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Abstract

We characterize ex post equilibria in uniform-price double auctions of divisi-

ble assets. Bidders receive private signals, have interdependent and diminishing

marginal values, and bid with demand schedules. In a static double auction

we characterize an ex post equilibrium, in which no bidder would deviate from

his strategy even if he would observe the signals of other bidders. Moreover,

under mild conditions this ex post equilibrium is unique. In a market with a

sequence of double auctions and stochastic arrivals of new signals, we character-

ize a stationary and subgame perfect ex post equilibrium whose allocation path

converges exponentially in time to the efficient level. We also demonstrate that

the socially optimal trading frequency depends on the arrival process of new

information. Our ex post equilibrium aggregates dispersed private information

and is robust to distributional assumptions and details of auction design.
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1 Introduction

Auctions of divisible assets are common in many markets. Examples include the auc-

tions of treasury bills and bonds, defaulted bonds and loans in the settlement of credit

default swaps, and commodities such as milk powder, iron ore, and electricity. Equity

trading on exchanges, for instance, is typically organized as a batch double auction

when the market opens and closes, and as continuous double auctions during the day

(in the form of open limit order books). Analyzing the bidding behavior in these auc-

tions helps us better understand information aggregation, allocative efficiency, and

auction design and implementation.

In this paper we propose an ex post equilibrium in divisible-asset double auctions

with interdependent values. Interdependent values naturally arise in financial mar-

kets, as well as in goods markets where winning bidders subsequently resell part of

the assets. We focus on a uniform-price double auction in which bidders bid with

demand (and supply) schedules and pay for their allocations at the market-clearing

price.1 Every bidder receives a private signal and values the asset at a weighted aver-

age of his own signal and the signals of other bidders. Bidders also have diminishing

marginal values of owning the asset. Under mild conditions, we show that there exists

a unique ex post equilibrium—an equilibrium in which a dealer’s strategy depends

only on his private information, but his strategy remains optimal even if he learns the

private information of all other bidders (hence the “ex post” notation). That is, an ex

post equilibrium implies no regret. In the ex post equilibrium of our baseline model,

a bidder’s demand schedule is linear in his own signal, the price, and the quantity of

the asset being auctioned. We show that the ex post equilibrium can be generalized

to auctions with inventories and auctions of multiple assets. In a separate paper, we

extend the ex post equilibrium to auctions with derivatives externality, such as the

settlement auctions of credit default swaps (see Du and Zhu 2012).

The intuition for our ex post equilibrium is simple, and we now provide a heuristic

description of its construction. We start by conjecturing that bidders use a symmetric

demand schedule that is linear in the private signal, the price, and the total supply

(i.e., the quantity of asset being auctioned). Let us consider bidder 1. Given that

other bidders’ demands are linear in their signals, bidder 1 can infer the sum of other

1In financial markets such as stock exchanges, the demand schedules are typically represented by
limit orders.
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bidders’ signals—hence his valuation—from the sum of their equilibrium allocations,

which is equal to the total supply less bidder 1’s equilibrium allocation. By submitting

a demand schedule, the bidder effectively selects his optimal demand at each possible

market-clearing price. We show that this “price-by-price optimization” ensures the

ex post optimality of each bidder’s strategy, and a linear ex post equilibrium follows.

We observe that this equilibrium construction relies critically on the linearity of the

demand schedules (otherwise, bidder 1 cannot transform the sum of other bidders’

allocations to the sum of their signals). In fact, we show that under mild conditions,

only linear demand schedules can satisfy ex post optimality. Hence, the linear ex post

equilibrium we have constructed is unique.

We further apply the ex post equilibrium methodology to study dynamic trading

as well as the associated equilibrium price and allocative efficiency. We allow an

infinite sequence of double auctions and stochastic arrivals of new signals over time.

As long as each bidder’s signal process is a martingale, there exists a stationary and

subgame perfect ex post equilibrium. In each round of double auction, the equilibrium

price reflects the average of the most recent signals possessed by bidders, and is

hence a martingale. Moreover, the equilibrium allocations of assets across bidders

converge exponentially to the efficient allocation over time. (Once new information

arrives, the efficient allocation changes accordingly, and bidders’ allocation paths start

to converge toward the new efficient level.) This convergence result complements

Rustichini, Satterthwaite, and Williams (1994), Cripps and Swinkels (2006), and

Reny and Perry (2006), among others, who show that allocations in a one-shot double

auction converge, at a polynomial rate, to the efficient level as the number of bidders

increases. In markets with a finite (and potentially small) number of bidders, our

result suggests that a sequence of double auctions is a simple and effective mechanism

to quickly achieve allocative efficiency.

Finally, we employ our subgame perfect ex post equilibrium to analyze the effect of

trading frequency on social welfare. We demonstrate that the socially optimal trading

frequency depends critically on the arrival process of new information. For scheduled

information arrival, a slow (batch) market tends to be optimal;2 for stochastic infor-

mation arrival, a fast (continuous) market tends to be optimal. Our results suggest

that trading frequency matters for welfare even if everyone trades at the same speed.3

2Fuchs and Skrzypacz (2012) show that a similar result also holds in a lemons market with
competitive buyers. However, they do not explore markets for which continuous trading is optimal.

