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equilibrium (if no merger is profitable, possibly caused by high merging costs). 
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 “It would be an error in interpretation to imagine that the players in a non-cooperative game 

can somehow select whichever strategic equilibrium [SE] they prefer. That would imply a 

context in which bargaining and joint action are permitted, making it rather unlikely that the 

players would feel constrained to restrict their strategy selections to SEs” (Shapley 1987, 

Lecture Notes on Game Theory, page 1.29).  

 “If there are at least three players and if the concept is that of a cooperative game then it seems 

to me that there isn’t any theory yet that seems acceptable as providing a solution concept for 

the game” (Nash 1998, Presentation at Cowles Foundation Seminar).  

“There is no single universally accepted solution. There may be many solutions that appear to 

be reasonable if judged from a specific context point of view” (Shubik 2010, Video 

presentation at Inaugural Chinese Game Theory Conference). 

1.  Introduction 

Consider the four possible mergers in an asymmetric linear Cournot oligopoly with 

three firms: 12, 13, 23 and 123. Which one, if any, will be formed and be free of subsequent 

takeovers or spin-offs? Although an answer to the question has been wanting, it has not, as 

implied in the above Nash and Shubik quotations, been fully answered, because the problem 

is much more complicated than it appears at first glance.   

This paper attempts to provide a complete answer by studying the most reasonable 

solution and its characterizations. Briefly, there are three classes of solutions determined by 

the parameters: 1) monopoly will be formed if its merging cost is sufficiently low and cost 

differentials are sufficiently large (equivalently, if the largest or most efficient firm is 

sufficiently large, or if the two small firms are sufficiently small); 2) each of the three two-

firm mergers will be formed if the merger is profitable, the monopoly merger is unprofitable 

due to high merging costs, its smaller member is not too small, and its larger member’s share 

of the merger’s gain is sufficiently large; and 3) the original Cournot equilibrium will be the 
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solution (i.e., no merger will be formed) if none of the four mergers is profitable.1 

These results form a complete characterization for the problem as it covers the set of 

all three-firm linear oligopolies with seven parameters. In addition, the results also represent 

two other major advances in the literature. First, it advances the previous works in both 

cooperative approach (e.g., Lekeas 2013, Lardon 2012, Yong 2004, and Rajan 1989) and 

non-cooperative approach (e.g., Ray and Vohra [2013,1999], Xue and Zhang 2012, and 

Bloch 1996) from symmetry to asymmetry by showing how cost differentials affect a stable 

partition.2  Second, it advances merger studies by showing for the first time how merging 

cost or transaction cost (i.e., the cost of forming a coalition)3 affect merger stability. 

The rest of the paper is organized as follows.  Section 2 describes the model and 

merger contracts, section 3 defines reasonable solutions for an oligopoly with n firms, 

section 4 characterizes the most reasonable solution with three firms, section 5 concludes, 

and the appendix provides proofs. 

2.  Description of the model and merger contracts 

For notational simplicity, I describe the model and concepts with n firms. A linear 

Cournot oligopoly for a homogeneous good is given by an inverse demand p(Σ xj)=a–Σ xj and 

                                                 
1     If the conditions for solutions fail to hold, there will be no solution and one is left with an endless cycle of 

merger-breakups (such as the recent AOL-TimeWarner or Arby-Wendy merger-breakups). Such cycles had 

been summarized in the opening of The Romance of the Three Kingdoms, as famously cited in On China 

(Kissinger 2011, p. 6): “The empire, long divided, must unite; long united, must divide.” This seems to be a 

new and unstudied driving force behind business cycles. 
2       See Lekeas (2013) for recent survey on cooperative approach, Ray and Vohra (2013)  and Xue and 

Zhang (2012) for recent surveys on both approaches. 

3     A major part of merging costs are the fees paid to accounting firms to access the value of targeted firms, 

which runs from 3% to 9% of the targeted firm’s value. 
 



 4

n cost functions: Ci(xi)=cixi,0≤ xi≤ zi, i=1,…,n, or by a (2n+1)-vector (a,c,z)∈R2n+1
++ , with 

a>0 as the intercept of inverse demand, and c=(c1, .., cn)  and z=(z1, .., zn)>>0  as vectors of 

marginal costs and capacities. This model is equivalent to a normal form game given by 

Γ = {N, Zi, π i},   (1)

where N={1, 2, ..., n}; for each firm i∈N, Zi=[0, zi] is its production set bounded by its 

capacity zi>0, and π i(x)=p(Σ xj)xi–Ci(xi)=(a–Σ xj–ci)xi is its profit function. 

I assume that each merger generates a weak synergy as in part (i) of A0 below: 

 A0 (Assumption 0): (i) For each merger S⊆N, its capacity and cost function are: 

zS=Σ j∈Szj, CS(q)= cSq, q≤ zS , where cS  = Min{cj|  j∈S}; and (2)

 (ii) at any equilibrium, the optimal supply by each S⊆ N is an interior solution.  

Under A0, a merger removes its inefficient members and raises its efficient member’s 

capacity to zS. Let π i denote firm i’s premerger profit, x− and πm the monopoly supply and 

monopoly profits. Define a monopoly merger contract as a pair (x−;λ) of its supply and a split 

of its profits. For this merger contract to be successful, it must meet two preconditions. The 

first one is the well studied profitability precondition (or incentive to merge), which requires 

that no firm be worse off and total profits be higher (i.e., λi≥π i, all i, and Σλi=πm >Σπ i).  

The second one is the relatively new non-empty core precondition4 (Zhao 2009), 

which requires that no coalition receive less than its worst (or guaranteed) profits (see (5) 

below) or that no other merger be more profitable than their share of the monopoly profits. In 

                                                 
4     These two preconditions are independent of each other. As an example, let n=3, (a;c;z)=(6; 0.5,0.5,0.5;  

2,2,2),and merging costs be MCN=2, MCS=0, S≠N. By πi=1.89, πm=7.56, Σπ i=5.67>v(N)= (π m-MCN)= 

5.56>4.59=MNBP (see (17) for definition of MNBP), the monopoly is unprofitable and has a non-empty 

core. 
 



 5

other words, it requires that the profit split λ  be in the monopoly’s core, or equivalently the 

core of the oligopoly (1), or precisely the core of the following coalitional game  

ΓC  = {N, v}, with v(S) given in (5), (3)

where the core (= α-core = β-core)5 is given by 

Core(ΓC) ={λ∈Rn
+ | Σλi=v(N), and Σ i∈Sλi ≥  v(S), all S≠ N }.  (4)

In (3)-(4), v(N)=πm, and v(S) is the guaranteed (or worst) profit for each S≠ N given by 

                      v(S)=Max
xS

Min
y-S

Σ i∈Sπi(xS,y-S)=Min
y-S

Max
xS

Σ i∈Sπi(xS,y-S)=Max
xS

Σ i∈Sπi(xS,z-S), (5)

where the Min is taken over Z-S=∏j∉SZj, the Max over XS={xS∈RS
+|Σ j∈Sxj≤zS}, and (xS,y-S)=w 

is a vector with wi=xi if i∈S, =yi if i∉S. 

It is useful to note that the first precondition requires rationality only for singletons 

and grand coalition, while the second the rationality for all coalitions, and also that 

individual rationality in the first precondition is stronger than that in the second precondition. 

