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Abstract

We consider the manipulation of envy-free solutions for the allocation
of indivisible goods and money when some agents are sincere, i.e., un-
conditionally report their true preferences, and the other are strategic. We
show that strategic agents non-cooperatively coordinate on the envy-free
allocations that are not Pareto dominated for them by any other envy-free
allocation. Independently of the envy-free solution that is operated: (i)
a “pessimistic” agent, i.e., an agent who expects his worst-case scenario
equilibrium payoff, has no welfare loss if she commits to be sincere, and
(ii) an “optimistic” agent, i.e., an agent who expects his best-case equi-
librium payoff, generically has an incentive to be strategic. This suggests
that in our environment dominance of truthful revelation is generically
unrelated with an agent’s incentive to be sincere.

JEL classification: D63, C72.
Keywords: manipulation of envy-free solutions; sincere and strategic

agents; indivisible goods; mechanism design; no-envy.

1 Introduction

We consider the problem of fairly allocating a set of indivisible goods (objects)
and an amount of money among some agents who collectively own, or are re-
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rvelezca@econmail.tamu.edu; web page http://econweb.tamu.edu/rvelezca/
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sponsible for, these resources. We assume that each agent receives exactly one
object and consumptions of money add up to an amount we refer to as the
budget. Examples are the allocation of tasks and salary among workers (Craw-
ford and Knoer, 1981), the allocation of rooms and contributions to rent among
roommates (Abdulkadiroğlu et al., 2004), and the dissolution of a partnership.
Our central notion of fairness is no-envy (Foley, 1967; Varian, 1974), i.e., the
requirement that no agent prefer the consumption of any other agent to her
own. We are interested in “envy-free solutions,” i.e., functions that associate
with each problem an envy-free allocation for it. We study the manipulation,
in a complete information setting, of envy-free solutions when some agents are
sincere, i.e., unconditionally report their true preferences, and the other are
strategic. Our main result, Theorem 1, characterizes the limit Nash equilibrium
outcomes of the direct revelation game for the strategic agents associated with
each envy-free solution. This set is welfare equivalent to the set of envy-free al-
locations for the true preferences that are not Pareto dominated for the strate-
gic agents by any other envy-free allocation. Envy-free allocations are Pareto
efficient in our environment (Svensson, 1983). Thus, manipulation of an envy-
free solution when some agents are sincere induces no efficiency loss.

The first purpose of our study is to evaluate the performance of envy-free
solutions in the presence of a behavioral type of interest, i.e., sincere agents.
In the related problem of school choice, where parents report preferences on
public schools, Pathak and Sönmez (2008) argue that parents’ sophistication is
not homogeneous. Some parents may participate in extensive discussion of the
best strategies given the mechanism adopted by a school district. Some other
may report their true preferences without further thought. One can envision a
similar situation in our environment.1 Moreover, one can interpret sincerity in
our model as an extreme form of risk-aversion: for each agent, her true prefer-
ence relation is a Maximin strategy in the manipulation game associated with
any envy-free solution (Propositions 1 and 5).

We identify two interesting features of the equilibrium outcomes from the
manipulation of each envy-free solution. First, each of these solutions pro-
vides a safety net for sincere agents. They guarantee these agents, at least, the
minimum welfare among all envy-free allocations for the true preferences. It is
well known that at each envy-free allocation, the welfare of a truthful agent is

1In experimental settings, recent studies have documented the propensity of some subjects
to provide truthful reports in strategic communication games (Cai and Wang, 2006; Sanchez-
Pages and Vorsatz, 2009)
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bounded below by that she would obtain should all the agents share her prefer-
ences (Moulin, 1990; Beviá, 2010). This lower bound generically does not bind
among the envy-free allocations for the true preferences.2 Thus, the surpris-
ing part of our result is that generically, strategic agents cannot force a truthful
agent to approximate her “all-profile minimum welfare,” and can only force
her to receive her true-profile minimum.3 Such a happy conclusion can be re-
lated to the manipulation of one-side-optimal “stable” solutions in marriage
markets. There, the manipulation of the solution that selects the best stable
matching for one side of the market, say men, leads to stable allocations when-
ever men are truthful (Roth, 1984).

Second, strategic agents take advantage, to some extent, of sincere agents.
Indeed, they non-cooperatively coordinate to extract, from sincere agents, the
maximum possible “surplus” among envy-free allocations that they could unan-
imously agree on (Theorem 1). This can be related again to the manipula-
tion of one-side-optimal stable solutions in marriage markets.4 There, women
can achieve her best stable allocation in a strong equilibrium when the men-
optimal stable solution is operated and men truthfully report their preferences
(Gale and Sotomayor, 1985).5 Moreover, this is the unique outcome under dom-
inance solvability (Alcalde, 1996). A striking difference with our results, is that
we characterize Nash equilibrium behavior without any other refinement. Re-
call that in matching markets, when preferences are strict, the women optimal
stable matching is preferred by all women to any other stable matching. Never-
theless, each stable matching is an equilibrium of the direct revelation game as-
sociated with the men-optimal stable solution when men truthfully report their
preferences (Gale and Sotomayor, 1985). Similarly, the outcomes from the ma-
nipulation of the “Boston mechanism” in school choice problems when some
parents are sincere and the other strategic, contains outcomes that are Pareto
dominated for the strategic parents by another equilibrium outcome (Pathak
and Sönmez, 2008).

2For each agent there is a unique list of bundles, one for each object, among which the agent
is indifferent and whose associated consumptions of money add up to the budget; the agent
gets her Maximin payoff in a certain profile only if there is an allocation of these bundles that
is envy-free with respect to true preferences.

3Here “all-profile minimum welfare” refers to the minimum welfare the agent can get in an
envy-free allocation among all profiles in which her preferences are equal to her true prefer-
ences.

4Thanks to Lars Ehlers for bringing my attention to the connection between the reversal
property in matching markets and the current paper.

5The symmetric statement holds for the women-optimal stable solution.
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The second purpose of our study is to investigate an agent’s incentive to be
sincere. Unconditionally reporting her true preferences has important conse-
quences for an agent. It implies that the agent gives up her strategic advan-
tage and this is common knowledge. Thus, a complete evaluation of the agent’s
incentives when a solution is operated calls for the determination of the ma-
nipulation outcomes that would ensue if the agent is sincere. Only then can
one judge the incentives for unconditional truthful revelation of preferences by
comparing these outcomes with the outcomes from the manipulation of the
solution when the agent is strategic.

Our results reveal that independently of the envy-free solution that is oper-
ated, an agent’s decision to be sincere depends on how pessimistic or optimistic
the agent is. In order to formalize this intuition we introduce utility represen-
tation in our otherwise ordinal model. We define the “price of sincerity for a
pessimistic agent” as the ratio of the lowest equilibrium payoff when the agent
is strategic, to the lowest equilibrium payoff when the agent is sincere. Surpris-
ingly, for each envy-free solution, as long as another agent is strategic, the price
of sincerity for a pessimistic agent is one (Proposition 2). That is, if the agent
expects to coordinate in her worst equilibrium outcome, she may prefer to be
sincere, commit to it by allowing for the verification of her report, and then
avoid the strategic effort of selecting her best response to the other players’ ac-
tions.

Likewise, we define the “price of sincerity for an optimistic agent” as the ra-
tio of the highest equilibrium payoff when the agent is strategic, to the highest
equilibrium payoff when the agent is sincere. The result here is that for each
envy-free solution, generically, this ratio is greater than one (Propositions 3
and 6). That is, for almost all preference profiles, an optimistic agent would
never have the incentive to commit to report her true preferences. The strik-
ing part of this result is that it holds independently of the envy-free solution
that is operated. It is well known that no envy-free solution in our environment
is “strategy-proof” (Tadenuma and Thomson, 1995a).6 Nevertheless, there are
envy-free solutions that reach some level of incentive compatibility. Let i be
an agent. There is an envy-free solution for which it is a dominant strategy for
agent i to report her true preference relation (Andersson et al., 2011). Since the
solution is envy-free, our result implies that agent i ’s price of sincerity if she
is optimistic is generically greater than one! Thus, even though truth telling is

6A solution is strategy-proof if for each preference profile it is a dominant strategy to report
her true preferences for each agent.
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a dominant strategy for agent i , this agent would generically benefit by coor-
dinating in an equilibrium outcome that cannot be sustained with a truthful
report (Section 5). Indeed, one cannot expect that agent i will be truthful when
this solution is operated and the agent is optimistic, contradicting the common
belief that dominance of truthful revelation for an agent induces her sincerity.7

The rest of the paper is organized as follows. Section 2 illustrates our re-
sults with two examples. Section 3 presents the model. Section 4 presents our
results. Section 5 discusses our results. Proofs are collected in the Appendix.

2 Examples

2.1 Dissolving a partnership

Consider two agents, say Ann and Bob, who collectively own a company and
decide to dissolve their partnership. They have to decide who gets the company
and how much he or she pays for it. We normalize Ann and Bob’s valuation of
staying out of the company to zero. Their valuations for keeping the company
are shown in Table 1.

Ann Bob
value $1.2 million $1 million

Table 1: Valuations

We assume that Ann and Bob’s preferences are quasi-linear, that is, they are
represented by the aggregate value of their allotment, i.e., getting or not the
company, plus/minus their transfer/payment.

There is a continuum of envy-free allocations in this problem. At each of
these allocations Ann receives the company and pays Bob an amount between
$0.5 and $0.6 million. If Ann pays Bob less than $0.5 million, Bob would prefer
to get Ann’s allotment. If she pays more than $0.6 million, she would prefer
Bob’s allotment. At no envy-free allocation Bob receives the company (in our
model no-envy implies Pareto efficiency).

