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1 Introduction
Government budgets are primarily decided through negotiations. Institutions governing

budget negotiations play an important role in fiscal policy outcomes. These institutions
vary across countries and time, and examining their effects is an important step towards
understanding these variations.1 In this paper, we are interested in the role of a particular
institution: mandatory spending programs.

Mandatory spending is expenditure that is governed by formulas or criteria set forth in
enacted law, rather than by periodic appropriations. As such, unless explicitly changed, the
previous year’s spending bill applies to the current year. By contrast, discretionary spend-
ing is expenditure that is governed by annual or other periodic appropriations. Examples
of mandatory spending in the U.S. include entitlement programs such as Social Security
and Medicare, while discretionary spending consists of mostly military spending. As Figure
1 shows, mandatory spending has been growing as a share of GDP in the U.S.. In 2011,
mandatory spending was $2 trillion compared to discretionary spending of $1.3 trillion. Be-
cause of these trends, mandatory spending has been at the heart of recent budget negotiations
and is consistently ranked as a top issue by the public and policymakers.2

Figure 1: US mandatory versus discretionary spending as % of GDP, 1962-2010

We take a first step towards understanding the effects of mandatory spending programs
on budget negotiations and their implications for the efficient provision of public goods.3 In
our model, two parties decide how to allocate an exogenously given budget to spending on

1See International Budget Practices and Procedures Database of the OECD, which is available at
www.oecd.org/gov/budget/database.

2See http://www.people-press.org/2012/06/14/debt-and-deficit-a-public-opinion-dilemma/.
3The definition of a public good requires it to be non-excludable and non-rivalrous in consumption.

However, our model only requires that the good be non-excludable, and as such, is also applicable to a
common pool resource. Entitlement programs such as Social Security and Medicare are often thought of as
a common pool resource.
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a public good and private transfers for each party in every period over an infinite horizon.
Parties potentially differ in the value they attach to the public good and we refer to the
degree of such differences as the level of polarization between the parties. Each period a
party is randomly selected to make a budget proposal. The probability that the last period’s
proposer is selected to be the proposer in the current period captures the persistence of
political power. The proposer makes a take-it-or-leave-it budget offer. If the other party
accepts the offer, it is implemented; otherwise, the status quo prevails. We compare two
institutions that govern the status quo: a political system in which public good spending is
discretionary, in which case the status quo public good allocation is set to zero each period;
and a political system in which public good spending is mandatory, in which case the status
quo public good allocation is what was implemented in the previous period, and hence is
endogenous. Under both institutions, we assume that the status quo allocation to private
transfers is zero.

Under discretionary public spending, in the unique Markov perfect equilibrium, the party
in power under-provides the public good and extracts the maximum private transfer for itself.
This is because there is no dynamic link between policy chosen today and future outcomes
with discretionary programs. Hence the optimal choice of public good for the proposer is its
static optimal choice, which is below the efficient level, and the proposer is able to implement
this because discretionary programs give the responding party no bargaining power. Under
discretionary programs the steady state distribution of public good spending follows a Markov
process governed by the persistence of power: the level of the public good changes only when
the proposing party changes.

Under mandatory public spending, the degree of polarization plays an important role.
We characterize Markov perfect equilibria first when polarization is low and second when
polarization is high.

In the low-polarization case, the levels of public good spending proposed by both parties
are either below or equal to the efficient level in both transient and steady states, and
are always closer to the efficient level than when public good spending is discretionary. To
understand why, note that mandatory programs create a channel to provide insurance against
power fluctuations because they raise the bargaining power of the non-proposing party by
raising its status quo payoff. When the status quo level of the public good is low, the party
that places a higher value on the public good (party H) exploits the weak bargaining position
of the party that places a lower value on the public good (party L), and proposes its dynamic
ideal. Because of the insurance motive, party H’s dynamic ideal is strictly above its static
ideal (the level it would propose with discretionary programs). Indeed, the set of steady state
levels of the public good in the low-polarization case is a continuum from party H’s dynamic
ideal to the efficient level.

In the high-polarization case, the insurance effect from mandatory programs can lead
party H to propose a level of public good spending above the efficient level, creating tempo-
rary “over-provision.” This is only temporary because of power fluctuations – once party L
comes to power, it lowers the level of public good to the efficient level and provides transfers
to party H so that it accepts. Anticipation of the transfers gives party H the incentive to
over-provide the public good. The unique steady state level of public good spending in the
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high-polarization case is the efficient level.
As is typical in dynamic games, we cannot appeal to general theorems on uniqueness of

Markov perfect equilibrium, but we show that under some conditions, there are no steady
states other than the ones in the equilibria we characterize in the game with mandatory public
spending. This allows us to conduct comparative statics and make welfare comparisons.

One interesting comparative static is that greater power fluctuations (lower persistence of
power) improve efficiency with mandatory programs. This is because greater power fluctu-
ations provide stronger insurance incentives, leading to a higher steady state level of public
good. This is in contrast to Besley and Coate (1998), who show that power fluctuations un-
dermine policy-makers’ incentives to invest in public goods, leading to less efficient outcomes.

Perhaps it is not surprising that party H benefits from mandatory programs. But strik-
ingly, party L also benefits from mandatory programs, provided that the parties are patient,
the persistence of power is low, and polarization is low. Intuitively, if party L cares suffi-
ciently about future payoffs, expects power to fluctuate frequently, and the value it places
on the public good is not too low, then the insurance benefit from mandatory programs is
high, making party L better off. Thus, mandatory programs can be Pareto improving, and
this may explain why they are successfully enacted in the first place.

Related literature
The distinction between private goods and public goods goes back to at least Adam

Smith (1776), who concluded that public goods must be provided by the government since
the market fails to do so. By now there exists a vast literature formally studying public
goods, starting with the classic work by Wicksell (1896) and Lindahl (1919).

Our paper adds to the literature on public goods provision with political economy frictions
as surveyed in Persson and Tabellini (2000). A subset of this literature analyzes public
good provision under different political institutions. For example, Lizzeri and Persico (2001)
compares the provision of public goods under different electoral systems. The particular
institution that our paper focuses on is mandatory spending programs.

We consider public good provision in a legislative bargaining framework, similar to Baron
(1996), Leblanc, Snyder, Tripathi (2000), Volden and Wiseman (2007), and Battaglini and
Coate (2007, 2008). With the exception of Baron (1996), these papers do not consider
mandatory programs. Baron (1996) presents a dynamic theory of bargaining over public
goods programs in a majority-rule legislature where the status quo in a session is given by
the program last enacted. He models the provision of public goods as a unidimensional policy
choice, and analyzes the equilibrium outcome under mandatory programs only. Our paper
contributes to this literature by analyzing a multidimensional policy choice involving both
mandatory and discretionary programs and exploring the efficiency implications.

Building on the seminal papers of Rubinstein (1982) and Baron and Ferejohn (1989), most
papers on political bargaining study environments where the game ends once an agreement
is reached. Starting with the works of Epple and Riordan (1987) and Baron (1996), there
is now an active literature on bargaining with an endogenous status quo. This literature
includes Baron and Herron (2003), Kalandrakis (2004), Bernheim, Rangel and Rayo (2006),
Anesi (2010), Bowen (2011), Diermeier and Fong (2011), Zápal (2011), Anesi and Seidmann
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(2012), Bowen and Zahran (2012), Duggan and Kalandrakis (2012), Dziuda and Loeper
(2012), Nunnari (2012), and Piguillem and Riboni (2012). These papers consider bargaining
over either a unidimensional policy or the division of private benefits. Thus, they do not
address how mandatory programs affect the provision of public goods in budget negotiations,
which is at the heart of our paper.

Our work is also related to the literature on power fluctuations, which includes Persson
and Svensson (1989), Alesina and Tabellini (1990), Besley and Coate (1998), Grossman
and Helpman (1998), Hassler, Storesletten and Zilibotti (2007), Klein, Krusell, Ŕıos-Rull
(2008), Azzimonti (2011), and Song, Storesletten and Zilibotti (2012). These papers show
that power fluctuations can lead to economic inefficiency. By considering equilibria that
are non-Markov, Dixit, Grossman and Gül (2000) and Acemoglu, Golosov, Tsyvinski (2010)
establish the possibility of political compromise to share risk under power fluctuations. Our
paper shows, in contrast, even if parties use Markov strategies, they can reach a certain
degree of compromise with mandatory programs because the party in power cannot fully
undo the decisions of the past. Moreover, we discuss political compromise in the context of
public good provision, which has efficiency implications beyond risk sharing.

Mandatory programs generate a dynamic link between policy in a given period and po-
litical power in future periods. In that sense, our paper is also related to Bai and Lagunoff
(2011), who analyze policy endogenous power.

In the next section we describe our model. In Section 3 we characterize Pareto efficient
allocations. In Section 4 we define a Markov perfect equilibrium for our model. We analyze
discretionary public spending in Section 5 and mandatory public spending in Section 6. We
discuss equilibrium dynamics in Section 7 and efficiency implications of mandatory programs
in Section 8. In Section 9, we conclude and discuss some important extensions.

2 Model
Consider a stylized economy and political system with two parties labeled H and L. Time

is infinite and indexed by t = 0, 1 . . .. Each period the two parties decide how to allocate an
exogenously given dollar. The budget consists of an allocation to spending on a public good,
gt, and private transfers for each party, xtH and xtL. Denote by bt = (gt, xtH , x

t
L) the budget

implemented at time t. Let B = {y ∈ R3
+ :
∑3

i=1 yi ≤ 1}. Feasibility requires that bt ∈ B.
The stage utility for party i from the budget bt is

ui(b
t) = xti + θi ln(gt),

where θi is the weight of the public good relative to the transfer for party i ∈ {H,L}.4 We
assume θH ≥ θL ≥ 0 and θH + θL < 1. The latter condition ensures that the efficient level of
public good spending is lower than the size of the budget, as we show later in Section 3.

The parties have a common discount factor δ. Party i seeks to maximize its discounted
dynamic payoff from an infinite sequence of budgets,

∑∞
t=0 δ

tui(b
t).

Political system

4We assume log utility for tractability. This functional form is commonly used in economic applications.
See, for example, Azzimonti (2011) and Song et al. (2012). The results are qualitatively the same in the
numerical analysis using CRRA utility functions.

4



We consider a political system with unanimity rule. Each period a party is randomly
selected to make a proposal for the allocation of the dollar. The probability of being proposer
is Markovian. Specifically, p is the probability that party i is the proposer in period t+ 1 if
it was the proposer in period t. We interpret p as the persistence of political power.

At the beginning of period t, the identity of the proposing party is realized. The proposing
party makes a proposal for the budget, denoted by zt. If the responding party agrees to the
proposal, it becomes the implemented budget for the period, so bt = zt; otherwise, bt = st,
where st is the status quo budget.

Let S ⊆ B be the set of feasible status quo budgets, and let ζ : B → S be a function that
maps the budget in period t to the status quo in period t+ 1. So st+1 = ζ(bt) for all t. The
set S and the function ζ are determined by the rules governing mandatory and discretionary
programs. For example, if no mandatory programs are allowed, then S = {(0, 0, 0)} and
ζ(b) = (0, 0, 0) for all b ∈ B. That is, in the event that the proposal is rejected, no spending
occurs that period. At the other extreme where all spending is in the form of mandatory
programs, S = B and ζ(b) = b, that is, disagreement on a new budget implies the last
period’s budget is implemented.

We compare two institutions: one in which all spending is discretionary (that is, ζ(b) =
(0, 0, 0)), and the other in which spending on the public good is mandatory, but private
transfers are discretionary (that is, ζ(b) = (g, 0, 0) for any b = (g, xH , xL)). We find it
reasonable to think of the U.S. federal budget as allocating private transfers through discre-
tionary spending and public goods through mandatory programs. This is because private
transfers in the form of earmarks designated for particular districts are typically appropriated
annually, whereas social programs such as Social Security and Medicare are funded through
mandatory programs and provide benefits from which constituents of any particular party
cannot be excluded. As mentioned in the introduction, although Social Security and Medi-
care do not satisfy the “non-rivalrous” criterion, they satisfy the “non-excludable” criterion
and are therefore often thought of as a common pool resource. Our model applies when g is
a common pool resource; for expositional convenience, we refer to g as a “public good.”5

3 Pareto efficient allocations
As a benchmark, consider the Pareto efficient allocations. A Pareto efficient allocation

solves the following problem for some U ∈ R:

max
{bt}∞t=0

∞∑
t=0

δtuL(bt)

s.t.
∞∑
t=0

δtuH(bt) ≥ U and bt ∈ B for all t.

We find that any Pareto efficient allocation with xt
′
L > 0 and xt

′′
H > 0 for some t′ and t′′

5Our results would go through if instead we assumed ui(b
t) = xti + θi ln(αig

t) for some constant αi > 0.
We can think of αi

αH+αL
as the fraction of the common pool resource party i extracts in a second stage game

after the total allocation to the public good is agreed upon. In that sense, our results apply to settings where
gt is non-excludable but not necessarily non-rivalrous.
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must have gt = θH + θL for all t.6 Note also that gt = θH + θL is the unique Samuelson level
of the public good.7 We henceforth refer to θH + θL as the efficient level of the public good.

For contrast, consider party i’s ideal allocation in any period, which solves maxb∈B ui(b).
Let us call the level of public good that solves this problem the dictator level for party i.
Clearly party i would not choose to allocate any spending to party j, hence the dictator level
solves maxg 1− g+ θi ln(g). This is maximized at θi < θH + θL. So party i’s ideal level of the
public good in any period results in under-provision of the public good. In a political system
that is a dictatorship in every period, this is the level of public good allocated.8

4 Markov perfect equilibrium

We consider stationary Markov perfect equilibria.9 A Markov strategy depends only on
payoff-relevant events, and a stationary Markov strategy does not depend on calendar time.
In our model, the payoff-relevant state in any period is the status quo s. Thus, a (pure)
stationary Markov strategy for party i is a pair of functions σi = (πi, αi), where πi : S → B
is a proposal strategy for party i and αi : S × B → {0, 1} is an acceptance strategy for
party i. Party i’s proposal strategy πi = (γi, χiH , χ

i
L) associates with each status quo s an

amount of public good spending, denoted by γi(s), an amount of private spending for party
H, denoted by χiH(s), and an amount of private spending for party L, denoted by χiL(s).
Party i’s acceptance strategy αi(s, z) takes the value 1 if party i accepts the proposal z
offered by party j 6= i when the status quo is s, and 0 otherwise. A stationary Markov
perfect equilibrium is a subgame perfect Nash equilibrium in stationary Markov strategies.
We henceforth refer to a stationary Markov perfect equilibrium simply as an equilibrium.

To each strategy profile σ = (σH , σL), and each party i, we can associate two functions
Vi(·;σ) and Wi(·;σ). The value Vi(s;σ) represents the dynamic payoff of party i if i is the
proposer in the current period and the value Wi(s;σ) represents the dynamic payoff of party
i if i is the responder in the current period, when the status quo is s and the strategy profile
σ will be played from the current period onwards.

We restrict attention to equilibria in which (i) αi(s, z) = 1 when party i is indifferent
between s and z; and (ii) αi(s, πj(s)) = 1 for all s ∈ S, i, j ∈ {H,L} with j 6= i. That
is, the responder accepts any proposal that it is indifferent between accepting and rejecting,
and the equilibrium proposals are always accepted.10 Given the restriction that equilibrium

6A proof is available in the Supplementary Appendix.
7The Samuelson rule for the efficient provision of public goods requires that the sum of the marginal

benefits of the public good equals its marginal cost.
8If it is the same party who is the dictator in every period, then clearly in every period it chooses g = θi;

if different parties become the dictator in different periods, then whenever party i is the dictator, it still
chooses g = θi in any Markov perfect equilibrium, but it is possible to have g 6= θi in a non-Markovian
equilibrium, similar to Dixit et al. (2000) and Acemoglu et al. (2011).

9By focusing on stationary Markov perfect equilibria, we rule out punishment strategies that depend on
payoff irrelevant past events. This is a commonly used solution concept in dynamic political economy models.
See, for example, Battaglini and Coate (2008), Diermeier and Fong (2011), and Dziuda and Loeper (2012).
It is reasonable in dynamic political economy models where there is turnover within parties since stationary
Markov equilibria are simple and do not require coordination.

10Any equilibrium is payoff equivalent to some equilibrium (possibly itself) that satisfies (i) and (ii). We
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proposals are always accepted, in these equilibria the implemented budget is the proposed
budget.

Call a strategy profile σ and associated payoff quadruple (VH ,WH , VL,WL) a strategy-
payoff pair. In what follows, we suppress the dependence of the payoff quadruple on σ
for notational convenience. Given the restrictions that parties accept when indifferent and
equilibrium proposals are always accepted, a strategy-payoff pair is an equilibrium strategy-
payoff pair if and only if

(E1) Given (VH ,WH , VL,WL), for any proposal z = (g′, x′H , x
′
L) ∈ B and status quo s =

(g, xH , xL) ∈ S, the acceptance strategy αi(s, z) = 1 if and only if

x′i + θi ln(g′) + δ[(1− p)Vi(ζ(z)) + pWi(ζ(z))] ≥ Ki(s) (1)

where Ki(s) = xi + θi ln(g) + δ[(1− p)Vi(s) + pWi(s)] denotes the dynamic payoff of i
from the status quo s = (g, xH , xL).

