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Abstract

We consider the standard mechanism design environment with linear utility but with-

out monetary transfers. We �rst establish an equivalence between deterministic, domi-

nant strategy incentive compatible mechanisms and generalized median voter schemes.

We then use this equivalence to construct the constrained-e�cient optimal mechanism

for an utilitarian planner.
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1 Introduction

We study dominant strategy incentive compatible (DIC) and deterministic mechanisms1 in

a social choice setting where agents are privately informed and have linear utility functions

over several alternatives, but where monetary transfers are not feasible. The absence of

monetary transfers weakens the implication of Pareto e�ciency: with monetary transfers,

Pareto e�ciency requires that the allocation rule maximize the sum of the agents' expected

utilities; without monetary transfers, the set of Pareto e�cient allocation is much bigger and

therefore, in practice, one needs to choose among e�cient mechanisms based on additional

criteria.

Although deterministic, DIC mechanisms are described here by a function of several con-

tinuous variables satisfying complex constraints, our �rst main result shows how the problem

of �nding optimal mechanisms - that maximize some given social welfare functional that may

depend on preference intensities - reduces to the problem of �nding K non-negative constants

adding up to n � 1, where K is the number of alternatives and n is the number of agents.

Our second main result focuses on social welfare maximization and o�ers, under standard

assumptions on the distribution of types, precise formulae for these constants.

The present analysis combines insights from two important strands of the literature:

1. On the one hand, the private values model with quasi-linear utility and monetary

transfers serves as the workhorse of a very large body of literature that focuses on

trading mechanisms for the provision of public or private goods. Classical results in this

literature include, for example, the characterization of value-maximizing mechanisms

due to Vickrey-Clarke-Groves, and the characterization of revenue-maximizing auctions

due to Myerson [1981]. Cardinal preference intensities are inherent in that underlying

model, and play a main role in the formulation of both implementability and optimality

results. In addition, monetary transfers are key to controlling the agents' incentives,

and can be �nely tuned to match the values obtained from physical allocations.

2. On the other hand, a distinct, very large body of work in the realm of social choice

has focused on the implementation of desirable social choice rules in abstract frame-

works with purely ordinal preferences, and without monetary transfers. Classical re-

sults include the Gibbard-Satterthwaite Impossibility Theorem (Gibbard [1973] and

Satterthwaite [1975]) and the Median Voter Theorem for settings with single-peaked

preferences (see Black [1948]). When a Pareto-e�cient rule, say, is not implementable

in a certain framework, that literature often remains silent about how to choose among

implementable schemes because preference intensities are not part of the model, and

because other goals are not easily formulated within it. For similar reasons, when mul-

tiple Pareto-e�cient rules are implementable, this literature cannot meaningfully rank

them.

1Some authors use the term \strategy proof" mechanisms.
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While using the standard, cardinal, linear model of utilities, we assume that monetary

transfers are not feasible. In particular, choice rules resembling the voting schemes often

analyzed in the social choice literature come here to the forefront instead of, say, some kind

of trading mechanisms.

Having private types and linear values allows us both the formulation of optimality crite-

ria that involve preference intensities and the use of powerful characterization results about

dominant strategy incentive compatibility that, basically, resemble those from the literature

on trading mechanisms with money. A main di�erence is that the lack of monetary transfers

puts restrictions on implementable mechanisms that do not easily reduce to some monotonic-

ity condition. With one-dimensional private information andwith monetary transfers, the

DIC requirement translates into a monotonicity condition on the choice rule, and an envelope

(or integrability) condition on equilibrium utility. Since it is always possible to augment a

monotone rule with a transfer such that the envelope condition holds (this fact is behind the

celebrated \payo� equivalence" result) monotonicity becomes the only relevant requirement.

Although the characterization of DIC mechanism here is similar (see Lemma 1) the lack

of monetary transfers means that not all monotone choice rules are implementable. For

example, the welfare-maximizing rule in our framework is not implementable although it is

monotone. Thus, the envelope condition is crucial, and its implications become rather subtle

as soon as the number of social choice alternatives is strictly larger than two. In a sense, this

is similar to the problems encountered in multi-dimensional mechanism design where it is also

the case that not every monotone choice rule is integrable (see for example the exposition in

Jehiel, Moldovanu and Stacchetti [1999]).

Another set of ideas comes from the second strand mentioned above: our linear framework

yields a model with single-peaked preferences and therefore we can adapt and strengthen an

elegant \converse" to the Median Voter Theorem due to Moulin [1980]. Roughly speaking,

Moulin's result says that all anonymous DIC mechanisms that only depend on the agents'

top alternatives (or peaks) can be described as schemes that choose the median among the n

\real" peaks of actual voters and an additional, �xed number of \phantom" voters' peaks.2

Our �rst main result characterizes the set of DIC, Pareto e�cient and anonymous mech-

anisms as median voter schemes. Importantly, we are here able to remove Moulin's crucial

assumption that the allowed mechanisms only depend on peaks, while obtaining a result in

the same spirit as his. Thus, no e�cient, DIC mechanism can depend on preference intensities

among alternatives, nor on the ranking of alternatives below the top. But the planner can

choose a mechanism that optimizes a welfare functional that depends on all these features,

on the distribution of types, etc... All the planner has to do is to appropriately determine K

constants adding up to n � 1; where each constant speci�es the number of phantom peaks

on a respective alternative.3 For example, when there are only two alternatives, say a status

quo and a reform, locating m; 0 � m � n� 1; phantom peaks on the reform and n� 1�m
2The precise result requires several technical conditions such as full domain, etc...
3The number of possible partitions can be calculated from the so called Stirling numbers of the second kind.
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phantom peaks on the status-quo yields a choice rule where the reform is implemented if at

least n�m real voters are in its favor. The optimal m in the above case, and, more generally,

the optimal numbers of phantom peaks on each of alternative, depend on the parameters of

the social choice situation such as the slopes and intercepts of the utility functions or the

distribution of real agents' types.

Our second main result focuses on maximization of social welfare under several standard

assumptions on the distribution of types. It o�ers simple and intuitive formulae for the

optimal number of phantom peaks that need to be placed on each alternative. The formulae

are obtained by observing that shifting phantom peaks among adjacent alternatives has an

e�ect only in cases where the median peak shifts as well. Just to give one simple example, if

the real agents' types are independently and uniformly distributed, the number of phantom

voters' peaks on alternative k is shown to be proportional to the share of real types whose

top alternative is k. It is also interesting to note that, although the �rst-best mechanism is

not implementable in our setting, the second-best (constrained e�cient) mechanism obtained

here approximates the �rst-best if the population is large. Optimal schemes for other criteria

such as, say, a Rawlsian maximin, or maximax can be analogously obtained.

The paper is organized as follows: In Section 2 we describe the social choice model. In

Section 3 we characterize DIC mechanisms via a monotonicity and an integrability condition.

We also show that, in a DIC mechanism, two agents with the same ordinal preferences must

be treated in the same way, although they may have di�erent \types" that yield di�erent

cardinal preferences/intensities. In Section 4 we �rst show (Theorem 1) that, within the

class of DIC and onto mechanisms (i.e., where every alternative is chosen at some pro�le) it

is enough to restrict attention to mechanisms that only depend on reported peaks. In other

words, within this class of mechanisms, the precise preference relation below the peak cannot

matter for the choice rule. Theorem 2, our �rst main result, demonstrates that all Pareto-

e�cient and DIC mechanisms are medians of n real peaks and n�1 phantom ones. The proof
of Theorem 2 is involved and, besides the result of Theorem 1, it uses several Lemmas and

a result (Proposition 1 in the Appendix) that is an adaptation of Moulin's characterization

of peaks-only mechanisms to our model. A new proof for Moulin's result is required here

because his full-domain assumption is not satis�ed in our linear model, i.e., not all possible

single-peaked ordinal preferences arise for a given set of parameters of the utility functions. In

Section 5 we use the above characterization result to precisely derive the formulae governing

the location of phantom peaks in the social welfare maximizing (second-best) mechanism

under standard assumptions about the distribution of types (Theorem 3, our second main

result). We also discuss several intuitive implications of the resulting formulae. Extensions

to nonlinear utilities and alternative welfare criteria are discussed in Section 6. All proofs

are in the Appendix.
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1.1 Related Literature

The idea of comparing voting rules in terms of the ex-ante expected utility they generate

goes back to Rae [1969]. This paper and almost the entire following literature focus on

settings with two social alternatives (a reform and a status quo, say) where a mechanism

can be described by a single function, the probability that the reform is chosen given the

agents' reports about their types. In this special case, the DIC constraint implies that

deterministic mechanisms are, for any pro�le of others' reports, described by a step function

with a unique jump. As a consequence of this simple structure, anonymous and constrained-

e�cient mechanisms can be represented by quali�ed majority rules where the reform is chosen

if at least a certain number of agents votes in its favor. Schmitz and Tr�oger [2012] identify

quali�ed majority rules as ex-ante welfare maximizing in the class of DIC mechanisms -

as explained above this can be seen as an implication of our main result.4 Azrieli and

Kim [2011] nicely complement this analysis for two alternatives by showing that any interim

Pareto e�cient, Bayesian incentive compatible (BIC) choice rule must be a quali�ed majority

rule.5 The situation dramatically changes when there are three, or more alternatives: the

DIC/BIC constraints and the mechanisms themselves are much more complex, and not much

is known about them. Apesteguia, Ballester and Ferrer [2011] consider a social choice model

where agents have cardinal utility and multidimensional \types", and evaluate mechanisms in

terms of the ex-ante expected utility they generate.6 But, their analysis completely abstracts

from incentives constraints, i.e., strategic voting is not considered, and the scoring rules that

emerge as optimal in their analysis are subject to strategic manipulation. Borgers and Postl

[2009] study a setting with three alternatives: in their model it is common knowledge that

the top alternative for one agent is the bottom for the other, and vice-versa. The agents also

di�er in the relative intensity of their preference for a middle alternative (the compromise)

when compared to the top and bottom one, respectively. This intensity is private information.