7The terminology of pessimistic and optimistic price of sincerity is inspired on the “Price of
Anarchy (PoA)” and the “Price of Stability (PoS)” (Schulz and Moses, 2003; Anshelevich et al.,
2004; Koutsoupias and Papadimitriou, 2009). The difference of the price of sincerity and these
ratios is that we bound individual gains and losses and the PoA and PoS bound social losses.
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Suppose that an arbitrator is asked to dissolve the partnership. Consider
first the case in which the arbitrator knows the agents’ valuations. Call the max-
imum of these valuations vmax and the minimum vmin. In general, as described
above, if vmax > vmin, there is a continuum of envy-free allocations. At each
of these allocations the agent with maximal valuation receives the company
and pays the other agent an amount between 1

2
vmin and 1

2
vmax. If vmax = vmin,

then there is essentially one envy-free allocation, at which any agent may re-
ceive the company and pays 1

2
vmax =

1
2

vmax to the other agent. The arbitra-
tor may consider the cental point of the envy-free set a salient fair allocation:
the maximum-value agent receives the company and pays 1

4
(vmin+ vmax) to the

other agent (Tadenuma and Thomson (1995b) propose this selection and ex-
tend it to the n-agent and n-object case).

Now, with no knowledge of Ann and Bob’s valuations, the arbitrator, with
the same objective as above, may operate the following mechanism: (i) ask
both agents for their valuations; (ii) assign the company to the maximum-value
agent and ask him or her to pay 1

4
(vmin+ vmax) to the other agent.

One can easily see that if both agents are strategic, each envy-free allocation
for true preferences is a “limit Nash equilibrium” outcome of the arbitrators’
mechanism.8 Moreover, each limit Nash equilibrium is envy-free (Corollary 1;
see also Tadenuma and Thomson (1995a)).

Let us now consider the case in which one agent, say Ann, is sincere. Then,
there is a unique limit Nash equilibrium outcome: Ann receives the company
and pays $0.6 million to Bob. This allocation is envy-free! Thus, Ann’s welfare
is not worse than the minimum welfare she would obtain if she were strate-
gic. However, Bob takes advantage of Ann’s sincerity. If Ann were strategic, she
would be better off if they were to coordinate in a better equilibrium for her.
We show in our main results that independently of the number of agents in the
problem, these are two common features of all envy-free solutions.9

Now, imagine that the arbitrator operates the alternative mechanism that

8Existence of pure strategy Nash equilibria in this game may be compromised by the way the
arbitrator breaks ties for equal reports. As in a standard Bertrand game, a sensible solution to
this problem is to consider limit Nash equilibria (see Section 3 for details). For instance, here for
each v ∈ [$0.5 million, $0.6 million], the reports vAnn = v + ǫ and vBob= v are an ǫ-equilibrium.
A limit Nash equilibrium outcome is the limit as ǫ → 0 of a sequence of ǫ-equilibrium out-
comes.

9In the two-agent case if one agent is sincere and the other strategic, then the sincere agent
gets in equilibrium her all-profile minimum welfare among envy-free allocations. This is not
necessarily the case for more than two agents.
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for each report selects Ann’s preferred envy-free allocation. More precisely, let
vA and vB be Ann and Bob’s reports, respectively. If vA ≥ vB , the mechanism
recommends that Ann receive the company and pay 1

2
vB to Bob. If vB > vA , the

mechanism recommends that Bob receive the company and pay 1
2

vB to Ann.
One can easily verify that reporting her true valuation is a dominant strategy
for Ann. However, if Ann unconditionally reports her true valuation and Bob
is strategic, there is a unique limit Nash equilibrium outcome. This is exactly
the outcome from any envy-free mechanism: Ann will receive the company
and pay $0.6 million to Bob. One can expect that if Ann is optimistic, she will
misrepresent her preferences and try to coordinate in a better equilibrium for
her. Again, our results reveal that this is a common feature of all envy-free solu-
tions independently of the number of agents who are involved in the problem
(Propositions 3 and 6).

2.2 Allocating rooms and contributions to rent among three

roommates

Consider a set of roommates N ≡ {1,2,3} who collectively lease a house with
rooms A ≡ {1,2,3}. The rent for the house is $1200. Each roommate is to receive
exactly one room and pay an amount of money for it. Individual payments of
rent should add up to $1200, so there is no surplus or deficit. The roommates’
valuations for the rooms are as follows:

Room 1 Room 2 Room 3
roommate 1 $500 $400 $400
roommate 2 $400 $600 $400
roommate 3 $400 $400 $700

Table 2: Valuations

We assume that preferences are quasi-linear. That is, they are represented
by the aggregate value of the agent’s consumption. For example, if roommate 1
receives room 1 and pays $300 for it, her aggregate value is 200.

There is a continuum of envy-free allocations for this problem. Let i ∈ N .
Recall that envy-free allocations are Pareto efficient in this environment (Svens-
son, 1983). Thus, agent i receives room i at each envy-free allocation. Let
(ri )i∈N be the individual payments of rent at an envy-free allocation. Since
at each of these allocations no agent prefers the consumption of any other
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agent, these payments are those satisfying for each i 6= j the linear inequal-
ity constraint v i

i − ri ≥ v i
j − rj where v i

j is agent i ’s value of room j . Since
r1+r2+r3 = 1200, we can solve this inequality system for r1 and r2 (Figure 1 (a)).
The set of pairs (r1,r2) associated with envy-free allocations is a polygonal with
non-empty interior in R2

+
(Figure 1 (a)).
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Figure 1: (a) Envy-free allocation of rooms A ≡ {1, 2, 3} and contributions to rent among three
roommates N ≡ {1, 2, 3}when r1+ r2+ r3 = 1200 and valuations are given in Table ??. Let l i j be
the linear inequality constraint v i

i −ri ≥ v i
j −r j where v i

j is agent i ’s value of room j . The figure
displays for each pair (i , j )∈N ×A , the constraint l i j with its label inside the half space satisfy-
ing the inequality constraint. The shaded polygonal area contains all the combinations of rent
payments for agents 1 and 2, (r1, r2), such that the allocation where each agent i receives room i

and rent payments are (r1, r2, 1200− r1 − r2) is envy-free. Roommate 1’s indifference curves are
vertical lines (roommate 1 prefers smaller payments r1); roommate 2’s indifference curves are
horizontal lines (roommate 2 prefers smaller payments r2); roommate 3’s indifference curves
are lines with constant r1+ r2 (roommate 3 prefers higher aggregate payments by agents 1 and
2). (b) equilibrium outcomes from the manipulation of any envy-free solution when the set of
agents T is sincere.

An envy-free solution associates with each valuation vector (v i
j )i∈N ,j∈A an envy-

free allocation for it. As in Section 2.1, one can think of a solution as the judge-
ment of an arbitrator who endorses the envy-free principle and considers all
configurations of values. It is known that the set of outcomes from the di-
rect revelation game induced by an envy-free solution at some valuation vector
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is exactly the set of envy-free allocations for the true valuations (Beviá, 2010;
Velez, 2011; Fujinaka and Wakayama, 2012). Our main result, Theorem 1, im-
plies that if some agents are sincere, the set of manipulation outcomes is sharply
reduced to a subset of the “faces” of the envy-free set (Figure 1 (b)). More pre-
cisely, if some agents, say T ( N are sincere, the set of limit equilibrium out-
comes from the manipulation of any envy-free solution are the Pareto domi-
nant allocations for N \T inside the envy-free set for true the preferences. For
instance, if agent 3 is sincere, these limit equilibrium outcomes are those in
the segments connecting f and e and e and d in Figure 1 (b). If both agents 1
and 3 are sincere, then the unique limit equilibrium outcome is the preferred
allocation for agent 2 in the envy-free set, i.e., d .

This example also illustrates our results concerning incentives for the un-
conditional truthful revelation of preferences. First, each agent’s worst-case
limit equilibrium payoff from the manipulation of an envy-free solution are the
same when the agent is sincere and there is at least another strategic agent and
when, ceteris paribus, the agent is strategic (Proposition 2). Second, this ex-
ample is generical. For almost all preference profiles, each agent prefers the
best limit equilibrium outcome from the manipulation of an envy-free alloca-
tion when the agent is strategic to the best such an equilibrium when, ceteris
paribus, the agent is sincere (Propositions 3 and 6).

3 The Model

3.1 Environment, solutions, and properties of solutions

We consider the problem of allocating a finite set of objects A and an amount
M ∈ R of an infinitely divisible good, which we refer to as “money,” among
a group of agents N . We assume that the number of agents and objects are
equal, i.e., n ≡ |N |= |A |. Generic objects are denoted α and β . Agents consume
bundles in R× A. The generic consumption bundle is (xα,α). The domain of
preferences on R× A is R . Agent i ’s generic preference is Ri and the generic
preference profile is R ≡ (Ri )i∈N . As usual, I i and Pi are the symmetric and
asymmetric parts of Ri , respectively. We assume that preferences satisfy two
properties: (i) money-monotonicity, i.e., for each α ∈ A and each {xα,x ′

α
} ⊆ R

such that x ′
α
> xα, (x ′

α
,α)Pi (xα,α), and (ii) no object is infinitely better than

any other, i.e., for each {α,β } ⊆ A and each xβ ∈ R, there is xα ∈ R such that
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(xβ ,β ) I i (xα,α).10 Our results also hold when preferences are restricted to be
quasi-linear, i.e., preferences Ri ∈R such that for each two bundles (xα,α) and
(xβ ,β ) such that (xα,α) I i (xβ ,β ), and each δ ∈ R, (xα +δ,α) I i (xβ + δ,β ). We
denote the domain of quasi-linear preferences byQ.

We introduce a normalized representation of preferences in order to evalu-
ate an agent’s incentive to be sincere by means of a comparison of equilibrium
payoffs when the agent is sincere and when the agent is strategic. This repre-
sentation is also useful in evaluating genericity statements about the agents’
behavior in terms of a familiar topology in a functional space. Let α∗ ∈ A be
a reference object and ϕ : R → R++ be a strictly increasing, continuous, and
bounded function. For each Ri ∈R , let u [Ri ] : R×A → R++ be the continuous
representation of Ri such that for each xα∗ ∈ R, u [Ri ](xα∗ ,α∗) = ϕ(xα∗ ). When-
ever possible, we write u i for u [Ri ]. Let U ≡ {u i [Ri ] : Ri ∈ R} be the space of
normalized utility representations forR endowed with the supremmum met-
ric | · |∞.