(E2) Given (VH ,WH , VL,WL) and αj, for any status quo s = (g, xH , xL) ∈ S, the proposal
strategy πi(s) of party i 6= j satisfies:

πi(s) ∈ arg max
z=(g′,x′H ,x

′
L)∈B

x′i + θi ln(g′) + δ[pVi(ζ(z)) + (1− p)Wi(ζ(z))] (2)

s.t. x′j + θj ln(g′) + δ[(1− p)Vj(ζ(z)) + pWj(ζ(z))] ≥ Kj(s). (3)

(E3) Given σ = ((πH , αH), (πL, αL)), the payoff quadruple (VH ,WH , VL,WL) satisfies the
following functional equations for any s = (g, xH , xL) ∈ S, i, j ∈ {H,L} with j 6= i:

Vi(s) = χii(s) + θi ln(γi(s)) + δ[pVi(ζ(πi(s))) + (1− p)Wi(ζ(πi(s)))], (4)

Wi(s) = χji (s) + θi ln(γj(s)) + δ[(1− p)Vi(ζ(πj(s))) + pWi(ζ(πj(s)))]. (5)

Condition (E1) says that the responder accepts a proposal if and only if its dynamic payoff
from the proposal is higher than its status quo payoff. Condition (E2) requires that for any
status quo s, party i’s equilibrium proposal maximizes its dynamic payoff subject to party j
accepting the proposal. Condition (E3) says that the equilibrium payoff functions must be
generated by the equilibrium proposal strategies.

take two steps to show this: first, any equilibrium is payoff equivalent to some equilibrium that satisfies (i);
second, any equilibrium that satisfies (i) is payoff equivalent to some equilibrium that satisfies (i) and (ii).

To prove the first step, consider an equilibrium σE that does not satisfy (i). Then there exists a status quo
s′ and a proposal z′ = (g′, x′H , x

′
L) such that the responder i is indifferent between s′ and z′ but αi(s′, z′) = 0.

If z′ gives the proposer j a lower payoff than πj(s′), then σE is payoff equivalent to the equilibrium which is
the same as σE except that αi(s′, z′) = 1 because j would not propose z′ when the status quo is s′. If z′ gives
the proposer a strictly higher payoff than πj(s′), then there exists a proposal z′′ that gives the responder a
higher payoff than z′ does and gives the proposer a strictly higher payoff than πj(s′). That is, z′′ is a strictly
better proposal than πj(s′), contradicting that σE is an equilibrium.

To prove the second step, consider an equilibrium σE that satisfies (i) but not (ii). Then there exists
a status quo s′ such that αi(s′, πj(s′)) = 0, implying that the proposer receives the status quo payoff by
proposing πj(s′) when the status quo is s′. By condition (i), the status quo is a proposal that is accepted. It
follows that σE is payoff equivalent to the equilibrium which is the same as σE except that πj(s′) = s′.
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We establish existence of equilibria by construction. We begin by considering the bench-
mark model of all discretionary, and then consider the model in which spending on the public
good is mandatory and private transfers are discretionary.

5 Discretionary public spending
Suppose all spending is discretionary, implying that the status quo level of public good

spending as well as private transfers is zero. That is, ζ(b) = (0, 0, 0) for any b ∈ B.11 Because
of log utility in the public good, the responder’s status quo payoff Ki(s) is −∞ for any status
quo s, and hence the responder’s acceptance constraint is not binding. The proposer therefore
sets the public good at the dictator level θi every period and there is under-provision of the
public good. This leads to the first proposition.12

Proposition 1. If all spending is discretionary, then the public good is provided at the dic-
tator level, and there is under-provision of the public good in the unique equilibrium.

One implication of Proposition 1 is that with only discretionary spending, the equilibrium
allocation to the public good follows a Markov process. Specifically, if i is the proposer in
the current period, spending on the public good next period is θi with probability p (if i
is the proposer in the next period), and θj with probability 1 − p (if j is the proposer in
the next period). In Section 7, we compare this long-run behavior of spending on the public
good under discretionary programs to the long-run behavior under mandatory programs, and
assess the efficiency implications in Section 8.

6 Mandatory public spending
We now consider the case in which only the public good spending is mandatory, that is,

ζ(b) = (g, 0, 0) for any b = (g, xH , xL) ∈ B. In the rest of this section to lighten notation
we write πi(g), αi(g, z), Vi(g), Wi(g), and Ki(g) instead of πi(s), αi(s, z), Vi(s), Wi(s), and
Ki(s). We also refer to the status quo public good level as the status quo. To obtain some
intuition for the equilibrium under mandatory public spending, we first analyze a one-period
model with an exogenous status quo and then analyze the infinite horizon game.

6.1 A one-period model
Suppose party i is the proposer and seeks to maximize ui(z) = x′i + θi ln(g′), given an

exogenous status quo g and unanimity rule. Its one-shot problem analogous to (E2) is

πi(g) ∈ arg max
z=(g′,x′H ,x

′
L)∈B

x′i + θi ln(g′)

s.t. x′j + θj ln(g′) ≥ Kj(g), where Kj(g) = θj ln(g).

11The main distinction between discretionary and mandatory spending is that mandatory spending gener-
ates an endogenous status quo, whereas under discretionary spending the status quo is exogenous. Although
we consider a specific exogenous status quo (0, 0, 0) here, the outcome of the Markov perfect equilibrium
under any exogenous status quo is the repetition of the equilibrium outcome of a static problem. We discuss
this outcome in footnote 13.

12Because of log utility in g, Proposition 1 holds for arbitrary status quo rules for private transfers, as
long as public spending is discretionary.
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Proposition 2. In the one-period model with mandatory public spending and discretionary
private spending, the unique equilibrium proposal strategy for party i ∈ {H,L} is

γi(g) =


θi for g ≤ θi,

g for θi ≤ g ≤ θH + θL,

θH + θL for θH + θL ≤ g ≤ 1,

χij(g) =

{
0 for g ≤ θH + θL,

θj[ln(g)− ln(θH + θL)] for θH + θL ≤ g ≤ 1,

and χii(g) = 1− γi(g)− χij(g).

We relegate the proof of Proposition 2 to the Appendix. Henceforth all omitted proofs are
in the Appendix unless otherwise indicated. We illustrate γi(g) in Figure 2 for the one-period
problem.13

g

γ i (g)

θH +θL

θL

γ H (g)

γ L (g)

θH

θH

θL θH +θL

Figure 2: γi(g) in one-period problem

Notice that when the status quo level of the public good is below proposer i’s static ideal
θi, proposer i has a constant choice of γi(g) equal to its static ideal. Intuitively, when the
status quo is below some threshold, the responder’s acceptance constraint does not bind, and
hence the proposer is able to set its ideal level of the public good and extract the remainder
of the budget as a transfer for itself.14 When the status quo is above this threshold, the

13Here we analyze a one-period problem for an exogenous status quo (g, 0, 0). The equilibrium outcome
in the infinite-horizon problem under an exogenous status quo (g, 0, 0) is the repetition of this one-period
solution since there is no dynamic link between choices today and future outcomes. This result extends to
more general exogenous status quos.

14If there is no lower bound on transfers, then the responder’s acceptance constraint is always binding
(except when g = 0) and the efficient level of the public good is chosen. We find it reasonable to have a lower
bound on transfers given property rights. With any lower bound, there are equilibrium proposals that do
not involve the efficient level of the public good even when the responder’s acceptance constraint binds.
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responder’s acceptance constraint binds. For some intermediate range of the status quo,
it is optimal for the proposer to maintain the level of the public good at the status quo
and extracts the remaining budget as a transfer. For status quos above the efficient level
θH +θL, since the sum of the marginal benefit of the public good is lower than the sum of the
marginal benefit of transfers, the proposer does best by lowering the level of the public good
to the efficient level, giving the responder a transfer to make the responder indifferent, and
extracting the remainder of the budget for itself. Hence γi(g) is constant at the efficient level
when the status quo is above the efficient level. These strategies give the following payoffs
to the proposer i and responder j respectively in the one-period model.

Vi(g) =


1− θi + θi ln(θi) if g ≤ θi,

1− g + θi ln(g) if θi ≤ g ≤ θH + θL,

1− θH − θL − θj ln(g) + (θH + θL) ln(θH + θL) if θH + θL ≤ g,

and

Wj(g) =

{
θj ln(θi) if g ≤ θi,

θj ln(g) if θi ≤ g.

Given the equilibrium payoffs in the one-period problem take different functional forms
for different regions, the analysis of the T -period problem, even for T = 2, is cumbersome.
Partly because of this, we do not analyze a T -period problem. Rather, we analyze the
infinite-horizon problem by exploiting the recursive structure.

6.2 The infinite-horizon model
Now consider the infinite-horizon model. From the equilibrium conditions (E2), it must

be the case that, for all i, j ∈ {H,L}, j 6= i and any status quo g, the proposal πi(g) is a
solution to the following maximization problem,

πi(g) ∈ arg max
z=(g′,x′H ,x

′
L)∈B

x′i + θi ln(g′) + δ[pVi(g
′) + (1− p)Wi(g

′)] (6)

s.t. x′j + θj ln(g′) + δ[(1− p)Vj(g′) + pWj(g
′)] ≥ Kj(g), (7)

where Vi and Wi satisfy (E3) and

Kj(g) = θj ln(g) + δ[(1− p)Vj(g) + pWj(g)]. (8)

We construct equilibria by the “guess and verify” method. The form of the parties’ equi-
librium strategies and payoffs in the one-period model are a natural starting place to consider
the solution to the infinite-horizon model; however, we expect the solution to the infinite-
horizon model to take into account continuation strategies and payoffs. We provide here some
brief intuition about how this may alter strategies. Consider the choice of the proposer when
the responder’s constraint is not binding. In the one-period model, the proposer chooses its
static ideal. In the infinite-horizon model the proposer takes into account the fact that it
may not be the proposer in the next period; hence it may wish to provide insurance for itself
by setting the value of the public good above its static ideal.

This insurance effect appears to have the desirable property that it increases the equilib-
rium level of the public good compared to discretionary spending, but is it possible that it
causes parties to increase the level of the public good above the efficient level? The answer
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is yes for some parameter values. In particular, define the level of polarization as the ratio
θH
θL

. Below we divide the characterization of the equilibrium of the infinite-horizon model
into the low-polarization case and the high-polarization case. In the case of low polarization
we show that the insurance effect leads party H to propose levels of public good spending
that are higher than what it proposes when such spending is discretionary, but there is no
over-provision of the public good in equilibrium. In the high-polarization case we do observe
over-provision of the public good.

First, we use the recursive structure of the dynamic payoffs to establish Lemma 1, which
shows that when party i’s acceptance constraint (7) binds, its dynamic payoff Wi(g) and its
status quo payoff Ki(g) when it is the responder can be expressed entirely in terms of Vi(g),
its dynamic payoff if it was the proposer.

Lemma 1. If Wi(g) = Ki(g), then

Wi(g) = Ki(g) =
1

1− δp
[θi ln(g) + δ(1− p)Vi(g)]. (9)

Proof: Suppose Wi(g) = Ki(g). Then Wi(g) = θi ln(g) + δ[(1 − p)Vi(g) + pWi(g)].
Rearranging gives (9).

Lemma 1 conveniently transforms the dynamic payoff for party i into one with a single
value function Vi(g), rather than two - Vi(g) and Wi(g) - when party i’s constraint is binding.

For the upcoming analysis, it is useful to define fi(g) as party i’s dynamic payoff when
the public spending in the current period is g and party i receives the remaining surplus:

fi(g) =1− g + θi ln(g) + δ[pVi(g) + (1− p)Wi(g)]. (10)

Low-polarization case
We look for an equilibrium strategy-payoff pair σ = ((πH , αH), (πL, αL)) and (VH ,WH , VL,WL)

with the following properties which bear some resemblance to the one-period solution:

(G1) There exist g∗L and g∗H with g∗L < g∗H < θH + θL such that g∗i ∈ arg max fi(g) for
i ∈ {H,L} and if g ≤ g∗i , then πi(g) = πi(g∗i ), and specifically γi(g) = g∗i .

(G2) If g ∈ [g∗i , θH + θL], then γi(g) = g and Wj(g) = Kj(g) for i, j ∈ {H,L} with i 6= j.

(G3) For any i, j ∈ {H,L} with j 6= i, if g ≥ θH + θL, then γi(g) = θH + θL, Wj(g) = Kj(g),
and the proposer’s equilibrium payoff Vi(g) takes the form Vi(g) = Ci ln(g) +Di.

Guess (G1) says that when the status quo is sufficiently low, each proposer proposes a
constant level of public good spending that maximizes its dynamic payoff, with the public
good spending proposed by L being lower than that proposed by H. This is reasonable since
the responder’s acceptance constraint should be slack at the proposer’s dynamic ideal level
of public good spending when the status quo is sufficiently low. Furthermore, since the static
ideal public good level for H is higher than that for L, one would expect that the dynamic
ideal for party H is higher than that for party L.
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Guess (G2) says that when the status quo is higher than the cutoff specified in (G1), but
lower than the efficient level θH +θL, then the proposer maintains the status quo public good
spending, and the responder’s acceptance constraint binds.

Guess (G3) says that when the status quo is higher than the efficient level, then the
proposer proposes public good spending that is equal to the efficient level and makes transfers
to the responder so that the responder is just willing to accept. The functional form guess
of Vi is motivated by the fact that per-period utility functions are linear in ln(g).

Suppose σ = ((πH , αH), (πL, αL)) and (VH ,WH , VL,WL) is an equilibrium strategy-payoff
pair that satisfies (G1)-(G3). In the next few lemmas we establish some properties of σ and
(VH ,WH , VL,WL), and in Proposition 3 we use these to characterize the equilibrium.

Consider first the proposer’s problem (6) without imposing the responder’s acceptance
constraint (7). Since g enters the problem only through the constraint (7), the proposer’s
value function is independent of g, and we denote proposer i’s highest payoff without the
constraint (7) by V ∗i = maxg fi(g). Clearly, if z is a solution to proposer i’s problem without
the acceptance constraint, then z = (g′, x′H , x

′
L) where x′i = 1−g′ for some g′ ∈ arg max fi(g).

Since V ∗i is proposer i’s highest payoff without the constraint (7), it follows that V ∗i ≥
Vi(g) for any g. Denote WL(g∗H) by W ∗

L and denote WH(g∗L) by W ∗
H .

Lemma 2. Under (G1), for all i, j ∈ {H,L} with j 6= i, (i) if g ≤ g∗i , then Vi(g) = V ∗i ,
χii(g) = 1− g∗i , χij(g) = 0, and (ii) if g ≤ g∗j , then Wi(g) = W ∗

i .

Proof: Part (i): By (G1), g∗i ∈ arg max fi(g). Since responder j accepts the proposal
(g∗i , 1 − g∗i , 0) when the status quo is g = g∗i , it follows that Vi(g

∗
i ) ≥ V ∗i . Since V ∗i ≥ Vi(g)

for any g, it follows that Vi(g
∗
i ) = V ∗i , χii(g

∗
i ) = 1− g∗i , and χij(g

∗
i ) = 0. The rest of (i) follows

immediately from (G1).
Part (ii) follows from the definition of Wi in (E3).

Lemma 2 says that party i’s dynamic payoff as the proposer is constant and maximized if
g ≤ g∗i where the responder’s constraint is not binding. Next consider when the responder’s
acceptance constraint is binding. To begin, we characterize these dynamic payoffs over the
range g ∈ [g∗i , θH + θL].

Lemma 3. Under (G1) and (G2), if g ∈ [g∗L, g
∗
H ], then

VL(g) =
1

1− δp
[1− g + θL ln(g) + δ(1− p)W ∗

L], (11)

and if g ∈ [g∗H , θH + θL], then

Vi(g) =
(1− δp)(1− g)

(1− δ)(1 + δ − 2δp)
+

θi
1− δ

ln(g) (12)

for all i ∈ {H,L}.

Proof: Under (G2), if g ∈ [g∗i , θH + θL], then γi(g) = g. Since the responder accepts the
proposal (g, 1 − g, 0) if the status quo is g, this implies that χij(g) = 0 for g ∈ [g∗i , θH + θL]
and therefore

Vi(g) = 1− g + θi ln(g) + δ[pVi(g) + (1− p)Wi(g)]. (13)
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By Lemma 2, if g ∈ [g∗L, g
∗
H ], then WL(g) = W ∗

L. Substituting in (13) and rearranging terms,
we get (11). Under (G2), if g ∈ [g∗H , θH +θL], then Wi(g) = Ki(g) and by Lemma 1, equation
(9) holds. Substituting (9) in (13) and rearranging terms, we get (12).

Lemma 3 gives the functional form for proposer i’s payoff in a range that includes its
dynamic ideal level of the public good g∗i . We are now in a position to fully characterize g∗i .

Lemma 4. Under (G1) and (G2), g∗L = θL and g∗H = 1+δ−2δp
1−δp θH .