Besides a characterization in terms of monotonicity and envelope condition, Borgers and Postl

mainly conduct numerical simulations and show that the e�ciency loss from second-best rules

is often small.

In a principal-agent model with quadratic utility functions, hidden information but with-

out transfers, Kovac and Mylovanov [2009] �nd that the optimal mechanism is deterministic.

Motivated by computer science applications, Hartline and Roughgarden [2008] study how

the system designer can use service degradation (money burning) to align the private users'

interests with the social objective.7 Chakravarty and Kaplan [2013] and Condorelli [2012] an-

alyze optimal allocation problems in private value environments without monetary transfers.

4These authors also perform an analysis for Bayesian mechanisms, which is not covered by our study.
5Again in a setting with two alternatives, Barbera and Jackson [2006] take the quali�ed majority rule as

given, and derive the optimal weight that maximizes the total expected utilities of all agents.
6They also consider other goals such as maxmin, etc...
7See also McLean and Postlewaite [2002] who study Bayesian incentive compatibility in settings where

monetary transfers are limited.
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In their models agents can send costly and socially wasteful signals (these may be payments

to outsiders). In contrast, Drexel and Klein [2013] allow the redistribution of the collected

monetary payments among the agents. They con�ne attention to settings with two social

alternatives and show that a principal who wishes to maximize the agents' welfare (i.e., wel-

fare from the physical allocation minus potential transfers to outsiders) will use a mechanism

that does not involve any monetary transfers! Thus, it must be the case that, for settings

with two alternatives, their optimal mechanism coincides with the one derived in this paper,

where monetary transfers are a priori ruled out.

A quite di�erent line of study is pursued by Jackson and Sonnenschein [2007] who consider

the linkage of many distinct social problems. Even if no monetary transfers within one

problem are possible, the linkage with other decisions creates the possibility of �ne-tuning

incentives, which acts as having some \pseudo-transfers". E�ciency can be attained then in

the limit, where the number of considered problems grows without bound.

As already mentioned above, the seminal paper in the social choice literature closely

related to the present research is Moulin [1980]. Several authors have extended Moulin's

characterization in terms of median choices and phantom voters by discarding the assumption

that mechanisms can only depend on peaks.8 Almost all these papers assume continuous

spaces of alternatives, (continuous) ordinal preferences, and domain-richness assumptions on

preferences, none of which are satis�ed in our framework. Excellent examples in this strand

are Barbera and Jackson [1994], Sprumont [1991], Ching [1997] and Schummer and Vohra

[2007].9 An exception is Chatterjee and Sen [2011] who do consider discrete domains with

a �nite number of alternatives. They establish a peaks-only result under a rather restrictive

condition on the domain of preferences - unfortunately, their condition is not satis�ed in our

model as soon as there are at least 4 alternatives, and thus we cannot use here their analysis.

2 The Social Choice Model

We consider n agents who have to choose one out of K mutually exclusive alternatives. Let

K = f1; :::;Kg denote the set of alternatives. Agent i 2 f1; :::; ng has utility u (k; xi), where
k 2 K is the chosen alternative and xi is a parameter (or type) privately known to agent i

only. We assume that10

u (k; xi) = ak + bkxi:

8See Sprumont [1995] for an excellent survey. Recently, Ehlers, Peters and Storcken [2002] extend Moulin's

characterization to probabilistic strategy-proof rules, and Nehring and Puppe [2007] extend it to a class of

generalized single-peaked preference domains based on abstract betweenness relations.
9Schummer and Vohra [2002] and Dokow et al. [2012] study location choice on graphs, and also establish

the equivalence between strategy-proof rules and generalized median voter schemes. In both models, however,

agents' preferences are quadratic and thus parameterized solely by their peaks. Hence, they can directly focus

on peaks-only mechanisms.
10We discuss nonlinear utility functions in Section 6.

6



The types x1; :::; xn are distributed on the interval [0; 1]
n according to a joint cumulative

distribution function � with density �.11 Each agent knows only his own type xi. We assume

that bk � 0 for all k 2 K and bk 6= bl for all l 6= k. Without loss (by renaming alternatives if
necessary), we assume that bK > bK�1 > ::: > b1 � 0.

Note that we use here the one-dimensional, private values, linear utility speci�cation {

the most common one in the vast literature on optimal mechanism design with monetary

transfers that followed Myerson's [1981] seminal contribution. But we assume that monetary

transfers are not feasible in our framework.

The social planner's general goal is to reach, for any realization of types, a Pareto e�cient

allocation. We will primarily focus on the case of a utilitarian planner whose objective is to

maximize the sum of the agents' expected utilities

max
k2K

E
hX

i
u (k; xi)

i
.

Given any two di�erent alternatives k and l with bk > bl, agent i is indi�erent between

them if and only if his type is

xl;k � al � ak
bk � bl

. (1)

Types above xl;k prefer alternative k to l, while types below xl;k prefer alternative l to k.

Denote by

xk � xk�1;k = ak�1 � ak
bk � bk�1

(2)

the cuto� type who is indi�erent between two adjacent alternatives k and k� 1. While there
may be di�erent cases induced by the parameters of the utility functions, we perform an

explicit analysis for the most interesting case where

0 � x1 < ::: < xK < xK+1 � 1:

Under these restrictions each alternative k is preferred by some agent types xi with xi 2
(xk; xk+1]. These restrictions, together with the de�nition of xl;k, imply that xl;k 2 (xl+1; xk)
for k > l + 1, because

xl;k =
al � ak
bk � bl

=
(al � al+1) + :::+ (ak�1 � ak)
(bl+1 � bl) + :::+ (bk � bk�1)

:

Remark 1 The agents' preferences are here single-peaked. To see this, consider agent i with

type xi 2
�
xk; xk+1

�
. By de�nition of xk, agent i prefers alternative k to any alternative l < k,

and by de�nition of xk+1, agent i prefers k over any l > k. Now consider two alternatives

l and m with l < m < k. Since xl < xm < xk, we have xi > xl;m and agent i prefers m

to l. Similarly, agent i prefers m to l if k < m < l. Therefore, agent i's preferences are

single-peaked.

11Here agents' types can be correlated. In Section 5 we shall assume independence between the agents'

types.
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Our preference domain is a strict subset of the full single-peaked preference domain:

not all single-peaked preferences are compatible with our linear environment. For instance,

suppose there are 4 di�erent alternatives (1; 2; 3 and 4) and x1;4 2
�
x2;3; x3;4

�
, as shown in

Figure 1.

Alternative 4

Alternative 3

Alternative 2

Alternative 1

2,1x 3,2x 4,3x

4,1x

ix

),( ixku

Figure 1: Not all single-peaked preferences are compatible with our linear structure.

The feasible single-peaked preferences that have alternative 2 on their top are 2 � 1 � 3 � 4
and 2 � 3 � 1 � 4. In particular, the preference 2 � 3 � 4 � 1 is not compatible with the

linear environment. Similarly, if x1;4 2
�
x1;2; x2;3

�
, the feasible single-peaked preferences that

have alternative 3 on their top are 3 � 2 � 4 � 1 and 3 � 4 � 2 � 1. Here the preference

pro�le 3 � 2 � 1 � 4 is not compatible with our structure.

3 Mechanisms and Implementation

We focus on deterministic, dominant strategy incentive compatible (DIC) mechanisms. If

monetary transfers were available, the welfare-maximizing allocation would be easily achieved

via the well-known Vickrey-Clarke-Groves mechanisms. But if transfers are not allowed, the

�rst-best social choice rule need not be incentive compatible.

We restrict attention to direct, deterministic mechanisms where each agent reports his

type and where, for each report pro�le, the mechanism chooses one alternative from the

feasible set. Formally, a deterministic direct mechanism without transfers is a function g :

[0; 1]n ! K.

Lemma 1 A mechanism g (xi; x�i) is DIC if and only if

1. For all x�i and for all i, g (xi; x�i) is increasing in xi;

2. For any agent i, any xi 2 [0; 1] and x�i 2 [0; 1]n�1, the following condition holds:

u (xi; g (xi; x�i)) = u (0; g (0; x�i)) +

Z xi

0
bg(z;x�i)dz: (3)
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This Lemma is analogous to a standard characterization result in mechanism design (see

Myerson [1981]). When monetary transfers are feasible, any monotone decision rule g (xi; x�i)

is incentive compatible since it is always possible to augment it with a transfer such that the

equality required by (3) holds. Thus, with transfers, only monotonicity really matters for

DIC. Since monetary transfers are not feasible here, equality (3) becomes crucial, and not all

monotone decision rules g (xi; x�i) are implementable (see Example 1). The main di�culty

in our analysis comes from the need to understand the implications of this condition.

Example 1 The �rst-best mechanism that maximizes the sum of agents' expected utilities is

monotone, but not DIC. To see this, consider the environment with two alternatives f1; 2g
and with two agents fi;�ig. The designer is indi�erent between alternatives 1 and 2 if

2a1 + b1 (xi + x�i) = 2a2 + b2 (xi + x�i) :

The �rst-best rule conditions on the value of the average type, and is given by

g (xi; x�i) =

(
1 if 1

2 (xi + x�i) 2 [0; x
2)

2 if 1
2 (xi + x�i) 2 [x

2; 1]

where cuto� x2 is de�ned in (2): x2 � (a1 � a2) = (b2 � b1). The �rst-best rule is increasing
in both xi and x�i. But, for all x�i 2 [0; 2x2) and xi 2 [2x2 � x�i; 1); we can rewrite the
integral condition of Lemma 1 as

a2 + b2xi = a1 +

Z 2x2�x�i

0
b1dz +

Z xi

2x2�x�i
b2dz = a1 + b1

�
2x2 � x�i

�
+ b2

�
xi � 2x2 + x�i

�
;

which reduces to x�i = x2. Therefore, the integral condition is violated for all x�i 6= x2.

