0; a], a 2 (1

2
; 1]. Note that if a = 0 then

v1 = v2 = u + a, so in this special case, with p(0) = 0, �(0) also describes the
optimal way of implementing the lowest action.26 Here, p(a) is convex when a < 1

3

and concave when a > 1
3
. However, the relevant set is ACp , which is A

C
p = [1

2
; a).

Thus, the set of implementable actions is f0g [ [1
2
; a], with ac = 1

2
> a and ac = a.

Assume u = 2, v(w) =
p
w and x1 = 5, x2 = 9:4. Figure 2 plots �(a) when a = 2

3
.

There are two stationary points. The �rst, at a� = 0:114, minimizes the prin-
cipal�s payo¤ and is not even implementable because the agent�s payo¤ is convex
whenever a < 1

3
. The second stationary point, at a�� = 0:464, is the global maxi-

mum of �(a). However, a�� is not implementable either. Though the agent�s payo¤
is locally concave at a��, it is pro�table for the agent to deviate to a = 0. One way to
see this is that v2 > v1 > 2 = u whenever a (futile) attempt is made at implementing
an action in

�
0; 1

2

�
. Given the feasible set is f0g [ [1

2
; a], it is clear from the �gure

that the optimal action to induce is a = 1
2
(with v1 = 2, v2 = 26

9
). N

26In general, the cost of implementing a given action is discontinuous at a. The highest action,
a = a, can be implemented with any contract for which EU 0(a) � 0. However, it is easy to see that
any contract with EU 0(a) > 0 cannot be optimal. The reason is that such a contract unnecessarily
imposes more risk on the agent (v2 � v1 is larger).
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Figure 2: Simpli�ed counterexample.

The spanning condition has often been implicitly imposed in papers with a con-
tinuum of actions. Perhaps the most signi�cant example of this is in LiCalzi and
Spaeter (2003) who provide two classes of distributions for which Rogerson�s condi-
tions are satis�ed. Thus, this paper is customarily cited in papers that rely on the
FOA. The �rst family of distributions is

F (xja) = x+ �(x)(a); x 2 [0; 1]: (14)

Obviously, conditions must be imposed on � (�) and (�) to ensure that F (xja) is a
proper distribution function. LiCalzi and Spaeter (2003) identify additional assump-
tions on both � (�) and (�) which ensure Faa(xja) � 0 and the MLRP. Note, however,
that these distribution functions are separable in x and a. Thus, although it seems
to not have been observed before, it should be clear that F (xja) could be stated as
in (11). Hence, the modi�ed FOA is always valid in this family of distributions, even
without LiCalzi and Spaeter�s (2003) additional assumptions.27

27Ke (2011a, Proposition 9) prove that LiCalzi and Spaeter�s (2003) additional assumptions on
�(x) are not necessary for the validity of the FOA. Note the overlap between his Propositions 7
and 9.
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Example 1 in Jewitt et al (2008) uses the Farlie-Gumbel-Morgenstern copula
(f(xja) = 1+ 1

2
(1� 2x)(1� 2a); x; a 2 [0; 1]). This distribution is also separable in x

and a and thus can be written as in (11). Finally, example 1 in Kadan and Swinkels
(2012) can be written as

F (xja) = p(a)x+ (1� p(a))
�
x+ x2 � x3

�
;

where p(a) = 2a2 � a3, a 2 [2
3
; 1], and x 2 [0; 1]

7 Conclusion

In this paper, a new approach to the moral hazard problem has been suggested. The
approach is based on reformulating the problem in terms familiar to any economist.
In particular, standard results from the theory of choice under uncertainty can be
invoked to prove new and old results.
The new approach permits a uni�ed proof of Rogerson�s (1985) and Jewitt�s

(1988) one-signal justi�cations of the FOA. Indeed, the insights gained from refor-
mulating the problem makes it possible to derive other su¢ cient conditions. Sim-
ilarly, in the multi-signal model, the justi�cations provided by Jewitt (1988) and
Conlon (2009a) can be explained with a common methodology. It is important to
note that there are several di¤erent ways in which one-signal results can be extended
into higher dimensions. The orthant orders form the basis of several tractable al-
ternatives. One distinct advantage of the justi�cations based on the lower orthant
order and the lower orthant-concave order is that they are robust to the inclusion of
more independent signals.
In the second part of the paper, a more speci�c model was considered. Though

the spanning condition looks simple and dates back to Grossman and Hart (1983),
the �rst full characterization of its solution is given here. Mirrlees�(1999) famous
counterexample can also be solved used the techniques presented here. As in the �rst
part of the paper, the key step in the analysis is to exploit the information contained
in the local incentive compatibility constraint.
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Faa(xja) � 0, 8x; a
R x
x
Faa(yja)dy � 0, 8x; a

R x
x

R z
x
Faa(yja)dydz � 0, 8x; a

and
R x
x
Faa(yja)dy � 0, 8a

+ + +
Any nondecreasing and Any nondecreasing, concave, Any nondecreasing, concave,
L-IC contract is G-IC and L-IC contract is G-IC positively skewed, and L-IC

contract is G-IC

FOSD SOSD TOSD

G(x) � H(x), 8x
R x
x
G(y)dy �

R x
x
H(y)dy, 8x

R x
x

R z
x
G(y)dydz �

R x
x

R z
x
H(y)dydz, 8x

and
R x
x
G(y)dy �

R x
x
H(y)dy

m m m
EG [u(x)] � EH [u(x)] EG [u(x)] � EH [u(x)] EG [u(x)] � EH [u(x)]

for any nondecreasing u(x) for any nondecreasing and for any nondecreasing, concave,
concave u(x) and positively skewed u(x).

Table 1: Rogerson, Jewitt and stochastic dominance.

Note: F (�ja) is the distribution over outcomes given action a. In the third column, a positively
skewed utility function, u(x), is one for which u0(x) is non-negative, decreasing, and convex.

Rogerson Jewitt Third set of conditions

Faa(xja) � 0, 8x; a.
R x
x
Faa(yja)dy � 0, 8x; a.

R x
x

R z
x
Faa(yja)dydz � 0, 8x; a

and
R x
x
Faa(yja)dy � 0, 8a.

!0(z) > 0 !0(z) > 0, !00(z) � 0 !0(z) > 0, !00(z) � 0, !000(z) � 0
lx(xja) � 0 lx(xja) � 0, lxx(xja) � 0 lx(xja) � 0, lxx(xja) � 0, lxxx(xja) � 0

Table 2: Justifying the �rst order approach, Part I.

Rogerson (1-icx) 2-icx 3-icx

F aa(xja) � 0, 8x; a.
R x
x
F aa(yja)dy � 0, 8x; a.

R x
x

R x
z
F aa(yja)dydz � 0, 8x; a

and
R x
x
F aa(yja)dy � 0, 8a.

!0(z) > 0 !0(z) > 0, !00(z) � 0 !0(z) > 0, !00(z) � 0, !000(z) � 0
lx(xja) � 0 lx(xja) � 0, lxx(xja) � 0 lx(xja) � 0, lxx(xja) � 0, lxxx(xja) � 0

Table 3: Justifying the �rst order approach, Part II.