Now we are ready to define the contracts for non-monopoly mergers. Let Π  be the 

set of all partitions or market structures of N (i.e., all sets of simultaneous mergers)6. Given 

Δ∈Π, let x~(Δ) ={x~S(Δ) |S∈Δ} and π~(Δ) ={π~S(Δ) |S∈Δ} be the supplies and profits at its post-

merger equilibrium. Define the merger contracts for Δ as a list of pairs {x~S(Δ); λS(Δ)} of 

                                                 
5     There is no need to make the α- and β -distinction here and we can simply use the term core, because α-

core = β -core always holds in an oligopoly (Zhao 1999).  In more general situations, one would have  

  vα(S) =  Max
xS

Min
y-S

Σ i∈Sπi(xS, y-S) < vβ (S) =  Min
y-S

Max
xS

Σ i∈Sπi(xS, y-S), 

which implies β -core ⊂α-core (Aumann 1959, Scarf 1971). 
6     The traditional definition of market structure is “the number and size distribution of firms” or the finest 

partition Δ0 = {(1), ..., (n)} (Bain 1959), which is now upgraded to “the number and size distribution of 

mergers” or a general partition Δ={S1, ...,Sk} of the firms (i.e., ∪Sj=N, Si∩Sj=∅, all i≠ j). 
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post-merger supply and split of postmerger profits7 (i.e., λS ≥0, Σ j∈Sλj=π~S(Δ)) for each S ∈ Δ. 

The two earlier preconditions can be similarly defined.  In particular, the non-empty 

core precondition requires that the split of each merger’s postmerger profits be in the 

merger’s core, or that each λS be in the core of the following normal form game 

ΓS(x~-S)  = {S, Zi, πi(xS, x~-S)},  (6)

where πi(xS, x~-S)=(a–Σj∈Sxj–Σ j∉S x~j–ci)xi, i∈S, are parameterized by outsiders’ fixed supply x~-S.  

It is useful to make three observations on the above two merger preconditions. First, 

both are only necessary conditions. So failing either or both will result in a merger failure, 

and meeting both will not guarantee a merger success. Second, the core for each merger S∈Δ 

is defined only for a fixed outsiders’ supply x~-S. Otherwise, the problem of dividing its joint 

profits would not exist. Third, the non-empty core precondition has failed for nearly two 

decades to be accepted by the previous industrial organization literature. This resulted from, 

the author believes, the following four misconceptions about cooperative game theory in 

general and the above core in particular. 

Misconception no. 1: Strategic form games are noncooperative games, hence they 

can’t be used to study cooperation. In most textbooks, normal form games have been called 

strategic form games, which inherently suggest that a normal form game is strategic or 

noncooperative (so Nash equilibrium is the only solution!). Whether a normal form game is 

cooperative or noncooperative depends on whether joint actions are available: it is 

noncooperative if no joint actions are available, cooperative if joint actions are available to 

                                                 
7     x~(Δ) is a quasi-hybrid solution (i.e., for each S∈Δ, 0≤Σ j∈Sx~j≤ zS, π~S(Δ)=Σ j∈Sπj(x~S, x~-S)≥ πS(yS; x~-S) for all 

0≤Σ j∈Syj≤ zS), and (x~(Δ),λ(Δ)) under the two preconditions is a hybrid equilibrium (Zhao 1991, 1992). This 

includes monopoly merger and Cournot equilibrium (for Δm={N} and Δ0={(1), ..., (n)}) as two special cases. 
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the grand coalition, and hybrid if joint actions are available to each coalition in a given 

partition (also called alliance structure or coalitional structure).8 

Misconception no. 2:  Cooperative games study cooperative behavior. Cooperative 

game theory studies coalitional rationality or strategic cooperation, it doesn’t study “being 

cooperative in the layman’s language”, which differs from its meaning in game theory. 

Players in cooperative games take joint actions (such as enforcing binding agreements for 

coalitions) to choose or negotiate outcomes that are desirable for all coalitions, including each 

singleton or individual player. In sharp contrast, players in noncooperative games are not 

allowed to take any form of joint actions (such as communications between players). 

Misconception no. 3: The noncooperative approach is central to cooperative game 

theory. Hence a theory of cooperative games is unacceptable unless it has a noncooperative 

foundation. This is falsely derived from two facts: unselfish or cooperative behavior has been 

observed in noncooperative situations (e.g., prisoner’s dilemma games), and confrontational 

or noncooperative behavior has been observed in cooperative situations or negotiations. A 

seemingly logical conclusion of these facts is that cooperative games need a noncooperative 

foundation, but the inferred conclusion is false and invalid because the observed behavior in 

                                                 
8     Another inherent problem is that it makes no distinction between choice and strategy. The strategies in 

strategic form games are just feasible choices, or sequences of actions/moves from beginning to end. Since a 

military strategy should involve a study of one’s goals and enemies’ moves, we may define a strategy in game 

theory as a rationalized selection of one’s choices. In this sense, players in a prisoner’s dilemma game have 

infinitely many strategies (e.g., undominated strategy, maxmin strategy, best-response strategy, and mixed 

strategies), although they have only two feasible choices.  

       Note that McDonald’s claim (1950), “an exact description of the nature of strategy has been wanting,” 

might still be and remain true, as our definition is open to debate and none of the masterpieces on strategies 

contain a formal definition. For example, the closest reference to (or meaning of) strategy is: “The highest 

form of warfare is to attack [the enemy’s] strategy itself ” in Art of War (Sun-Tzu 500 B.C.; see Kissinger 

2011, p. 28, for comments), “policy” in Principles of War (Clausewitz 1812; see McDonald 1950, p.12, for a 

summary), and “the general principles governing his choices” in von Neumann and Morgenstern (1944, p.49).  
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both facts are not what studied in game theory, and because one falsely equates, for example, 

the Israel-Palestine conflicts with conflicts among Israeli ministers in a cabinet meeting. So 

applying noncooperative approach (which allows no negotiation nor joint action) to 

cooperative problems (such as alliances or mergers, which allow negotiations and joint 

actions) is the same as adjusting the world to fit our theories. 

Misconception no. 4: The core in (4) is unacceptable because outsiders produce at 

full capacity z-S (see v(S)=Max{Σ i∈Sπi(xS,z-S)|xS} in (5)), which is not credible. No outsiders 

actually produce, nor they are required to produce, at full capacity. The core just requires that 

monopoly profits be split in such a way that no S receives less than v(S). The only drawback 

of using v(S) in (5) is that it makes the core possibly large. However, the largeness of the 

core strengthens, rather than weakens, the requirement that λ∈Core(ΓC) must hold. 

3.  Reasonable solutions for a Cournot oligopoly  

The reasonable solutions for our oligopoly (1) are the set of its stable hybrid solutions 

or precisely the set of stable partitions and payoffs of its partition function game (Thrall and 

Lucas 1963) given by 

ΓPF = {N, φ},  (7)

where for each partition or market structure Δ∈Π, φ(Δ)=π~(Δ)={φ(T,Δ)=π~T(Δ)|T∈Δ} is its 

unique postmerger profit vector. 