Quasi-linear preferences can be seen as members of a much simpler space.
Indeed, there is a one-to-one relation between this domain and Rn−1: for each
Ri ∈ Q, there is a unique representation (x i ,α) ∈ R× A 7→ x i + v i

α
where v i ≡

(v i
α
)α∈A ∈R

A is such that
∑

α∈A
v i
α
= 0. Thus, one can evaluate the genericity of a

property in the quasi-linear domain in terms of the Euclidean topology and the
Lebesgue measure onRn−1.

We assume that each agent receives one object and some amount of money.
An allocation is a pair z ≡ (x ,µ) ∈RA×AN such that

∑

α∈A
xα =M andµ : N → B

is a bijection. The consumption of money associated with object α at z is xα.
Agent i ’s allotment at z is z i ≡ (xµ(i ),µ(i )). Let Z be the set of all allocations.

Let R ∈RN . For each i ∈N and each R ′i ∈R , the profile (R−i ,R ′i ) is obtained
from R by replacing Ri by R ′i . For each K ⊆ N , RK is the subprofile (Ri )i∈K .
Analogously, for each R ′K ∈ R

K , (R−K ,RK ) is obtained from R by replacing RK

by R ′K . We denote K + i the set K ∪ {i }.
We are interested in systematic ways of selecting allocations for each pos-

sible configuration of preferences. A solution, generically denoted by f , asso-
ciates with each R ∈RN a feasible allocation f (R) ∈Z .

Let R ∈RN . An allocation z ∈Z is envy-free for R if no agent prefers some
other agent’s consumption at z to her own (Foley, 1967; Varian, 1974). Let F (R )

be the set of envy-free allocations for R ; it is well known that under our assump-

10Money-monotonicity implies continuity, i.e., weak upper and lower contour sets are closed
in the product topology onR×A induced by the Euclidean and discrete topologies.
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tions, this set is non-empty (Alkan et al., 1991; Velez, 2012a); moreover, since
there are as many agents as objects, envy-free allocations are Pareto efficient
(Svensson, 1983).11 A solution f is envy-free if it selects an envy-free allocation
for each preference profile.

3.2 Manipulation of a solution

Our main interest is the manipulation of solutions when some agents may be
sincere. We consider the direct revelation game associated with a solution f

when a group of agents T ⊆ N is sincere, true preferences are R ∈ RN , and
the set of admissible preferences is D ⊆R . Formally, this is a game for the set
of players N \ T in which each player’s strategy space is D and the outcome
function is f (RT , ·).

One can easily see that the set of pure strategy Nash equilibria of the game
above may be empty.12 The issue here is that each solution acts as a tie-breaker
in the profiles for which multiple allocations are welfare equivalent to the se-
lected allocation. Similarly to a Bertrand competition game, a solution may
induce discontinuities in payoffs, conducing to the non-existence of pure strat-
egy Nash equilibria.

There are several approaches to defining a sensible prediction for these ma-
nipulation games. The most convenient for our purpose is the notion of limit
Nash equilibrium.13 An ǫ-equilibrium is a strategy profile RǫN \T from which no
strategic agent can change her report and obtain an allocation that is preferred
to the bundle obtained by adding ǫ of money to her consumption at RǫN \T . An
allocation is a limit Nash equilibrium outcome if it is the limit as ǫ → 0 of a
sequence of ǫ-equilibrium outcomes.14 We denote the set of limit Nash equi-

11An allocation z ∈Z is Pareto efficient R ∈RN if there is no other allocation z ′ ∈Z such that
for each i ∈N , z ′i Ri z i and for at least one j ∈N , z ′j R j z j .

12See Footnote 8 for an example.
13Alternative approaches are the extension of the equilibrium concept to include the tie

breaking rule, or sharing rule (Simon and Zame, 1990), or the discretization of consumptions of
money. One can also consider multivalued rules and define an extension of Nash equilibrium
to games with multivalued outcome functions (Tadenuma and Thomson, 1995a; Beviá, 2010).
Limit equilibria captures the intuitive idea that the non-existence of equilibria is only caused
by the tie-breaking role played by solutions, while applying to all single-valued solutions.

14Since preferences are money monotone, and thus continuous, our notion of limit equilib-
ria is equivalent to the standard notion with respect to any continuous utility representations
of preferences. That is, given a profile of utilities u ≡ (u i ) representing R , an ǫ-equilibrium
with respect to u is a profile of strategies RǫN \T such that for each i ∈ N \ T and each R ′i ∈ R ,
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librium outcomes from the manipulation of a solution f at R ∈ RN when the
domain of admissible preferences is D and the set of sincere agents is T by
O (N \T,DN \T , f (RT , ·), RN \T ).

3.3 Incentives for unconditional truthful revelation of prefer-

ences

Our model allows us to evaluate an agent’s incentive to be sincere, i.e., uncon-
ditionally report her true preferences, when a solution is operated. In order to
do so, we need to compare the possible payoffs for the agent if she decides to be
sincere with the payoffs when she is strategic. From the multiple approaches to
compare payoff sets, we concentrate on two benchmark measures that can be
associated to pessimistic and optimistic views of the agent.

Consider first an agent who expects to coordinate on his worst possible pay-
off equilibrium if she decides to be strategic. In order to measure the incentive
to be sincere for such an agent, we define the price of sincerity for a pessimistic

agent (PSP) for agent i at f , T ⊆N \{i }, and R , when the domain of admissible
preferences is D ⊆R as the ratio of the agent’s worst-case normalized equilib-
rium payoff when she is strategic to that when she is sincere.15

PS Pi [f ,D, T, R ]≡
min{u i (z i ) : z ∈ O (N \T,DN \T , f (RT , ·),RN \T )}

min{u i (z i ) : z ∈ O (N \ (T + i ),DN \(T+i ), f (RT+i , ·),RN \(T+i ))}
.

Consider now an agent who expects to coordinate on his best possible pay-
off equilibrium if she decides to be strategic. In order to measure the incentive
to be sincere for such an agent, we define the price of sincerity for an opti-

mistic agent (PSO) for agent i at f , T ⊆ N \ {i }, and R , when the domain of
admissible preferences is D ⊆ R as the ratio of the agent’s best-case normal-
ized equilibrium payoff when she is strategic to that when she is sincere.

PSOi [f ,D, T, R ]≡
max{u i (z i ) : z ∈ O (N \T,DN \T , f (RT , ·),RN \T )}

max{u i (z i ) : z ∈O (N \ (T + i ),DN \(T+i ), f (RT+i , ·),RN \(T+i ))}
.

u ( f (RT , RǫN \T ))≥ u ( f (RT , RǫN \(T∪{i }), R ′i )+ ǫ. A limit equilibrium with respect to u is the limit as
ǫ→ 0 of a sequence of ǫ-equilibrium outcomes with respect to u .

15We use min instead of inf in the definition of PSP and PSO , because our results show that
the minimum in the respective sets always exist.
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4 Results

A Maximin strategy for an agent in a game, is a strategy that gives the agent her
best worst-case scenario outcome among all strategies. Our first result states
that an agent’s true preference relation is one of her Maximin strategies in the
revelation game associated with any envy-free solution at any preference pro-
file. We collect all proofs in the Appendix.

Proposition 1 (Truth is Maximin strategy). Let f be an envy-free solution, i ∈N ,

and R0
i ∈R . Then,

R0
i
∈ arg max

Ri∈R

¦

inf{u [R0
i
](z i ) : z ∈ f (Ri ,R−i ),R−i ∈R

N \i }
©

.

Proposition 1 allows us to interpret sincere agents in our model as subjects
who exhibit an extreme form of risk aversion.

The following theorem, our main result, characterizes the limit Nash equi-
librium outcomes of the game associated with an envy-free solution at a profile
R when a group of agents is sincere. First, the set is non-empty. Second, the set
is welfare equivalent to the set of envy-free allocations for the true preferences
that are not Pareto dominated by any other envy-free allocation for the strategic
agents.

Theorem 1. Let f be an envy-free solution, R ∈RN , and T (N . Then,

(i) O (N \T,RN \T , f (RT , ·),RN \T ) 6= ;

(ii) If z ∈ O (N \T,RN \T , f (RT , ·),RN \T ), then z ∈ F (R) and there is no z ′ ∈ F (R)

such that for each i ∈N \T , z ′i Ri z i and for some j ∈N \T , z ′j Pj z j .

(iii) If ẑ ∈ F (R) and there is no z ′ ∈ F (R) such that for each i ∈N \T , z ′i Ri ẑ i and

for some j ∈ N \T , z ′j Pj ẑ j , then there is z ∈ O (N \T,RN \T , f (RT , ·),RN \T )

such that for each i ∈ T , ẑ i I i z i and for each j ∈N \T , ẑ j = z j .

Our proof of Theorem 1 follows from three lemmas of independent inter-
est. These results provide an expedite test to determine whether an alloca-
tion is a limit Nash equilibrium from the manipulation of an envy-free solution
when some agents are sincere. They state necessary and sufficient conditions
in terms of a binary relation on the set of agents, which is associated with each
allocation and the true preferences. Let z be an allocation and R a preference
profile. Intuitively, agent i dominates agent j in terms of the binary relation

13



associated with R and z when agent i ’s consumption at z can be connected
to that of agent j through a chain of indifferences among the agents and their
consumptions at z .

Formally, the binary relation Ä (R ,z ) is defined as follows: for each pair
{i , j } ⊆N , i Ä(R ,z ) j if there is a list of agents i 1, i 2, . . . , i k such that z i 1 I i 1 z i 2 , . . . ,
z i k−1 I i k−1 z i k

, z i k
I i k

z i 1 , i 1 = i , and i k = j .16

The use of this binary relation for the study of the manipulation of envy-free
solutions inR was pioneered by Velez (2011) for the money-Rawlsian envy-free
solutions. These solutions select for each preference profile, the envy-free allo-
cations that maximize the minimum individual consumption of money recali-
brated by a family of increasing functions. Following this approach, Fujinaka
and Wakayama (2012) study the manipulation of the solution that achieves
the maximum welfare for a given agent.17 The study of this solution proves
to be of great theoretical interest. It delivers a characterization of the situations
in which an agent is able to manipulate any envy-free solution (Fujinaka and
Wakayama, 2012, Maximal Manipulation Theorem (MMT)).