Following Barbera and Peleg [1990], we de�ne agent i's option set Oi (x�i) given a mech-

anism g as12

Oi (x�i) = fk 2 K : g (xi; x�i) = k for some xi 2 [0; 1]g .

That is, Oi (x�i) is the set of alternatives that agent i can achieve when the other agents'

preferences are �xed at x�i given g. Denote by J = jOi (x�i)j the cardinality of the set
Oi (x�i). Denote by O1i (x�i) the smallest element of Oi (x�i), ..., and O

J
i (x�i) the largest

element of Oi (x�i). The next Lemma presents an alternative characterization of deterministic

DIC mechanisms.

Lemma 2 A mechanism g (xi; x�i) is DIC if and only if, for any i and x�i, g (xi; x�i) =

Oki (x�i) if and only if

xi 2 (xO
k�1
i (x�i);Oki (x�i); xO

k
i (x�i);O

k+1
i (x�i)];

where xO
k
i (x�i);O

k+1
i (x�i) is the cuto� type who is indi�erent between alternatives Oki (x�i) and

Ok+1i (x�i).

12We suppress notation of mechanism g in the de�nition of Oi, as it should not cause any confusion.
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This Lemma shows that a DIC mechanism satis�es the following property: For any player

i, the mechanism has to choose the most preferred alternative for that agent among the

available alternatives, where the available alternatives depend on the reports of the other

agents. It follows immediately from the de�nition of deterministic DIC mechanisms, and

thus its proof is omitted. Both characterizations of DIC are valuable for our subsequent

analysis.

4 Generalized Median Voter Schemes

This section characterizes implementable Pareto e�cient mechanisms. We �rst show the

equivalence between the class of deterministic DIC mechanisms and the class of mechanisms

in which agents report only their most preferred alternative (peaks-only mechanisms). Thus,

only the top alternatives (and not the entire ordinal rankings) play a role in determining the

implemented outcome. Another implication is that, in order to satisfy incentive compatibility,

the DIC mechanism must ignore the cardinal intensities of the agents' preferences. (Recall

that the agents' signals a�ect the intensities of their preferences.) We then show that any

Pareto e�cient and anonymous mechanism is equivalent to a generalized median voter scheme

with n real voters and (n� 1) phantom voters in which agents report only their most preferred
alternative. We �rst need several de�nitions:

De�nition 1 1. A mechanism g is onto if, for every alternative k 2 K, there exists a type
pro�le (xi; x�i) 2 [0; 1]n such that g (xi; x�i) = k.

2. A mechanism g is unanimous if xi 2
�
xk; xk+1

�
for all i implies g (xi; x�i) = k.

3. A mechanism g is Pareto e�cient if for any pro�le of reports x 2 [0; 1]n there is no
alternative k 2 K such that ui(xi; k) � ui(xi; g(x)) for all i, with strict inequality for at
least one agent.

4. A mechanism g is anonymous if for any pro�le of reports x 2 [0; 1]n g (x1; :::; xn) =
g
�
x�(1); :::; x�(n)

�
where � denotes any permutation of the set f1; :::; ng.

Since in our environment every alternative is preferred by some agent's types, if a DIC

mechanism is unanimous, it must be onto. The next Lemma shows that the reverse is also

true.

Lemma 3 Every onto and DIC mechanism g satis�es unanimity.

Next we formally de�ne peaks-only mechanisms and the equivalence criterion.

De�nition 2 A mechanism � is peaks-only if it has the form � : Kn ! K: We say that a
DIC mechanism g is equivalent to a peaks-only mechanism � if

g (x1; :::; xn) = � (k1; :::; kn) ;
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for any type pro�le (x1; :::; xn) and for any alternative pro�le (k1; :::; kn) such that xi 2
(xki ; xki+1] for all i.

Note that if the original mechanism g is DIC, then in the equivalent mechanism � all

agents truthfully report their peaks. In order to establish the equivalence, we �rst show that

the option set Oi (x�i) is \connected", i.e., it contains no gaps. We then recall Lemma 2

which states that every deterministic DIC mechanism can be characterized by intervals: for

implementation purposes, it is enough to know the interval that contains the type without

knowing the exact type (where the intervals are generated by cuto� types who are indi�erent

between two neighboring available alternatives). Therefore, in order to establish the equiva-

lence, it is su�cient to show that these intervals can be \replaced" by the corresponding top

alternatives. Since the option set has no gap, these intervals form a coarser partition than

the one generated by the original cuto�s
�
0; x2; :::; xK ; 1

�
. Hence, we are able to implement

the same outcome even if all agents report their top alternatives instead of reporting the

intervals containing their types.

Theorem 1 For any onto and DIC mechanism g there exists an equivalent, peaks-only mech-

anism �.

The onto requirement is crucial. To see this, consider the environment with three alterna-

tives (1; 2; 3) and two agents (i;�i). Suppose only alternatives 1 and 3 can be chosen under
mechanism g. Consider the following mechanism:

g(xi; x�i) =

(
1 if xi 2 [0; x1;3] and x�i 2 [0; x1;3]
3 otherwise

.

This mechanism is DIC, but there does not exist an equivalent peaks-only mechanism: know-

ing that alternative 2 is agent i's top alternative is not su�cient for inferring whether agent

i's type is above or below x1;3.

An in
uential paper by Moulin [1980] shows that, if each agent is restricted to report

their top alternative only, then every DIC, e�cient and anonymous voting scheme on the

full domain of single-peaked preferences is equivalent to a generalized median voter scheme.

That is, one can obtain each DIC, e�cient and anonymous scheme by adding (n� 1) �xed
ballots to the n voters' ballots and then choosing the median of this larger set of ballots. It

turns out that Moulin's characterization also holds in our setting. Yet, the main di�erence

between our characterization and that of Moulin is that in our environment the restriction

to peak-only mechanisms is without loss of generality (as was shown in Theorem 1). We also

need here a separate proof because our setting di�ers from Moulin's in several dimensions:

1) Moulin's proof requires that the preference domain contain all single-peaked preferences

over the real line R, a rich domain assumption not satis�ed here; 2) Our set of alternatives

is �nite; and 3) Our preferences may not be strict (there are ties for some types).
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Theorem 2 A Pareto e�cient, anonymous mechanism g is DIC if and only if there exists

(n� 1) numbers �1; :::; �n�1 2 K such that for any type pro�le (x1; :::; xn) 2 [0; 1]n with

xi 2 (xki ; xki+1] for all i; it holds that

g (x1; :::; xn) =M(�1; :::; �n�1; k1; :::; kn);

where the function M(�1; :::; �n�1; k1; :::; kn) returns the median of (�1; :::; �n�1; k1; :::; kn).

As in Moulin [1980], we prove the above characterization by �rst establishing that any

anonymous and DIC mechanism is equivalent to a generalized median voter scheme with n

real voters and n + 1 phantom voters. This result is formally stated in the Appendix as

Proposition 1. Using Proposition 1 we can show that if a DIC mechanism is onto, then it

is Pareto e�cient. Therefore, for every onto and DIC mechanism, there exists an equivalent

generalized median voter scheme with n real voters and (n� 1) phantom voters.

Lemma 4 Every onto and DIC mechanism is Pareto e�cient.

5 Optimal Mechanisms

In this section we characterize socially optimal allocations that respect the incentive con-

straints (constrained e�ciency, or \second-best"). Following the mechanism design litera-

ture, we shall primarily focus on the utilitarian welfare criterion: the social planner wants

to maximize the sum of the agents' expected utilities. Since Pareto e�cient mechanisms

are necessarily unanimous, Lemma 3 and Lemma 4 imply that, for DIC mechanisms the

three properties used above - onto, Pareto e�ciency, and unanimity - are equivalent in our

environment.13 We con�ne attention below to mechanisms that satisfy these properties.

Given our earlier characterization, the set of onto and DIC mechanisms coincides with

the set of generalized median voter schemes with n real voters and (n� 1) phantom voters.

Therefore, the task of searching optimal mechanisms is reduced to �nding the optimal position

for the peaks of these (n� 1) phantom voters. In order to be able to o�er simple, intuitive

formulae for the number of phantom peaks on each alternative we make below several standard

assumptions on the distribution of agents' signals. The �rst assumption yields the standard

symmetric, independent private values model (SIPV) widely used in the literature on trading

mechanisms with transfers.

Assumption A. The agents' signals are distributed identically and independently of each

other on the interval [0; 1] according to a cumulative distribution function F with density

f .

13See Schummer and Vohra [2007] for a similar observation in their environment with single-peaked prefer-

ences on an interval.
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To introduce the second assumption and to simplify notation below, we now de�ne two

functions, C (x) and c (x), as follows:

C(x) = E[XjX > x] and c(x) = E[XjX � x]:

Assumption B. Let X be the random variable representing the agents' type. The functions

x� C(x) and x� c(x) are assumed to be strictly increasing.

To better understand this assumption, let us recall a well known concept used in the

theory of reliability.

De�nition 3 1. The mean residual life (MRL) of a random variable X 2
�
0; �
�
is de�ned

as

MRL (x) =

(
E [X � xjX � x] if x < �

0 if x = �

2. A random variable X satis�es the decreasing mean residual life (DMRL) property if the

function MRL (x) is decreasing in x.