Given Δ and its merger contract (x~(Δ),λ(Δ))={(x~T,λT) |T∈Δ}, consider the deviation 

by a different merger S∉Δ. This implicitly assumes that firms in S could breakup old and 
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reach new binding agreements at the beginning of next virtual period.9  Let 

Π(S) = {B ∈Π | B = {S, T1, ..., Tm}} (8)

be the set of partitions that include S as a member. S has incentives to move to a new 

partition B∈Π(S) if φ(S,B)=π~S(B)>Σj∈Sλj(Δ).  Hence, "whether S∉Δ will deviate from Δ" or 

“whether a new merger S∉Δ will be formed” depends on two factors: i) its members’ current 

profits on the contract λ(Δ), and ii) its joint profits at the new partition B∈Π(S). 

In reality, merger contracts, although binding, usually have clauses allowing 

members to break up the deal under penalty and specifying how the remaining members will 

react to a breakup. Two popular reactions to breakups (Hart and Kurz 1983) are: i) remaining 

members remain loyal to each other and stay together as a smaller coalition, and ii) 

remaining members breakup into singletons. These are formally given as below: 

Bδ(S,Δ) =  {S, Tδ
1,  ..., T

δ
m(δ)}∈Π(S) (for loyal belief), and  

B γ(S,Δ) =  {S, Tγ
1,  ..., T

γ
m(γ)}∈Π(S) (for breakup belief), 

(9)

where for j = 1, …, m(δ), Tδ
j   = T /S = {i | i∈T,  i∉S} for some T∈Δ; and for i = 1, …, m(γ), Tγ

i  

= T for each T∈Δ with S∩T= ∅ , = {j} for each j∈T\S and each T∈Δ with S∩T ≠ ∅.  

As an example, for Δ={1,(2,3,4,5)} and S=(1,2), one has: Bγ(S,Δ)={(1,2), 3, 4, 5}, 

Bδ(S,Δ)={(1,2), (3, 4, 5)}. A third popular reaction is the cautious partition given by 

Bα∗(S,Δ) ≡ Bα∗(S) = {S, Tα*
1 ,  ..., Tα*

m(a*)}∈Π(S) (for cautious belief),  (10)

which solves Min{φ(S,B) |B∈Π(S)}. This partition is often called the worst partition, which 

is independent of the current partition Δ. Definition 1 below defines stable partitions. 

                                                 
9     This is similar to the virtual dynamics of tâtonnement process for reaching a competitive equilibrium or 

the process of reaching a Nash equilibrium in static normal form games. 
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 Definition 1: A partition Δ is stable under loyal (breakup, cautious) belief or δ-stable 

(γ-,α∗-stable) if it has a contract (x~(Δ),λ(Δ)) such that for all S∉Δ, Σj∈Sλj(Δ) ≥ φ(S,Bδ(S,Δ)) 

(≥ φ(S,Bγ(S,Δ)), ≥ φ(S,Bα∗(S))), where φ, Bδ, Bγ and Bα∗  are given in (7)-(10).    

 To put it differently, mergers in Δ will be formed in the δ-fashion (γ-, α∗-fashion) if 

no other merger S could make more profits by moving to Bδ(S,Δ) (Bγ(S,Δ), Bα∗(S)). Because 

all profitable deviations (i.e., breakups and mergers) are ruled out, such stable partitions or 

stable market structures are reasonable solutions for (1). For each market structure Δ, let 

Xδ(Δ), Xγ(Δ), and Xα∗(Δ)  (11)

denote the sets of its δ-,γ- and α∗-stable profit vectors. If Δ is the coarsest partition Δm={N}, 

the above sets become the δ-,γ- and α∗-core of the monopoly merger or (1) given by 

δ-Core=Xδ(Δm), γ-Core=Xγ(Δm), and α∗-Core=Xα∗(Δm),  (12)

which are all refinements of the core in (4).  Proposition 1 below summarizes the relationship 

among the above sets of stable profit vectors. 

 Proposition 1: Given (1), let its cores be given in (4) and (12), and for each Δ, let 

Xδ(Δ), Xγ(Δ), Xα∗(Δ) be given in (11). Then, under A0, the following two claims hold: 

(i) δ-Core⊂ γ-Core=α∗-Core  ⊂ Core(Γ)(= β-core = α-core), and 

(ii) Xδ(Δ)⊂ Xγ(Δ)⊂ Xα∗(Δ). 

By the proposition, δ-stability is stronger than γ-stability, which is stronger than the 

α∗-stability. By part (i) of the proposition, the α∗-core is a significant refinement of the α-core 

in linear oligopolies10, because the believed actions by outsiders are now credible (i.e., there 

                                                 
10     See Yong (2004) for e-core which assumes an efficient partition of N\S for outsiders. Let ve(S), vα∗ (S)and 

vδ (S) be the values of S (from Δm) under efficient-, cautious- and loyal-beliefs. By ve(S)≥ vα∗ (S) and ve(S) vδ (S) , 

one has: {δ-Core∪e-Core}⊂α*-Core⊂α-Core. See also Lardon (2012) for γ-core with capacity constraints, and 
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exist strategic interactions between each S and outsiders in N\S). 

4.  The most reasonable solution with three asymmetric firms 

The difference between γ- and α*-stability and disagreements over a final selection of 

stable solutions all disappear with three firms, so δ-stability yields the most reasonable 

solution for a three-firm oligopoly given by (a; c; z) = (a; c1, c2, c3; z1, z2, z3)∈R7
++.  

Our task now is to evaluate the δ-stability for each of the five partitions of N={1,2,3} 

over R7
++. We simplify the task to a two-dimensional problem with c1≤ c2≤ c3 under A0 by 

introducing two intermediate variables (keep in mind that firm 1 is the most efficient): 

ε2 = (c2-c1)/(a-c1)≥ 0, and ε3 = (c3-c1)/(a-c1)≥ 0, (13)

which represent firm 1’s relative cost advantages over firms 2 and 3. The larger the εi, the 

smaller a firm i. The usual assumptions imply ε2≤ε3≤ 0.5, so we only need to study one half 

of the half-unit square (above 450 line) in the ε2-ε3 space. By A0 or no binding capacities, 

firm sizes are uniquely determined by efficiency or cost differentials. 

The case of ε2 =ε3 =0 gives a symmetric model, a small ε3 represents small cost 

differentials (i.e., the smallest firm is not too small and the largest firm is not too large), a 

large ε2 represents large cost differentials (i.e., the two small firms are sufficiently small). 

Even with such simplification, the task would still have been impossible without the help of 

mathematical software (see (A27) for a taste of its complexity). Indeed, our polynomial 

equations are solved by Scientific WorkPlace, and the predictions have also been separately 

confirmed by numerical examples using Excel. Needless to say, the complexity is caused by 

                                                                                                                                                      
Lekeas (2013) for j-core which assumes that N\S is partitioned into j coalitions. 
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asymmetry, which has the offsetting advantage over symmetric models in that predictions 

under symmetry often collapse in the presence of asymmetry (see, for example, 

Stamatopoulos and Tauman 2009). 

The monopoly’s stability and optimality are characterized by comparing ε3 against 

the following two functions of ε2, respectively: 

ω1 = ω1(ε2) = {2− 1+8ε2-20ε2
2 }/4, and  

ω2 = ω2(ε2) =  (7+31ε2)/69. 
(14)

Here, the optimality of a partition is in the sense of second best, which has the maximal 

welfare (= total profits + consumer surplus) among the five partitions. 