Our first two lemmas are applications of the MMT. They state necessary
conditions for an allocation to be a limit Nash equilibrium from the manip-
ulation of an envy-free solution when some agents are sincere. First, each limit
Nash equilibrium outcome is envy-free for true preferences.

Lemma 1. Let f be an envy-free solution, R ∈RN , and T (N . Then,

O (N \T,RN \T , f (RT , ·),RN \T )⊆ F (R).

Our second lemma states a necessary condition for an allocation z to be a
limit Nash equilibrium outcome from the manipulation of an envy-free solu-
tion at R in terms of Ä (R ,z ): the consumption of each sincere agent can be
linked with the consumption of a strategic agent through a chain of indiffer-
ences, with respect to true preferences, among the agents and their consump-
tions at z .

Lemma 2. Let f be an envy-free solution, R ∈ RN , and T ( N . If z ∈ O (N \

T,RN \T , f (RT , ·),RN \T ), then for each i ∈ T there is j ∈N \T such that i Ä(R ,z ) j .

16The binary relation Ä (R , z ) was introduced, in its equivalent form for the set of objects,
by Alkan (1994). It has been at the center of the analysis of incentives in the manipulation of
envy-free solutions (Velez, 2011; Fujinaka and Wakayama, 2012; Andersson et al., 2011).

17Andersson et al. (2011) independently study this solution in the quasi-linear domain of
preferences.
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Our third lemma is essentially a converse to Lemmas 1 and 2. It states that,
essentially, each envy-free allocation for preferences R , z , at which the con-
sumption of each sincere agent can be linked with a strategic agent through a
chain of indifferences, with respect to true preferences, among the agents and
their consumptions at z , is the outcome from the manipulation of any envy-
free solution at R . Here, “essentially” means that if z is not such an equilibrium
outcome, then there is an equilibrium outcome that is welfare equivalent to z .

Lemma 3. Let f be an envy-free solution, R ∈ RN , and T ( N . Let ẑ ∈ F (R) be

such that for each i ∈ T there is j ∈ N \ T such that i Ä (R , ẑ )j . Then, there is

z ∈ O (N \ T,RN \T , f (RT , ·),RN \T ) such that for each i ∈ T , ẑ i I i z i and for each

j ∈N \T , z j = ẑ j .

There has been a wide range of approaches to study the manipulation of
envy-free solutions. Under the diverse predictions for these manipulation games
considered in the literature, the results have been uniform: the set of outcomes
from the manipulation of each envy-free solution when all agents are strategic
is the set of envy-free allocations for true preferences (Tadenuma and Thom-
son, 1995a; Āzacis, 2008; Beviá, 2010; Velez, 2011; Fujinaka and Wakayama, 2012).
The following corollary of Theorem 1 states that the aforementioned result also
holds when one considers limit Nash equilibria as the prediction in these ma-
nipulation games. Our study is the first to consider this equilibrium concept in
this environment. We omit the straightforward proof.

Corollary 1. Let f be an envy-free solution and R ∈RN . Then,

O (N ,RN , f ,R) = F (R).

We now consider a pessimistic agent’s incentives for truthful revelation of
preferences. Our main result here is that if there is another strategic agent, a
pessimistic agent would not be hurt by committing to unconditionally report
her true preferences.

Proposition 2. Let f be an envy-free solution, R ∈ RN , i ∈ N , and T ( N \ {i }.

Then,

PSPi [ f ,R ,T,R] = 1.

Proposition 2 allows us to conclude that a pessimistic agent does not expect
to benefit from strategizing in the manipulation of an envy-free solution. It is
worth noting that this is different from the agent exhibiting an extreme form
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of risk aversion. Maximin strategies bound the worst-case payoff for an agent
for all possible reports of the other agents. By contrast, a pessimistic agent is a
welfare maximizing agent who, aware of the equilibrium play, has a pessimistic
expectation about what the outcomes from manipulation will be.

Proposition 2 follows from two results of independent interest that we state
next. Our first result, a corollary of Lemma 3, states that any achievable con-
sumption for a sincere agent is achievable if, ceteris paribus, the agent becomes
strategic. This implies that the worst-case scenario equilibrium for a sincere
agent is no worse than the the worst-case scenario equilibrium if the agent is
strategic.

Corollary 2. Let f be an envy-free solution, R ∈ RN , and T ( N . Let i ∈ T and

z ∈ O (N \T,RN \T , f (RT , ·),RN \T ). Then, there is

z ′ ∈ O (N \ (T \ {i }),RN \(T \{i }), f (RT \{i }, ·),RN \(T \{i })),

such that z ′i = z i .

One may think that Corollary 2 is trivial, since a strategic agent has always
her true preferences as a possible strategy. However, true preferences may not
be a best response, for a strategic agent, to the strategies of the other players
that sustain an allocation as an equilibrium outcome when the agent is sincere.
Here is were Lemma 3 comes into play and allows us to identify a limit Nash
equilibrium with the desired properties.

The following lemma is a converse to our worst-case interpretation of Corol-
lary 2. It states that as long as there is another strategic agent, the worst-case
scenario equilibrium for a strategic agent is no worse than the worst-case sce-
nario equilibrium if the agent is sincere.

Lemma 4. Let f be an envy-free solution, R ∈ RN , i ∈ N , and T ( N \ {i }. Let

z ∈ O (N \T,RN \T , f (RT , ·),RN \T ). Then, then there is

ẑ ∈ O (N \ (T ∪ {i }),RN \(T∪{i }), f (RT∪{i }, ·),RN \(T∪{i })),

such that z i Ri ẑ i .

It is straightforward to see that Proposition 2 follows from Corollary 2 and
Lemma 4.

We now study the incentives for unconditional truthful revelation for an op-
timistic agent. The following corollary to Lemma 3 states that an agent’s pre-
ferred envy-free allocation for the true preferences is always among the out-
comes from the manipulation of any envy-free solution when the agent is strate-
gic.
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Corollary 3. Let f be an envy-free solution, R ∈ RN , i ∈ N , and T ⊆ N \ {i }.

Then, arg max{u [Ri ](z i ) : z ∈ F (R)}∩O (N \T,RN \T , f (RT , ·),RN \T ) 6= ;.

The following proposition states that generically the price of sincerity for an
optimistic agent is greater than one.

Proposition 3. Let f be an envy-free solution, R ∈RN , i ∈N , and T ⊆N \ {i }.

1. For each R ∈RN , PSOi [ f ,R ,T,R]≥ 1.

2. The set of utility profiles u [R]with R ∈RN for which

PSOi [ f ,R ,T,R]> 1,

is an open dense set in the product topology ofU N .

Corollary 3 and Proposition 3 allow us to conclude that a sincere agent gener-
ically gives up the opportunity to obtain her preferred envy-free allocation for
the true preferences. Thus, for almost all preference profiles, independently of
the envy-free solution that is operated, an optimistic agent would never give up
her strategic advantage.

We finally investigate to what extent strategic agents can take advantage of
sincere agents. Let R ∈ RN and z ∈ F (R). Suppose that z is not a limit equi-
librium of the game associated with an envy-free solution f at R . From The-
orem 1 we know that z has to be Pareto dominated for the strategic agents by
another envy-free allocation. The following proposition strengthens this result.
It states that there is a limit equilibrium of the game associated with f at R , ẑ ,
that all strategic agents prefer to z . Moreover, there is at least a sincere agent
who prefers z to ẑ .

Proposition 4. Let f be an envy-free solution, R ∈RN , and T (N . If z 6∈ O (N \

T,RN \T , f (RT , ·),RN \T ), then there is ẑ ∈ O (N \T,RN \T , f (RT , ·),RN \T ) and i ∈ T

such that z i Pi ẑ i and for each agent j ∈N \T , ẑ j Pj z j .

A corollary of Proposition 4 is that if agent i is the only sincere agent and z

is not a limit equilibrium of the game associated with an envy-free solution f

at R , then there is an equilibrium ẑ such that agent i prefers z to ẑ (all strategic
agents prefer ẑ to z ). We omit the straightforward proof.

Corollary 4. Let f be an envy-free solution, R ∈ RN , and i ∈ N . If z 6∈ O (N \

{i },RN \{i }, f (Ri , ·),RN \{i }), then there is ẑ ∈ O (N \ {i },RN \{i }, f (Ri , ·),RN \{i }) such

that z i Pi ẑ i and for each agent j ∈N \ {i }, ẑ j Pj z j .
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5 Discussion

5.1 Quasilinear preferences

All of our results in Section 4 hold if one assumes that both true preferences
and admissible preferences are quasi-linear. If one interprets our model as an
arbitration problem, this would correspond to the case in which the arbitrator
knows that preferences are quasi-linear, but has no additional information.

Proposition 1 holds in a stronger form when both true preferences and ad-
missible preferences are quasi-linear. The following proposition states that, in
this case, not only truth is a Maximin strategy in the game associated with an
envy-free allocation at some profile, but also it is the unique Maximin strategy.

Proposition 5 (Truth is unique Maximin strategy in quasi-linear domain). Let f

be an envy-free solution, i ∈N , and R0
i ∈Q. Then,

¦

R0
i

©

= arg max
Ri∈Q

¦

inf{u [R0
i
](z i ) : z ∈ f (Ri ,R−i ),R−i ∈Q

N \i }
©

.

One can easily see that our proof of Lemmas 1 and 2 go through with no
modification when true preferences and admissible preferences are quasi-linear.
Our proof of Lemma 3 requires to be adjusted, however. There, we construct a
sequence of ǫ-equilibria, Rǫ, whose outcomes converge, as ǫ→ 0, to an alloca-
tion z satisfying the properties stated in the lemma. Each of these Rǫ is defined
by means of two equations which imply that generically Rǫ ∈ (R \Q)N \T . One
can prove that the sequence of quasi-linear preferences satisfying only the first
of these conditions is a sequence of ǫ-equilibria when the domain of admissi-
ble preferences is Q. Moreover, the outcomes of this sequence also converge
to z as ǫ → 0. Thus, Lemma 3 also holds in the quasi-linear domain. Conse-
quently, Theorem 1, Propositions 2 and 4, and Corollaries 1-4 hold whenever
true preferences and admissible preferences are inQ.