If we let X denote the life-time of a component, then MRL (x) measures the expected

remaining life of a component that has survived until time x.14 Assuming that x � C(x) is
strictly increasing is equivalent to assuming a strictly decreasing mean residual life (DMRL).

Assuming that x� c(x) is strictly increasing is equivalent to assuming strict log-concavity ofR x
0 F (s) ds, because

x� c(x) =
R x
0 F (s) ds

F (x)
and

F (x)R x
0 F (s) ds

=
d

dx
log

�Z x

0
F (s) ds

�
A su�cient condition for

R x
0 F (s) ds to be log-concave is that F (x) is log-concave. A su�cient

condition for both log-concavity of F and strict DMRL of F is that the density f is strictly

log-concave.15

Consider now a situation with n real voters and let lk denote the number of phantom

voters with peak on alternative k in a generalized median voter scheme with n� 1 phantom
voters. Our analysis is based on a simple observation: if lk is part of the optimal allocation

of the (n� 1) phantoms and lk > 0, then shifting one phantom voter from alternative k to

14The MRL function is related to the hazard rate (or failure rate) � (x) = f (x) = [1� F (x)]. The \increasing
failure rate" (IFR) assumption is commonly made in the economics literature. DMRL is a weaker property,

and it is implied by IFR.
15The log-concavity of density is stronger than (and implies) increasing failure rate (IFR) which is equivalent

to log-concavity of the reliability function (1�F ). The family of log-concave densities is large and includes many
commonly used distributions such as uniform, normal, exponential, logistic, extreme value etc. The power

function distribution
�
F (x) = xk

�
has log-concave density if k � 1, but it does not if k < 1. However, one can

easily verify the above two conditions hold for F (x) = xk even with k < 1. Therefore, log-concave density is

not necessary. See Bagnoli and Bergstrom [2005] for an excellent discussion of log-concave distributions.
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either alternative k � 1 or k + 1 weakly reduces the total expected utility.16 For instance,
shifting one phantom voter from alternative k to k � 1 has an impact only if it changes the
chosen alternative. However, the shift will change the chosen alternative only if there are

(n�1) voters (both \real" and \phantom") with values below xk, in other words, only if there
are exactly

�
n� 1�

Pk�1
m=1 lm

�
real voters with values below xk. These kind of arguments

generate the following bounds on the cumulative distribution of phantom voters:

k�1X
m=1

lm � n
xk � c

�
xk
�

C (xk)� c (xk) � 1, for all k � 2; (4)

kX
m=1

lm � n
xk+1 � c

�
xk+1

�
C (xk+1)� c (xk+1) , for all k � K � 1: (5)

With these bounds, we can explicitly construct the essentially unique distribution of phantom

peaks.

Theorem 3 Suppose that Assumptions A and B hold, and let dze denote the largest integer
that is below z. The optimal mechanism for n agents is a generalized median scheme with

(n� 1) phantom voters' peaks distributed according to

l�k =

8>><>>:
l
n x2�c(x2)
C(x2)�c(x2)

m
if k = 1l

n xk+1�c(xk+1)
C(xk+1)�c(xk+1)

m
�
l
n xk�c(xk)
C(xk)�c(xk)

m
if 1 < k < K

n� 1�
PK�1
m=1 l

�
m if k = K

:

The above theorem reveals that adding or eliminating an alternative has only a local

e�ect. That is, if we add an alternative such that an interval
�
xk; xk+1

�
is further divided

into
�
xk; xk1

�
and

�
xk1 ; xk+1

�
, the only e�ect on the optimal phantom allocation is that the

original number of phantoms placed on alternatives k and k+1 are split between the original

alternatives k, k+1, and the new alternative k1. Similarly, if we eliminate alternative k, then

the phantoms that were allocated on this alternative are now re-allocated to adjacent alterna-

tives k�1 and k+1, without any e�ect on the other alternatives. This \locality-e�ect" follows
from the single-peaked preferences: the social planner does not want to change the chosen

alternative if the peak of the median voter does not change as a result of adding/eliminating

the available alternatives.

Remark 2 1. It can be easily shown that if the number of voters n is large enough, then

the optimal number of phantom voters on every alternative is strictly positive.

2. It is interesting to note that, with a large number of voters, the optimal (second-

best) mechanism approximates the welfare maximizing mechanism (�rst-best) which,

as illustrated in Example 1, is not implementable in our setting. To see this, let

16This is feasible only if lk > 0. It turns out that the derived bounds (4) and (5) remain valid for alternatives

with zero phantom voters. See Lemma 7 in the Appendix.
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pk denote the proportion of real voters who have their peak on alternative k; and let

qk = l
�
k= (n� 1) denote the proportion of phantom voters who have their peak on alter-

native k, k = 1; :::;K. When n is large, the optimal mechanism in Theorem 3 chooses

the median peak, i.e., the minimal alternative k such that

kX
m=1

pm +
kX

m=1

qm � 2�
kX

m=1

pm �
kX

m=1

qm ,

kX
m=1

pm � 1�
kX

m=1

qm ,

kX
m=1

pm � 1� xk+1 � c(xk+1)
C(xk+1)� c(xk+1) ,

kX
m=1

pm � C(xk+1)� xk+1
C(xk+1)� c(xk+1)

where, given the assumption of a large population, we abstract from integer constraints.

By the same assumption, we can approximate
Pk
m=1 pm � F (xk+1); which yields the

choice of the minimal alternative k such that

F (xk+1) � C(xk+1)� xk+1
C(xk+1)� c(xk+1) :

On the other hand, the �rst-best mechanism chooses the minimal alternative k such that

the average type of real voters is below xk+1, i.e.,

KX
m=1

pmE
�
xijxi 2

�
xm; xm+1

��
� xk+1:

Using the approximation pm � F
�
xm+1

�
� F (xm), and expanding the conditional ex-

pectations, we can translate the above condition into 
kX

m=1

pm

!
c(xk+1) +

 
1�

kX
m=1

pm

!
C(xk+1) � xk+1.

Again, using the approximation
Pk
m=1 pm � F (xk+1), we can re-write the above in-

equality as

F (xk+1) � C(xk+1)� xk+1
C(xk+1)� c(xk+1) :

Thus, the two mechanisms are approximately the same when n is large.

Theorem 3 also yields immediate and intuitive comparative statics with respect to pa-

rameters of the utility function fak; bkgKk=1. As part of the proof of Theorem 3, we show

that the function x�c(x)
C(x)�c(x) is strictly increasing. By the de�nition of the cuto�s x

k, increases

in either ak or bk decrease x
k and increase xk+1, which in turn increase lk. That is, if the

attractiveness of any alternative increases, the optimal number of the phantom voters with

peaks on this alternative increases as well.
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Example 2 Suppose that the distribution of signals F is uniform on [0; 1]. Then C(x) =

E[XjX > x] = (1 + x) =2 and c(x) = E[XjX � x] = x=2. Therefore, the optimal distribution
of phantom voters' peaks is given by: l�k =

�
nxk+1

�
�
�
nxk

�
. Intuitively, here the number of

phantom voters' peaks is proportional to the share of real types whose top alternative is k.

To further illustrate Theorem 3, we now describe in more detail the optimal voting rules

when there are either two agents or two alternatives.

If there are two agents (i and �i) and K alternatives, the set of peaks-only, onto, DIC

and anonymous mechanisms contains exactly K generalized median voter schemes with one

phantom voter (see Theorem 2). Therefore, we only need to �nd the optimal position for the

one additional phantom voter.

Corollary 1 Suppose there are only two agents. Under Assumptions A and B, the optimal

mechanism is a generalized median voter scheme with one phantom voter whose peak is placed

on

k� � min
�
k 2 K : xk+1 � 1

2

h
C
�
xk+1

�
+ c

�
xk+1

�i �
:

Note that the condition for determining the optimal phantom voter peak can be rewritten

as k� = k if x� 2
�
xk; xk+1

�
, where x� = 1

2 [C (x
�) + c (x�)]. The critical value x� has

the same distance to the upper conditional mean C (x�) as to the lower conditional mean

c (x�). In particular, if the distribution is symmetric, then x� coincides with the mean of the

distribution.

If K = 3, the choices of these mechanisms as a function of the agents' types can be

described by the three tables in Figure 2 below.

ix

ix−

3,2x 12,1x0

2,1x

3,2x

1

3 3

3

3

2

3

22

1

ix

ix−

3,2x 12,1x0

2,1x

3,2x

1

1 2

1

2

1

3

21

1

ix

ix−

3,2x 12,1x0

2,1x

3,2x

1

2 2

2

2

2

3

22

1

Figure 2: DIC mechanisms with two agents and three alternatives

The left table in Figure 2 corresponds to the case where the added phantom voter has a peak

on k� = 3. The middle table corresponds to the case where k� = 1, while the right table

corresponds to the case with k� = 2.

If there are only two alternatives, Theorem 3 speci�es the optimal quali�ed majority

rule. That is, the optimal decision can also be implemented by voting with a properly

chosen majority rule. Here are two examples: 1) Zero phantoms on one of the alternatives
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corresponds to the unanimity rule, and such a rule can be optimal only if the number of

the real voters is relatively small; 2) For n odd, (n � 1)=2 phantoms on each alternative
corresponds to the simple majority rule, and such a rule is optimal in symmetric situations.

Corollary 2 Suppose there are n agents and only two alternatives, K = 2. Under Assump-

tions A and B the optimal rule is implemented through a voting game in which alternative 1

is chosen if and only if at least n�
l
n x2�c(x2)
C(x2)�c(x2)

m
voters voted in its favour.