Lemma 4 formalizes the intuition given at the beginning of this subsection. It says that
party L’s dynamic ideal g∗L is equal to its static ideal θL, while party H’s dynamic ideal g∗H
is strictly higher than its static ideal θH . To understand this result, note that the proposer’s
choice of the public good level has a static effect on the current-period payoff and a dynamic
effect on the continuation payoff because it determines next period’s status quo. Furthermore,
the dynamic effect creates two competing incentives for the incumbent: the incentive to raise
the public good level for fear that the opposition party comes into power next period, and
the incentive to lower the public good level to lower the bargaining power of the opposition
party if the incumbent stays in power next period. If polarization is low, the dynamic effect
of party L’s proposal is zero because even if party H becomes the proposer next period, it
would choose its dynamic ideal, which is sufficiently high. On the other hand, party H is
indeed concerned that party L would set the level of public good too low should party L
come into power, and the insurance incentive arising from this dynamic concern leads party
H to propose g∗H strictly higher than its static ideal θH . Clearly, a necessary condition for
an equilibrium to exist that satisfies (G1)-(G3) is that g∗H < θH + θL. By Lemma 4, this is
satisfied if θH

θL
< 1−δp

δ(1−p) . Since this condition implies that the parties’ preferences regarding
the value of public good are sufficiently similar, we call this the “low-polarization” case.

We now characterize the proposer’s dynamic payoff over the remainder of the range of g.
By (G3), the dynamic payoffs are given by Vi(g) = Ci ln(g) +Di for g ≥ θH + θL. Lemma 5
characterizes the values of Ci and Di.

Lemma 5. Under (G3),

Ci =
−(1− δp)θj + δ(1− p)θi

(1− δ)(1 + δ − 2δp)
, (14)

Di =
(1− δp)(1− θL − θH + (θH + θL) ln(θH + θL))

(1− δ)(1 + δ − 2δp)
, (15)

for i, j ∈ {H,L} with j 6= i.

Recall that we guess in (G3) that γi(g) = θH + θL for all g ≥ θH + θL. To ensure that this
holds in equilibrium, we need the responder to accept some proposal with public spending
equal to the efficient level for all g ≥ θH + θL. Note that this is satisfied if and only if the
responder would agree to bring the public spending to the efficient level of (θH + θL) after
receiving the rest of the surplus as private transfers. That is, αj(g, (θH + θL, xH , xL)) = 1
where xj = 1−θL−θH , xi = 0 for all g ≥ θH+θL. In what follows, we derive a condition under
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which this holds in equilibrium, and we discuss what happens if the condition is violated at
the end of this subsection.

Note that αj(g, (θH + θL, xH , xL)) = 1 with xj = 1− θL − θH , xi = 0 is satisfied if

1− (θH + θL) + θj ln(θH + θL) + δ[(1− p)Vj(θH + θL) + pWj(θH + θL)] ≥ Kj(g).

Substituting for Kj(g) and Wj(g) using Lemma 1 and substituting for Vj(g) = Cj ln(g) +
Dj for g ≥ θH + θL, the inequality simplifies to

1− (θH + θL) ≥ θj(1−δp)−θiδ(1−p)
(1−δ)(1+δ−2δp) [ln(g)− ln(θH + θL)]. (16)

Since the right-hand side of inequality (16) is higher when j = H than when j = L, it
follows that if the inequality holds for j = H, then it holds for j = L as well. Moreover, the
right-hand side of (16) is increasing in g, implying that if the inequality holds for g = 1, then
it holds for all g ≥ θH + θL. Call the following inequality condition (∗):

1− (θH + θL) ≥ θH(1−δp)−θLδ(1−p)
(1−δ)(1+δ−2δp) (− ln(θH + θL)). (∗)

We are now ready to establish the equilibrium characterization result in the low-polarization
case. For brevity, we use θ∗i to denote 1+δ−2δp

1−δp θi for i ∈ {H,L}.

Proposition 3. Suppose θH
θL
< 1−δp

δ(1−p) and condition (∗) holds. Then, there exists an equilib-

rium strategy-payoff pair σ = ((πH , αH), (πL, αL)) and (VH ,WH , VL,WL) that satisfies (G1)-
(G3). Specifically, for i, j ∈ {H,L}, j 6= i,

γi(g) =


g∗i for g ≤ g∗i ,

g for g∗i ≤ g ≤ θH + θL,

θH + θL for θH + θL ≤ g,

χij(g) =

{
0 for g ≤ θH + θL,
θj(1−δp)−θiδ(1−p)
(1−δ)(1+δ−2δp) ln( g

θH+θL
) for θH + θL ≤ g,

and χii(g) = 1− γi(g)− χij(g), where g∗L = θL and g∗H = θ∗H .

Due to space limitations, the proof of Proposition 3 is in the Supplementary Appendix.
We provide an example of numerical output from value function iterations in Figure 3. Figure
3 illustrates the parties’ proposal strategies for the public good in an equilibrium that satisfies
(G1)-(G3). We include the illustration of proposal strategies for transfers in the Appendix.15

Equilibrium when condition (∗) fails: Denote by zej the proposal (θH + θL, xH , xL)
where xi = 0 and xj = 1 − θH − θL . Recall that in Proposition 3, we assume condition
(∗) holds, which ensures the responder j accepts the proposal zej even when the status quo
is high. What happens if condition (∗) fails, that is, if αj(g, zej ) = 0 for g sufficiently high?
Then, instead of proposing g′ = θH+θL, party i proposes g′ > θH+θL, x′i = 0, and x′j = 1−g′
such that party j is just willing to accept. Figure 4 illustrates the parties’ proposal strategies
when condition (∗) fails. In the figure (G1)-(G2) are still satisfied, but for very high status
quos, (G3) is violated. In Section 7, we show that the failure of condition (∗) does not affect
the set of steady states.

15In the low-polarization case when parameters satisfy condition (∗), all numerical output we have obtained
satisfy (G1)-(G3).
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Figure 3: γi(g) in low-polarization case when
(∗) holds
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Figure 4: γi(g) in low-polarization case when
(∗) fails

High-polarization case
Now suppose θH

θL
> 1−δp

δ(1−p) , so polarization is high. Figure 5 below illustrates an example
of numerical output from value function iteration when this condition holds.
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Figure 5: γi(g) in high-polarization case

Figure 5 shows equilibrium strategies that look very different from the low-polarization
case at first glance; however, upon further examination, we find parallels. First consider
the strategy illustrated for party L. This strategy is in fact similar to party L’s strategy
in the low-polarization case: a constant value is chosen at low levels of the status quo; for
intermediate values of the status quo, the public good is chosen to be equal to the status
quo; and for status quos above the efficient level (θH + θL = 0.6), the efficient level of the
public good is chosen.
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For party H, the condition for high-polarization, θH
θL
> 1−δp

δ(1−p) , necessitates that θ∗H (which

was the value of g∗H in the low-polarization case and is 0.67 for these parameter values) is
now strictly above the efficient level, 0.6. It is not surprising that at low values of the status
quo, below the point g

H
in Figure 5, party H still chooses the public good spending to be

equal to its dynamic ideal. Interestingly, Figure 5 shows that party H’s dynamic ideal is
also chosen at very high levels of the status quo, which suggests that party L’s acceptance
constraint is slack when the status quo is very high. The intuition for setting the level of
the public good above the static ideal is the same as before: party H’s insurance motive
dominates, but under high polarization, what is dynamically optimal for party H is higher
than the efficient level.

Between g
H

and a higher threshold g̃H , the level of public good proposed by party H is
between its dynamic ideal and the efficient level θH + θL. This is because the acceptance
constraint for party L binds and party H cannot propose its dynamic ideal, but party L’s
status quo payoff is low enough that party H does not have to propose the efficient level.
As the status quo increases, party L’s status quo payoff also increases, and party H has to
propose a level of the public good closer to the efficient level.

Between g̃H and θH + θL, the efficient level is proposed by party H. In this range, party
L’s status quo payoff is high enough that party H finds it optimal to propose the efficient
level of the public good and give party L some transfer so that it consents to raising the level
of the public good. Finally, between the efficient level and party H’s dynamic ideal, it is
optimal for party H to maintain the status quo since it is closer to party H’s dynamic ideal,
and it satisfies party L’s constraint.

It remains to formally characterize an equilibrium with these properties. Recall that fi(g)
defined in (10) is party i’s dynamic payoff when the public spending in the current period is
g and party i receives the remaining surplus. Motivated by Figure 5, we make the following
guesses about an equilibrium strategy-payoff pair.

(G1′) There exist g∗L and g∗H with g∗L < θH + θL < g∗H such that g∗i ∈ arg max fi(g) for
i ∈ {H,L}.

(G2′) If g ≤ g∗L, then πL(g) = πL(g∗L) and specifically γL(g) = g∗L; if g ∈ [g∗L, θH + θL], then
γL(g) = g; if g ≥ θH + θL, then γL(g) = θH + θL. If g ≥ g∗L, then WH(g) = KH(g).

(G3′) There exist g
H

and g̃H that satisfy g∗L ≤ g
H
< g̃H < θH + θL such that (i) πH(g) =

πH(g∗H) for g ≤ g
H

and g ≥ g∗H ; (ii) if g ∈ [g
H
, g∗H ] then WL(g) = KL(g); (iii) if g ≤ g̃H

or if g ≥ θH + θL, then χHL (g) = 0; and (iv)

γH(g) =



g∗H for g ≤ g
H
,

g′ ∈ [θH + θL, g
∗
H ] for g

H
≤ g ≤ g̃H ,

θH + θL for g̃H ≤ g ≤ θH + θL,

g for θH + θL ≤ g ≤ g∗H ,

g∗H for g∗H ≤ g.

where g′ is a function of g satisfying θL ln(g′) + δ[(1− p)VL(g′) + pWL(g′)] = KL(g).
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(G4′) If γi(g) = θH + θL, then Vi(g) is piecewise linear in g and ln(g).

Some conditions are needed to ensure that an equilibrium exists that satisfies these
guesses. In (G2′), we guess that γL(g) = θH + θL for all g ≥ θH + θL. This is analo-
gous to the low-polarization case and we need a condition similar to (∗) to guarantee that it
holds in equilibrium. Recall that θ∗i = 1+δ−2δp

1−δp θi. This condition, which we call (∗∗), is given
below:

1− (θH + θL) + θH
1−δ ln(θH + θL) ≥ δ(1−p)(θH+θL−θ∗H)

(1−δ)(1+δ−2δp) + δ(1−p)θH
(1−δp)(1−δ) ln(θ∗H). (∗∗)

The derivation of condition (∗∗) is similar to that of condition (∗) and can be found in the
Supplementary Appendix.

In (G3′), we guess that g∗L ≤ g
H

. In Lemma A.5 in the Supplementary Appendix, we find
the value of g

H
under (G1′)-(G4′), and we denote this value by ψ. We show that ψ ≥ θ∗L

guarantees that g∗L ≤ g
H

in equilibrium. We also show that ψ is decreasing in θH , which
implies that this condition holds when polarization is not too high.

Proposition 4. If θH
θL

> 1−δp
δ(1−p) , ψ ≥ θ∗L and condition (∗∗) holds, then there exists an

equilibrium strategy-payoff pair that satisfies (G1′)-(G4′).

Due to space limitations, the proof of Proposition 4 is in the Supplementary Appendix.
Equilibrium when condition (∗∗) fails: Figure 6 illustrates the parties’ proposal

strategies when condition (∗∗) fails. Similar to the low-polarization case, (G1′)-(G4′) are still
satisfied in this figure except γL(g) > θH + θL for very high status quos. As we show in
Section 7, the failure of condition (∗∗) does not affect the set of steady states.
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Figure 6: γi(g) in high-polarization case when condition (∗∗) does not hold

Equilibrium when ψ < θ∗L: Figure 7 illustrates the proposal strategies when ψ < θ∗L.
In this case, polarization is very high. As the figure shows, two kinds of equilibria arise. In
panel (a), the equilibrium strategies still satisfy (G1′)-(G4′) with the exception that g∗L > g

H
.

In this case, party L’s dynamic ideal is g∗L = θ∗L > θL, an analog to party H’s dynamic ideal
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g∗H = θ∗H . To understand the difference between Figure 5 and Figure 7(a), recall that g
H

is
the threshold below which party L’s constraint is slack. In Figure 5, g∗L = θL < g

H
, implying

that party L’s constraint is slack at its dynamic ideal, but in Figure 7(a), θL is greater than
g
H

, implying that party L’s choice of public good has a dynamic effect because if party H
comes to power in the next period, party L’s constraint is binding. This dynamic effect
results in party L’s dynamic ideal g∗L being higher than its static ideal θL. In panel (b), party
H’s strategy again satisfies the guesses, but party L’s strategy violates (G2′). In particular,
instead of proposing g′ = g, now party L proposes a constant level g′ = θ∗L when the status
quo is in a subinterval of [g∗L, θH + θL] (see the kink in Figure 7(b)). By setting g′ at a higher
level θ∗L, party L guarantees a higher bargaining position for itself in the next period. Hence
if party H comes to power in the next period, it is forced to set the efficient level of the
public good rather than its dynamic ideal (which is much higher).

Although the details of party L’s strategy violate certain aspects of (G2′) when ψ < θ∗L,
the efficiency implications and the set of steady states are still the same, as illustrated in
Figure 7 and will be formalized in Section 7.
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Figure 7: γi(g) in high-polarization case when ψ < θ∗L

7 Equilibrium dynamics

We next discuss equilibrium dynamics. Let g0 denote the initial level of public good
spending. As we show in Proposition 5 below, there is a unique steady state, denoted by
gs, corresponding to each g0. Recall that for an equilibrium satisfying (G1)-(G3) in the
low-polarization case, g∗H = θ∗H = 1+δ−2δp

1−δp θH .

Proposition 5. In an equilibrium that satisfies (G1)-(G3) in the low-polarization case, if
g0 ≤ θ∗H , then gs = θ∗H ; if g0 ∈ [θ∗H , θH +θL], then gs = g0; if g0 ≥ θH +θL, then gs = θH +θL.
In an equilibrium that satisfies (G1′)-(G4′) in the high-polarization case, gs = θH + θL for
any g0.
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The proposition says that in the low-polarization case, starting from a level of the public
good below the efficient level, the steady state is still below the efficient level, but above what
would be implemented with only discretionary programs (θi when i is the proposer). Starting
from a level of the public good above the efficient level, the steady state is at the efficient
level. This is because when the status quo is above the efficient level, parties find it optimal
to reduce spending on the public good to the efficient level, but once public good spending
is at the efficient level, any allocation that exhausts the budget is on the Pareto frontier,
that is, any proposal that improves the payoff of the proposer must reduce the payoff of the
responder. Because public good spending is mandatory, the responder’s bargaining power
prevents the proposer from reducing its payoff, and hence this is a steady state.

Proposition 5 says that in the high-polarization case, the only steady state involves public
good spending equal to the efficient level θH+θL. The dynamics leading to this unique steady
state may be non-monotone. Specifically, if the initial status quo is below g̃H and party L
is the initial proposer, party L chooses γL(g) ∈ [θL, g̃H ] and this level persists until party
H next comes to power. When party H is next in power, party H sets a higher level of
the public good γH(g) ∈ [θH + θL, g

∗
H ], and the public good spending remains at this level

until party L next comes to power. When party L returns to power, it finds it optimal to
reduce the level of the public good to the efficient level and compensate party H by providing
transfers. It is the anticipation of these transfers that provided an incentive for party H to
propose a level of public spending above the efficient level when the state was low. Once the
efficient level of public good spending is reached, it is sustained.

Proposition 5 says that in the equilibrium we constructed, the set of steady states is
[θ∗H , θH + θL] in the low-polarization case, and it is the singleton {θH + θL} in the high-
polarization case. In the next proposition, we show that there are no other steady states in
any other equilibrium under certain conditions.

Suppose σ and (VH ,WH , VL,WL) is an equilibrium strategy-payoff pair. Let Gs denote
the set of steady states, that is, for any g ∈ Gs, γi(g) = g for i ∈ {H,L}. Let G denote
the set of public good spending levels g such that the acceptance constraint binds when the
status quo is g, regardless of who the responder is.

Proposition 6. Let g ∈ Gs, and suppose that (i) VH and VL are differentiable on an open set
C such that g ∈ C ⊆ G, and (ii) the responders’ acceptance constraints satisfy Kuhn-Tucker
Constraint Qualification. Then g ∈ [θ∗H , θH+θL] in the low-polarization case, and g = θH+θL
in the high-polarization case.

In the high-polarization case, the set of steady states is a singleton and only depends
on θH and θL. We next discuss comparative statics on the set of steady states in the low-
polarization case. Since the highest steady state is constant at the efficient level, comparative
statics on the set of steady states is driven by comparative statics on the lowest steady state,
which is given by party H’s dynamic ideal level of the public good g∗H = θ∗H .

Proposition 7. In the low-polarization case, the lowest steady state θ∗H is decreasing in the
persistence of power p and is increasing in the discount factor δ.
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The intuition for this result is simple. Dynamic considerations create incentives for party
H to set a level of the public good above its static ideal to increase its status quo payoff in
the event that it loses (proposing) power. As party H becomes more confident that it will
still be in power in the next period, its incentive to insure itself decreases, and hence it sets
a level of the public good closer to its static ideal, knowing that it will likely be able to set
the same level in the next period without giving transfers to the other party. Similarly, as
party H’s discount factor increases, it puts more weight on future payoffs, and hence is more
sensitive to being out of power in the future. To insure itself against power fluctuations, it
increases the level of the public good in the current period. Hence less persistence in political
power or more patience results in steady states closer to the efficient level.