ε 2 
0 

Figure 1 .  (a) The δ-stability of Δ m = {123}; (b) the optimal partitions for n = 3.  
          In both parts, the feasible region is in the area above the 450 line.   

7/38 ≈ .18 5/22 ≈ .23 1/2 = .5 

ΙΙΙ: Δ* = Δm  

ΙΙ:  Δ* = Δ1 or Δ2  

 Ι : Δ* = Δ0  
0.10 

0.18 

0. 5 

450 

ω2(ε2) 

ε 3 

ω1(ε2)  
 

ε 2 

0 1/6 ≈ .17 

0.25 

1/2 = .5 

0. 5 

450 

ε 3 Part (b) Part (a) 

 ΙΙ:  δ-stable 
 

always  δ-stable 
 

 Ι:    
δ-unstable 
 

 
Proposition 2:  Under A0, the following two claims hold: (i) Δm = {123} is always 

α*-stable;  (ii) Δm  is δ-stable ⇔ ε3 ≥ ω1(ε2), and ε3 ≥ ω1(ε2) always holds if ε2 ∈ [1/6, 1/2]. 

By Proposition 2, monopoly will be formed in δ–fashion if firms 2 and 3 are 

sufficiently small (e.g., ε3≥ ε2≥1/6), and it will be formed in α*–fashion but not δ–fashion if 
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firms 2 and 3 are sufficiently large (i.e., ε3<ω1(ε2)), which are illustrated by Regions I and II 

in Figure 1a. In particular, Δm will not be formed in δ–fashion in symmetric markets (i.e., 

ε2=ε3=0).11 

Proposition 3: Under A0, the optimal partition Δ* and maximal welfare W* are:  

                Δ*=
⎩
⎨
⎧Δm= {123}                           if 5/22  ≤ ε2 ≤ 1/2

Δ1={1;23} or Δ2={13;2}   if 7/38<ε2<5/22 or if ε2≤ 7/38 & ε3≥ω2

Δ0 = {1; 2; 3}                      if ε2 ≤ 7/38; ε3  < ω2;

(15)

              W* =

⎩
⎨
⎧3(a-c1)2/8                             if 5/22  ≤ ε2 ≤ 1/2

(a-c1)2(8-8ε2+11ε22)/18      if 7/38<ε2<5/22 or if ε2≤7/38 & ε3≥ω2

(a-c1)2[15-10(ε2+ε3)-18ε2ε3+23(ε22+ε32)]/32   if ε2≤ 7/38; ε3< ω2.
   (16)

Propositions 2 and 3 lead directly to the following corollary: 

Corollary 1:   If ε2 ≥ 5/22, Δm = {123} is both δ-stable and socially optimal.   

Hence, monopoly is both δ–stable and optimal if cost savings are sufficiently large 

(i.e., ε2≥5/22>1/6). In such cases, no anti-trust regulation is needed as monopoly is the best 

market structure. This is illustrated in Figure 1b and in Example 1 below. 

Example 1: For (a; c; z) = (6; 0.5, 1, 1.2; 2, 2, 2), one has: ε2 = 0.09, ε3 = 0.127, ω1 

= 0.19, ω2 = 0.14. By ε3<ω1 and Proposition 2, Δm is δ-unstable. By ε2<7/38 and ε3<ω2, and 

by (15), Δ0 is optimal.  Let costs be increased to c=(0.5, 1.9, 2) and (a, z) be unchanged, 

then ε2 = 0.26 > 5/22. By Corollary 1, monopoly now is both δ-stable and optimal. 

Our results are proved using the minimum no-blocking payoff (MNBP) method for 

core existence (Zhao 2001): Core(Γ ) ≠ ∅  ⇔ v(N)≥ MNBP, where MNBP is given by 

                                                 
11     Rajan (1989) reported such symmetric case with n=3 and n=4.   
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MNBP(Γ) = 
⎩⎪
⎨
⎪⎧  Min Σxi

  subject to  x ∈ Rn
+;Σi∈Sxi ≥ v(S) for all S ≠ N.

  (17)

Computing the above MNBP allows us to analyze the effects of merging costs (or costs of 

coalition formation) on the stability of each partition. For each S⊆ N, let MCS≥0 denote its 

merging costs. Since an analysis of MCS > 0 for S≠N requires a separate study, I only study 

the effects of monopoly merging costs under the following assumption: 

A1 (Assumption 1):    MCN ≥ 0, and MCS = 0 for all S ≠ N.   

Corollary 2: Let v(N), MNBPδ and MNBPα* be given in (A5)-(A13) in appendix. 

Under A0-A1, Δm={123} is α*-(δ-)stable ⇔ MCN ≤ [v(N)-MNBPα∗] (≤ [v(N)-MNBPδ]). 

Hence, the difference between monopoly’s profits and its MNBP defines an upper 

bound for its merging costs above which monopoly merger will not be formed, see Zhao 

(2009) on the estimation of such merging costs. The MNBP method also allows us to study 

monopoly’s external stability or analyze whether a monopoly will remain stable in face of 

outside perturbations. 

Corollary 3: Under A0-A1, an α*-(δ-)stable monopoly remains as a stable monopoly 

for small perturbations in market parameters ⇔  MCN<[v(N)-MNBPα∗] (<[v(N)-MNBPδ]).12 

In other words, a monopoly merger will unravel in face of small perturbations if it is 

unstable or if it is stable with MCN=[v(N)-MNBPα∗] (=[v(N)-MNBPδ]). It is straightforward 

to extend Corollaries 2 and 3 on merging costs and sensitivity to non-monopoly partitions, 

we therefore will skip such extensions in the rest of this paper. 

                                                 
12     Precisely, a stable Δm in (a, c, z) = t∈R7

++ remains stable against small perturbations if there exists ε >0 

such that Δm is stable for all t’∈ Bε(t), where for t∈ R7, Bε(t) = {y∈R7 | || t–y || < ε} and || t ||2 = Σt2
i. 
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We now study the stability of Δ1={1;23}, Δ2={13;2}, and Δ3={12;3}. Because the 

α*-, γ- and δ-stabilities for each of these three partitions are identical, there is no need to 

make such distinction here. The outsiders’ or the single firms’ postmerger profits at each Δ i 

(i = 1, 2, 3) are equal to 

π~1(Δ1) = (a-c1)2(1+ε2)2/9,   π~2(Δ2) = (a-c1)2(1-2ε2)2/9, and 

π~3(Δ3) = (a-c1)2(1-2ε3)2/9. 
(18)

Denote the merger’s gain for each S = {12}, {13} and {23} by  

                     d23=π~23(Δ1)–(π2+π3), d13=π~13(Δ2)–(π1+π3), d12=π~12(Δ3)–(π1+π2); (19)

and denote the efficient member’s share of the above gains by t∈ [0, 1]. Then, the three 

dimensional postmerger profit vector λ(t) for each Δ i can be given as 

for Δ1, λ1  = π~1(Δ1), λ2  = π2 + t d23, and λ3  = π3 + (1-t) d23;  

  for Δ2, λ1  = π1 + t d13, λ2  = π~2(Δ2), and λ3  = π3 + (1-t) d13; and   

  for Δ3, λ1  = π1 + t d12, λ2  = π2 + (1-t)d12, and λ3  = π~3(Δ3). 