When preferences are quasi-linear we can evaluate genericity statements
not only in a topological sense, but also with respect to the Lebesgue measure.
The following proposition is the counterpart of Proposition 3 in Q. It states
that the price of sincerity for an optimistic agent in Q is generically greater
than one. That is, for almost all preference profiles, a sincere agent gives up the
possibility to obtain her best allocation among all envy-free allocations for the
true preferences. It is worth noting that genericity here holds with respect to
the Euclidean topology and the Lebesgue measure onQN .
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Proposition 6. Let f be an envy-free solution, i ∈N , and T ⊆N \ {i }.

1. For each R ∈QN , PSOi [ f ,Q,T,R]≥ 1.

2. The set of preference profiles R ∈QN for which

PSOi [ f ,Q,T,R]> 1,

is an open dense set of R(n−1)×n .

3. The set of preference profiles R ∈QN for which

PSOi [ f ,Q,T,R] = 1,

has Lebesgue measure zero in R(n−1)×n .

5.2 Dominant strategies and truthful revelation

Let f be a solution. Assume that the domain of admissible preferences isR . Let
i ∈N . Agent i ’s true preference relation is a dominant strategy in the manipu-
lation game of f if for each R ∈DN and each R ′i ∈D, f i (R)Ri f (R−i ,R ′i ). It is well
known that no envy-free solution is such that for each agent her true preference
relation is a dominant strategy (Tadenuma and Thomson, 1995a). There are
envy-free solutions that achieve some partial form of incentive compatibility,
however. Define a solution, which we refer to as the i -optimal envy-free solu-
tion, as follows: from the set of all envy-free allocations for a profile, select one
of agent i ’s preferred allocations (these allocations are welfare equivalent for
all agents; Alkan et al., 1991). It turns out that true preferences are a dominant
strategy for agent i when this solution is operated (Andersson et al., 2011).18

Notice here the similarity with marriage markets, where the men and women
optimal stable solutions make it a dominant strategy for men and women to
report their true preferences, respectively (Dubins and Freedman, 1981; Roth,
1982).

In order to completely understand agent i ’s incentives to truthfully reveal
her preferences when the i -optimal envy-free solution is operated, one has to

18The agent-optimal envy-free solutions are dominant (“least manipulable”) in the family of
envy-free solutions with respect to the following comparative notion of incentive compatibility:
solution 1 is more manipulable than solution 2 if whenever an agent can manipulate solution 2,
the agent can manipulate solution 1 as well (Andersson et al., 2011).
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determine the consequences of her unconditional truthful behavior. Our re-
sults reveal that, if it is common knowledge that agent i is sincere, then the
outcomes from the manipulation of the i -optimal envy-free solution are the
same as those from the manipulation of any envy-free solution (Theorem 1).
Independently of the solution that is operated, agent i ’s decision to uncondi-
tionally report her true preferences depends on how optimistic or pessimistic
the agent is. If the agent is pessimistic, one may expect she would be sincere
(Proposition 2). If the agent is optimistic, one may expect she will be strategic
(Propositions 3 and 6). This suggest that there is no connection between dom-
inance of truthful revelation and the decision to be sincere for an agent in our
environment.

Appendix

Proof of Proposition 1. Let {R0
i ,Ri } ⊆ R and R−i ∈R

N \{i }. We prove that there
is R ′−i ∈Q

N \{i } such that f i (R−i ,R0
i )R

0
i f i (R

′
−i ,Ri ). Since R0

i ∈R , then there is x ≡

(xα)α∈A ∈R
A such that
∑

α∈A xα =M and for each pair {α,β } ⊆ A, (xα,α) I 0
i (xβ ,β ).

Since envy-free allocations satisfy the Identical Preferences Lower Bound (IPLB),
then for each α ∈ A, f i (R−i ,R0

i )R
0
i (xα,α) (Moulin, 1990; Beviá, 2010). For each

j ∈N \ {i }, let R ′j ∈Q be such that for each pair {α,β } ⊆ A, (xα,α) I ′j (xβ ,β ). Let
z ≡ (y ,µ) ≡ f (R ′−i ,Ri ). Recall that z ∈ F (R ′−i ,Ri ). Since envy-free allocations
satisfy the IPLB, then for each j ∈ N \ {i }, yµ(j ) ≥ xµ(j ). Thus, yµ(i ) ≤ xµ(i ) and
(xµ(i ),µ(i ))R0

i (yµ(i ),µ(i )). Thus, f i (R−i ,R0
i )R

0
i f i (R

′
−i ,Ri ).

Then inf{u [R0
i ]( f (R−i ,R0

i )) : R−i ∈ RN \{i }} ≥ u [R0
i ]( f i (R

′
−i ,R0

i )) and
u [R0

i ]( f i (R
′
−i ,R0

i ))≥ inf{u [R0
i ]( f (R−i ,R ′i )) : R−i ∈R

N \{i }}. Thus,

R0
i
∈ arg max

Ri∈R

¦

inf{u [R0
i
](z i ) : z ∈ f (Ri ,R−i ),R−i ∈R

N \i }
©

.

The following results play an important role in our proofs. We state them
for completeness. See the respective papers for the proof.

Lemma 5 (Decomposition Lemma; Alkan et al., 1991). Let R ∈RN , z ≡ (x ,µ) ∈
F (R), and ẑ ≡ (x̂ , µ̂)∈ F (R). Then, both µ and µ̂ are bijections between:

(i) {i ∈N : z i Pi ẑ i } and {α∈ A : xα > x̂α}.

(ii) {i ∈N : z i I i ẑ i } and {α ∈ A : xα = x̂α}.

(iii) {i ∈N : ẑ i Pi z i } and {α ∈A : x̂α > xα}.
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Theorem 2 (Maximal Manipulation Theorem; Fujinaka and Wakayama, 2012).

Let D ∈ {R ,Q}, f an envy-free solution, R ∈ DN , i ∈N , and z ≡ (x ,µ) such that

z ∈ arg max{u [Ri ](z i ) : z ∈ F (R)}. Then, for each ǫ > 0 there is Rǫi ∈ D such that

f (R−i ,Rǫi )Ri (xµ(i )− ǫ,µ(i )).

Proof of Lemma 1. Let z ∈ O (N \ T,RN \ T, f (RT , ·),RN \T ) and R∗N \T an action
profile that sustains z as an equilibrium outcome. We prove that z ∈ F (R). Sup-
pose by contradiction that there is {i , j } ⊆N such that z j Pi z j . Suppose without
loss of generality that z j is agent i ’s preferred bundle in (z k )k∈N . Since z is envy-

free for the reported preferences, then i ∈N \T . Let R ′ = (RT ,Ri ,R∗N \(T∪{i })). We
claim that there is z ′ ∈ F (R ′) such that z ′i Pi z i . Suppose first that j Ä(R ′,z ) i .
Then, there is a way to reshuffle objects at z so that agent i receives µ(j ) and
the resulting allocation is envy free for R ′ (just reshuffle along the chain that
defines j Ä(R ′,z )k ). Let N ′ ≡ {k : k Ä(R ′,z ) i }. Suppose now that N \N ′ 6= ;.
A perturbation argument easily shows that one can find z ′ by extracting some
money from N \N ′, and distributing it among N ′ so all agents in N ′ benefit.
Since i ∈ N ′, then z ′i Pi z i . By the Maximal Manipulation Theorem (Fujinaka
and Wakayama, 2012), for small ǫ, no allocation close to z is an ǫ-equilibrium.
This is a contradiction.19

Proof of Lemma 2. Let z ∈ O (N \ T,RN \ T, f (RT , ·),RN \T ) and R∗N \T an action
profile that sustains z as an equilibrium outcome. Let i ∈ T . We prove that
there is j ∈ N \ T such that i Ä (R ,z ) j . Suppose by means of contradiction
that N ′ ≡ {k : i Ä (R ′,z )k } is such that N ′ ∩ N \ T = ;. Let j ∈ N \ T and
R ′ = (RT ,R j ,R∗N \(T∪{i })). Since f is envy-free and by Lemma 1, z ∈ F (R), then
z ∈ F (R ′). Then, one can construct z ′ ∈ F (R ′) such that z ′i Pi z i by extracting an
amount of money from the agents in N ′ and distributing it among N \N ′ so all
agents in N \N ′ benefit. By the Maximal Manipulation Theorem (Fujinaka and
Wakayama, 2012), for small ǫ, no allocation close to z is an ǫ-equilibrium. This
is a contradiction.

Proof of Lemma 3. Let ẑ ≡ (x̂ , µ̂) ∈ F (R) be such that for each i ∈ T there is
j ∈N \T such that i Ä(R , ẑ )j .

Let ǫ > 0. We construct an ǫ-equilibrium of the game associated with f at R ,
z ∈ Z , such that for each j ∈ N \T , z j ≈ ẑ j . Let δ > 0 and m ∈ R be such that
m > n 2δ and for each α ∈ A and each i ∈ T , (α, x̂α +m )Pi ẑ i . Let i ∈N \T and
α≡ µ̂(i ). Let Rδi be such that for each β ∈ A \α,

19An alternative proof of this lemma can be constructed along the lines of Fujinaka and
Wakayama (2012, Theorem 3).
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1. (xα− (n −1)δ,α) I δi (xβ +δ,β ).

2. (xα,α) I δi (xβ +m ,β ).

Let Rδ ≡ (RT ,RδN \T ) and z ≡ (x ,µ)∈ f (Rδ). We claim that for each i ∈N \T ,µ(i ) =
µ̂(i ). Suppose by contradiction that µ(i ) 6= µ̂(i ). Since F satisfies the identical
preferences lower bound, then xµ(i ) ≥ x̂µ(i )+δ. Since {ẑ ,z } ⊆ F (Rδ), then by the
Decomposition Lemma, z i Pδi ẑ i . By (2) in the definition of Rδi , xµ(i ) > x̂µ(i )+m .
Let j ∈ T . Since z ∈ F (Rδ), then z j R j z i . By definition of m , z i Pj ẑ j . Thus, by
the Decomposition Lemma, xµ(j ) > x̂µ(j ) and x µ̂(j ) > x̂ µ̂(j ). Let k ∈ N \ T . Since
F satisfies the IPLB, then by (1) in the definition of Rδi , xµ(k ) ≥ xµ(k )− (n − 1)δ.
Then,
∑

α∈A

xα ≥ x̂µ(i )+M +
∑

α∈A\{µ(i )}

[x̂α− (n −1)δ]>
∑

α∈A

x̂α.