6 Extensions

6.1 Other Objective Functions

Other, non-utilitarian, objective functions can be considered as well. For example, if the

designer's preferences are maximin, then the allocation the designer would like to implement

is

gmin (x1; :::; xn) = k
m

where km satis�es xm 2 (xkm ; xkm+1] with xm = min fx1; :::; xng. That is, km is the most

preferred alternative of the agent with the lowest signal. This rule is implementable through

a peaks-only mechanism

�min (k1; :::; kn) = min fk1; :::; kng .

Similarly, if the designer's preferences aremaximax, then the designer would like to implement

allocation

gmax (x1; :::; xn) = k
M

where kM satis�es xM 2 (xkM ; xkM+1] with xM = max fx1; :::; xng. That is, kM is the most

preferred alternative of the agent with the highest signal, and this rule is also implementable

through a peaks-only mechanism

�max (k1; :::; kn) = max fk1; :::; kng .

6.2 Nonlinear Utilities

We have assumed that agents' utilities are linear. However, a careful inspection of the proofs

for our characterization theorems (Theorem 1 and 2) reveals that the monotonicity of mech-

anism g and the single-peakedness of utilities u (xi; k) are crucial, but linearity of u (xi; k) is

not. Therefore, as long as the utilities are single-peaked and the DIC mechanism g is mono-

tone, our characterization of DIC mechanisms as generalized median voter schemes remains

valid. But, with a di�erent utility speci�cation, the resulting optimal mechanism may di�er

from those we characterized earlier.

In order to extend our characterization to nonlinear utilities, we impose three restric-

tions on u (xi; k). First, for given xi, u (xi; k) is assumed to be strictly concave in k, i.e.,

for all k0; k00 2 K and for all � 2 [0; 1] such that �k0 + (1� �) k00 2 K, it holds that
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u (xi; �k
0 + (1� �) k00) > �u (xi; k0)+(1� �)u (xi; k00). Therefore, all types of agents' prefer-

ences over K are single-peaked. Second, we assume that u (xi; k) has the increasing di�erence
property (or supermodularity), i.e., for all k; k0 2 K with k > k0,

u1 (xi; k)� u1
�
xi; k

0� > 0;
where u1 (xi; k) denotes the partial derivative with respect to xi.

17 It is easy to verify that if

a mechanism g (xi; x�i) is DIC and if u (xi; k) has increasing di�erence, then g (xi; x�i) must

be increasing in xi for all x�i and for all i. Finally, we assume the function u (xi; k) is such

that there exists

0 � x1 < x2 < ::: < xK < xK+1 � 1;

such that agent i's top alternative is k if xi 2
�
xk; xk+1

�
.

The above speci�cation nests both the linear utilities used above and the commonly used

quadratic utilities. For example, suppose that u (xi; k) takes the following form:

u (xi; k) = �
�
xi �

k

K + 1

�2
:

It is easy to see that u (k; xi) has increasing di�erence and is single-peaked. It is also easy to

compute that

xl;k =
k + l

2 (K + 1)
and xk =

2k � 1
2 (K + 1)

:

Therefore, 0 � x1 < x2 < ::: < xK < xK+1 � 1: More generally, for any � increasing and

convex, the following utility function has the increasing di�erence property and is single-

peaked:

u (xi; k) = ��
 �

xi �
k

K + 1

�2!
:

7 Concluding Remarks

We have characterized constrained e�cient (i.e., second-best) dominant strategy incentive

compatible and deterministic mechanisms in a setting where privately informed agents have

linear utility functions, but where monetary transfers are not feasible. The analysis combines

several insights from the mechanism design and from the social choice literatures. More gen-

erally, our approach allows a systematic choice among Pareto-e�cient mechanisms based on

the ex-ante utility they generate. Dominant strategy mechanisms are robust to variations in

beliefs. In the standard setting with independent types, linear utility and monetary transfers,

an equivalence result between dominant strategy incentive compatible and Bayes-Nash in-

centive compatible mechanisms has been established by Gershkov et al. [2013]. It is an open

question whether using the more permissible Bayesian incentive compatibility concept can

improve the performance of constrained e�cient mechanisms in the present setting without

monetary transfers.

17Note that if the alternative set is an interval and u (xi; k) is twice di�erentiable, then concavity requires

@2u (xi; k) =@k
2 < 0 while supermodularity requires @2u (xi; k) =@xi@k > 0.
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8 Appendix: Proofs

Proof of Lemma 1. A mechanism g is dominant strategy incentive compatible (DIC) if

for any player i, for any xi; x
0
i and x�i:

u (xi; g (xi; x�i)) � u
�
xi; g

�
x0i; x�i

��
. (6)

We reverse the role of xi and x
0
i to obtain that

u
�
x0i; g

�
x0i; x�i

��
� u

�
x0i; g (xi; x�i)

�
:

Adding the two inequalities together leads to�
u (xi; g (xi; x�i))� u

�
x0i; g (xi; x�i)

��
�
�
u
�
xi; g

�
x0i; x�i

��
� u

�
x0i; g

�
x0i; x�i

���
� 0:

Since u (xi; k)� u (x0i; k) = bk (xi � x0i), the above inequality reduces to�
xi � x0i

� �
bg(xi;x�i) � bg(x0i;x�i)

�
� 0;

which implies that g (xi; x�i) must be nondecreasing in xi for all x�i. DIC also implies that

u (xi; g (xi; x�i)) = max
x0i2[0;1]

u
�
xi; g

�
x0i; x�i

��
:

We can apply the envelope theorem to obtain that

u (xi; g (xi; x�i)) = u (0; g (0; x�i)) +

Z xi

0
bg(z;x�i)dz:

We now show su�ciency: if monotonicity and the integral condition are satis�ed, then the

mechanism g (xi; x�i) is DIC. First suppose xi > x0i. We can write the integral condition as

u (xi; g (xi; x�i)) = u
�
x0i; g

�
x0i; x�i

��
+

Z xi

x0i

bg(z;x�i)dz

By assumption, g (z; x�i) � g (x0i; x�i) for all z � x0i. Hence, we haveZ xi

x0i

bg(z;x�i)dz �
Z xi

x0i

bg(x0i;x�i)
dz;

and thus

u (xi; g (xi; x�i)) � u
�
x0i; g

�
x0i; x�i

��
+

Z xi

x0i

bg(x0i;x�i)
dz

= ag(x0i;x�i)
+ x0ibg(x0i;x�i)

+
�
xi � x0i

�
bg(x0i;x�i)

= u
�
xi; g

�
x0i; x�i

��
:

The proof for the case of xi < x
0
i is similar. Note that, if xi < x

0
i we have

u (xi; g (xi; x�i)) = u
�
x0i; g

�
x0i; x�i

��
�
Z x0i

xi

bg(z;x�i)dz

� u
�
x0i; g

�
x0i; x�i

��
�
Z x0i

xi

bg(x0i;x�i)
dz

= u
�
xi; g

�
x0i; x�i

��
:
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Hence, g (xi; x�i) is DIC.

Proof of Lemma 3. We prove the claim by contradiction. Suppose there exist an alterna-

tive k and a report pro�le (bx1; :::; bxn) such that bxi 2 �xk; xk+1� for all i but g (bx1; :::; bxn) = l
with l 6= k. Since the mechanism is onto, there exists some type pro�le (x�1; :::; x

�
n) such

that g (x�1; :::; x
�
n) = k. First suppose x�i 2

�
xk; xk+1

�
for all i. Consider agent 1 and �x

the other agents' reports at (x�2; :::; x
�
n). DIC implies that g (bx1; x�2; :::; x�n) = k, otherwise

agent 1 could manipulate at (bx1; x�2:::; x�n) via x�1 to achieve his best alternative k. Next con-
sider agent 2, and �x the other agents' reports at (bx1; x�3; :::; x�n) : Then, again we must have
g (bx1; bx2; x�3; :::; x�n) = k, otherwise agent 2 could manipulate at (bx1; bx2; x�3; :::; x�n) via x�2. Ap-
plying the same argument to the remaining agents, 3; :::; n, we obtain that g (bx1; :::; bxn) = k,
which is a contradiction. Therefore, there must exist at least one agent i such that x�i =2�
xk; xk+1

�
and g (x�1; :::; x

��
i ; :::; x

�
n) = m with m 6= k and x��i 2

�
xk; xk+1

�
. Fix the reports

of all agents but i to
�
x�1; :::; x

�
i�1; x

�
i+1; :::; x

�
n

�
. This mechanism is not incentive compatible,

because agent i with type x��i could manipulate at
�
x�1; :::; x

�
i�1; x

��
i ; x

�
i+1; :::; x

�
n

�
via x�i and

achieve his best alternative k.

In order to prove Theorem 1 we �rst prove a lemma showing that for any player i and

any x�i the option set Oi (x�i) associated with mechanism g is connected.

Lemma 5 Consider a deterministic, onto and DIC mechanism g. For any i and any x�i, if

k; l 2 Oi (x�i) and l < h < k then h 2 Oi (x�i).

Proof of Lemma 5. Suppose the claim is false: there exist an agent, say agent 1, a report

pro�le of other agents (x�2; :::; x
�
n), and alternatives l < h < k such that k; l 2 Oi (x�i) but

h =2 Oi (x�i). Assume for simplicity that k = l + 2. Since alternatives k and l are chosen,

Lemma 2 implies that there exists a threshold xl;k such that l is chosen if x1 2 (xl; xl;k) and
k is chosen if x1 2 (xl;k; xk+1). We know xl;k 2

�
xl+1; xk

�
, and since h = l+1, we have xl;k 2�

xh; xk
�
. Therefore, there exist two types of agent 1, xh

0
1 2

�
xh; xl;k

�
and xh

00
1 2

�
xl;k; xk

�
such that the DIC mechanism g chooses l if the report pro�le is

�
xh

0
1 ; x

�
2; :::; x

�
n

�
and chooses

k if the report pro�le is
�
xh

00
1 ; x

�
2; :::; x

�
n

�
. Note that, for both types of agent 1, alternative h

is the best alternative. But, since h is not an option, type xh
0
1 prefers l among the available

alternatives, while type xh
00
1 prefers k among the available alternatives.