(20)

The stability of each Δ i requires two preconditions: its merger S is profitable (i.e., 

dS >0) and monopoly is unprofitable due to high merging costs (i.e., (πm-MCN)<Σλj). Under 

these two preconditions, the stability of each Δ i is determined by the magnitude of cost 

differential εj and by the size of the share t, which are captured by a critical level μi(εj, t) 

given in appendix: μ1(ε2,t) in (A27), μ2(ε2,t) in (A29), and μ3(ε3,t) = μ2(ε3,t). 

Proposition 4:  Given (a,c,z)∈R7
++, suppose Σλj>(πm-MCN) and dS >0 for each S = 

12, 13, 23. Under A0 and A1, the following three claims hold: 

(i) Δ1 = {1; 23} with λ(t) is stable ⇔ ε3≤ μ1(ε2,t); ε3 ≤ μ1(ε2,t) holds if 0≤ ε2 ≤ 1/11; 

and ε3 > μ1(ε2,t) holds if 113/316< ε2 ≤ ½.  
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(ii) Δ2 = {13; 2} with λ(t) is stable ⇔ ε3 ≤ μ2(ε2,t).  Let e2(t) = (2t-9)/[14(2t-3)]. 

Then, ε3≤ μ2(ε2,t) holds if 0≤ ε2 < 1/11; ε3> μ2(ε2,t) holds if e2(t)< ε2 ≤ ½.  

(iii) Δ3 = {12; 3} with λ(t) is stable ⇔ ε2≤ μ3(ε3,t); and it holds if 0≤ ε3≤ 3/14.  

To see these results intuitively, consider Δ1={1;23} in part (i). Because Δ0 and Δm 

are ruled out by preconditions and Δ2 ={13,2} has the same profit vector of Δ1 , one only 

needs to evaluate the deviation to Δ3={12,3}, when S={12} forms after the breakup of 

T={23}. In this light, part (i) is transparent: since a larger share t by firm 2 or a smaller ε3 

makes the formation of S={12} less profitable, Δ1 with λ(t) will be stable with a smaller ε3 

or a larger t (i.e., ε3≤μ1(ε2,t), note μ1(ε2,t) is increasing in t).  

ε 2 0  

Fig u r e  2 .   ( a ) S ta b il it y  o f Δ 1:  fe a s ib le  re g io n  is  M ax { ε2 ,  θ 6 }≤  ε3  ≤  θ 0 ;  ( b) s t a b ilit y  
o f Δ 2 : fe a s ib le  re g io n  is  M ax { ε2 ,  θ 4 }≤  ε3  ≤  θ 0 .  In  b o th  c as es , t  is  s e t  a t  0. 
 
                                  

1 /1 1  ≈ .0 9  
0 .5  

ε 3 

0 .38 
0 .36 
0 .33 
 

θ 0 (ε2 )  
μ1 (ε2 ,0) 

1 1 3 /3 1 6  ≈ .3 6  

θ 6 (ε2 )  

4 5 0  

I:  s ta b le 

 II:  u n s ta b le  

ε 2 
0  1 /1 1  ≈ .0 9  

0 .5  

ε 3 

0 .214 

0 .51 
 
0 .5 
 

0 .36 
0 .33 
 

θ 0 (ε2 )  
μ2 (ε2 ,0) 

0 .2 1 4  = e 2 (0) 

θ 4 (ε2 )  

4 5 0  

 I:  s ta b le 

 II: u n s ta b le  

P a rt (a )  P a rt (b )  

1 /1 5  
1 /1 5  

0 .51
0 .5 
 

 Inverting t in ε3=μ1(ε2,t) yields 

                     t1(ε2, ε3)  = −
1
2 

7ε3
2-97ε2

2 +54ε2ε3+14ε3+22ε2-9
 45ε3

2+13ε2
2 -54ε2ε3-18ε3+14ε2+1, (21)

which leads to an alternative characterization for the stability of Δ1 given below: 

Corollary 4:  Let ε2∈ [1/11, 113/316].  Then, Δ1 with λ(t) is stable ⇔ t ≥ t1(ε2,ε3).  
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Hence, internal cooperation represented by the share t  is a key determinant of merger 

stability. Region I in Figures 2a, 2b and 3 represent, respectively, the set of markets in which 

Δ1, Δ2 and Δ3 are stable. By the two preconditions, the feasible region is bounded by θ0 (or 

θ2) from above and the 450 line and  θ6 (or θ4) from below.13 The stability of Δ1 is also 

illustrated by Example 2 below:  

Example 2: Let (a;c;z)=(6;0.5,1.05,2.46;3,3,3), then ε2=0.1, ε3=0.356, (π1,π2,π3)  

=(4.01,2.11,0.002),(π~1,π~23)=(4.067,2.152), t1(ε2,ε3)=0.12. Hence, t=0.1 or λ(0.1)=(4.067, 

2.114,0.038) is unstable, and t=0.2 or λ(0.2)=(4.067,2.118,0.034) is stable. If c3 rises so ε3 

= 0.358, then t1(ε2,ε3) becomes t1(0.1,0.358)=0.45, so t=0.2 or λ(0.2)  is now unstable. 

 

 

Fi gu re  3.   T he   St a bility  o f Δ3 : f e a sible  r e gion  is ε2  ≤  ε3  ≤  Min {θ0 ,θ2 } , t  is set  at  0,  an d μ 3( ε3 ,0) 
is r e pr e se nt e d by  μ5 ( ε2 ,0 )  a n d μ5 0( ε2 ,0) .   

 

ε2  

 0  1 /1 1  

0 .5 

ε 3 

 
0 .5 

.2 93 

θ 0 (ε2 )  

μ 5 0( ε2 ,0 ) 

.1 7 9  

θ 2 (ε2 )  

4 5 0  

 II : 

.2 1 4  

3 /14  ≈.2 14 

un st a ble 

μ 5 ( ε2 ,0 ) 

 I : st a ble 

0 .36 
0 .33 
 

 
Finally, one now knows that the original Cournot structure Δ0 = {1; 2; 3} is stable if 

and only if none of the four mergers are profitable, which is given by the corollary below: 

Corollary 5:   Δ0  = {1; 2; 3}  is stable if and only if the following (22) holds:  

                                                 
13    Figure 3 shows the two solutions of ε3 in ε2 = μ3(ε3, t): ε3 = μ5(ε2, t)≥ ε3= μ50(ε2, t), and the minimum of 

μ3(ε3, t) is ε*
2(t)=Min{μ3(ε3, t)|ε3}=μ3(ε*

3(t), t), where ε*
2(0)=0.179 and ε*

3(0)=0.293. Then, part (iii) becomes: 

λ(t) is stable if (a) ε2≤ε*
2(t), or (b) ε2>ε*

2(t) ,ε3≤ε*
3(t),ε3≤ μ50(ε2, t); or (c) ε2>ε*

2(t) , ε3>ε*
3(t), ε3 ≥ μ5(ε2, t). 
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                     θ2 < ε3 ≤ θ4, and (πm-MCN) < (π1 + π2 + π3). (22)

 As shown in Figure 4, Δ0 will always be unstable if ε2≥1/14, because θ4<θ2 (or 

d13>0) holds for all ε2∈ [1/14, 1/2]. 