8 Efficiency implications of mandatory programs
One objective of this paper is to examine the efficiency implications of mandatory pro-

grams. In this section we explore this. First recall that if public good spending is discre-
tionary, then in any Markov perfect equilibrium, the level of public spending is equal to θi
if party i is the proposer in that period. By Proposition 3, the equilibrium level of public
good spending proposed by party i is in [g∗i , θH + θL] under mandatory programs in the low-
polarization case. Since g∗i ≥ θi for all i ∈ {H,L}, the level of public good spending is higher
when it is mandatory than when it is discretionary, independent of the status quo. Since
over-provision of public good does not happen in equilibrium in the low-polarization case,
this means that the equilibrium level of public good spending is closer to the efficient level
when it is mandatory than when it is discretionary. In the high-polarization case, however,
the level of public good spending proposed by party H can be as high as g∗H , which is now
higher than θH + θL. Hence over-provision of the public good is possible, but as shown in
Proposition 5, it is only a transient state.

How do mandatory programs affect parties’ welfare? The next proposition shows that
mandatory programs improve the ex ante welfare of party H. More surprisingly, under
some parametric conditions – in particular, when the parties are sufficiently patient and the
persistence of power is sufficiently low – they also improve the ex ante welfare of party L.
For notational convenience, let

w(δ, p) = ln

(
(1 + δ − 2δp)2

δ(1− p)(1− δp)

)
− 1− δp
δ(1− p)

.

Proposition 8. Suppose it is equally likely ex ante for either party to become the proposer.
Then party H’s steady state payoff is higher when public good spending is mandatory than
when it is discretionary. Moreover, in the low-polarization case, party L’s steady state payoff
is higher when public good spending is mandatory than when it is discretionary if w(δ, p) > 0.

Notice if δ = 1, then w(δ, p) = ln(4)− 1 > 0. Hence, if the parties are sufficiently patient,
then even the party who places a lower weight on public good is better off ex ante if the
spending on public good is mandatory.

It is straightforward to verify that w(δ, p) is decreasing in p and increasing in δ. When
p = 0, w(δ, p) = ln ((1 + δ)2/δ) − 1/δ, and w(δ, 0) = 0 when δ ≈ 0.706. It follows that if
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δ > 0.706, then there exists p > 0 such that for all p < p, w(δ, p) > 0, and even party L
benefits ex ante from mandatory public good spending. Intuitively, when the persistence of
power is low, the insurance benefit from mandatory programs is high, making the parties
better off. This ex ante Pareto improvement may explain why many countries have enacted
mandatory programs.

9 Concluding remarks
In this paper we analyze a model of dynamic bargaining between two political parties over

the allocation of a public good and private transfers to understand the efficiency implications
of mandatory programs. We find that allocation of the public good through a mandatory pro-
gram mitigates the problem of under-provision of the public good compared to discretionary
programs because it provides a channel for parties to insure themselves against power fluc-
tuations. As a result, mandatory programs provide payoff smoothing for the parties, that is,
the difference between each party’s payoff when in power and when out of power is smaller
under mandatory programs. This leads to higher ex ante dynamic payoffs for both parties,
even the one that places a low value on the public good, when the parties are sufficiently
patient, not too polarized, and persistence of power is sufficiently low.

Several extensions seem promising for future research. First, in this paper, we focus on a
particular status quo rule: spending on the public good is mandatory and private transfers
are discretionary. We find this to be a good approximation of the rules governing the U.S.
federal budget negotiations, but since there are potentially different rules governing how the
status quo evolves, an interesting question is what would be the optimal status quo rule.
Separately, if the choice of mandatory versus discretionary programs is endogenous, what
would be the outcome?

The persistence of power is parameterized by p, the probability that the proposer last
period continues to be the proposer this period, and for simplicity, we assume it to be
exogenous in our model. Since success in bringing home “pork” typically results in more
favorable electoral outcomes, a second interesting extension is to consider how the efficiency
implications of mandatory programs change if power persistence is endogenously determined
by the policy choice as in Azzimonti (2011) and Bai and Lagunoff (2011).

In our model, the size of the budget to be allocated in each period is fixed. Another
extension is to investigate the effect of mandatory programs if the size of the budget is
endogenous and determined by policy choice. One example is to consider a model in which
the portion of the budget not consumed in the current period is added to the next period’s
budget.16 Alternatively, one might consider the effect of mandatory programs in a neoclassical
growth model à la Battaglini and Coate (2008).

Finally, although parties place different values on the public good, each party’s value
stays constant over time in our model. If the values of the public good fluctuate over time
stochastically, then we expect mandatory programs to have other interesting effects absent in
the model with deterministic values. For example, a high level of public good spending that is

16In this alternate model, when parties disagree, there is no waste as resources not allocated this period
become part of the next period’s budget. This is different from the assumption in the current paper.
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efficient in times when the the public good is especially valuable becomes inefficient when the
value of the public good decreases, and the inertia created by the mandatory program may
lead to over-provision of the public good. In some preliminary analysis of a model in which
the public good has the same value to both parties but fluctuates stochastically over time,
we find that over-provision of the public good can happen when the value of the public good
is low but the status quo is high. We plan to pursue this extension and others mentioned
above in future work.
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10 Appendix

10.1 Proof of Proposition 2
Party i’s Lagrangian for this problem is

Li = x′i + θi ln(g′) + λ1[1− g′ − x′i − x′j] + λ2[x
′
j + θj ln(g′)−Kj(g)],

where Kj(g) = θj ln(g). The first order conditions are g′, x′i, x
′
j, λ1, λ2 ≥ 0 and

θi
g′
− λ1 + λ2

θj
g′
≤ 0,

[
θi
g′
− λ1 + λ2

θj
g′

]
g′ = 0, (17)

1− λ1 ≤ 0, [1− λ1]x′i = 0, (18)

−λ1 + λ2 ≤ 0, [−λ1 + λ2]x
′
j = 0, (19)

1− g′ − x′i − x′j ≥ 0, [1− g′ − x′i − x′j]λ1 = 0, (20)

x′j + θj ln(g′)−Kj(g) ≥ 0, [x′j + θj ln(g′)−Kj(g)]λ2 = 0. (21)

First note that λ1 ≥ 1 by (18). Hence, (20) implies that 1 − g′ − x′i − x′j = 0. Next

note that 0 < g′ < 1. If g′ = 0, then (17) is violated. If g′ = 1, then λ2 = λ1−θi
θj

by (17).

Combining this value of λ2 with (19) gives λ1−θi
θj
≤ λ1. Rearranging implies λ1 ≤ θi

1−θj . For

this to be consistent with (18) we need θi + θj ≥ 1, a contradiction.
Since g′ < 1 implies x′i = x′j = 0 is not optimal, there are now four cases to consider.

• λ2 = 0: Since λ1 > 0, (19) implies that x′j = 0. Combining this with g′ < 1, we have
x′i > 0. By (18), x′i > 0 implies that λ1 = 1. Combined with (17), this implies that g′ = θi,
x′i = 1− θi, and x′j = 0. For the inequality in (21) to hold, we need g ≤ θi.
• λ2 > 0, x′i > 0 and x′j > 0: Then λ1 = λ2 = 1. Together with (17), (20) and (21), this

implies that

g′ = θH + θL,

x′i = 1− θL − θH −Kj(g) + θj ln(θH + θL),

x′j = Kj(g)− θj ln(θH + θL).

Since 0 ≤ x′i ≤ 1 and 0 ≤ x′j ≤ 1, for this to be a valid solution we need 0 ≤ Kj(g) −
θj ln(θH + θL) ≤ 1− θH − θL, which holds if g ≥ θH + θL.
• λ2 > 0, x′i > 0 and x′j = 0: Then (21) implies that g′ = g. Since x′i > 0, λ1 = 1, and (17)

gives g′ = θi + λ2θj. Since 0 < λ2 ≤ λ1 = 1, it follows that this is a valid solution only
when θi < g ≤ θH + θL.
• λ2 > 0, x′i = 0 and x′j > 0: Then (19) gives λ1 = λ2 and (17) gives g′ = θi

λ1
+ θj > θj. Since

λ2 > 0, by (21), 1− g′ + θj ln(g′) = θj ln(g), which is impossible since g′ > θj.
To summarize, we have the solution given in Proposition 2.

10.2 Proof of Lemma 4
We first show that g∗L = θL. Since VL(g) and WL(g) are constant for g ≤ g∗L by Lemma 2,

it follows that for g < g∗L, ∂fL(g)
∂g

= −1 + θL
g

. If g∗L > θL, then fL(θL) > fL(g∗L), contradicting

that g∗L ∈ arg max fL(g). Hence g∗L ≤ θL. For g ∈ [g∗L, g
∗
H ], V ′L(g) = − 1

1−δp + θL
(1−δp)g by Lemma
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3, and W ′
L(g) = 0 by Lemma 2. Substituting these in f ′L(g), we get

f ′L(g) = −1 + θL
g

+ δpV ′L(g) = 1
1−δp(−1 + θL

g
).

If g∗L < θL, then fL(g∗L) < fL(g) for any g ∈ (g∗L,min{θL, g∗H}), contradicting that g∗L ∈
arg max fL(g). Hence, g∗L ≥ θL. Since g∗L ≤ θL and g∗L ≥ θL, it follows that g∗L = θL.

We next show that g∗H = 1+δ−2δp
1−δp θH . If g ∈ (g∗L, g

∗
H), then V ′H(g) = 0 by Lemma 2 and

W ′
H(g) = θH

(1−δp)g by Lemma 1, and therefore

f ′H(g) = −1 + θH
g

+ δ(1− p)W ′
H(g) = −1 + (1+δ−2δp)θH

(1−δp)g . (22)

If g∗H > θ∗H , then (22) implies that f ′H(g) < 0 for g ∈ (θ∗H , g
∗
H), contradicting that g∗H ∈

arg max fH(g). Hence g∗H ≤ θ∗H . If g ∈ (g∗H , θH + θL), then as shown in (13), fH(g) = VH(g),
and by (12)

f ′H(g) = − 1−δp
(1−δ)(1+δ−2δp) + θH

(1−δ)g . (23)

If g∗H < θ∗H , then (23) implies that f ′H(g) > 0 for g ∈ (g∗H , θ
∗
H), contradicting that g∗H ∈

arg max fH(g). Hence g∗H ≥ θ∗H . Since g∗H ≤ θ∗H and g∗H ≥ θ∗H , it follows that g∗H = θ∗H .

10.3 Proof of Lemma 5
Under (G3), for i ∈ {H,L}, Wi(g) = Ki(g) for g ≥ θH + θL. By Lemma 1, Wi(g) =

Ki(g) = θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g). Consider any g ≥ θH + θL. Under (G3), γi(g) = θH + θL
and therefore

Vi(g) = χii(g) + θi ln(θH + θL) + δ[pVi(θH + θL) + (1− p)Wi(θH + θL)].

After substituting for Wi(θH + θL), we have

Vi(g) = χii(g) + 1+δ−2δp
1−δp θi ln(θH + θL) + δ(p+δ−2δp)

1−δp Vi(θH + θL).

Since the responder’s acceptance constraint is binding at g, we get

χij(g) = Kj(g)− θj
1−δp ln(θH + θL)− δ(1−p)

1−δp Vj(θH + θL).

SubstitutingKj(g) =
θj

1−δp ln(g)+ δ(1−p)
1−δp Vj(g), χii(g) = 1−χij(g)−θL−θH , Vi(g) = Ci ln(g)+Di,

Vj(g) = Cj ln(g) +Dj and matching the coefficients, we get (14) and (15).

10.4 Proof of Proposition 6
Fix g ∈ Gs. First we show that g ∈ G, that is, the responder’s acceptance constraint

binds when the status quo is in Gs. This follows immediately from the following claim:

Claim 1. For any g ∈ Gs and i, j ∈ {H,L} with i 6= j, χij(g) = 0.

Proof: Fix g ∈ Gs. By definition ofGs, γi(g) = g. Suppose to the contrary that χij(g) > 0
for j 6= i. Let π̃i = (γ̃i, χ̃iH , χ̃

i
L) be an alternative proposal strategy for player i such that

π̃i(g′) = πi(g′) for g′ 6= g, γ̃i(g) = γi(g), χ̃ij(g) = 0 and χ̃ii(g) = χii(g) + χij(g) > χii(g). Note
that π̃i satisfies the responder’s acceptance constraint (7) when i is the proposer. Then π̃i

yields the same payoff to player i for any g′ 6= g, and strictly higher payoff when the status
quo is g, contradicting that πi is an equilibrium proposal strategy.
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Since g ∈ G, we can simplify the proposer i’s maximization problem by using Lemma 1
to substitute for Wi and Wj. Define the function hi : B → R as

hi(g, xH , xL) = xi + θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g).

Claim 2. For any g ∈ Gs and i ∈ {H,L},
Vi(g) = max

z=(g′,x′H ,x
′
L)∈B

x′i + 1−2δp+δ
1−δp θi ln(g′) + δ(p+δ−2δp)

1−δp Vi(g
′)

s.t. hj(z) ≥ Kj(g), g′ ∈ G (24)

where Kj(g) = θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g).

Proof: By definition of Gs, the proposal (g, χiH(g), χiL(g)) is a solution to the maximiza-
tion problem given in (6) and (7). By Claim 1, Gs ⊆ G, and so the proposal (g, χiH(g), χiL(g))
is also a solution to (6) and (7) when the maximization is over z = (g′, x′H , x

′
L) ∈ B with

g′ ∈ G. Since the acceptance constraint binds for any g ∈ G, we use Lemma 1 to substitute
for Wi and Wj, resulting in the maximization problem given in Claim 2.

We are now ready to prove Proposition 6. Suppose hH and hL satisfy Kuhn-Tucker
Constraint Qualification. The Lagrangian for party i’s problem, for i ∈ {H,L}, is

Li = x′i + 1−2δp+δ
1−δp θi ln(g′) + δ(p+δ−2δp)

1−δp Vi(g
′)

+λ1i[1− x′i − x′j − g′] + λ2i[x
′
j +

θj
1−δp ln(g′) + δ(1−p)

1−δp Vj(g
′)−Kj(g)]

where j ∈ {H,L}, j 6= i.
By the Kuhn-Tucker Theorem (see Takayama (1985), Theorem 1.D.3), the first order

necessary conditions for (g′, x′H , x
′
L) to be a a solution to (24) are λ1i ≥ 0, λ2i ≥ 0, g′ ≥ 0,

x′H ≥ 0, x′L ≥ 0, and

1− λ1i ≤ 0, [1− λ1i]x′i = 0, (25)

−λ1i + λ2i ≤ 0, [−λ1i + λ2i]x
′
j = 0, (26)

θi(1−2δp+δ)
g′(1−δp) + δ(p+δ−2δp)

1−δp
∂Vi
∂g′
− λ1i + λ2i

[
θj

g′(1−δp) + δ(1−p)
1−δp

∂Vj
∂g′

]
≤ 0, (27)[

θi(1−2δp+δ)
g′(1−δp) + δ(p+δ−2δp)

1−δp
∂Vi
∂g′
− λ1i + λ2i

[
θj

g′(1−δp) + δ(1−p)
1−δp

∂Vj
∂g′

]]
g′ = 0, (28)

1− x′i − x′j − g′ ≥ 0 [1− x′i − x′j − g′]λ1i = 0, (29)

x′j +
θj

1−δp ln(g′) + δ(1−p)
1−δp Vj(g

′)−Kj(g) ≥ 0, (30)[
x′j +

θj
1−δp ln(g′) + δ(1−p)

1−δp Vj(g
′)−Kj(g)

]
λ2i = 0. (31)

By Claim 1, x′j = 0. By (25) λ1i > 0, and so the feasibility constraint (29) holds with
equality. By the envelope theorem (see Takayama (1985), Theorem 1.F.1), for i ∈ {H,L},
we have

∂Vi
∂g

= −λi2 ∂Kj

∂g
= −λi2

[
θj

g(1−δp) + δ(1−p)
1−δp

∂Vj
∂g

]
. (32)
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Since this holds for i ∈ {H,L}, we have a system of two equations in two unknowns. Solving
gives

∂Vi
∂g

=
λ2i[λ2jθiδ(1−p)−θj(1−δp)]
g[(1−δp)2−λ2iλ2jδ2(1−p)2] , (33)

for i, j ∈ {H,L} with j 6= i.
Since VH and VL are differentiable in an open set containing g, it must be the case that

g ∈ (0, 1). Since g ∈ Gs, this in turn implies that g′ = g ∈ (0, 1). From g′ > 0, it follows that
(27) must hold with equality for i, j ∈ {H,L} and j 6= i. From g′ < 1, it follows that x′i > 0,
and hence λ1i = 1 for i ∈ {H,L}. Substituting λ1i and (33) into (27), and solving the two
equations (given by (27) for i ∈ {H,L}) for g′ and λ2H in terms of λ2L, we obtain

g′ = (λ2LθH+θL)(1+δ−2δp)
1−δp+λ2Lδ(1−p)

, (34)

λ2H = (θH−θL)(1−δp)−λ2LθH(1−δ)
λ2Lδ(θH−θL)(1−p)−θL(1−δ)

. (35)

Consider the low-polarization case in which θH
θL
≤ 1−δp

δ(1−p) . Note that δ(θH − θL)(1 − p) −
θL(1− δ) ≤ 0. Since λ2L ≤ 1 by (26), it follows that the denominator of (35) is nonpositive.
Together with the necessary condition that λ2H ≥ 0, this implies

λ2L ≥ (θH−θL)(1−δp)
θH(1−δ) .