Take another agent, say agent 2. We know that alternative h cannot be chosen if the

type of 2 is x�2. We now show that, if g is DIC, then there are no types of agent 1 and 2 such

that alternative h is chosen, keeping other agents' types �xed at (x�3; :::; x
�
n). Assume this is

not the case. Then there exists a type of agent 2 such that for some types of 1 alternative

h is chosen. When h is chosen for this type of agent 2, the type of agent 1 must belong to�
xh; xh+1

�
(if not, agent 1 with type x1 2

�
xh; xh+1

�
will misreport that type to obtain h).

Consider two cases:
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Case 1. Assume �rst that alternative h may be chosen for some type of agent 2 that

is greater than x�2, i.e., x2 > x�2. Then we get the following contradiction: �x the type of

agent 1 to be xh
00
1 , while �xing the types of all other agents (3; :::; n) to be (x

�
3; :::; x

�
n). Then

increasing the type of agent 2 from x�2 to x2 leads to a change in the the social choice from

alternative k to alternative h, which contradicts monotonicity of g.

Case 2. Next assume that alternative h may be chosen for some type of agent 2 that is

smaller than x�2, i.e., x2 < x�2. Then we get another contradiction: �x the type of agent 1

to be xh
0
1 , while �xing the types of all other agents (3; :::; n) to (x

�
3; :::; x

�
n). Then decreasing

the type of agent 2 from x�2 to x2 leads to a change from alternative l to alternative h, which

again contradicts the monotonicity of g.

Therefore, alternative h is not chosen for any types of agents 1 and 2. Fix now the type

of agent 2 to be in the interval
�
xh; xh+1

�
. That is, replace the type of agent 2 in the original

pro�le (x�1; x
�
2; x

�
3; :::; x

�
n) with x

0
2 2

�
xh; xh+1

�
. From the previous step we know that there

is no type of agent 1 and 2 such that alternative h is chosen. In order for our induction

argument to work, we have to show that k; l 2 O1 (x�1�2; x02) :18 If x�2 2
�
xh; xh+1

�
we set

x02 = x
�
2. If x

�
2 < x

h, then we set x02 2
�
xh; xl;k

�
. First we show that l 2 O1 (x�1�2; x02). Since

h is not available, alternative l is the second best alternative for x02 2
�
xh; xl;k

�
. Since l 2

O1 (x�1�2; x�2) there exists a type of agent 1; x
0
1 such that l is chosen for pro�le (x

0
1; x�1�2; x

�
2).

Therefore, if l =2 O1 (x�1�2; x02) the mechanism is not DIC, since for type x01 of agent 1,

agent 2 of type x02 prefers reporting type x
�
2. Assume now that k =2 O1 (x�1�2; x02). Since

k 2 O1 (x�1�2; x�2) there exists a type of agent 1, say x001, such that k is chosen if the type
of the second agent is x�2. Since x�2 < xh, type x�2 prefers alternative l over k. Therefore,

if k =2 O1 (x�1�2; x02) and l 2 O1 (x�1�2; x02) type x�2 prefers reporting type x02 instead. This
yields a contradiction to DIC. If x�2 > x

h+1 the procedure is similar, but with x02 2
�
xl;k; xh+1

�
.

Taking another agent, say agent 3, and using the same procedure we can show that there

are no types of this agent such that alternative h is chosen. Again, we can �x agent 3's type

to be in
�
xh; xh+1

�
. We can apply this argument to agents 4; :::; n and reach an contradiction

to Lemma 3. Therefore, h 2 Oi (x�i).

Proof of Theorem 1. Fix the reports of all agents other than i and consider agent i's

option set Oi (x�i). If Oi (x�i) = K, then all alternatives are chosen for di�erent types of
agent i. DIC implies that we have cuto� types

0 � x1 < x2 < ::: < xK < xK+1 � 1:

The peaks-only result holds since knowing the top alternative is equivalent to knowing the

interval. If Oi (x�i) is a strict subset of K, then not all alternatives can be chosen. According
18Here we assume l + 2 = h + 1 = k. If l + 2 < h + 1 < k, then for our induction argument to work, it is

su�cient to show that there exists k0 and l0 such that l � l0 < h, h < k0 � k and k0; l0 2 O1 (x�1�2; x02). The
proof below can be easily adapted to prove the existence of such k0 and l0.
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to Lemma 5, the alternatives that are not chosen must be \extreme" ones: either low alter-

natives 1; :::; s or high alternatives d; :::;K, or both high and low alternatives. In this case,

the relevant cuto�s are just a subset of the original cuto�s given. That is, the cuto�s when

all alternatives are chosen for di�erent types of i, generate a �ner partition of the interval of

[0; 1] than the new cuto�s where some \extreme" alternatives are not chosen. Because we can

infer from i's top alternative the interval (in terms of the original cuto�s) that contains the

signal of i, we can also infer the new interval (in terms of new cuto�s) that contains i's type.

Therefore, for any agent i and for any reports of agents other than i, any DIC, deterministic

and onto mechanism can be replicated by another mechanism where i only reports only his

top alternative. We can repeat this argument for all other agents, completing the proof.

In order to prove Theorem 2, we �rst prove a Lemma showing that for any player i and

any k�i the option set associated with a DIC, peaks-only mechanism is connected, and then

a Proposition stating that any anonymous, DIC, and peaks-only mechanism is equivalent to

a generalized median voter scheme with n real voters and n+ 1 phantom voters.

Lemma 6 Consider a deterministic, DIC, and peaks-only mechanism �. De�ne the option

set �i (k�i) associated with � as

�i (k�i) = fk 2 K : � (ki; k�i) = k for some ki 2 Kg :

For any i and any k�i, if alternatives l < h < k and k; l 2 �i (k�i), then h 2 �i (k�i).

Proof. Suppose the claim is false: there exist an agent (say agent 1), a report pro�le of

other agents (k�2; :::; k
�
n), and alternatives l < h < k such that k; l 2 �i (k�i) but h =2 �i (k�i).

Since alternatives k and l are chosen, there exist two reports of agent 1, kl1 and k
k
1 such that

�
�
kl1; k

�
2; :::; k

�
n

�
= l and �

�
kk1 ; k

�
2; :::; k

�
n

�
= k.

Note that kl1 6= kk1 , because l 6= k. Therefore, either kl1 or kk1 is di�erent from h. Now consider
the following two types of agent 1: xh

0
1 2

�
xh; xl;k

�
and xh

00
1 2

�
xl;k; xk

�
. Note that, for both

types of agent 1, alternative h is the best alternative, but since h is not an option, type

xh
0
1 prefers l among the available alternatives, while type xh

00
1 prefers k among the available

alternatives. Therefore, under the peaks-only mechanism �, type xh
0
1 will report k

l
1 and type

xh
00
1 will report kk1 . Since either k

l
1 or k

k
1 is di�erent from h, mechanism � is not incentive

compatible, yielding a contradiction.

Proposition 1 A deterministic and peaks-only mechanism � : Kn ! K is DIC and anony-

mous if and only if there exist (n+ 1) integers �1; :::; �n+1 2 K such that, for any (k1; :::; kn) 2
Kn,

� (k1; :::; kn) =M (k1; :::; kn; �1; :::; �n+1)

where the median functionM(k1; :::; kn; �1; :::; �n+1) returns the median of (k1; :::; kn; �1; :::; �n+1).
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Proof. The proof consists of four steps. Step 1 and 4 are identical to those in Moulin's

proof. In Step 2 and 3, we need a slightly di�erent logic.

Step 1. For each n, n � 1, de�ne Sn as the following subset of KK
n
:

Sn = f� : Kn ! Kj9�1; :::; �n+1 2 K : � (k1; :::; kn) =M (k1; :::; kn; �1; :::; �n+1)g

It is easy to see that every element of Sn is DIC and anonymous. We now prove that,

conversely, every DIC anonymous voting scheme belongs to Sn.

Step 2. We start with n = 1: one-agent voting schemes. We de�ne

� = min
k2K

� (k) and � = max
k2K

� (k) :

It is clear that �; � 2 K and � � �. It is su�cient to show that for any DIC voting scheme
� (k) and for any k 2 K, we must have

� (k) =

8><>:
� if k � �
k if � � k � �
� if k � �

and therefore that � (k) =M (k; �; �) for all k.

Suppose k � �, and assume that � (k) > �. Then the agent would deviate and report

k� 2 argmink2K � (k). Therefore, � (k) = � if k � �. Next suppose k � �, and assume that
� (k) < �. Then the agent could report k� 2 argmaxk2K � (k) and be better o�. Therefore,
� (k) = � if k � �. Finally, suppose k 2 [�; �], and assume that � (k) 6= k. By Lemma 6, the
option set of the agent given � is connected. Therefore, there exists kk such that � (kk) = k:

Then, the agent could report kk and be better o�. Therefore, we have � (k) = k if k 2 [�; �].
This proves that � : K ! K belongs to S1.