This is a contradiction.
Let i ∈N \T and ν > 0. We prove that there isδ > 0 such that for each R̃i ∈R

and each z̃ ≡ (x̃ , µ̃) ∈ F (Rδ−i , R̃i ) such that x̃ µ̃(i ) ≥ x̂ µ̃(i ) we have that for each
j 6= i , x̃ µ̃(j ) ≥ x̂ µ̃(j )−ν . Suppose by contradiction that there is a sequence {δt }t ∈N
such that as t →∞, δt → 0 and for each t ∈ N there is R t

i ∈ R , z t ≡ (x t ,µt ) ∈

F (R
δt

−i ,R t
i ) such that x t

µt (i )
≥ x̂µt (i ) and j t 6= i such that x t

µt (j t )
< x̂µt (j t )− ν . Since

N and A are finite, we can assume without loss of generality that the sequences
{µt }t ∈N and {j t }t ∈N are constant. Denote the constant bijection by σ and the
agent in the sequence by j ∗. Since F satisfies the IPLB, j ∗ ∈ T , for otherwise
x t
σ(j ∗) ≥ x̂σ(j ∗)− (n −1)δt → x̂σ(j ∗). Since for each t ∈N, x t

σ(i ) ≥ x̂σ(i ), the sequence
{x t }t ∈N is bounded, and thus, we can suppose without loss of generality that it
is convergent. Let x̃ ≡ limt→∞x t . Then, x̃σ(j ∗) < x̂σ(j ∗). There are two cases:

1. Suppose that σ(j ∗) ∈ µ̂(N \ T ). Let k ∈ N be such that σ(k ) = µ̂(j ∗). Let
t ∈ N. We claim that x t

σ(k ) ≥ x̂σ(k ). If k ∈ N \ (T + j ∗), then x t
σ(k ) ≥ x̂σ(k ) +

δt . If k ∈ T is such that there is k ′ ∈ N \ (T + j ∗ + k ) such that σ(k ′) =
µ̂(k ), then x t

σ(k ′)
≥ x̂σ(k ′)+δt . Since σ(k ′) = µ̂(k ), then x t

µ̂(k ) ≥ x̂ µ̂(k ). Since

z t ∈ F (R
δt

−i ,R t
i ) and k ∈ T , then x t

σ(k ) ≥ x̂σ(k ). The recursive argument
shows that x t

σ(k ) ≥ x̂σ(k ). Since σ(k ) = µ̂(j ∗), then x t
µ̂(j ∗) ≥ x̂ µ̂(j ∗). Since

z t ∈ F (R
δt

−i ,R t
i ), j ∗ ∈ T , and x t

µ̂(j ∗) ≥ x̂ µ̂(j ∗), we have that x t
σ(j ∗) ≥ x̂σ(j ∗). Thus,

x̃σ(j ∗) ≥ x̂σ(j ∗). This is a contradiction.

2. Suppose thatσ(j ∗) ∈ µ̂(T ). Let j ∈N \T be such that j ∗ Ä(R , ẑ )j . Assume
that the indifference chain in j ∗ Ä(R , ẑ )j is of length one (has two agents
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forming a cycle). Let t ∈ N. Since (x t ,σ) ∈ F (R
δt

−i ,R t
i ), then

(x t
σ(j ∗),σ(j

∗))R j ∗ (x
t
µ̂(j ), µ̂(j )). Since preferences are continuous, then

(x̃σ(j ∗),σ(j ∗))R j (x̃ µ̂(j ), µ̂(j )). Since x̃σ(j ∗) < x̂σ(j ∗) − ν and ẑ ∈ F (R), then
ẑ j ∗ Pj ∗ (x̃σ(j ∗),σ(j ∗)). Thus, ẑ j ∗ Pj ∗ (x̃ µ̂(j ), µ̂(j )) Let k ≡ σ−1(µ̂(j )). If k ∈ T ,
then by the same argument in Case 1, we have that x̃σ(k ) ≥ x̂σ(k ). If k ∈

N \T , then for each t ∈N, x t
σ(k ) ≥ x̂ µ̂(j ). Thus, x̃σ(k ) ≥ x̂σ(k ), or equivalently

x̃ µ̂(j ) ≥ x̂ µ̂(j ). Thus, ẑ j ∗ Pj ∗ (x̂ µ̂(j ), µ̂(j )) = ẑ j . This contradicts j ∗ Ä (R , ẑ )j .
The recursive argument shows that this is true for indifference chains of
any length.

Let i ∈ N \ T . Let δ > 0 be such that for each R̃i ∈ R and each z̃ ≡ (x̃ , µ̃) ∈
F (Rδ−i , R̃i ) such that x̃ µ̃(i ) ≥ x̂ µ̃(i ) we have that for each j 6= i , x̃ µ̃(j ) ≥ x̂ µ̃(j )−

ǫ

2(n−1)
.

Let R̃i ∈ R and z̃ ≡ (x̃ , µ̃) = f (Rδ−i , R̃i ). Thus, x̃ µ̃(i ) ≤ x̂ µ̃(i ) +
ǫ

2
. Thus, Rδ is an

ǫ-equilibrium. Let z δ ≡ (xδ,µδ). Assume without loss of generality that µδ is
independent of δ. Let i ∈ N \ T . By construction, µδ(i ) = µ̂(i ) and as δ → 0,
xδµ̂(i )→ x̂ µ̂(i ). Let i ∈ T . Since there is j ∈N \T such that i Ä(R , ẑ )j , an argument

as that in Case 2 above shows that as δ→ 0, xδµ̂(i )→ x̂ µ̂(i ). Thus, as δ→ 0, xδ→

x̂ . Thus the limit of the sequence {z δ} defines an allocation, say z . Since z is
the limit of ǫ-equilibria, then it is a limit Nash equilibrium. Since preferences
are continuous, then z ∈ F (R). By the Decomposition Lemma, for each i ∈ T ,
ẑ i I i z i .

Proof of Theorem 1. (ii) Let z ∈ O (N \ T,RN \ T, f (RT , ·),RN \T ) . By Lemma 1,
z ∈ F (R). We prove that there is no z ′ ∈ F (R) such that for each i ∈ N \ T ,
z ′i Ri z i and for some j ∈ N \ T , z ′j Pj z j . Let z ′ ∈ F (R) be such that for each
i ∈N \T , z ′i Ri z i . By the decomposition lemma, for each i ∈N \T , x ′µ(i ) ≥ xµ(i ).
Let i ∈ T . By Lemma 2, there is j ∈N \T such that i Ä(R ,z ) j . Since x ′µ(j ) ≥ xµ(j ),
then z ′i Ri z i . By the Decomposition Lemma, x ′µ(i ) ≥ xµ(i ). Thus, x ′ = x . Since
z ∈ F (R), then for each i ∈N \T , z i Ri z ′i .

(iii) Now, suppose that ẑ ∈ F (R) and there is no z ′ ∈ F (R) such that for each
i ∈ N \ T , z ′i Ri ẑ i and for some j ∈ N \ T , z ′j Pj ẑ j . We prove that there is z ∈

O (N \T,RN \T, f (RT , ·),RN \T ) such that for each i ∈ T , ẑ i I i z i and for each j ∈

N \ T , ẑ j = z j . We will prove that for each i ∈ T there is j ∈ N \ T such that
i Ä(R ,z ) j , which by Lemma 3 completes the proof of the Theorem. Suppose
by contradiction that there is i ∈ T such that for each j ∈ N \ T it is not true
that i Ä(R ,z ) j . Let M ≡ {j ∈ N : i Ä(R ,z ) j }. If M ⊆ T , then by a perturbation
argument, one can easily construct an allocation z ′ ∈ F (R) that is preferred by
all agents in N \M .
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(i) Let i ∈ N \ T . If z ∈ F (R) is the best allocation in F (R) for agent i , then
for each j ∈N \ {i }, j Ä(R ,z ) i (Velez, 2011; Fujinaka and Wakayama, 2012) . By
Lemma 3, z ∈ O (N \T,RN \T, f (RT , ·),RN \T ).

Proof of Corollary 2. Let i ∈ T and z ∈ O (N \T,RN \T, f (RT , ·),RN \T ). Let j ∈

T \ {i }. By Lemma 2, there is k ∈N \T such that j Ä(R ,z )k . By Lemma 3, there
is a limit Nash Equilibrium outcome of the game associated with f at R when
T \ {i } are sincere, z ′, such that z ′i = z i .