Thus, if θH
θL
≤ 1−δp

δ(1−p) , we have λ2L ∈ [ (θH−θL)(1−δp)
θH(1−δ) , 1]. Since the right-hand side of (34) is

increasing in λ2L, the bounds on λ2L we just found implies that g = g′ ∈ [θ∗H , θH + θL].

Next consider the high-polarization case in which θH
θL
≥ 1−δp

δ(1−p) . Note that (θH−θL)(1−δp)
θH(1−δ) ≥ 1.

Since λ2H ≥ 0, the numerator and the denominator of (35) have the same sign. If they are
both nonpositive, then

(θH−θL)(1−δp)
θH(1−δ) ≤ λ2L.

Since λ2L ≤ 1 by (26), this is only possible when λ2L = 1. If instead both the numerator and
the denominator of (35) are nonnegative, then λ2H ≤ 1 implies that

(θH − θL)(1− δp)− λ2LθH(1− δ) ≤ λ2Lδ(θH − θL)(1− p)− θL(1− δ).
Since θH ≥ θL, δ < 1 and λ2L ≤ 1, this is only possible if λ2L = 1. Thus, in the high-
polarization case, λ2L = 1. Substituting in (34), we obtain g′ = g = θH + θL.

10.5 Proof of Proposition 7
The derivatives of θ∗H with respect to p and δ are

∂θ∗H
∂p

= − θHδ(1−δ)
(1−δp)2 ≤ 0,

∂θ∗H
∂δ

= θHδ(1−p)
(1−δp)2 ≥ 0.

10.6 Proof of Proposition 8
If public good spending is discretionary, then party i’s expected steady state payoff is

1
2(1−δ) [(1− θi) + θi ln(θi)] + 1

2(1−δ) [θi ln(θj)]. (36)

If public good spending is mandatory, then party i’s expected steady state payoff is
1

2(1−δ) [(1− g
s) + θi ln(gs)] + 1

2(1−δ) [θi ln(gs)] (37)
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where gs ∈ [θ∗H , θH+θL] in the low-polarization case and gs = θH+θL in the high-polarization
case. To show that party i is better off when public spending is mandatory, we only need to
show that (37) is higher than (36). After rearranging terms, it becomes

2θi ln(gs)− gs ≥ θi ln(θiθj)− θi. (38)

Consider first i = H. Let k(x) = 2θH ln(x) − x. Since k′(x) = 2θH
x
− 1 > 0 if x < 2θH ,

and gs ≤ max{θ∗H , θH + θL} < 2θH , we have k(gs) > k(θH). That is, 2θH ln(gs) − gs >
2θH ln(θH)−θH . Since ln(θH)2 > ln(θLθH), it follows that 2θH ln(gs)−gs > θH ln(θLθH)−θH .

Next consider i = L in the low-polarization case. Since the left-hand side of inequality
(38) is concave in gs, we have (38) holds for any gs ∈ [θ∗H , θH + θL] if it holds for gs = θ∗H and
for gs = θH + θL. If gs = θ∗H , then

2θL ln(gs)− gs − θL ln(θHθL) + θL = 2θL ln(θ∗H)− θ∗H − θL ln(θHθL) + θL,

which is increasing in θL. Let θL = δ(1−p)
1−δp θH . Then

2θL ln(θ∗H)− θ∗H − θL ln(θHθL) + θL = ln
(

(1+δ−2δp)2
δ(1−p)(1−δp)

)
δ(1−p)
1−δp θH − θH ,

and it is positive if ln
(

(1+δ−2δp)2
δ(1−p)(1−δp)

)
≥ 1−δp

δ(1−p) . Similarly, if gs = θH + θL, then

2θL ln(gs)− gs − θL ln(θHθL) + θL = 2θL ln(θH + θL)− θL − θH − θL ln(θHθL) + θL

= 2θL ln(θH + θL)− θH − θL ln(θHθL),

which is increasing in θL. Let θL = δ(1−p)
1−δp θH . Then

2θL ln(θH + θL)− θH − θL ln(θHθL) = ln
(

(1+δ−2δp)2
δ(1−p)(1−δp)

)
δ(1−p)
1−δp θH − θH ,

and it is positive if ln( (1+δ−2δp)2
δ(1−p)(1−δp)) ≥

1−δp
δ(1−p) . To summarize, inequality (38) holds for i = L if

ln( (1+δ−2δp)2
δ(1−p)(1−δp)) >

1−δp
δ(1−p) .

10.7 Illustration of proposal strategies for transfers
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[39] J. Zápal, “Explicit and Implicit Status-Quo Determination in Dynamic Bargaining: The-

ory and Application to FOMC Directive,” working paper, 2011.

30



A. Supplementary appendix (For Online Publication)

A.1 Pareto efficient allocations

Proposition A.1. For any Pareto efficient allocation such that xt
′
L > 0 for some t′ and xt

′′
H

for some t′′, we have gt = θH + θL for all t.

Proof: A Pareto efficient allocation solves the following problem:

max
∞∑
t=0

δt(xtL + θL ln(gt))

s.t.
∞∑
t=0

δt(xtH + θH ln(gt)) = Ū ,

xtL + xtH + gt ≤ 1, xtL ≥ 0, xtH ≥ 0, gt ≥ 0 for all t.

The Lagrangian of this problem is
∞∑
t=0

δt(xtL + θL ln(gt))− λ1(Ū −
∞∑
t=0

δt(xtH + θH ln(gt)))− λt2(xtL + xtH + gt − 1).

The first order conditions with respect to xtL, xtH and gt are:

δt − λt2 ≤ 0, (δt − λt2)xtL = 0, (A.1)

λ1δ
t − λt2 ≤ 0, (λ1δ

t − λt2)xtH = 0, (A.2)

δtθL
gt

+
λ1δ

tθH
gt

− λt2 ≤ 0,

(
δtθL
gt

+
λ1δ

tθH
gt

− λt2
)
gt = 0. (A.3)

Suppose there exist t′ and t′′ such xt
′
L > 0 and xt

′′
H > 0. Since xt

′
L > 0, we have λt

′
2 = δt

′

from (A.1). It follows that λ1 ≤ λt
′
2

δt′
= 1 from (A.2). Similarly, since xt

′′
H > 0, we have

λ1 =
λt
′′
2

δt′′
. Since

λt
′′
2

δt′′
≥ 1, it follows that λ1 ≥ 1. Hence λ1 = 1.

Note that gt = 0 violates (A.3), hence gt > 0. We next show that gt 6= 1 for any t, which
implies that for any t, at least one of xtH and xtL is strictly positive. Suppose gt = 1 for some
t, then, since λ1 = 1, (A.3) implies that λt2 = δt(θH + λ1θL) < δt, which contradicts (A.1).
Since λ1 = 1 and at least one of xtL and xtH is strictly positive for any t, it follows that λt2 = δt

for all t. Substituting in (A.3), we get gt = θH + θL for all t.

A.2 Proof of Proposition 3
We proceed by first conjecturing an equilibrium strategy-payoff pair and then verifying

that it satisfies guesses (G1)-(G3), equilibrium conditions (E1)-(E3), and our assumption on
αi that all proposals made on the equilibrium path are satisfied when θH

θL
≤ 1−δp

δ(1−p) .

We conjecture an equilibrium strategy-payoff pair such that for any i, j ∈ {H,L} with

1



j 6= i, the acceptance strategy αi(g, z) satisfies (E1), the proposal strategies are

γi(g) =


g∗i for g ≤ g∗i ,

g for g∗i ≤ g ≤ θH + θL,

θH + θL for θH + θL ≤ g,

χij(g) =

{
0 for g ≤ θH + θL,
θj(1−δp)−θiδ(1−p)
(1−δ)(1+δ−2δp) ln( g

θH+θL
) for θH + θL ≤ g,

and χii(g) = 1 − γi(g) − χij(g), where g∗L = θL and g∗H = θ∗H , and the associated payoff
functions are

VL(g) =


V ∗L for g < g∗L,

1
1−δp [1− g + θL ln(g) + δ(1− p)W ∗

L] for g∗L ≤ g ≤ g∗H ,
(1−δp)(1−g)

(1+δ−2δp)(1−δ) + θL
1−δ ln(g) for g∗H ≤ g ≤ θH + θL,

CL ln(g) +DL for θH + θL < g,

WL(g) =

{
W ∗
L for g ≤ g∗H ,
1

1−δp [θL ln(g) + δ(1− p)VL(g)] for g∗H ≤ g,

VH(g) =


V ∗H for g < g∗H ,

(1−δp)(1−g)
(1−δ)(1+δ−2δp) + θH

1−δ ln(g), for g∗H ≤ g ≤ θH + θL,

CH ln(g) +DH for θH + θL ≤ g,

WH(g) =

{
W ∗
H for g ≤ g∗L,
1

1−δp [θH ln(g) + δ(1− p)VH(g)] for g∗L ≤ g,

where

Ci =
−(1−δp)θj+δ(1−p)θi

(1−δ)(1+δ−2δp) , Di = (1−δp)(1−θL−θH+(θH+θL) ln(θH+θL))
(1−δ)(1+δ−2δp) ,

and

W ∗
L = δ(1−p)

(1+δ−2δp)(1−δ)(1− g
∗
H) + θL

1−δ ln(g∗H),

V ∗L = 1
1−δp [1− θL + θL ln(θL) + δ(1− p)W ∗

L],

V ∗H =
(1−δp)(1−g∗H)

(1+δ−2δp)(1−δ) + θH
1−δ ln(g∗H),

W ∗
H = 1

1−δp [θH ln(g∗L) + δ(1− p)V ∗H ].

This conjecture clearly satisfies (G2) and (G3). (Note that by substituting Wj in (8), we
can verify that Wj(g) = Kj(g) for g ≥ g∗i .) So we only need to verify that (G1) is satisfied;
in particular, that g∗i ∈ arg max fi(g) where fi(g) = 1−g+θi ln(g)+ δ[pVi(g)+(1−p)Wi(g)].

Since Vi and Wi are continuous under our conjecture of the equilibrium strategy-payoff

2



pair, fi is continuous. It is also piecewise differentiable. Specifically,

f ′L(g) =


−1 + θL

g
for g < g∗H ,

− 1−δp
(1−δ)(1+δ−2δp) + θL

(1−δ)g for g ∈ (g∗H , θH + θL),

−1 + 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp

CL

g
for g > θH + θL,

f ′H(g) =


−1 + θH

g
for g < g∗L,

−1 + 1+δ−2δp
1−δp

θH
g

for g ∈ (g∗L, g
∗
H),

− 1−δp
(1−δ)(1+δ−2δp) + θH

(1−δ)g for g ∈ (g∗H , θH + θL),

−1 + 1+δ−2δp
1−δp

θH
g

+ δ(p+δ−2δp)
1−δp

CH

g
for g > θH + θL.

Claim A.1. Under our conjecture of the equilibrium strategy-payoff pair, g∗i ∈ arg max fi(g)
for all i ∈ {H,L}.

Proof : Consider i = L first. Given fL described above, f ′L(g) > 0 if g < g∗L, f ′L(g) = 0 if
g = g∗L, and f ′L(g) < 0 if g ∈ (g∗L, g

∗
H).

Since f ′L(g) is decreasing for g ∈ (g∗H , θH + θL), and at g = g∗H , − 1−δp
(1−δ)(1+δ−2δp) + θL

(1−δ)g =

− 1−δp
(1−δ)(1+δ−2δp) + θL(1−δp)

(1−δ)(1+δ−2δp)θH
< 0, it follows that f ′L(g) < 0 for g ∈ (g∗H , θH + θL).

If (1+δ−2δp)θL+δ(p+δ−2δp)CL

1−δp ≤ 0, then f ′L(g) < 0 for g > θH+θL. If (1+δ−2δp)θL+δ(p+δ−2δp)CL

1−δp >

0, then f ′L(g) is decreasing in g for g ≥ θH+θL. Since at g = θH+θL, f ′L(g) = −(1−δp)θH+(δ−δp)θL
(θH+θL)(1+δ−2δp)(1−δ)

<

0, it follows that f ′L(g) < 0 for g > θH + θL.
To summarize, f ′L(g) > 0 for g < g∗L, f ′L(g) = 0 if g = g∗L, f ′L(g) > 0 for g > g∗L, and

therefore g∗L ∈ arg max fL(g).
Now consider i = H. Given fH described above, f ′H(g) > 0 for g < g∗H . By a similar

argument as for party L, fH(g) is decreasing for g > g∗H . Therefore g∗H ∈ arg max fH(g).

Claim A.1 shows that (G1) is satisfied. We next verify that equilibrium conditions (E1)-
(E3) are satisfied. Condition (E1) is satisfied by construction.

The values V ∗L , W ∗
L, V ∗H and W ∗

H satisfy

V ∗L = 1− g∗L + θL ln(g∗L) + δ[pV ∗L + (1− p)W ∗
L],

W ∗
L = θL ln(g∗H) + δ[(1− p)V ∗L + pW ∗

L],

V ∗H = 1− g∗H + θH ln(g∗H) + δ[pV ∗H + (1− p)WH(g∗H)],

W ∗
H = θH ln(g∗L) + δ[(1− p)V ∗H + pW ∗

H ].

These together with Lemmas 2, 3 and 5 show that (E3) is satisfied, i.e., these payoff functions
are consistent with the strategy profile.

The remainder of the proof shows that (E2) is satisfied. The next claim establishes that
Ki(g) is increasing in g, which is useful later in the proof.

Claim A.2. Under our conjecture of the equilibrium strategy-payoff pair, Ki(g) is strictly
increasing in g for all i ∈ {H,L}.

Proof: Suppose g ≤ g∗L. Then Ki(g) = θi ln(g) + δ[(1− p)V ∗i + pW ∗
i ] and K ′i(g) > 0.

3



Suppose g ∈ [g∗L, g
∗
H ]. Then KL(g) = θL ln(g) + δ[(1 − p)VL(g) + pW ∗

L] where VL(g) =
1

1−δp [1− g + θL ln(g) + δ(1− p)W ∗
L]. Hence,

K ′L(g) = 1+δ−2δp
1−δp

θL
g
− δ(1−p)

1−δp .

Since θH
θL
< 1−δp

δ(1−p) , in the low-polarization case we have K ′L(g) > 0.

Also, since KH(g) = θH ln(g) + δ(1 − p)V ∗H + δp[ θH
1−δp ln(g) + δ(1 − p)V ∗H ], it follows that

KH(g) is increasing in g.

Suppose g ∈ [g∗H , θH + θL]. Then Ki(g) = θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g). Substituting for Vi(g)
and taking the derivative, we get

K ′i(g) = 1
1−δ

[
−δ(1−p)
1+δ−2δp + θi

g

]
.

Since θH
θL
< 1−δp

δ(1−p) , it follows that K ′i(g) > 0 for g ∈ [g∗H , θH + θL].

Suppose g ≥ θH + θL. Then again Ki(g) = θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g). Substituting for Vi(g)
and taking the derivative, we get

K ′i(g) = θi
(1−δp)g + δ(1−p)

1−δp
Ci

g
=

θi(1−δp)−θjδ(1−p)
(1−δ)(1+δ−2δp)g

where j ∈ {H,L}, j 6= i.
For i = H, θH(1 − δp) − θLδ(1 − p) > 0 and therefore K ′H(g) > 0. For i = L, since

θH
θL

< 1−δp
δ(1−p) in the low-polarization case, it follows that θL(1 − δp) − θHδ(1 − p) > 0 and

therefore K ′L(g) > 0.

The claim immediately implies that the responder accepts any proposal with g′ higher
than the status quo g and if the responder accepts a proposal with g′ lower than the status
quo, then the responder must receive a positive transfer. A formal statement is as follows.

Corollary A.1. Consider z′ = (g′, x′H , x
′
L) ∈ B. For any i ∈ {H,L}, (i) if g′ ≥ g, then

αi(g, z′) = 1; (ii) if g′ < g and αi(g, z′) = 1, then x′i > 0.

For notational convenience, let UP
i (z) = xi + θi ln(g) + δ[pVi(g) + (1 − p)Wi(g)] and

UR
i (z) = xi + θi ln(g) + δ[(1 − p)Vi(g) + pWi(g)]. That is, UP

i (z) (UR
i (z)) denotes party i’s

dynamic payoff when the implemented budget is z in the current period and party i is the
proposer (responder). The next claim establishes that all equilibrium proposals are accepted.

Claim A.3. Under our conjecture of the equilibrium strategy-payoff pair, αj(g, πi(g)) = 1
for all g and all i, j ∈ {H,L}, j 6= i.

Proof : Consider j = H first.
If g ≤ g∗L, then UR

H(πL(g)) = θH ln(g∗L) + δ[(1−p)V ∗H +pW ∗
H ] ≥ KH(g) = θH ln(g) + δ[(1−

p)V ∗H + pW ∗
H ] and therefore αH(g, πL(g)) = 1.

If g ∈ [g∗L, θH+θL], then γL(g) = g and χLH(g) = 0, which implies that UR
H(πL(g)) = KH(g)

and therefore αH(g, πL(g)) = 1.
If g > θH+θL, then γL(g) = θH+θL and χLH(g) = KH(g)−θH ln(θH+θL)−δ[pVH(θH+θL)+

(1−p)WH(θH +θL)], which implies that UR
H(πL(g)) = KH(g) and therefore αH(g, πL(g)) = 1.

Now consider j = L.