Step 3. Now we suppose that the claim holds for n; and we show that it holds also for

(n+ 1). Let � (k0; k1; :::; kn) be an anonymous DIC voting scheme among (n+ 1) players. If

we �x k0, then

(k1; :::; kn)! � (k0; k1; :::; kn)

is an anonymous, DIC voting scheme among n players. By the induction assumption, it

belongs to Sn. Therefore, there exist (n+ 1) functions �1; ::::; �n+1 mapping K to itself such
that

8 (k0; k1; :::; kn) 2 Kn+1, � (k0; k1; :::; kn) =M (k1; ::::; kn; �1 (k0) ; :::; �n+1 (k0)) :

Up to a possible relabelling of the �i's, we can assume without loss of generality that

8k0 2 K, �1 (k0) � ::: � �n+1 (k0) (7)

We note that

M( :::; 1; :::;| {z }
(n�`+1) times

:::;K; :::;| {z }
(`�1) times

�1 (k0) ; :::; �n+1 (k0)) = �` (k0)
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and claim that �` (k0) 2 S1, for all ` 2 f1; ::::; n+ 1g : To prove this claim, we de�ne

a` = min
k02K

�` (k0) and b` = max
k02K

�` (k0) :

Note that �` (k0) can be interpreted as agent `'s option set associated with � for given

(k1; :::; kn). By Lemma 6, the option set associated with � is connected. Therefore, we can

follow the same procedure as in Step 2 to show that

�` (k0) =M (k0; a`; b`) where 1 � a` � b` � K, (8)

That is, �` (k0) 2 S1.
Now we can use (8) to reformulate our voting scheme � as

� (k0; k1; :::; kn) =M (k1; ::::; kn;M (k0; a1; b1) ; :::;M (k0; an+1; bn+1)) :

We claim that

b1 = a2; :::; b` = a`+1; :::; bn = an+1 (9)

and prove this by contradiction, using anonymity. The remaining proof in this step is very

much the same as Moulin's. For completeness, we replicate it here.

We �rst note that (7) and (8) imply that, for all `, 1 � ` � K,

8k0 2 K, M (k0; a`; b`) �M (k0; a`+1; b`+1)

which is equivalent to

a` � a`+1 and b` � b`+1: (10)

To prove claim (9) it is su�cient to rule out both a`+1 < b` and a`+1 > b`. First suppose

a`+1 < b`: We can then choose (k0; k1; :::; kn) 2 Kn+1 such that

a`+1 � k0 < kn � b`
k1 = ::: = kn�` = 1 � k0

kn�`+1 = ::: = kn�1 = K � kn

It follows from (8) and (10) that 8 `0 � `� 1 and `00 � `+ 1

�`0 (k0) � �` (k0) = �`+1 (k0) = k0 � �`00 (k0) :

Therefore,

� (k0; k1; :::; kn)

= M( :::; 1; :::;| {z }
(n�`) times

:::;K; :::;| {z }
(`�1) times

kn; :::; �`0 (k0) ; :::;| {z }
(`�1) times

k0; k0; :::; �`00 (k0) ; :::| {z }
(n�`) times

)

= k0:
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Similarly, it follows from (8) and (10) that 8 `0 � `� 1 and `00 � `+ 1

�`0 (kn) � �` (kn) = �`+1 (kn) = kn � �`00 (kn) :

Therefore,

� (kn; k1; :::; k0)

= M( :::; 1; :::;| {z }
(n�`) times

:::;K; :::;| {z }
(`�1) times

k0; :::; �`0 (kn) ; :::;| {z }
(`�1) times

kn; kn; :::; �`00 (kn) ; :::| {z }
(n�`) times

)

= kn:

But, given our assumption k0 < kn, this contradicts the anonymity of �. We have proved

b` � a`+1. Suppose now b` < a`+1. We can choose (k0; k1; :::; kn) 2 Kn+1 such that

b` � k0 < kn � a`+1
k1 = ::: = kn�` = 1 � k0

kn�`+1 = ::: = kn�1 = K � kn

It follows from (8) and (10) that 8 `0 � `� 1 and `00 � `+ 1

�`0 (k0) � �` (k0) = b` < a`+1 = �`+1 (k0) � �`00 (k0) :

Therefore,

� (k0; k1; :::; kn)

= M( :::; 1; :::;| {z }
(n�`) times

:::;K; :::;| {z }
(`�1) times

kn; :::; �`0 (k0) ; :::;| {z }
(`�1) times

b`; a`+1; :::; �`00 (k0) ; :::| {z }
(n�`) times

)

= M (kn; b`; a`+1)

= kn

Similarly, it follows from (8) and (10) that 8 `0 � `� 1 and `00 � `+ 1

�`0 (kn) � �` (kn) = b` < a`+1 = �`+1 (kn) � �`00 (kn) :

Therefore,

� (kn; k1; :::; k0)

= M( :::; 1; :::;| {z }
(n�`) times

:::;K; :::;| {z }
(`�1) times

k0; :::; �`0 (kn) ; :::;| {z }
(`�1) times

b`; a`+1; :::; �`00 (kn) ; :::| {z }
(n�`) times

)

= M (k0; b`; a`+1)

= k0

But this contradicts the anonymity of � since k0 < kn. Therefore, we must have b` = a`+1,

which completes the proof for (9).
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Now we can use (9) and set bn+1 = an+2 to obtain the following expression for � :

� (k0; k1; :::; kn) =M (k1; :::; kn;M (k0; a1; a2) ; :::;M (k0; a`; a`+1) ; :::;M (k0; an+1; an+2)) ;

with a` 2 K for all `, and

1 � a1 � a2 � ::: � a` � a`+1 � ::: � an+2 � K:

Step 4. Finally, we establish that, for any such increasing sequence of a` and for every

k0; k1; :::; kn:

M (k1; :::; kn;M (k0; a1; a2) ; :::;M (k0; a`; a`+1) ; :::;M (k0; an+1; an+2)) (11)

= M (k0; k1; :::; kn; a1; :::; an+2) :

First suppose k0 � a1. We can rewrite the left-hand side in (11) as

M (k1; :::; kn; a1; :::; an+2) = �

for some � 2 K. Since (n+ 1) agents form a majority, we have a1 � � � an+1: Thus, we have
k0 � � � an+2. We then use the following observation:

M (y1; :::; yp) = � and yp+1 � � � yp+2 )M (y1; :::; yp; yp+1; yp+2) = �: (12)

This implies that

M (k0; k1; :::; kn; a1; :::; an+2) = �:

The proof of formula (11) in the case k0 � an+2 is similar.
Suppose now that for some `, 1 � ` � n+1, a` � k0 � a`+1: The left-hand side in (11) is

reduced to

M (k1; :::; kn; a2; :::; a`; k0; a`+1; :::; an+1) = �
0

for some �0 2 K. Since a2 � �0 � an+1, we obtain a1 � �0 � an+2. By observation (12):

M (k0; k1; :::; kn; a1; :::; an+2) = �
0:

This concludes the proof.

Proof of Theorem 2. First recall that since any alternative is optimal for some types

of the agents, Pareto e�ciency implies that the mechanism must be onto. By Theorem 1,

any deterministic, onto, and DIC mechanism g is equivalent to a peaks-only mechanism �.

That is, for any report pro�le (x1; :::; xn) and any alternative pro�le (k1; :::; kn) such that

xi 2 (xki ; xki+1] for all i, we have g (x1; :::; xn) = � (k1; :::; kn). Second, by Proposition

1, for any deterministic, anonymous, and DIC mechanism �, there exist (n+ 1) integers

�1; :::; �n+1 2 K such that, for any (k1; :::; kn) 2 Kn,

� (k1; :::; kn) =M (k1; :::; kn; �1; :::; �n+1) :
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Therefore, for any report pro�le (x1; :::; xn) and any alternative pro�le (k1; :::; kn) such that

xi 2 (xki ; xki+1] for all i, there exist (n+ 1) integers �1; :::; �n+1 2 K such that

g (x1; :::; xn) =M (k1; :::; kn; �1; :::; �n+1) :

Since g is Pareto e�cient, for any k 2 K and for any z 2 (xk; xk+1], we must have g (z; :::; z) =
k. This implies that �1; :::; �n+1 cannot be all strictly higher than 1, and that �1; :::; �n+1

cannot be all strictly lower than K. That is, at least one of �1; :::; �n+1 is equal to 1 and one

of them is equal to K. Therefore, we can drop these two phantoms and rewrite

g (x1; :::; xn) =M (k1; :::; kn; �1; :::; �n�1) :

This completes the proof.

Proof of Lemma 4. Due to our equivalence result (Proposition 1), it is su�cient to prove

the statement of the proposition for peaks-only mechanisms. Consider any deterministic

DIC and onto mechanism � (k1; :::; kn) where k1; :::; kn are the reported peaks. The Pareto

set given peaks (k1; :::; kn) is

fk 2 K : min (k1; :::; kn) � k � max (k1; :::; kn)g :

Consider any pro�le of peaks
�bk1; :::;bkn�. In order to show that � is Pareto e�cient, it is

su�cient to show that,

min
�bk1; :::;bkn� � � �bk1; :::;bkn� � max�bk1; :::;bkn� :

We prove the above by contradiction. First assume that �
�bk1; :::;bkn� > k � max�bk1; :::;bkn�.

Since the mechanism is onto, there exists a pro�le (k�1; ::::; k
�
n) such that

� (k�1; ::::; k
�
n) = k:

Consider agent 1, and �x the types of other agents at bk�1 = �bk2; :::;bkn�. Then DIC for agent
1 with type bk1 implies that, for all k1;

�
�
k1;bk2; :::;bkn� > k:

Now �x agent 1's type at k�1, and consider agent 2. Since

�
�
k�1;bk2;bk3; :::;bkn� > k:

then DIC for agent 2 with type bk2 implies that, for all k2;
�
�
k�1; k2;bk3; ::;bkn� > k:

Now we �x agent 1 and 2's types at k�1; k
�
2, respectively. We can proceed as before and

consider agent 3. We can argue that for all k3, we have

�
�
k�1; k

�
2; k3;

bk4; ::;bkn� > k:
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Therefore for all kn, we have

�
�
k�1; ::; k

�
n�1; kn

�
> k

But this contradicts the fact that �
�
k�i ; k

�
�i
�
= k:

The proof of �
�bk1; :::;bkn� � min�bk1; :::;bkn� is similar. Therefore, any deterministic DIC

and onto mechanism must be Pareto e�cient.