Proof of Lemma 4. Let f be an envy-free solution and R ∈ RN . Assume that
agents in T ( N are truthful and the set of admissible preferences is R . Let
i ∈ N \ T and z ∈ O (N \ T,RN \ T, f (RT , ·),RN \T ). Let S ≡ N \ (T ∪ {i }). If
there is j ∈ S such that i Ä(R ,z ) j , then by Lemma 3, z is the desired alloca-
tion. Suppose now that for no j ∈ S, i Ä(R ,z ) j . Let u ≡ (u j )j∈N be a continu-
ous utility representation of R such that: for each j ∈ S, u j is bounded below
by 0 and u j (z j ) = 1, and for each j ∈ N \ S, u j is bounded above by 0. Let
V ≡ arg max{minj∈S u j (z

′
j ) : z ′ ∈ F (R)}. Since preferences are continuous and

F (R) is compact, then V is non-empty. Let ẑ ≡ (x̂ , µ̂) ∈ V . We claim that ẑ is a
limit Nash equilibrium of the game associated with f at R when the set of sin-
cere agents is T ∪ {i } such that z i Pi ẑ i . For each j ∈ N \S, there is k ∈ S such
that j Ä(R ,z )k , for otherwise a perturbation argument as in Velez (2011, Lem-
mas 1 and 2) shows that ẑ 6∈ V . By Lemma 3, ẑ is a limit Nash equilibrium of the
game associated with f at R when the set of sincere agents is T ∪{i }. By defini-
tion of V , for each j ∈ S, ẑ j Pj z j . Let k ∈ N \S be such that there is j ∈ S such
that z k Ik z j . By the Decomposition Lemma, ẑ k Pk z k and x̂µ(k ) > xµ(k ). Thus, if
k ′ ∈ N \S is such that z k ′ Ik ′ z k , then ẑ k ′ Pk ′ z k ′ and x̂µ(k ′) > xµ(k ′). The inductive
argument shows that if k ∈N \S is such that there is j ∈S such that k Ä(R ,z ) j ,
then ẑ k Pk z k . Since z is Pareto efficient for R , then there is j ∈ N \S such that
z j Pj ẑ j . By Lemma 2, there is k ∈ S ∪ {i } such that j Ä(R ,z )k . Thus, j Ä(R ,z ) i .
An inductive argument as described above shows that z i Pi ẑ i .

Proof of Proposition 4. Suppose that z 6∈ O (N \ T,RN \ T, f (RT , ·),RN \T ). By
Lemma 3, there is an agent i ∈ T such that for each agent j ∈ N \ T , it is not
the case that i Ä(R ,z ) j . Let N (i )≡ {j ∈N : i Ä(R ,z ) j } ⊆ T . Let m <

∑

j∈N \(i )x j .

There is a vector y ∈ RN (i ), y ≤ xN (i ) and a bijection σ : N (i ) → µ(N (i )) such
that for each pair {j ,k } ∈ N (i ), (y j ,σ(j ))R j (yk ,σ(k )) (Alkan et al., 1991; Velez,
2012b). Letµ′ be the bijection defined by: for each j ∈N (i ), µ′(i ) =σ(i ), and for
each j ∈N \N (i ), µ′(i ) =µ(i ). Since preferences are continuous, one can select
m such that the allocation z ′ = (xN \N (i ),y ,µ′) is envy-free for the economy with
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budget
∑

j∈N (i )
yi +
∑

j∈N \N (i )
x j and there is j ∈N (i ) and k ∈N \N (i ) such that

j Ä(R ,z ′)k . Since T is finite, one can repeat this process and find an envy-free
allocation (y ,σ) such that M ′ ≡

∑

i∈N yi <M , for each j ∈N \T , y j = x j , and for
each i ∈ T there is j ∈N \T , such that i Ä(R ,z ′) j . Let u ≡ (u i )i∈N be a represen-
tation of R such that: (i) for each {i , j } ∈N \T , u i (yi ,σ(i )) = u j (y j ,σ(j )) and (ii)
there is b ∈R such that for each i ∈ T and each j ∈N \T , u j is bounded above
by b and u i is bounded below by b . For each r ∈R, let

S(r )≡ arg max

¨

min
i∈N

u i (z i ) :
z ≡ (z i )i∈N is envy-free for R

and has budget r

«

.

Since for each i ∈ T there is j ∈ N \T such that i Ä(R ,z ′) j , then (y ,σ) ∈ S(M ′)

(Velez, 2012b). Let i ∈N . For each r ∈R, agent i is indifferent among all alloca-
tions in S(r ), and her welfare in S(r ) is an increasing function of r (Velez, 2012b).
Let ẑ ∈ S(M ). Then, for each i ∈ N there is j ∈ N \ T such that i Ä (R , ẑ ) j .
By Lemma 3, ẑ ∈ O (N \ T,RN \ T, f (RT , ·),RN \T ). Since M ′ > M then for each
j ∈ N \T , ẑ j Pj z j . Since z ∈ F (R) and each envy-free allocation for R is Pareto
efficient for R , then there is i ∈N such that z j Pj ẑ j . Then, j ∈ T .

Proof of Corollary 3. Let z ∈ arg max{u [Ri ](z i ) : z ∈ F (R)}. Then, for each
j ∈ N , j Ä (R ,z ) i . Since i ∈ N \ T , then by Lemma 3, there is ẑ ∈ O (N \

T,RN \T , f (RT , ·),RN \T ) such that ẑ i = z i . Thus, ẑ ∈ arg max{u [Ri ](z i ) : z ∈

F (R)}.

Proof of Proposition 3. Let f be an envy-free solution, R ∈ RN , i ∈ N , and
T ⊆ N \ {i }. (1) follows from Corollary 2. We prove (2). Let R ∈ RN be such
that PSOi [ f ,R ,T,R] = 1. Then, there is z ≡ (x ,µ) ∈ O (N \ (T ∪ {i }),RN \ (T ∪

{i }), f (RT∪{i }, ·),RN \(T∪{i })) such that z ∈ arg max{u [Ri ] : z ∈ F (R)}.
Let ǫ > 0. We construct Rǫi ∈ R such that for each j ∈ N \ {i }, z i Pi z j and

|u [Ri ]−u [Rǫi ]|∞ < ǫ. Let M ∈R++, δ ∈ (0,1). Let for each α ∈A, let {lα, Lα,aα} ⊆

R be such that (lα,α) I i (xµ(i )−M ,µ(i )), (aα,α) I i (xµ(i ),µ(i )), and (Lα,α) I i (xµ(i )+

M ,µ(i )). Let Rδi ∈R be the preference such that:

(i) for each α ∈ A such that z i Pi (xα,α), we have that for each pair {a ,b} ⊆R,
(a ,α) I δi (b ,µ(i )) if and only if (a ,α) I i (b ,µ(i )).

(ii) for each α ∈ A such that z i I i (xα,α), each b ∈R \ [xµ(i )−M ,xµ(i )−M ], and
each a ∈R, (a ,α) I δi (b ,µ(i )) if and only if (a ,α) I i (b ,µ(i )).
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(iii) for eachα∈ A such that z i I i (xα,α), each b ∈ \[xµ(i )−M ,xµ(i )], if we denote
by a ∈R, the amount of money such that (a ,α) I i (b ,µ(i )) and

aδ ≡
a − lα

aα− lα
(δLα+(1−δ)aα)+

�

1−
a − lα

aα− lα

�

lα. (1)

we have that (aδ,α) I i (b ,µ(i )).

(iv) for eachα∈ A such that z i I i (xα,α), each b ∈ \[xµ(i ),xµ(i )+M ], if we denote
by a ∈R, the amount of money such that (a ,α) I i (b ,µ(i )) and

bδ ≡
a −aα

Lα−aα
Lα+

�

1−
a −aα

Lα−aα

�

(δLα+(1−δ)aα). (2)

we have that (bδ,α) I i (b ,µ(i )).

Let m δ ≡ maxα∈A ,a∈[lα,Lα] |u [Ri ](a ,α) − u [Rδi ](a ,α)|. By construction, |u [Ri ]−

u [Rδi ]|∞ = m δ. We claim that there is δ > 0 for which m δ < ǫ. Suppose by
contradiction that for each δ > 0, m δ ≥ ǫ. Let {δt }t ∈N ∈ (0,1)∞ such that as
t → ∞, δt → 0. Since for each α ∈ A, each [lα, Lα] is compact, then there is
α∗ ∈ A \ {µ(i )} such that (xα∗ ,α∗) I i (xµ(i ),µ(i )) so cases (iii) and (iv) in the defini-
tion of Rδi are not trivial, and a convergent sequence {a t }t ∈N ∈ [lα∗ , Lα∗ ]∞ such
that for each t ∈ N, |u [Rδt

i ](a t ,α∗)− u [Ri ](a t ,α∗)| ≥ ǫ. Let c ≡ limt→∞a t . For
each t , u [R

δt

i ](a t ,α∗) ∈ {u [Ri ](aδt ,α∗),u [Ri ](bδt ,α∗)}, where aδ
t

and bδ
t

are ob-
tained by substitutingδt forδ and a t for a in (1) and (2), respectively. Since u is
continuous and as δ→ 0, aδ

t
→ a t and bδ

t
→ a t , then as δ→ 0, u [R

δt

i ](a t ,α∗)→
u [Ri ](a t ,α∗). This is a contradiction. Denote Rǫi a preference Rδi such that m δ <

ǫ. By construction, for each α ∈A \{µ(i )}, z i Pǫi (xα,α). Since z ∈ arg max{u [Ri ] :
z ∈ F (R)}, then for each j ∈N \ {i }, j Ä(R ,z ) i (Fujinaka and Wakayama, 2012).
Then, z ∈ arg max{u [Rǫi ] : z ∈ F (R−i ,Rǫi )} and z 6∈ O (N \ (T ∪ {i }),RN \ (T ∪

{i }), f (RT ,Rǫi , ·),RN \(T∪{i })). Thus, PSOi [ f ,R ,T,R−i ,Rǫi ] > 1. Moreover, the set of
utility profiles u [R] with R ∈ RN such that PSOi [ f ,R ,T,R−i ,Rǫi ] > 1 is dense
inU N .