4



If g ≤ g∗H , then UR
L (πH(g)) = θL ln(g∗H) + δ[(1− p)VL(g∗H) + pWL(g∗H)]. Since K ′L(g) > 0

by Claim A.2 and UR
L (πH(g)) = KL(g∗H), it follows that UR

L (πH(g)) ≥ KL(g) and therefore
αL(g, πH(g)) = 1 for g ≤ g∗H .

If g ≥ g∗H , then an argument similar to the case of j = H shows that UR
L (πH(g)) = KL(g)

and therefore αL(g, πH(g)) = 1.

We next show that the proposer has no profitable one-shot deviation. Consider the
following three cases for party L.
• g ≤ g∗L: Since g∗L = arg max fL(g), party L has no incentive to deviate from proposing
γL(g) = g∗L and χLH(g) = 0.
• g∗L < g ≤ θH + θL: We first show that proposing πL(g) is better than proposing (ĝ, x̂H , x̂L)

with ĝ > g and then show that it is better than proposing (ĝ, x̂H , x̂L) with ĝ < g.
– ĝ > g: Consider ẑ = (ĝ, 0, 1 − ĝ). Then UP

L (ẑ) = fL(ĝ). As shown in the proof of
Claim A.1, fL(ĝ) is decreasing for ĝ > g∗L. Since πL(g) = (g, 0, 1 − g), this implies
that UP

L (πL(g)) > UP
L (ẑ) for any ĝ > g > g∗L. Since party L’s payoff is decreasing

in xH , UP
L (ẑ) ≥ UP

L ((ĝ, x̂H , x̂L)) for any (ĝ, x̂H , x̂L) ∈ B, it follows that UP
L (πL(g)) >

UP
L ((ĝ, x̂H , x̂L)) for any ĝ > g > g∗L. Also, since αH(g, πL(g)) = 1 by Claim A.3, and

UP
L (πL(g)) > UP

L ((g, 0, 0)), the status quo payoff, it follows that proposing πL(g) is better
than proposing any (ĝ, x̂H , x̂L) ∈ B with ĝ > g.

– ĝ < g: If ĝ < g, then by Corollary A.1, αH(g, (ĝ, x̂H , x̂L)) = 1 only if x̂H > 0. Since party
L’s payoff is strictly decreasing in xH , we only need to consider proposals such that the
responder’s acceptance constraint (7) is binding. From (7),

x̂H = KH(g)− θH ln(ĝ)− δ[(1− p)VH(ĝ) + pWH(ĝ)]. (A.4)

Consider ẑ = (ĝ, x̂H , x̂L) such that (A.4) holds. Substituting for x̂H from (A.4) and
taking the derivative, we get

∂UP
L

∂ĝ
= −1 + θH+θL

ĝ
+ δ[(1− p)V ′H(ĝ) + pW ′

H(ĝ)] + δ[pV ′L(ĝ) + (1− p)W ′
L(ĝ)] (A.5)

For ĝ < g∗L,
∂UP

L

∂ĝ
= −1 + θH+θL

ĝ
> 0.

For g∗L < ĝ < g∗H ,
∂UP

L

∂ĝ
= −1 + θH+θL

ĝ
+ δp

1−δp
θH
ĝ

+ δp
1−δp(−1 + θL

g
) = 1

1−δp(−1 + θH+θL
ĝ

) > 0.

For g∗H < ĝ < g ≤ θH+θL,
∂UP

L

∂ĝ
= −1+1+δ−2δp

1−δp
θL
ĝ

+ δ(p+δ−2δp)
1−δp V ′L(ĝ)+ 1

1−δp
θH
ĝ

+ δ(1−p)
1−δp V

′
H(ĝ) =

1
1−δ (−1 + θH+θL

g
) > 0.

So UP
L (ẑ) is increasing in ĝ for ĝ < g, and therefore the proposer has no incentive to

make any proposal with ĝ < g.
• g > θH + θL: Consider ẑ = (ĝ, 0, 1 − ĝ) with ĝ > g. By Corollary A.1, αH(g, ẑ) = 1.

Since UP
L (ẑ) = fL(ĝ) and fL(ĝ) is decreasing in ĝ for ĝ > g > θH + θL, it follows that

UP
L ((g, 0, 1− g)) ≥ UP

L ((ĝ, 0, 1− ĝ)) if ĝ ≥ g.
Now consider ẑ = (ĝ, x̂H , x̂L) such that ĝ ≤ g and αH(g, ẑ) = 1. By Corollary A.1, x̂H > 0
if ĝ > g. Again we only need to consider proposals such that the acceptance constraint
binds. As before, we obtain (A.5). Substituting for V ′L(ĝ),W ′

L(ĝ), V ′H(ĝ),W ′
H(ĝ), we get

∂UP
L

∂ĝ
= −1 + 1+δ−2δp

1−δp
θL
ĝ

+ δ(p+δ−2δp)
1−δp

CL

ĝ
+
(

1
1−δp

θH
ĝ

+ δ(1−p)
1−δp

CH

ĝ

)
= −1 + θH+θL

ĝ
.
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Since γL(g) = θH + θL, it follows that UP
L (πL(g)) ≥ UP

L (ẑ) for any ẑ = (ĝ, x̂H , x̂L) such
that ĝ < g and αH(g, ẑ) = 1. Combined with UP

L ((g, 0, 1− g)) ≥ UP
L ((ĝ, 0, 1− ĝ)) if ĝ ≥ g,

πL(g) is optimal for party L to propose.
Party H also has no incentive to deviate. We omit the details of the proof because the
argument is similar to that for party L.

A.3 Proof of Proposition 4
To prove Proposition 4, we first establish some properties of an equilibrium strategy-payoff

pair that satisfies (G1′)-(G4′) in the high-polarization case where θH
θL
> 1−δp

δ(1−p) .

A.3.1 Properties of an equilibrium strategy-payoff pair that satisfies (G1′)-(G4′)
in the high-polarization case

Suppose σ = ((πH , αH), (πL, αL)) and (VH ,WH , VL,WL) is an equilibrium strategy-payoff
pair that satisfies (G1′)-(G4′). Recall that V ∗i = maxg fi(g) is proposer i’s highest payoff
without the responder’s constraint (7). As in the low-polarization case, we denote WL(g∗H)
by W ∗

L and WH(g∗L) by W ∗
H .

Lemma A.1. Under (G1′) and (G2′), if g ≤ g∗L, then VL(g) = V ∗L , χLL(g) = 1−g∗L, χLH(g) = 0,
and WH(g) = W ∗

H . Under (G3′), if g ≤ g
H

or g ≥ g∗H , then VH(g) = V ∗H , χHH(g) = 1 − g∗H ,

χHL (g) = 0, and WL(g) = W ∗
L.

We omit the proof since it is similar to that of Lemma 2.

Lemma A.2. Under (G1′)-(G3′), (i) if g ∈ [g∗L, gH ], then

VL(g) = 1
1−δp [1− g + θL ln(g) + δ(1− p)W ∗

L],

(ii) if g ∈ [g
H
, θH + θL], then

VL(g) = (1−δp)(1−g)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g), (A.6)

and (iii) if g ∈ [θH + θL, g
∗
H ], then

VH(g) = (1−δp)(1−g)
(1−δ)(1+δ−2δp) + θH

1−δ ln(g). (A.7)

We omit the proof since it is similar to that of Lemma 3. Recall θ∗H = 1+δ−2δp
1−δ θH .

Lemma A.3. Under (G1′)-(G3′), g∗L = θL and g∗H = θ∗H .

Proof: We omit the proof for g∗L since it is the same as that of Lemma 4.
Now consider g∗H . If g > g∗H , then V ′H(g) = 0 by Lemma A.1 and W ′

H(g) = θH
(1−δp)g by

Lemma 1, and therefore

f ′H(g) = −1 + θH
g

+ δ(1− p)W ′
H(g) = −1 +

θ∗H
g
. (A.8)

If g∗H < θ∗H , then (A.8) implies that f ′H(g) > 0 for g ∈ (g∗H , θ
∗
H), contradicting that g∗H ∈

arg max fH(g). Hence g∗H ≥ θ∗H .
If g ∈ (θH + θL, g

∗
H), then by (G3′), fH(g) = VH(g), and by (A.7)

f ′H(g) = − 1−δp
(1−δ)(1+δ−2δp) + θH

(1−δ)g . (A.9)
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If g∗H > θ∗H , then (A.9) implies that f ′H(g) < 0 for g ∈ (θ∗H , g
∗
H), contradicting that g∗H ∈

arg max fH(g). Hence g∗H ≤ θ∗H .
Since g∗H ≤ θ∗H and g∗H ≥ θ∗H , it follows that g∗H = θ∗H .

Recall that we guess in (G4′) that Vi is piecewise linear in g and ln(g) if γi(g) = θH + θL.
Specifically, suppose that for g ∈ [θH+θL, g

∗
H ], VL(g) takes the form VL(g) = B1

Lg+C1
L ln(g)+

D1
L; for g ≥ g∗H such that γL(g) = θH+θL, VL(g) takes the form VL(g) = B2

Lg+C2
L ln(g)+D2

L;
for g ∈ [g̃H , θH + θL], VH(g) takes the form VH(g) = B1

Hg + C1
H ln(g) +D1

H .

Lemma A.4. Under (G1′)-(G4′), B1
i = δ(1−p)(1−δp)

(1−δ)(1+δ−2δp) and C1
i = − θj

1−δ for i, j ∈ {H,L} with

j 6= i, and B2
L = 0, C2

L = − θH
1−δp .

Proof: Similar to the proof of Lemma 5, we can write

Vi(g) = χii(g) + 1+δ−2δp
1−δp θi ln(θH + θL) + δ(p+δ−2δp)

1−δp Vi(θH + θL),

where

χij(g) = Kj(g)− θj
1−δp ln(θH + θL)− δ(1−p)

1−δp Vj(θH + θL),

Kj(g) =
θj

1−δp ln(g) + δ(1−p)
1−δp Vj(g).

If g ∈ [θH + θL, g
∗
H ], then VH(g) = (1−δp)(1−g)

(1−δ)(1+δ−2δp) + θH
1−δ ln(g) by Lemma A.2. Substituting

in KH(g), we get

KH(g) = δ(1−p)(1−g)
(1−δ)(1+δ−2δp) + θH

1−δ ln(g).

Substituting in VL(g) and matching coefficients, we get B1
L = δ(1−p)

(1−δ)(1+δ−2δp) and C1
L = − θH

1−δ .

A similar argument shows that B1
H = δ(1−p)

(1−δ)(1+δ−2δp) and C1
H = − θL

1−δ .

To find B2
L and C2

L, note that if g ≥ g∗H , then by Lemma A.1, VH(g) = V ∗H . By Lemma 1,

KH(g) = θH
1−δp ln(g) + δ(1−p)

1−δp V
∗
H . Matching coefficients gives B2

L = 0 and C2
L = − θH

1−δp .

We next find the thresholds g
H

and g̃H that are consistent with (G1′)-(G4′).

Lemma A.5. Under (G1′)-(G4′), the threshold g
H
∈ (0, θH + θL) is given by g

H
= ψ where

ψ = min{g ≥ 0 : δ(1−p)(1−g)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g)

= δ(1−p)
(1−δ)(1+δ−2δp) + 1

1−δp

[
θL − δ(1−p)

1−δ θH

]
ln(θ∗H)

+ δ(1−p)
(1−δp)(1−δ)

[
(θH + θL)[ln(θH + θL)− 1] + δ(1−p)

1+δ−2δpθ
∗
H

]
}, (A.10)

and ψ is a decreasing function of θH .

Proof: By (G3′) (ii) and (iv), the threshold g
H

satisfies

θL ln(g∗H) + δ[(1− p)VL(g∗H) + pWL(g∗H)] = WL(g
H

) = KL(g
H

). (A.11)

By(G3′)(ii), WL(g∗H) = KL(g∗H). Hence by Lemma 1, we can rewrite the left-hand side of
the above equation as

θL
1−δp ln(g∗H) + δ(1−p)

1−δp VL(g∗H). (A.12)
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By (G1′), g∗H > θH + θL. Hence γL(g∗H) = θH + θL by (G2′). So VL(g∗H) can be written as

VL(g∗H) = χLL(g∗H) + 1+δ−2δp
1−δp θL ln(θH + θL) + δ(p+δ−2δp)

1−δp VL(θH + θL),

where χLL(g∗H) = 1− χLH(g∗H)− γL(g∗H) = 1− χLH(g∗H)− θH − θL, and

χLH(g∗H) =KH(g∗H)− θH
1−δp ln(θH + θL)− δ(1−p)

1−δp VH(θH + θL),

KH(g∗H) = θH
1−δp ln(g∗H) + δ(1−p)

1−δp VH(g∗H).

By Lemma A.2,

Vi(θH + θL) = (1−δp)(1−θH−θL)
(1−δ)(1+δ−2δp) + θi

1−δ ln(θH + θL), VH(g∗H) =
(1−δp)(1−g∗H)

(1−δ)(1+δ−2δp) + θH
1−δ ln(g∗H).

Substituting in all expressions, (A.12) becomes

δ(1−p)
(1−δ)(1+δ−2δp) + 1

1−δp

[
θL − δ(1−p)

1−δ θH

]
ln(g∗H) + δ(1−p)

(1−δp)(1−δ)

[
(θH + θL)[ln(θH + θL)− 1] + δ(1−p)

1+δ−2δpg
∗
H

]
.

By (G3′)(ii) and Lemma 1, we can write KL(g
H

) as

KL(g
H

) = θL
1−δp ln(g

H
) + δ(1−p)

1−δp VL(g
H

).

By Lemma A.2 this becomes

KL(g
H

) = θL
1−δ ln(g

H
) + δ(1−p)

(1−δ)(1+δ−2δp)(1− gH).

By Lemma A.3 g∗H = θ∗H , hence g
H

is given by

θL
1−δ ln(g

H
) + δ(1−p)

(1−δ)(1+δ−2δp)(1− gH) =

δ(1−p)
(1−δ)(1+δ−2δp) + 1

1−δp

[
θL − δ(1−p)

1−δ θH

]
ln(θ∗H)

+ δ(1−p)
(1−δp)(1−δ)

[
(θH + θL)[ln(θH + θL)− 1] + δ(1−p)

1+δ−2δpθ
∗
H

]
. (A.13)

Let l(x) = θL
1−δ ln(x) + δ(1−p)

(1−δ)(1+δ−2δp)(1 − x), and denote the right-hand side of (A.13) by

R. At most two values of g
H

satisfy (A.13) since l(x) is strictly concave. We show below
only one is lower than θH + θL and hence it is a candidate for g

H
by (G3′). Note that

l(θH + θL)−R = θL(1−δ)−θHδ(1−p)
(1−δp)(1−δ) ln(θH + θL) + δ2(1−p)2

(1−δ)(1+δ−2δp)(1−δp)(θH + θL)

−
[
θL(1−δ)−θHδ(1−p)

(1−δp)(1−δ)) ln(θ∗H) + δ2(1−p)2
(1−δ)(1+δ−2δp)(1−δp)(θ

∗
H)
]
. (A.14)

Define h(x) = θL(1−δ)−θHδ(1−p)
(1−δp)(1−δ) ln(x) + δ2(1−p)2

(1−δ)(1+δ−2δp)(1−δp)x, then l(θH + θL) − R = h(θH +

θL) − h(θ∗H). It is straightforward to show h′(x) < 0. Since θH + θL < θ∗H , it follows
l(θH + θL) − R > 0. Given l(θH + θL) − R > 0, the value that satisfies (A.13) such that
g
H
< θH + θL must be the minimum of the solutions to (A.13).
At ψ, l(x) is strictly increasing, and it is straightforward to show that R is decreasing in

θH in the high-polarization case. Hence ψ is decreasing in θH .

Lemma A.6. Under (G1′)-(G4′), the threshold g̃H ∈ (0, θH + θL) is given by
δ(1−p)(1−g̃H)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g̃H) = δ(1−p)(1−θL−θH)
(1−δ)(1+δ−2δp) + θL

1−δ ln(θH + θL). (A.15)
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Proof: By (G3′) (ii) and (iv), the threshold g̃H satisfies

θL ln(θH + θL) + δ[(1− p)VL(θH + θL) + pWL(θH + θL)] = KL(g̃H). (A.16)

By Lemma A.2, VL(g) = (1−δp)(1−g)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g) for g ∈ [g̃H , θH + θL]. Substituting this in

(A.16) and using Lemma 1, we get (A.15).

A.3.2 Derivation of condition (∗∗)
For any g ≥ θH + θL, we have αH(g, (θH + θL, xH , xL)) = 1 with xH = 1− θH − θL, xL = 0 if

1− (θH + θL) + θH ln(θH + θL) + δ[(1− p)VH(θH + θL) + pWH(θH + θL)] ≥ KH(g).