ε2 
0 

Figure 4.  Merger profitability for S = 12, 13 and 23,  and the relations among six intermediate variables.   

1/14 ≈ .07 4/53 ≈ .08 1/11 ≈ .09 16/77 ≈ .21 5/22 ≈ .23 
1/2 = .5 

d12 > 0  ⇔  ε3 < θ2 d12 < 0 d12 >  0 

d13 > 0 ⇔ ε3 > θ4   d13 >  0 

d23  > 0   ⇔   ε3 >  θ6 

θ4      θ6     θ0    

   θ2      ε2              ρ1    

θ4      θ6     θ0    

   θ2      ε2              ρ1    

θ4           θ6     θ0    
ε2    ρ1     θ2   

θ4      θ6      θ0    

ε2     θ2        ρ1    

θ4     θ6           θ0    

ε2    θ2        ρ1    
θ4           θ6     θ0    

ε2     θ2        ρ1       θ4           θ6   θ0    

ε2    ρ1           θ2   

  θ4              θ6   θ0    

 ρ1      ε2     θ2   
   ρ5 ≈ .22 

p(x) = (a-Σxj),  Ci(xi) = ci xi; 
ε2 = (c2-c1)/(a-c1),  ε3 = (c3-c1)/(a-c1); 
θ0 = (1+ε2)/ 3,    θ2 = 15ε2-1,  
θ4 = (1+ε2)/ 15,  θ6 = (1+13ε2)/ 15;  
ρ1 = (5-11ε2)/11, 
ρ5 = (125-3×891/2)/436 ≈ 0..22 

   

To summarize, monopoly will be the solution if it is profitable and the two small 

firms are sufficiently small (i.e., ε2 is large). When monopoly is ruled out by high merging 

costs, a profitable duopoly will be the solution if cost differentials are small (i.e., ε3 is small) 

and two other technical conditions hold. Finally, Cournot equilibrium will be the solution if 

none of the four mergers is profitable. 

5.  Conclusion and discussion 

The above analysis has shown that the most reasonable oligopoly solution is one of 

the solutions for its partition function game (i.e., one of its stable hybrid solutions) or a set of 
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simultaneous mergers that are free of subsequent takeovers or spin-offs.  

With three firms, a δ-stable partition based on loyal belief is indisputably the most 

reasonable solution. Applying the MNBP method for core existence, it has characterized how 

this solution is determined by cost differentials and by merging costs: monopoly is the 

solution if its merging cost is low and cost differentials are large. When monopoly is ruled 

out by high merging costs, a profitable two-member merger is the solution if its larger 

member’s share of the merger’s gain are large, and cost differentials are small. The original 

Cournot equilibrium is the solution if none of the four mergers is profitable.  

Readers are encouraged to apply our technique to study the most reasonable solutions 

in more general oligopolies. In particular, readers are reminded that previous results in 

symmetric oligopolies need to be extended to asymmetric oligopolies, because “Cournot’s 

procedure may be excused by invoking the privileges of the pioneer. But those who dealt with 

the problem after him should realize that they did not gain but lose something by making the 

same [symmetric] assumption” (Schumpeter 1954, chapter 7, part IV). 

APPENDIX  

The proof of Proposition 1 follows from vδ(S)≥ vγ(S)≥ vα∗(S)≥ v(S). Lemmas 1 and 2 

below provide the MNBP and profitability in Propositions 2-4. 

Let Δ0 = {1; 2; 3}, Δ1 = {1; 23}, Δ2 = {13; 2}, Δ3 = {12; 3}, Δm = {(1, 2, 3)}, and πi = 

πi(x̂)=vi and π~(Δ)={π~S(Δ)|S∈Δ} be pre- and postmerger profits. For (a; c1,c2,c3; z1,z2,z3) 

∈R7
++,  let ε2 and ε3 be given by (13),  θi (i = 0, 2, 4 and 6) be defined as 

θ0 =  
1+ε2

3 ,  θ2 =  15ε2 –1,  θ4 =  
1+ε2
15 ,  θ6 =  

1+13ε2
15  , and (A1)

d12 = π~12(Δ3)–( π1+π2), d13 = π~13(Δ2)–( π1+π3), d23 = π~23(Δ1) –(π2+π3) (A2)

be the gains of a merger S for S = 12, 13 and 23.  
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Lemma 1: (I) d12 >0 ⇔  ε3 <θ2; (II)  d13 > 0 ⇔  ε3 > θ4; and (III) d23 > 0 ⇔  ε3 > θ6. 

As shown in Figure 4, a merger is profitable⇔ its cost savings are sufficiently large  

(note a larger ε2 or ε3 represents larger cost saving).  Let ρi, vi and yi be given by  

                   ρ0 = -1+ 2-2ε2+5ε2
2, ρ1 = (5-11ε2)/11, ρ2 = -1+27ε2- 4 -3ε2+42ε2

2, 

       ρ3 = 
19+27ε2+4 17-125ε2+218ε2

2

89 , ρ4 = 
19+27ε2-4 17-125ε2+218ε2

2

89 , 

                   ρ5 = 
125-3 89

436  ≈ 0..22; 

(A3)

v1 = π1 = (a-c1)2(1+ε2+ε3)2/16,  v2  = π2 = (a-c1)2(1-3ε2+ε3)2/16,  

v3  = π3 = (a-c1)2(1-3ε3+ε2)2/16; 
(A4)

            v12 =  (a-c1)2(1+ε3)2/9, v13 =  vδ
1  = π~1(Δ1) = (a-c1)2(1+ε2)2/9,  

v23 = vδ
2 = π~2(Δ2) = (a-c1)2(1-2ε2)2/9,   vδ

3 = π~3(Δ3) = (a-c1)2(1-2ε3)2/9, and 

            v123 = v(N) = (a-c1)2/4; 

(A5)

y1 = (v12 +v13 -v23)/2, y2 = (v12 +v23 –v13)/2, y3 = (v13 +v23 –v12)/2. (A6)

Let the MNBP against α∗-and δ-deviations from Δm be given by 

                     MNBPα∗  = {Min Σxi | x∈Rn
+ ; Σi∈S xi ≥ φ(S, Bα∗(S)), all S ≠ N}, and (A7)

                     MNBPδ  = {Min Σxi | x∈Rn
+ ; Σi∈S xi ≥ φ(S, Bδ(S,Δm)), all S ≠ N}, (A8)

where φ(S,Δ), Bα∗(S)={S,(i1), ...,(in-k)} and Bδ(S,Δm)={S,N/S} are given in (7)-(10). 