We now prove that the set of profiles u [R] for which PSOi [ f ,R ,T,R] > 1 is
open in the product topology ofU N . Let u [R] be such that PSOi [ f ,R ,T,R]> 1.
Let z ∈ arg max{u [Ri ] : z ∈ F (R)}. Then, for each j ∈N \{i }, j Ä(R ,z ) i (Fujinaka
and Wakayama, 2012). Since PSOi [ f ,R ,T,R] > 1, then there is no j ∈ N \ T

such that i Ä (R ,z ) j . Let δ > 0 and consider the neighborhood of R , V δ ≡

Πi∈N {u [R
′
i ] ∈ U : |u [Ri ]− u [R ′i ]| < δ}. We claim that there is δ > 0 such that

for each R ∈ V δ, PSOi [ f ,R ,T,R] > 1. Suppose by contradiction that for each
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δ > 0 there is Rδ ∈ V δ such that PSOi [ f ,R ,T,R] = 1. Let {δt }t ∈N ∈ (0,1)∞ be
such that as t →∞, δt → 0. For each t ∈N, let R t ∈R be such that u [R t ] ∈ V δt

and PSOi [ f ,R ,T,R t ] = 1. Let z t ≡ (x t ,µt ) ∈ arg max{u [R t
i ] : z ∈ F (R t )} be such

that z t ∈ O (N \ (T ∪ {i }),RN \ (T ∪ {i }), f (R t
T ∪ {i }, ·),R t

N \(T∪{i })). Let t ∈N. There
is j ∈ N \ T such that i Ä (R ,z t ) j . Moreover, for each j ∈ N \ {i }, j Ä (R ,z t ) i

(Fujinaka and Wakayama, 2012). By passing to subsequences if necessary, we
can assume that {µt }t ∈N is a constant sequence with common element µ̄, and
that there is j ∈ N \ {i }, such that for each t ∈ N, i Ä (R ,z t ) j . We claim that
{x t }t ∈N is a bounded sequence. For each j ∈N there is b ∈R such that for each
β ∈ A,
�

1
n

M ,β
�

Pj (b , µ̄(j )). Thus, after some finite t ,
�

1
n

M ,β
�

P t
j (b , µ̄(j )). Since

there is at least one agent whose consumption of money is at least 1
n

M , then
after some finite t , x t

µ̄(j ) ≥ b . Thus, {x t }t ∈N is bounded below. Since for each

t ∈N ,
∑

α∈A
xα =M , then {x t }t ∈N is bounded. We can then assume without loss

of generality that this sequence is convergent. Let x̄ ≡ limt→∞x t and z̄ ≡ (x̄ ,µ).
Let {j ,k } ⊆N . Then, for each t ∈N,

|u [R t
j ](x

t
µ(k ), µ̄(k ))−u [R j ](x̄µ(k ), µ̄(k ))| ≤ |u [R t

j ](x
t
µ(k ), µ̄(k ))−u [R j ](x

t
µ(k ), µ̄(k ))|

+|u [R j ](x
t
µ(k ), µ̄(k ))−u [R j ](x̄µ(k ), µ̄(k ))|

≤δt

+|u [R j ](x
t
µ(k ), µ̄(k ))−u [R j ](x̄µ(k ), µ̄(k ))|.

Since u [Ri ] is continuous and as t →∞, δt → 0, then limt→∞u [R t
j ](x

t
µ(k ), µ̄(k )) =

u [R j ](x̄µ(k ),µ(k )). Then, if for each t ∈ N, z t
j I t

j z t
k , then z̄ j I j z̄ k . Let j ∈ N \ {i }.

Since for each t ∈ N, j Ä (R ,z t ) i , then j Ä (R , z̄ ) i . Then, z̄ ∈ arg max{u [Ri ] :
z ∈ F (R)} and x̄ = x (Alkan et al., 1991; Fujinaka and Wakayama, 2012). Thus,
µ̄(i ) =µ(i ). We know that there is j ∈N \{i } such that for each t ∈N, i Ä(R ,z t ) j .
Then, i Ä (R , z̄ ) j . We prove that i Ä (R ,z ) j . Let k ∈ N be such that i Ä (R , z̄ )k

and let k ′ ≡ µ−1(µ̄(k )). We claim that i Ä(R ,z )k ′. We know that there is a list of
different agents {i 1, . . . , i m } such that for each r = 1, . . . ,m , z̄ r I r z̄ r+1, i 1 = i , and
i m = k . If m = 2, the claim clearly holds. Suppose now that it holds for lists with
m − 1 < n agents. We claim it holds for lists with m agents. Suppose that for
some l ∈N , i Ä(R ,z ) l and z̄ µ̄−1(µ(l )) I µ̄−1(µ(l )) z̄ k . We claim that l Ä(R ,z ) µ̄−1(µ(l )).
Suppose w.l.o.g that l 6= µ̄−1(µ(l )), for otherwise the claim is trivial. Let i 1 ≡ l ,
i 2 = µ−1(µ̄(i 1)), i 3 = µ−1(µ̄(i 2)),..., and so on. Since i 1 6= i 2, then, for each r ,
i r 6= i r+1. Thus, there has to be m ′ ≤ n such that i 1 = µ−1(µ̄(i m ′)). That is, i m ′ =

µ̄−1(µ(l )). Since, x̄ = x , then for each agent all allocations in arg max{u [Ri ] :
z ∈ F (R)} are welfare equivalent (Alkan et al., 1991). Let r = 1, . . . ,m ′. Since
z and z̄ are welfare equivalent and µ(i r+1) = µ̄(i r ), then z i r

I i r
z i r+1 . Thus, l Ä
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(R ,z ) µ̄−1(µ(l )). Since z and z̄ are welfare equivalent, z µ̄−1(µ(l )) I µ̄−1(µ(l )) z̄ µ̄−1(µ(l )).
Thus, z µ̄−1(µ(l )) I µ̄−1(µ(l )) z̄ k = z k ′ . Thus, i Ä (R ,z )k ′. Let j ′ ≡ µ−1(µ̄(j )). Thus,
i Ä (R ,z ) j ′. Suppose without loss of generality that j ′ 6= j , for otherwise our
claim is proved. Let i 1 ≡ j ′, i 2 = µ−1(µ̄(i 1)), i 3 = µ−1(µ̄(i 2)),..., and so on. Since
i 1 6= i 2, then, for each r , i r 6= i r+1. Thus, there has to be m ′ ≤ n such that
i 1 = µ−1(µ̄(i m ′)). That is, i m ′ = µ̄−1(µ(j ′)) = j . Let r = 1, . . . ,m ′. Since z and z̄ are
welfare equivalent and µ(i r+1) = µ̄(i r ), then z i r

I i r
z i r+1 . Thus, j ′ Ä(R ,z ) j . Thus,

i Ä(R ,z ) j . This is a contradiction.

Proof of Proposition 5. The first part of the Proposition follows from Proposi-
tion 1. We prove that if R ′i ∈ Q is different from R0

i , then there is R ′−i ∈QN \{i }

and z i ∈ R× A such that for each R−i ∈ QN \{i }, f i (R
0
i ,R−i )R

0
i z i P0

i f i (R ′). Let
x be the vector defined in the proof of (i). Let z i ≡ (xγ,γ) be the best bundle
for R ′i in {(xα,α) : α ∈ A}. Since envy-free allocations satisfy the IPLB, then for
each R−i ∈ QN \{i }, f i (R

0
i ,Ri )R

0
i z i . Let x ≡ (x ′

α
)α∈A ∈ R

A be such that for each
α ∈ A, (x ′

α
,α) I ′i (xγ,γ). Since preferences are money monotone, then x ′ ≥ x . Let

B ≡ {α ∈ A : x ′β > xβ } and C ≡ A \ (B \ {γ}). Since R ′i ∈Q and R0
i 6=R ′i , then B 6= ;.

Let y ≡ (yα)α∈A be the vector defined by: yγ = x ′
γ
; for each α ∈ B , yα =

xα+x ′α
2

; and

for each α ∈ C , yα = x ′
α
−δ, where δ > 0 is such that

∑

α∈A
yα > M . For each

j ∈N \ {i }, let R ′j ∈Q be the such that for each pair {α,β } ⊆ A, (yα,α) I ′j (yβ ,β ).
Since R ′ ∈ QN and envy-free allocations are Pareto efficient, then agent i re-
ceives object γ at f i (R ′). Since envy-free allocations satisfy the IPLB, then the
consumption of money of agent i at f i (R ′) is at most yγ−

1
n

�
∑

α∈A
yα−M
�

< yγ.
Thus, z i P0

i f i (R ′).

Proof of Proposition 6. Let T ( N and i ∈ T . Suppose that agents in T are
sincere. Let D ⊆ QN be the subdomain of quasi-linear profiles R the best al-
location among all envy-free allocations for R is an outcome of the game asso-
ciated with f at R . We prove that D is the complement of an open dense set
in R(n−1)×n . Let v ≡ (v i

α
) ∈ Rn be the linear additive representation of Ri . Let

z ≡ (x ,µ) ∈ F (R) be agent i ’s best allocation in F (R). Then, for each j ∈ N ,
j Ä(R ,z ) i (Fujinaka and Wakayama, 2012). By Lemma 2, there is j ∈N \T such
that i Ä (R ,z ) j . Thus, there is a list of different agents, i 1, i 2, . . . , i k such that
k > 1, z i 1 I i 1 z i 2 , . . . ,z i k−1 I i k−1 z i k

, and z i k
I i k

z i 1 . For simplicity, denote i 1 ≡ 1,
i 2 ≡ 2 and so on. Then, x1 + v 1

µ(1) = x2 + v 1
µ(2), . . . ,xk−1 + v k−1

µ(k−1) = xk + v k−1
µ(k ) and

xk + v k
µ(k )= x1+ v k

µ(1). Adding up these k equations we obtain that

v 1
µ(1)+ · · ·+ v k

µ(k )
= v 1

µ(2)+ · · ·+ v k
µ(1).
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Then, D is a subset of a finite family of hyperplanes in R(n−1)×n . Thus it be-
longs to the complement of an open dense set inR(n−1)×n . Clearly, its Lebesgue
measure its zero.
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vision: A market approach. Soc. Choice Welfare 22, 515–538.

Alcalde, J., 1996. Implementation of stable solutions to marriage problems. J.
Econ. Theory 69, 240–254.

Alkan, A., 1994. Monotonicity and envyfree assignments. Economic Theory 4,
605–616, 10.1007/BF01213627.
URL http://dx.doi.org/10.1007/BF01213627

Alkan, A., Demange, G., Gale, D., 1991. Fair allocation of indivisible goods and
criteria of justice. Econometrica 59, 1023–1039.

Andersson, T., Ehlers, L., Svensson, L.-G., 2011. Budget-balance, fairness, and
minimal manipulability, Working Paper.

Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T., 2004. The price of stability for network design with fair cost allocation. In:
Proceedings of the 45th Annual IEEE Symposium on Foundations of Com-
puter Science. FOCS ’04. IEEE Computer Society, Washington, DC, USA, pp.
295–304.
URL http://dx.doi.org/10.1109/FOCS.2004.68
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