Substituting for KH(g) and WH(g) using Lemma 1 and substituting for VH(g) = V ∗H for
g ≥ g∗H using Lemma A.1, the inequality becomes

1− (θH + θL) + θH
1−δp ln(θH + θL) + δ(1−p)

1−δp VH(θH + θL) ≥ θH
1−δp ln(g) + δ(1−p)

1−δp V
∗
H . (A.17)

Note that the right-hand side of (A.17) is increasing in g, implying that if the inequality
holds for g = 1, then it holds for all g ≥ θH + θL. Substituting for VH(θH + θL) and V ∗H using
Lemma A.2 and letting g = 1, we can rewrite inequality (A.17) as

1− (θH + θL) + θH
1−δ ln(θH + θL) ≥ δ(1−p)(θH+θL−θ∗H)

(1−δ)(1+δ−2δp) + δ(1−p)θH
(1−δp)(1−δ) ln(θ∗H). (∗∗)

A.3.3 Proof of Proposition 4

We proceed by first conjecturing an equilibrium strategy-payoff pair and then verifying that
it satisfies guesses (G1′)-(G4′), equilibrium conditions (E1)-(E3), and our assumption on αi

that all proposals made on the equilibrium path are accepted.
We conjecture an equilibrium strategy-payoff pair such that for any i, j ∈ {H,L} with

j 6= i, the acceptance strategy αi(g, z) satisfies (E1), the proposal strategies are

γL(g) =


g∗L for g ≤ g∗L,

g for g∗L ≤ g ≤ θH + θL,

θH + θL for θH + θL ≤ g,

χLH(g) =

{
0 for g ≤ θH + θL,

KH(g)− θH ln(θH + θL)− δ[(1− p)VH(θH + θL) + pWH(θH + θL)] for θH + θL ≤ g,

γH(g) =



g∗H for g ≤ g
H
,

g′ ∈ [θH + θL, g
∗
H ] for g

H
≤ g ≤ g̃H ,

θH + θL for g̃H ≤ g ≤ θH + θL,

g for θH + θL ≤ g ≤ g∗H ,

g∗H for g∗H ≤ g,

χHL (g) =


0 for g ≤ g̃H ,

KL(g)− θL ln(θH + θL)− δ[(1− p)VL(θH + θL) + pWL(θH + θL)] for g ∈ [g̃H , θH + θL],

0 for g ≥ θH + θL,
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and χii(g) = 1 − γi(g) − χij(g), where g∗L = θL, g∗H = θ∗H , g
H

satisfies (A.10), g̃H satisfies
(A.15), g′ satisfies

θL ln(g′) + δ[(1− p)VL(g′) + pWL(g′)] = KL(g), (A.18)

and the associated payoff functions are

VL(g) =



V ∗L for g ≤ g∗L,
1

1−δp(1− g + θL ln(g) + δ(1− p)W ∗
L) for g∗L ≤ g ≤ g

H
,

(1−δp)(1−g)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g) for g
H
≤ g ≤ θH + θL,

B1
Lg + C1

L ln(g) +D1
L for θH + θL ≤ g ≤ g∗H ,

C2
L ln(g) +D2

L for g∗H ≤ g,

WL(g) =

{
W ∗
L for g ≤ g

H
and g ≥ g∗H ,

1
1−δp [θL ln(g) + δ(1− p)VL(g)] for g

H
≤ g ≤ g∗H ,

VH(g) =



V ∗H for g ≤ g
H
,

(1−δp)(1−γH(g))
(1−δ)(1+δ−2δp) + θH

1−δ ln(γH(g)) for g
H
≤ g ≤ g̃H ,

B1
Hg + C1

H ln(g) +D1
H for g̃H ≤ g ≤ θH + θL,

(1−δp)(1−g)
(1−δ)(1+δ−2δp) + θH

1−δ ln(g) for θH + θL ≤ g ≤ g∗H ,

V ∗H for g∗H ≤ g,

WH(g) =

{
W ∗
H for g ≤ g∗L,
1

1−δp [θH ln(g) + δ(1− p)VH(g)] for g∗L ≤ g,

where B1
i = δ(1−p)

(1−δ)(1+δ−2δp) , C
1
i = − θj

1−δ , D
1
i = 1−δp

(1−δ)(1+δ−2δp) + (θH+θL)[ln(θH+θL)−1]
1−δ , C2

L = − θH
1−δp ,

D2
L = δ(1−p)

(1−δ)(1−δp)(θH − ln(g∗H)) +D1
L, and

W ∗
L = δ(1−p)

(1+δ−2δp)(1−δ)(1− g
∗
H) + θL

1−δ ln(g∗H), (A.19)

V ∗L = 1
1−δp [1− θL + θL ln(θL) + δ(1− p)W ∗

L], (A.20)

V ∗H =
(1−δp)(1−g∗H)

(1+δ−2δp)(1−δ) + θH
1−δ ln(g∗H), (A.21)

W ∗
H = 1

1−δp [θH ln(g∗L) + δ(1− p)V ∗H ]. (A.22)

We next verify that this conjecture satisfies (G1′)-(G4′).
For (G1′), since g∗L = θL and g∗H = θ∗H , clearly g∗L < θH + θL < g∗H in the high-polarization

case, and it only remains to show that g∗i ∈ arg max fi(g). In Claim A.4 below, we show
that (i) g∗H ∈ arg max fH(g), and (ii) g∗L ∈ arg max fL(g) when ψ ≥ θ∗L, where ψ is defined in
(A.10).

Since Vi and Wi are continuous under our conjecture of the equilibrium strategy-payoff
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pair, fi is continuous. It is also piecewise differentiable. Specifically,

f ′L(g) =



−1 + θL
g

for g < g∗L,
1

1−δp [−1 + θL
g

] for g ∈ (g∗L, gH),

− 1−δp
(1−δ)(1+δ−2δp) + θL

(1−δ)g for g ∈ (g
H
, θH + θL),

−1 + 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp (B1

L +
C1

L

g
) for g ∈ (θH + θL, g

∗
H),

−1 + 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp

C2
L

g
for g ≥ g∗H ,

f ′H(g) =



−1 + θH
g

for g < g∗L,

−1 + 1+δ−2δp
1−δp

θH
g

for g ∈ (g∗L, gH),

−1 + 1+δ−2δp
1−δp

θH
g

+ δ(p+δ−2δp)
1−δp (− 1−δp

(1−δ)(1+δ−2δp) + θH
(1−δ)γH(g)

)dγ
H(g)
dg

for g ∈ (g
H
, g̃H),

−1 + 1+δ−2δp
1−δp

θH
g

+ δ(p+δ−2δp)
1−δp (B1

H +
C1

H

g
) for g ∈ (g̃H , θH + θL),

− 1−δp
(1−δ)(1+δ−2δp) + θH

(1−δ)g for g ∈ (θH + θL, g
∗
H),

−1 + 1+δ−2δp
1−δp

θH
g

for g > g∗H .

Claim A.4. Under our conjecture of the equilibrium strategy-payoff pair, (i) g∗H ∈ arg max fH(g),
and (ii) if ψ ≥ θ∗L, then g∗L ∈ arg max fL(g).

Proof: Part (i): We show fH(g) is strictly increasing for g ∈ (g̃H , g
∗
H), and strictly

decreasing for g > g∗H ; hence g∗H = arg maxg>g̃H fH(g) by continuity of fH(g). Further, we
show fH(g) ≤ fH(g∗H) for g ∈ (g

H
, g̃H), and fH(g) is strictly increasing for g < g

H
. Hence,

g∗H ∈ arg max fH(g) by continuity of fH(g).
• g < g∗L: f ′H(g) is decreasing. At g∗L = θL, f ′H(g∗L) > 0, hence for g < g∗L, f ′H(g) > 0.

• g ∈ (g∗L, gH): f ′H(g) is decreasing. Since g
H
< g∗H and f ′H(g) = −1 +

g∗H
g

, it follows that

f ′H(g) > 0 for g ∈ (g∗L, gH).
• g ∈ (g

H
, g̃): We compare fH(g) in this range to fH(g∗H). First define the functions

n(x) = 1− x+ θH(1+δ−2δp)
1−δp ln(x), and

m(y) = δ(p+δ−2δp)
1−δp

[
(1−δp)(1−y)

(1−δ)(1+δ−2δp) + θH
1−δ ln(y)

]
.

By these definitions fH(g∗H) = n(g∗H) + m(g∗H), and fH(g) = n(g) + m(γH(g)) for g ∈
(g
H
, g̃H). Further note that g∗H = arg maxn(x), and g∗H = arg maxm(y), hence n(g∗H) ≥

n(g) and m(g∗H) ≥ m(γH(g)) for all g, so fH(g∗H) > fH(g) for g ∈ (g
H
, g̃).

• g ∈ (g̃H , θH + θL): f ′H(g) strictly decreasing. Since f ′H(θH + θL) = θHδ(1−p)−θL(1−δp)
(1−δ)(1+δ−2δp)(θH+θL)

> 0,

f ′H(g) > 0 everywhere in this interval.
• g ∈ (θH + θL, g

∗
H): f ′H(g) strictly decreasing. Since − 1−δp

(1−δ)(1+δ−2δp) + θH
(1−δ)g∗H

= 0, it follows

that for g ∈ (θH + θL, g
∗
H), f ′H(g) > 0.

• g > g∗H : f ′H(g) = −1 +
g∗H
g
< 0.

Part (ii): We show fL(g) is strictly increasing for g < g∗L and strictly decreasing for g > g∗L
and therefore g∗L ∈ arg max fL(g).
• g < g∗L: f ′L(g) > 0.
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• g ∈ (g∗L, gH): f ′L(g) is strictly decreasing. Since f ′L(g) = 1
1−δp [−1 + θL

g
], it follows that

f ′L(g) < 0 for g ∈ (g∗L, gH).
• g ∈ (g

H
, θH + θL): f ′L(g) is strictly decreasing. Since g

H
= ψ by Lemma A.5, we have

g
H

= ψ ≥ θ∗L. Since − 1−δp
(1−δ)(1+δ−2δp) + θL

(1−δ)g = 0 if g = θL(1+δ−2δp)
1−δp , it follows that f ′L(g) < 0

for all g ∈ (g
H
, θH + θL).

• g ∈ (θH + θL, g
∗
H): The monotonicity of f ′L(g) is determined by (1+δ−2δp)θL

1−δp +
δ(p+δ−2δp)C1

L

1−δp .

If (1+δ−2δp)θL
1−δp +

δ(p+δ−2δp)C1
L

1−δp > 0, then f ′L(g) is strictly decreasing in g. Since −1+ 1+δ−2δp
1−δp

θL
g

+
δ(p+δ−2δp)

1−δp (B1
L +

C1
L

g
) = θLδ(1−p)−θH(1−δp)

(1−δ)(1+δ−2δp)(θH+θL)
≤ 0 if g = θH + θL, it follows that f ′L(g) < 0 for

g ∈ (θH + θL, g
∗
H). If (1+δ−2δp)θL

1−δp +
δ(p+δ−2δp)C1

L

1−δp ≤ 0, then f ′L(g) is weakly increasing in g.

Since −1 + 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp (B1

L +
C1

L

g
) = −1 + θL

θH
− δ(p+δ−2δp)

(1+δ−2δp)(1−δp) < 0 when g = g∗H ,

it follows that f ′L(g) < 0 for g ∈ (θH + θL, g
∗
H).

• g > g∗H : The monotonicity of f ′L(g) is determined by (1+δ−2δp)θL
1−δp +

δ(p+δ−2δp)C2
L

1−δp . If (1+δ−2δp)θL
1−δp +

δ(p+δ−2δp)C2
L

1−δp > 0, then f ′L(g) is strictly decreasing in g. Since −1+ 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp

C2
L

g
=

−1 + θL
θH
− δ(p+δ−2δp)

(1−δp)(1+δ−2δp) < 0 if g = g∗H , it follows that f ′L(g) < 0 for g > g∗H . If
(1+δ−2δp)θL

1−δp +
δ(p+δ−2δp)C2

L

1−δp ≤ 0, then f ′L(g) is weakly increasing in g. In this case, f ′L(g) =

−1 + (1+δ−2δp)θL
1−δp +

δ(p+δ−2δp)C2
L

1−δp < 0 when g = 1 and therefore f ′L(g) < 0 for g > g∗H .

The conjectured equilibrium strategy-payoff pair clearly satisfies (G2′)-(G4′) with the
exception of g∗L ≤ g

H
< g̃H < θH + θL. When ψ ≥ θ∗L, we have g∗L = θL < θ∗L ≤ ψ = g

H
. To

verify that g
H
< g̃H < θH + θL, we next establish some monotonicity properties of KL.

Claim A.5. Under our conjecture of the equilibrium strategy-payoff pair, KL(g) is strictly

increasing for g ∈ [0, θL(1+δ−2δp)
δ(1−p) ) and strictly decreasing for g ∈ ( θL(1+δ−2δp)

δ(1−p) , 1].

Proof: Consider the following cases:
• g ≤ g∗L: KL(g) = θL ln(g) + δ[(1− p)V ∗L + pW ∗

L], which is increasing in g.
• g ∈ [g∗L, gH ]: In this case,

KL(g) = θL ln(g) + δ(1−p)
1−δp (1− g + θL ln(g) + δ(1− p)W ∗

L) + δpW ∗
L.

Taking the derivative, we get

K ′L(g) = 1+δ−2δp
1−δp

θL
g
− δ(1−p)

1−δp ,

and K ′L(g) > 0 if and only if g < 1+δ−2δp
δ(1−p) θL.

• g ∈ [g
H
, θH + θL]: In this case,

KL(g) = θL
1−δp ln(g) + δ(1−p)

1−δp VL(g) = θL
1−δp ln(g) + δ(1−p)

1−δp

[
(1−δp)(1−g)

(1−δ)(1+δ−2δp) + θL
1−δ ln(g)

]
.

Taking the derivative, we get

K ′L(g) = 1
1−δ

[
−δ(1−p)
1+δ−2δp + θL

g

]
,
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and K ′L(g) > 0 if and only if g < 1+δ−2δp
δ(1−p) θL. Note that since θH + θL >

1+δ−2δp
δ(1−p) θL in the

high-polarization case, K ′L(g) < 0 for g ∈ (1+δ−2δp
δ(1−p) θL, θH + θL).

• g ∈ [θH + θL, g
∗
H ]: In this case,

KL(g) = θL
1−δp ln(g) + δ(1−p)

1−δp VL(g) = θL
1−δp ln(g) + δ(1−p)

1−δp (B1
Lg + C1

L ln(g) +D1
L).

Taking the derivative, we get

K ′L(g) = 1
(1−δp)(1−δ)

[
(1−δ)θL−δ(1−p)θH

g
+ δ2(1−p)2

1+δ−2δp

]
,

which is increasing in g since (1 − δ)θL − δ(1 − p)θH < 0 in the high-polarization case.
Straightforward calculation shows that K ′L(g) < 0 for g = g∗H . Hence, KL(g) is strictly
decreasing for g ∈ [θH + θL, g

∗
H ].

• g ≥ g∗H : In this case,

KL(g) = θL ln(g) + δ[(1− p)VL(g) + pWL(g)] = θL ln(g) + δ(1− p)(C2
L ln(g) +D2

L) + δpW ∗
L.

Taking the derivative and substituting for C2
L, we get

K ′L(g) = θL
g
− δ(1−p)θH

(1−δp)g ,

which is negative since θH
θL

> 1−δp
δ(1−p) in the high-polarization case. Hence, KL(g) is strictly

increasing for g ∈ [0, θL(1+δ−2δp)
δ(1−p) ) and strictly decreasing for g ∈ ( θL(1+δ−2δp)

δ(1−p) , 1].

Recall that in our conjectured equilibrium, g
H

satisfies KL(g
H

) = KL(g∗H) and g̃H satisfies

KL(g̃H) = KL(θH +θL). Since KL is continuous, KL(g) = −∞ when g = 0, and θL(1+δ−2δp)
δ(1−p) <

θH + θL < g∗H in the high-polarization case, we have the following corollary of Claim A.5.

Corollary A.2. There exist g
H

and g̃H where g
H
< g̃H < θL(1+δ−2δp)

δ(1−p) < θH + θL < g∗H such

that KL(g
H

) = KL(g∗H) and KL(g̃H) = KL(θH + θL).

We next verify that equilibrium conditions (E1)-(E3) are satisfied. Condition (E1) is
satisfied by construction. The values V ∗L , W ∗

L, V ∗H and W ∗
H satisfy

V ∗L = 1− g∗L + θL ln(g∗L) + δ[pV ∗L + (1− p)W ∗
L],

W ∗
L = θL ln(g∗H) + δ[(1− p)V ∗L + pW ∗

L],

V ∗H = 1− g∗H + θH ln(g∗H) + δ[pV ∗H + (1− p)WH(g∗H)],

W ∗
H = θH ln(g∗L) + δ[(1− p)V ∗H + pW ∗

H ].

Together with Lemmas A.1, A.2 and A.4, these show that (E3) is satisfied, that is, these
payoff functions are consistent with the strategy profile.

Recall UP
i (z) (UR

i (z)) denotes party i’s dynamic payoff when the implemented budget is
z in the current period and party i is the proposer (responder). The next claim establishes
that all equilibrium proposals are accepted.

Claim A.6. Under our conjecture of the equilibrium strategy-payoff pair, αj(g, πi(g)) = 1
for all g and all i, j ∈ {H,L}, j 6= i.

Proof: We omit the proof for j = H since it is similar to that for Claim A.3.
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Now consider j = L. If g ≤ g∗L, then UR
L (πH(g)) = θL ln(g∗H) + δ[(1 − p)V ∗L + pW ∗

L] ≥
KL(g) = θL ln(gH) + δ[(1− p)V ∗L + pW ∗

L] and therefore αL(g, πH(g)) = 1.
If g ∈ [g∗L, gH ], then UR

L (πH(g)) = θL ln(g∗H) + δ[(1 − p)V ∗L + pW ∗
L] = KL(g∗H). Since

KL(g
H

) = KL(g∗H) andKL(g) is increasing on [g∗L, g] by Claim A.5, it follows that UR
L (πH(g)) ≥

KL(g) and therefore αL(g, πH(g)) = 1 for g ∈ [g∗L, gH ].