Lemma 2: Under parts (ii) and (iii) of A0, (A7) and (A8) are given by:  

MNBPδ =   
⎩⎪
⎨
⎪⎧v13 + v23 + vδ

3             if ε3 ≤ ρ0

 v12 + vδ
3                       if ε3> ρ0;

 (A9)

For ε2 ≤ 1
14,    MNBPα∗  =  

⎩⎪
⎨
⎪⎧v1+v2+v3  if ε3 < θ4

v2+v13      if ε3 ≥ θ4;
 (A10)

For 1
14 ≤ ε2 ≤ 

1
11,   MNBPα∗  =  v2+v13; (A11)
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For ε2 ≥ 1
11, ε3 ≤θ6, MNBPα∗  =  

⎩⎪
⎨
⎪⎧

v2+v13    if 
1

11 ≤ ε2 ≤ 
16
77

v2+v13    if ε3≤ ρ1; 
16
77≤ ε2≤ 

5
22

v3+v12    if ε3> ρ1; 
16
77≤ ε2≤ 

5
22

v3+v12    if ε2 ≥ 
5

22;

 (A12)

For ε2≥ 1
11, ε3>θ6, MNBPα∗  =  

⎩
⎪
⎨
⎪
⎧

⎩⎪
⎨
⎪⎧v2+v13     if ε3≤ ρ2

y1+y2+y3 if ρ2<ε3<ρ3

v3+v12     if ε3≥ ρ3

for ε2≤ 
16
77   

 

⎩⎪
⎨
⎪⎧y1+y2+y3 if ρ4 ≤ ε3 ≤ρ3
v3+v12    if ε3<ρ4 or ε3>ρ3

for 16
77 ≤ε2≤ ρ5

 
v3+v12                      for ε2> ρ5  ≈ 0..22.        

 (A13)

The following expressions are used in proofs for Lemmas 1-2 and Propositions 2-4, 

where π~12(Δ3) = v12, π~13(Δ2) = v13, and π~23(Δ1) = v23 (see (18) or (A5)).  

vα∗
1  = π1 = (a-c1)2(1+ε2+ε3)2/16,   vα∗

2  = π2 = (a-c1)2(1-3ε2+ε3)2/16, 
vα∗

3  = π3 = (a-c1)2(1-3ε3+ε2)2/16; 

vδ
1 = (a-c1)2(1+ε2)2/9,  vδ

2 = (a-c1)2(1-2ε2)2/9,  vδ
3  = (a-c1)2(1-2ε3)2/9; 

v12 = vα∗
12 = v δ

12 = (a-c1)2(1+ε3)2/9, v13 =vα∗
13 =v δ

13 =vδ
1 = (a-c1)2(1+ε2)2/9,  

v23 = vα∗
23 = v δ

23 = vδ
2 = (a-c1)2(1-2ε2)2/9. 

(A14)

Proof of Lemma 1:  Consider first S = 12.  Let d12 = π~12(Δ3) – ( π1+π2).  (A14) leads to 

  d12(ε3) =  (a-c1)2 (1+ε3-3ε2)(15ε2-1-ε3) /72. 

By A0, (1+ε3-3ε2) > 0.  Hence,  d12 > 0 ⇔  ε3 < θ2, which is given by  

θ2 =  15ε2-1. (A15)

Now consider S = 13.  Let d13 = π~13(Δ2) – ( π1+π3).  (A14) leads to 

d13(ε3) = (a-c1)2 (1+ε2-3ε3)(15ε3-1-ε2)/72. 

By (1+ε2-3ε3) > 0, d13 > 0 ⇔  ε3 > θ4, which is given by 

θ4 =  (1+ε2)/5. (A16)

 Finally,  consider S = 23.  Let d23 = π~23(Δ1) – ( π2+π3).  By (A14), one has 
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  d23(ε3) =  
5(a-c1)2

8  (
1+ε2

3  - ε3)(ε3-
1+13ε2

15 ) = 
5(a-c1)2

8  (θ0-ε3)(ε3-θ6). 

By (θ0-ε3) > 0, d23 > 0 ⇔  ε3 > θ6, where θ0 and θ6 are given by 

θ0 =  (1+ε2)/3;  θ6 =  (1+13ε2)/15. (A17)

This completes the proof for Lemma 1.        Q.E.D 

The following relations (see Figure 4) are useful in proving Lemma 2.  

ε3 ≥ θ2  if ε2 ≤ 1/14; ε3 < θ2 = 15ε2-1 if ε2 > 1/11; (A18)

ε3 > θ4 = (1+ε2)/5  if ε2 > 1/14; (A19)

θ4 < θ6 ≤ θ0;   ε2 ≤ ε3 ≤ θ0;  and ε2 ≤θ6. (A20)

Proof of Lemma 2:  I first compute MNBPδ.  There are six constraints: x1
 ≥ vδ

1, x2
 ≥ vδ

2, x3
 ≥ 

vδ
3 ;  x1+ x2

 ≥ v12, x1+x3
 ≥ v13, x2+x3

 ≥ v23.  By vδ
1 = v12, vδ

2 = v23, the problem becomes:  

MNBPδ = Min { x1+x2
 +x3| x1

 ≥ vδ
1, x2

 ≥ vδ
2, x3

 ≥ vδ
3 ;  x1+ x2

 ≥ v12}, (A21)

of which the minimum value is equal to  

vδ
3  + Max {vδ

1+ vδ
2, v12}. (A22)

Let  

d(ε3) = vδ
1 + vδ

2- v12 = (a-c1)2[(1+ε2)2+(1-2ε2)2-(1+ε3)2]/9. 

By d’’< 0, d is ∩-shaped.  d(ε3) = 0 has two roots: μ1 <  0 < μ2, where μ2 is given by 

μ2 = ρ0 = -1+ 2-2ε2+5ε2
2. 

Hence, Max{vδ
1+vδ

2, v12} = vδ
1+vδ

2 if ε3≤ρ0, v12 if ε3>ρ0. Then, (A14), (A21)-((A22) lead to 

(A9).  

I only provide an outline for calculating MNBPα∗ , because complete computation like 

those for (A9) would make the paper too long.  Figure 4 illustrates all the sub-cases. 

Case 1. ε2 ∈ [0, 1
14].  By Lemma 1, d12 ≤ 0, so only five constraints are left:  

x1
 ≥ v1 = vα

1,  x2
 ≥ v2 = vα

2,  x3
 ≥ v3 = vα

3 ;   x1+x3
 ≥ v13,   x2+x3

 ≥ v23.   

Let  h1 = v13–v1, h2 = v23–v2, one has d(ε2,ε3) = max{h1, h2}= h1, and v3 ≥ d(ε2,ε3) ⇔ ε3 ≤ θ4.  
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By MNBPα∗  = v1 + v2 + max {v3, d(ε2, ε3)},  MNBPα∗  = v1 + v2 + v3, if ε3 < θ4, and MNBPα∗  = 

v2 + v13  if ε3 ≥ θ4.  This proves (A10). 

Case 2. ε2 ∈ [ 1
14, 4

53].  One has θ4 ≤ ε2 ≤θ2 < θ6.  If ε3 ≥ θ2, then d12 ≤ 0.  By Case 1, 

MNBPα∗  = v2 + v13.  If  ε3 < θ2< θ6, then d23 ≤ 0.  So the constraint x2+x3
 ≥ v23  can be removed.  

Using similar steps as in Case 1, one can show MNBPα∗  = v2 + v13.     