Proof of Theorem 3. Suppose that lk > 0 for some alternative k � 2 is part of the

optimal allocation of (n� 1) phantoms. By optimality, the social planner must prefer this
allocation of phantoms over allocating lk�1 phantoms on alternative k and lk�1+1 phantoms
on alternative k� 1. This change matters only if it a�ects the median among n� 1 phantom
and n real voters. For this to happen, it must be that the total number of voters (\real" and

\phantom") with values below xk is (n� 1) : there are exactly
�
n� 1�

Pk�1
m=1 lm

�
\real"

voters with values below xk and
�Pk�1

m=1 lm + 1
�
\real" voters with values above xk. In this

case, by moving a phantom from alternative k to alternative k � 1, the planner changes the
median from k to k� 1. In this case, the total expected utility from alternative k is given by

nak +

 
n� 1�

k�1X
m=1

lm

!
bkc(x

k) +

 
k�1X
m=1

lm + 1

!
bkC(x

k)

The total expected utility from alternative k � 1 is given by

nak�1 +

 
n� 1�

k�1X
m=1

lm

!
bk�1c(x

k) +

 
k�1X
m=1

lm + 1

!
bk�1C(x

k):

Since the planner (weakly) prefers k to k � 1, the total expected utility from alternative k

must be higher than the total expected utility from alternative k � 1. This gives us the
following \�rst-order condition" for all k � 2 with lk > 0: 

n� 1�
k�1X
m=1

lm

!�
xk � c(xk)

�
+

 
k�1X
m=1

lm + 1

!�
xk � C(xk)

�
� 0 (13)

Similarly, if lk > 0 with k � K � 1 is part of the optimal allocation of (n� 1) phantoms,
then the social planner must prefer this allocation of phantoms to allocating lk� 1 phantoms
on alternative k and lk+1+1 phantoms on alternative k+1. This yields another \�rst-order

condition" for all k � K � 1 with lk > 0: 
n�

kX
m=1

lm

!�
xk+1 � c(xk+1)

�
+

 
kX

m=1

lm

!�
xk+1 � C(xk+1)

�
� 0: (14)

This two �rst-order conditions can be rewritten as bounds (4) and (5) on phantom dis-

tributions, which are replicated here, for alternative k with lk > 0:

k�1X
m=1

lm � n
xk � c

�
xk
�

C (xk)� c (xk) � 1, for all k � 2;

kX
m=1

lm � n
xk+1 � c

�
xk+1

�
C (xk+1)� c (xk+1) , for all k � K � 1:
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Lemma 7 below shows that the above two conditions hold strictly for alternative k with

lk = 0.

Therefore, we can construct the (unique) candidate distribution of phantom voters' peaks

as follows. We �rst derive bounds for l�1 by taking k = 2 in (4) and k = 1 in (5):

n
x2 � c

�
x2
�

C (x2)� c (x2) � 1 � l
�
1 � n

x2 � c
�
x2
�

C (x2)� c (x2) :

Since the two bounds di�er by 1 and l�1 must be an integer, l
�
1 is generically unique and must

be equal to

�
n

x2�c(x2)
C(x2)�c(x2)

�
, where dze denotes the largest integer that is below z.

Next note that, for all 2 � k � K � 1, conditions (4) and (5) imply that

n
xk � c

�
xk
�

C (xk)� c (xk) � 1 �
kX

m=1

l�m � n
xk+1 � c

�
xk+1

�
C (xk+1)� c (xk+1) :

Hence,
Pk
m=1 l

�
m is also generically unique and must be equal to

l
n xk+1�c(xk+1)
C(xk+1)�c(xk+1)

m
. As a

result, we can deduce l�2 as

l�2 =
2X

m=1

l�m � l�1 =
�
n

x3 � c(x3)
C(x3)� c(xk+1)

�
�
�
n
x2 � c(x2)

C(x2)� c(x2)

�
:

Similarly, we can obtain recursively for all l�k with 2 � k � K � 1 :

l�k =

�
n
xk+1 � c(xk+1)

C(xk+1)� c(xk+1)

�
�
�
n
xk � c(xk)

C(xk)� c(xk)

�
:

Note that
C (x)� c (x)
x� c (x) =

C (x)� x
x� c (x) + 1:

Since C (x)� x is strictly decreasing in x while x� c (x) is strictly increasing in x, the above
expression is strictly decreasing in x. Therefore,

x� c (x)
C (x)� c (x)

is strictly increasing in x. Since xk+1 > xk, we obtain that l�k � 0.
Finally, since there are (n� 1) phantom voters in total, we have

l�K = n� 1�
K�1X
m=1

l�m = n� 1�
�
n
xK � c(xK)

C(xK)� c(xK)

�
:

It is clear that n xK�c(xK)
C(xK)�c(xK) < n, so l

�
K � 0.

To complete the proof, we need to argue that the phantom distribution we constructed

above is indeed optimal. Note that we are optimizing a bounded function over a discrete

domain, so that the optimal solution always exists. Because the optimal solution has to satisfy

the two necessary conditions (4) and (5), and because there is essentially unique distribution

that satis�es these two conditions, our candidate distribution fl�kg must be optimal.
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Lemma 7 The bounds (4) and (5) hold (with strict inequality) for all k 2 K with lk = 0.

Proof. First let us de�ne �1 and �2 as follows:

�1 = max fm 2 K : lk = 0 for all k � mg ;
�2 = min fm 2 K : lk = 0 for all k � mg :

We need to consider several cases.

Case 1: Both �1 and �2 exist. Then we have l1 = ::: = l�1 = 0, and l�2 = ::: = lK = 0.

An alternative k with lk = 0 could belong to one of the following three possible scenarios:

(i) k � �1. Since l1 = ::: = l�1 = 0, condition (5) holds trivially and we only need to

prove condition (4). By de�nition of �1; l�1+1 > 0. Thus, we have

�1X
m=1

lm � n
x�1+1 � c

�
x�1+1

�
C (x�1+1)� c (x�1+1) � 1:

Since l1 = ::: = l�1 = 0, we have

k�1X
m=1

lm =

�1X
m=1

lm � n
x�1+1 � c

�
x�1+1

�
C (x�1+1)� c (x�1+1) � 1 > n

xk � c
�
xk
�

C (xk)� c (xk) � 1;

where the second inequality follows because x�c(x)
C(x)�c(x) is strictly increasing in x and x

�1+1 >

xk.

(ii) k � �2. Since l�2 = ::: = lK = 0, for all k � �2, we have

k�1X
m=1

lm = n� 1�
KX
k

lm = n� 1:

Hence, condition (4) is trivially satis�ed, and we only need to prove condition (5). By

de�nition of �2, l�2�1 > 0. So we have

�2�1X
m=1

lm � n
x�2 � c (x�2)

C (x�2)� c (x�2) :

Therefore,

kX
m=1

lm = n� 1 =
�2�1X
m=1

lm � n
x�2 � c (x�2)

C (x�2)� c (x�2) � n
xk+1 � c

�
xk+1

�
C (xk+1)� c (xk+1) :

Again the last inequality follows from the monotonicity of x�c(x)
C(x)�c(x) and the fact that x

�2 <

xk+1.

(iii) k 2 (�1; �2). De�ne k1 and k2 as follows:

k1 = max fm 2 K : m < k and lm > 0g ;
k2 = min fm 2 K : m > k and lm > 0g :
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Both k1 and k2 are well de�ned for all k 2 (�1; �2). By de�nition of k1 and k2, we have

kX
m=1

lm =

k1X
m=1

lm and
k�1X
m=1

lm =

k2�1X
m=1

lm;

and
k2�1X
m=1

lm � n
xk2 � c

�
xk2
�

C (xk2)� c (xk2) � 1; and
k1X
m=1

lm � n
xk1+1 � c

�
xk1+1

�
C (xk1+1)� c (xk1+1) :

Since x�c(x)
C(x)�c(x) is increasing in x, and x

k1+1 < xk+1 < xk2+1; we have

k�1X
m=1

lm > n
xk � c

�
xk
�

C (xk)� c (xk) � 1; and
kX

m=1

lm < n
xk+1 � c

�
xk+1

�
C (xk+1)� c (xk+1) :

Case 2: Neither �1 nor �2 exists. Then the argument of Case 1(iii) applies for all k with

lk = 0.

Case 3: �1 exists but �2 does not. Consider alternative k with lk = 0. If k � �1, the

argument of Case 1(i) applies. If k > �1, the argument of Case 1 (iii) applies.

Case 4: �2 exists but �1 does not. Consider alternative k with lk = 0. If k � �2, the

argument of Case 1(ii) applies. If k < �2; the argument of Case 1(iii) applies.

Proof of Corollary 1. Recall that the candidate position k� is de�ned as

k� � min
n
k 2 K : xk+1 � (C(xk+1) + c(xk+1))=2

o
:

By de�nition of k�

xk+1 � (c
�
xk+1

�
+ C

�
xk+1

�
)=2 for all k � k�,

and

2xk+1 < (c
�
xk+1

�
+ C

�
xk+1

�
)=2 for all k < k�:

This implies that
xk+1 � c(xk+1)

C(xk+1)� c(xk+1) � 1=2; for all k � k
�;

and
xk+1 � c(xk+1)

C(xk+1)� c(xk+1) < 1=2 for all k < k
�:

Moreover we note that
xk+1 � c(xk+1)

C(xk+1)� c(xk+1) < 1:

Therefore, by Theorem 3, in the optimal phantom distribution, l�k� = 1, and l�k = 0 for all

k 6= k�.
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