If g ∈ [g
H
, g∗H ], then UR

L (πH(g)) = KL(g) and αL(g, πH(g)) = 1.

If g ∈ [g∗H , 1], then UR
L (πH(g)) = θL ln(g∗H) + δ[(1− p)V ∗L + pW ∗

L] = KL(g∗H). Since KL(g)
is decreasing on [g∗H , 1] by Claim A.5 and Corollary A.2, it follows that UR

L (πH(g)) ≥ KL(g)
and therefore αL(g, πH(g)) = 1 for g ∈ [g∗H , 1].

The remainder of the proof shows that (E2) is satisfied. The next claim establishes that
KH(g) is increasing, which is useful later in the proof.

Claim A.7. Under our conjecture of the equilibrium strategy-payoff pair, if ψ ≥ θ∗L, then
KH(g) is strictly increasing.

Proof: Consider the following cases.
• g ≤ g∗L: KH(g) = θH ln(g) + δ[(1− p)V ∗H + pW ∗

H ], which is strictly increasing.
• g ∈ [g∗L, gH ]: KH(g) = θH ln(g) + δ(1− p)V ∗H + δp

1−δp [θH ln(g) + δ(1− p)V ∗H ], which is strictly
increasing.
• g ∈ [g

H
, g̃H ]: KH(g) = θH

1−δp ln(g) + δ(1−p)
1−δp VH(g), and K ′H(g) = θH

(1−δp)g + δ(1−p)
1−δp V

′
H(g). The

function VH(g) is

VH(g) = (1−δp)(1−γH(g))
(1−δ)(1+δ−2δp) + θH

1−δ ln(γH(g)),

and γH(g) is given by (A.18), which implies

θL
1−δp ln(γH(g)) + δ(1−p)

1−δp

[
δ(1−p)

(1−δ)(1+δ−2δp)γ
H(g)− θH

1−δ ln(γH(g)) +D1
L

]
= θL

1−δp ln(g) + δ(1−p)
1−δp

[
(1−δp)(1−g)

(1−δ)(1+δ−2δp) + θL
1−δ ln(g)

]
. (A.23)

Rearranging (A.23) gives

ln(γH(g)) = 1−δp
θL(1−δ)−θHδ(1−p)

[
θL ln(g) + δ(1−p)(1−g)

1+δ−2δp −
δ2(1−p)2γH(g)

(1−δp)(1+δ−2δp) −
δ(1−p)(1−δ)

1−δp D1
L

]
.

Substituting ln(γH(g)) into VH(g) and taking the derivative, we have

V ′H(g) = θHθL(1−δp)
(1−δ)[θL(1−δ)−θHδ(1−p)]g

− θHδ(1−p)(1−δp)
(1−δ)[θL(1−δ)−θHδ(1−p)](1+δ−2δp)

− dγH(g)
dg

θL(1−δp)−θHδ(1−p)
(1+δ−2δp)[θL(1−δ)−θHδ(1−p)]

,

and K ′H(g) = A(g) +B(g) where

A(g) = θH
(1−δp)g + θHδ(1−p)

(1−δ)[θL(1−δ)−θHδ(1−p)]

[
θL
g
− δ(1−p)

1+δ−2δp

]
,

B(g) = − δ(1−p)[θL(1−δp)−θHδ(1−p)]
(1−δp)(1+δ−2δp)[θL(1−δ)−θHδ(1−p)]

dγH(g)
dg

.

We first show A(g) > 0. Suppose the coefficient on 1
g

is positive. Then A(g) is strictly

decreasing and is minimized at g = g̃H . By Corollary A.2, g̃H < θL(1+δ−2δp)
δ(1−p) . Since

A(g) = θHδ(1−p)
θL(1−δp)(1+δ−2δp)

> 0 when g = θL(1+δ−2δp)
δ(1−p) , it follows that A(g) > 0 for g ∈ [g

H
, g̃H ]
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in this case. Now suppose the coefficient on 1
g

is negative, then A(g) is strictly increas-

ing and is minimized at g = g
H

. We have g
H

= ψ ≥ θ∗L. When g = θ∗L, A(g) =
θH [θHδ(1−p)−θL(1−δp)

θL(1+δ−2δp)[θHδ(1−p)−θL(1−δ)]
, which is strictly positive in the high-polarization case. Finally

suppose the coefficient on 1
g

is zero, then A(g) > 0. It follows that A(g) > 0 for g ∈ [g
H
, g̃H ].

We next show that B(g) > 0. Since γH(g) satisfies (A.23), by the implicit function theorem,
dγH(g)
dg

= γH(g)(1−δp)[θL(1+δ−2δp)−gδ(1−p)]
g[(1+δ−2δp)(θL(1−δ)−θHδ(1−p))+γH(g)δ2(1−p)2] . (A.24)

At γH(g) = g∗H the denominator of dγH(g)
dg

is negative. Since the denominator is increasing

in γH(g) and γH(g) ≤ g∗H , the denominator is negative. Since g ≤ g̃H < θL(1+δ−2δp)
δ(1−p) , the

numerator is positive, and therefore dγH(g)
dg

< 0. Since this is the high-polarization case and
dγH(g)
dg

< 0, it follows that B(g) > 0.

To summarize, K ′H(g) = A(g) +B(g) > 0 for g ∈ [g
H
, g̃H ].

• g ∈ [g̃H , θH + θL]: KH(g) = θH
1−δp ln(g) + δ(1−p)

1−δp VH(g). Substituting for VH(g) and taking the
derivative, we get

K ′H(g) = (1−δ)θH−δ(1−p)θL
(1−δp)(1−δ)g + δ(1−p)

1−δp B
1
H . (A.25)

If (1− δ)θH − δ(1− p)θL > 0, then, K ′H(g) > 0 since B1
H > 0.

If (1− δ)θH − δ(1− p)θL < 0, then K ′H(g) is increasing in g. We have g̃H > g
H

= ψ ≥ θ∗L.

Plugging g = θ∗L in (A.25), we get K ′H(g) = θH(1−δp)−θLδ(1−p)
(1−δp)(1+δ−2δp)θL

> 0, and therefore KH(g) is

strictly increasing for g ∈ [g̃H , θH + θL].

• g ∈ [θH + θL, g
∗
H ]: KH(g) = θH

1−δp ln(g) + δ(1−p)
1−δp VH(g). Substituting for VH(g) and taking the

derivative, we get

K ′H(g) = θH
(1−δ)g −

δ(1−p)
(1−δ)(1+δ−2δp) ,

which is strictly higher than 0 for g ≤ g∗H .

• g > g∗H : KH(g) = θH
1−δp ln(g) + δ(1−p)

1−δp V
∗
H , which is strictly increasing.

We next show that the proposer has no profitable one-shot deviation. We omit the proof
for party L since it is similar to that in the proof of Proposition 3.

We next establish monotonicity properties of UP
H(z), which is useful for later part of the

proof. For any status quo g, consider proposals z′ = (g′, x′H , x
′
L) such that the responder’s

acceptance constraint (7) is binding. That is,

x′L = KL(g)− θL ln(g′)− δ[(1− p)VL(g′) + pWL(g′)] = KL(g)−KL(g′). (A.26)

Substituting in the proposer’s payoff function, we get UP
H(z′) = 1− g′ − x′L + θH ln(g′) +

δ[pVH(g′) + (1− p)WH(g′)], which implies
∂UP

H

∂g′
= −1 + θH+θL

g′
+ δ[(1− p)V ′L(g′) + pW ′

L(g′)] + δ[pV ′H(g′) + (1− p)W ′
H(g′)]. (A.27)

Substituting for V ′L,W
′
L, V

′
H ,W

′
H , we get closed-form solution for

∂UP
H

∂g′
except when g ∈

(g
H
, g̃H). Specifically, if g′ < g∗L, then

∂UP
H

∂g′
= θH+θL

g′
− 1 > 0; if g′ ∈ (g∗L, gH), then

∂UP
H

∂g′
=

1+δ−2δp
1−δp ( θH+θL

g′
− 1) > 0; if g′ ∈ (g̃H , θH + θL), then

∂UP
H

∂g′
= 1+δ−2δp

1−δp ( θH+θL
g′
− 1) > 0; if
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g′ ∈ (θH + θL, g
∗
H), then

∂UP
H

∂g′
= 1

1−δp( θH+θL
g′
− 1) < 0; if g′ > g∗H , then

∂UP
H

∂g′
= θH+θL

g′
− 1 < 0.

Note that
∂UP

H

∂g′
= f ′H(g′) +K ′L(g′). Also, if g′ ∈ (g

H
, g̃H), then dγH(g′)

dg′
=

K′L(g
′)

K′L(γ
H(g′))

. Hence,

for g′ ∈ (g
H
, g̃H),

∂UP
H

∂g′
= −1 + 1+δ−2δp

1−δp
θH
g′

+K ′L(g′)C(g′)

where

C(g′) = 1 + δ(p+δ−2δp)[−(1−δp)γH(g′)+(1+δ−2δp)θH ]
[(1−δ)θL−δ(1−p)θH ](1+δ−2δp)+γH(g′)δ2(1−p)2 .

We verify that C(g′) > 0 in the high-polarization case where θH
θL
> 1−δp

δ(1−p) . Since K ′L(g′) > 0

for g′ < g̃H by Claim A.5 and Corollary A.2, it follows that
∂UP

H

∂g′
> 0 for g′ ∈ (g

H
, g̃H).

Below we show that proposer H has no profitable one-shot deviation.
• g ≤ g

H
or g ≥ g∗H : In this case, γH(g) = g∗H and χHL (g) = 0.

Since g∗H ∈ arg max fH(g), party H has no incentive to deviate from proposing γH(g) = g∗H
and χHL (g) = 0.
• g

H
≤ g ≤ g̃H : In this case, γH(g) ∈ [θH + θL, g

∗
H ] and χHL (g) = 0.

We first show that proposing πH(g) is better than proposing (ĝ, x̂H , x̂L) with ĝ > γH(g)
and then show that it is better than proposing (ĝ, x̂H , x̂L) with ĝ < γH(g).

– ĝ > γH(g): Since γH(g) > θH + θL > θL(1+δ−2δp)
δ(1−p) , by Claim A.5, for ĝ > γH(g),

αL(g, (ĝ, x̂H , x̂L)) = 1 only if x̂L > 0. Since party L’s payoff is strictly decreasing in
xL, we only need to consider proposals such that the responder’s acceptance constraint
(7) is binding. Since UP

H(ẑ) is decreasing in ĝ for ĝ > γH(g) ≥ θH + θL as shown before,
the proposer has no incentive to make any proposal with ĝ > γH(g).

– g̃H ≤ ĝ < γH(g): Consider ẑ = (ĝ, 1 − ĝ, 0). Then UP
H(ẑ) = fH(ĝ). As shown in

the proof of Claim A.4, fH(ĝ) is increasing in ĝ for g̃H < ĝ < g∗H . Since πH(g) =
(γH(g), 1− γH(g), 0) where γH(g) < g∗H , it follows that UP

H(πH(g)) > UP
H(ẑ) for any ĝ <

γH(g) ≤ g∗H . Since party H’s payoff is decreasing in xL, UP
H(ẑ) ≥ UP

H((ĝ, x̂H , x̂L)) for any
(ĝ, x̂H , x̂L) ∈ B, it follows that UP

H(πH(g)) > UP
H((ĝ, x̂H , x̂L)) for any ĝ < γH(g) ≤ g∗H .

Hence the proposer has no incentive to deviate and make a proposal with g̃H ≤ ĝ < γH(g).
– g ≤ ĝ ≤ g̃H . Consider ẑ = (ĝ, 1 − ĝ, 0). Then UP

H(ẑ) = fH(ĝ). Recall that for g ≥ g∗L,

fH(g) = 1 − g + θH(1+δ−2δp)
1−δp ln(g) + δ(p+δ−2δp)

1−δp VH(g). Also, for g
H
≤ ĝ ≤ g̃, VH(ĝ) =

VH(γH(ĝ)). Hence, fH(γH(ĝ)) − fH(ĝ) = −γH(ĝ) + ĝ + θH(1+δ−2δp)
1−δp (ln(γH(ĝ)) − ln(ĝ) >

0 since ĝ ≤ γH(ĝ) ≤ θH(1+δ−2δp)
1−δp . Since γH(ĝ) < γH(g) and fH(g) is increasing in

(θH + θL, g
∗
H) as shown in the proof of Claim A.4, it follows that fH(ĝ) ≤ fH(γH(ĝ)) ≤

fH(γH(g)) and therefore UP
H(πH(g)) ≥ UP

H(ẑ) for any ĝ ∈ [g, g̃H ]. Hence proposing πH(g)
is better than proposing any (ĝ, x̂H , x̂L) ∈ B with g ≤ ĝ ≤ g̃H .

– ĝ < g: By Corollary A.2, g < g̃H < θL(1+δ−2δp)
δ(1−p) . Hence, for ĝ < g, αL(g, (ĝ, x̂H , x̂L)) = 1

only if x̂L > 0 by Claim A.5. Consider ẑ = (ĝ, x̂H , x̂L) such that (A.26) holds. Since
UP
H(ẑ) is increasing in ĝ for ĝ < g as shown before, the proposer has no incentive to

deviate and make a proposal with ĝ < g.
• g̃H ≤ g ≤ θH + θL: In this case, γH(g) = θH + θL and χHL (g) ≥ 0.

Let h(g) = max{g′ ∈ [0, 1] : KL(g′) = KL(g)} and l(g) = min{g′ ∈ [0, 1] : KL(g′) =
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KL(g)}. By Claim A.5, h(g) ∈ [1+δ−2δp
δ(1−p) θL, θH + θL] and l(g) ∈ [g̃H ,

1+δ−2δp
δ(1−p) θL].

– ĝ ≥ h(g): For ẑ = (ĝ, x̂H , x̂L), Claim A.5 implies that αL(g, (ĝ, x̂H , x̂L)) = 1 only if
x̂L > 0. Consider ẑ such that (A.26) holds. As shown before, UP

H(ĝ) is increasing for
ĝ ∈ [h(g), θH + θL) and decreasing for ĝ > θH + θL, and therefore the proposer has no
incentive to deviate and make any proposal with ĝ ≥ h(g) and ĝ 6= θH + θL.

– ĝ ∈ [l(g), h(g)]: Consider ẑ = (ĝ, 1− ĝ, 0). Since UP
H(ẑ) = fH(ĝ) and fH(ẑ) is increasing

for ĝ ∈ [l(g), h(g)], it follows that UP
H((h(g), 1− h(g), 0)) > UP

H(ẑ) for any ĝ ∈ (l(g), h(g)
and therefore the proposer has no incentive to deviate and make a proposal with ĝ ∈
[l(g), h(g)].

– ĝ < l(g): For ẑ = (ĝ, x̂H , x̂L), Claim A.5 implies that αL(g, (ĝ, x̂H , x̂L)) = 1 only if
x̂L > 0. Consider ẑ such that (A.26) holds. As shown before, UP

H(ĝ) is increasing for
ĝ < l(g), and therefore the proposer has no incentive to deviate and make any proposal
with ĝ ≥ l(g).

• g ∈ [θH + θL, g
∗
H ]: In this case, γH(g) = g and χHL (g) = 0. Recall that l(g) = min{g′ ∈

[0, 1] : KL(g′) = KL(g)}. In this case, l(g) ∈ [g
H
, g̃H ].

– ĝ > g: For ẑ = (ĝ, x̂H , x̂L), Claim A.5 implies that αL(g, (ĝ, x̂H , x̂L)) = 1 only if x̂L > 0.
Consider ẑ such that (A.26) holds. As shown before, UP

H(ĝ) is decreasing for ĝ > θH +θL,
and therefore the proposer has no incentive to deviate and make any proposal with ĝ ≥ g.

– g̃H ≤ ĝ < g: Consider ẑ = (ĝ, 1 − ĝ, 0). Since UP
H(ẑ) = fH(ĝ) and fH(ĝ) is increasing if

g̃H ≤ ĝ < g, it follows that the proposer has no incentive to deviate and make a proposal
with ĝ ∈ [g̃H , g).

– l(g) ≤ ĝ ≤ g̃H . Consider ẑ = (ĝ, 1−ĝ, 0). Note that for ĝ ∈ [l(g), g̃H ], fH(ĝ) < fH(γH(ĝ)).
Also, since γH(ĝ) < g and therefore fH(γH(ĝ) < fH(g), it follows that fH(ĝ) < fH(g).
Hence the proposer has no incentive to deviate and make a proposal with ĝ ∈ [l(g), g̃H ].

– ĝ ≤ l(g): For ẑ = (ĝ, x̂H , x̂L), Claim A.5 implies that αL(g, (ĝ, x̂H , x̂L)) = 1 only if
x̂L > 0. Consider ẑ such that (A.26) holds. As shown before, UP

H(ĝ) is increasing for
ĝ ≤ l(g), and therefore the proposer has no incentive to deviate and make any proposal
with ĝ ≤ l(g).
To summarize, party H has no incentive to deviate from πH(g) for any g ∈ [0, 1].
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