Case 3. ε2 ≥ 4
53, and ε3 ≤ θ6. By d23 ≤ 0, x2+x3

 ≥ v23  is removed. Similar to Case 2, and 

by d13 > 0, one can show MNBPα∗  = v2 + v13 if ε3 ≤ ρ1, and = v3+v12 if ε3> ρ1.  One can also 

show that 4
53 ≤ ε2 ≤ 

16
77 implies ε3≤ ρ1, and ε2 ≥ 

5
22 implies ε3> ρ1. 

Case 4. ε2 ≥ 4
53, and ε3 ≥ θ2 > θ6.  This can only occur for ε2 ∈ [ 4

53, 1
11].  By Case 1, d12 

≤ 0, and ε3 ≥ θ4, MNBPα∗  = v2 + v13.  By Cases 2-3, one gets (A11) and (A12).    

Case 5. ε2 ≥ 4
53, and θ2 ≥ ε3  > θ6.  One has d12 > 0, d13 > 0, d23 > 0.  Note at most one of 

x1
 ≥ v1, x2

 ≥ v2,  x3
 ≥ v3 can be binding.  First solving each of the three cases: Case 5.1, x1 = 

v1; Case 5.2, x2 = v2; Case 5.3, x3 = v3.  Now solve Case 5.4, x1>v1, x2>v2, x3>v3.  In case 

5.4, one must have x1+x2= v12, x1+x3= v13, and x2+x3
 = v23.  Solving these equations, one gets  

y1, y2, y3.  By checking  yi > vi, and using Cases 5.1-5.3, one can get (A13).   Q.E.D     

Proof of Proposition 2:  Part (i).  For each of the values of MNBPα∗ , one can show v(N) > 

MNBPα∗ .  Now consider part (ii).  If  ε3 ≤ ρ0, d = v(N)−MNBPδ  is given by 

d(ε3)  = (a-c1)2 [
1
4 - 

(1+ε2)2+(1-2ε2)2 +(1-2ε3)2

9  ]. 

Using d’’< 0 and solving the two roots μ1 < μ2 for d(ε3) = 0, one has: 

d > 0 ⇔ ω1≤ ε3 ≤ ρ0, where  ω1 = μ1= 
1
2-  

1+8ε2-20ε2
2

4  ≤ ρ0. (A23)

If ε3 > ρ0, d  is given by 

d(ε3)  = (a-c1)2 [
1
4 - 

(1+ε3)2+(1-2ε3)2

9  ] = 
(a-c1)2

36  (1+10ε3) (1-2ε3) >0.  

Using  (A23), one gets  d > 0 ⇔ ω1 ≤ ε3, which completes the proof of part (ii).   Q.E.D 

Proof of Proposition 3:  Since Δ1 = {1; 23} and Δ2 = {13; 2} have identical welfare, Δ2 can 
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be ignored.  First, I evaluate six cases below.  

(1) Δ0 →Δ3.  Let d1(ε3) = W3-W0.  Using d1(ε3)’’ < 0 and solving d1 = 0, one can show: 

d1(ε3) ≥ 0 ⇔ ε3 ≤ σ1 = (-7+69ε2)/31, ε3<σ1 if ε2>13/44, and ε3 > σ1 if ε2 < 7/38; 

   (2) Δ0→Δ1. d2(ε3) = W2-W0 leads to: d2(ε3) ≥ 0 ⇔ ε3 ≥σ2; ε3>σ2 if ε2> 7/38, where  

σ2 = ω2 =  (7+31ε2)/69; (A24)

 (3) Δ3 →Δ1. d3(ε3) = W1-W3  leads to: d3(ε3) ≥ 0 ⇔ ε3 ≤ σ3 = (-ε2 + 8/11), ε3≤ θ0 < σ3 if 

ε2 < 13/44, and ε3≥ε2>σ3 if ε2>4/11; 

   (4) Δ1 →Δm. d4(ε2) = Wm – W1 leads to d4(ε2) ≥ 0 ⇔ ε2 ≥ σ4 = 5/22; 

   (5) Δ0 →Δm. d5(ε3) = Wm–W0 leads to: d5(ε3) ≥ 0 ⇔ σ5 ≤ε3 ≤ σ6, d5 < 0 if ε2 < σ7 = 

5/14- 23/28 ≈ 0.19, and d5 > 0 if ε2> 5/22, where σ5 and σ6 are given by   

                σ5=(5+9ε2-2 -11+80ε2-112ε2
2)/23, σ6=(5+9ε2+2 -11+80ε2-112ε2

2)/23; (A25)

(6) Δ3 →Δm.  d6(ε3) = Wm-W3 leads to d6(ε3) ≥ 0 ⇔ ε3 ≥ 5/22. 

Second, comparing cases 1-6 on [0, 0.5] and picking up the maximal W, one gets: W* = Wm 

if ε2> 5/22; =W1 if 7/38< ε2≤ 5/22; =W1 if ε2≤ 7/38 and ε3 ≥ ω2; =W0 if ε2≤7/38 and ε3 <ω2.

           Q.E.D     

Proof of Proposition 4:  Part (i)  Consider Δ1 = {1; 23} and y with y 1 = v13, y 2  = v2+ td23, and 

y3 = v3+(1-t)d23.  By d23 > 0 (i.e., ε3 > θ6)  and the definition of y, y ∈Y(Δ1) = Yα∗(Δ1) = Yδ(Δ1) 

= { y | y1≥ vδ
1 = v13, y2 ≥ v2, y3 ≥ v3, y1 + y2 ≥ v12, y1 + y3 ≥ v13,  y2 + y3 ≥ v23} is equivalent to   

d(ε3) =  v13 +v2 + t d23-v12≥ 0. (A26)

Note d’’ < 0 (i.e., d  is ∩-shaped), and d(ε3) = 0 has two roots: 

μ1(ε2,t) = 
-14 -54ε2+36t(1+3ε2)+8 7+14ε2+88ε2

2+t(34-244ε2+352ε2
2)+9t2(1-4ε2+4ε2

2) 
2(7+90t) , 

μ10(ε2,t) = 
-14 -54ε2+36t(1+3ε2)-8 7+14ε2+88ε2

2+t(34-244ε2+352ε2
2)+9t2(1-4ε2+4ε2

2) 
2(7+90t) .

(A27)

It can be checked that the following three claims hold:    

μ10(ε2,t)<θ6; θ0≤μ1(ε2,t)⇔ε2≤1/11; and θ6≤μ1(ε2,t)⇔ε2≤113/316. (A28)

Therefore, by (A28), by the  ∩-shape of d(ε3), and by θ6 ≤ ε3≤ θ0, one has      
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   d(ε3) =  
⎩
⎨
⎧        > 0                      if ε2 ≤ 1/11

 ≥ 0 ⇔ ε3 ≤ μ1(ε2; t)   if 1/11 < ε2 < 113/316

        < 0                      if ε2 ≥ 113/316;
 

which leads to part (i).    

The above results have been confirmed by evaluating t = 1 and 0 separately. The 

proofs for parts (ii)-(iii) are similar.  In particular, μ2(ε2, t) for Δ2 in part (ii) is:    

             μ2(ε2, t) = 
-14+18ε2+36t(1+ε2)+8 7-28ε2+37ε2

2+t(34-256ε2+430ε2
2)+9t2(1+2ε2+ε2

2) 
2(7+90t) . (A29)

Note the formula for (iii) is given by that for (ii), after switching ε2 and ε3.   Q.E.D     
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