3Our approach differs from the small but growing theory literature that focuses on differential
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Our ex post equilibrium has a number of desirable properties. First, it aggregates

private information for a finite number of bidders. While this feature is also present

in Grossman (1976), Kyle (1985), Kyle (1989), Vives (2011), Ostrovsky (2011), and

Rostek and Weretka (2012), these papers study Bayesian equilibria under the normal

distribution. In these models, the knowledge of others’ private information would

generally change an agent’s strategy. By contrast, strategies in our ex post equilib-

rium need not change even if private signals (or inventories) are revealed. Information

aggregation in many previous models relies on the number of agents tending to in-

finity, as in Wilson (1977), Milgrom (1979), Kremer (2002), Reny and Perry (2006),

and Kazumori (2012), among others. Second, consistent with the “Wilson crite-

rion” (Wilson 1987), an ex post equilibrium is robust to modeling details such as the

probability distribution of private information and the implementation of the double

auction.4 Third, our ex post equilibrium is parsimonious: A bidder’s one-dimensional

demand schedule handles the (n−1)-dimensional uncertainty regarding all other bid-

ders’ valuations.5 This feature is particularly attractive for applications in financial

markets where trading is often conducted through electronic limit order books. Last

but not least, because of its robustness, ex post optimality is a natural equilibrium

selection criterion. It is particularly useful for the analysis of uniform-price auctions,

which in many cases admit a continuum of Bayesian-Nash equilibria (Wilson 1979).

In our static double auction, the ex post selection criterion implies the uniqueness of

equilibrium under mild conditions.

A major contribution of this paper is to characterize an ex post equilibrium in

which bidders have dispersed information regarding the common-value component

of the asset. A previous literature studies equilibria that are ex post optimal with

respect to supply shocks, as in Klemperer and Meyer (1989), Ausubel, Cramton, Pycia,

Rostek, and Weretka (2011), and Rostek and Weretka (2011). In these papers, the

value of the asset is common knowledge. (In the special case that bidders have purely

trading speed. For example, in Foucault, Hombert, and Rosu (2012), Pagnotta and Philippon (2012),
and Biais, Foucault, and Moinas (2012), some agents can potentially trade faster than others, which
has implications for adverse selection, competition, investments in technology, and welfare.

4Rochet and Vila (1994) extend the model of Kyle (1985) to settings with arbitrary distribution
of signals, under the additional assumption that the informed trader observes the demand from noise
traders. Bidders in our ex post equilibrium do not have this superior information.

5This parsimony is one of the features that distinguish our model from the interdependent-value
model of Dasgupta and Maskin (2000). In Dasgupta and Maskin (2000), if the number of bidders
is at least three, then each bidder conditions his bids on the signals of all other bidders—a (n− 1)-
dimensional vector. In our ex post equilibrium, each bidder’s demand schedule is one-dimensional.
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private values, our ex post equilibrium is also ex post optimal with respect to supply

shocks.) Separately, Ausubel (2004) proposes an ascending-price multi-unit auction

and characterize an equilibrium in which truthful bidding is ex post optimal if bidders

have purely private values.

Our results complement those of Perry and Reny (2005), who construct an ex post

equilibrium in a multi-unit ascending-price auction with interdependent values. In

their model, a bidder specifies different demands against different bidders as prices

gradually rise throughout the auction; therefore, bidders’ private information is nat-

urally revealed as the auction progresses, and bidders’ subsequent demands depend

on this revealed information. In our ex post equilibrium of the double auction, by

contrast, each bidder submits a single demand schedule against all other bidders, and

no private information is revealed before the final price is determined. (Of course,

our equilibrium is robust to the revelation of private information.) In addition, while

Perry and Reny focus on designing an auction format that ex post implements the

efficient outcome, we focus on the standard uniform-price double auction and show

that multiple rounds of double auctions achieve asymptotic efficiency.

In a static double auction, our ex post optimality condition is similar to the

“uniform incentive compatible” condition of Holmström and Myerson (1983). In the

dynamic trading game, our notion of subgame perfect ex post equilibrium is similar

to the notions of “belief-free equilibrium” in Hörner and Lovo (2009) and “perfect

type-contingently public ex post equilibrium” in Fudenberg and Yamamoto (2011).

A major distinction is that the equilibria of Hörner and Lovo (2009) and Fudenberg

and Yamamoto (2011) rely on dynamic punishments to be sustained and require

the discount factors to be close to 1, whereas our dynamic ex post equilibrium is

stationary and imposes no restriction on the discount factor.

Finally, our results are related to the literature on ex post implementation. In a

general setting with interdependent values and correlated signals, Crémer and McLean

(1985) use bidders’ beliefs to construct a revenue-maximizing mechanism in which

truth-telling is an ex post equilibrium. In contrast, in our model both the equi-

librium and the allocation mechanism (double auction) are independent of bidders’

beliefs. Bergemann and Morris (2005) characterize a “separability” condition under

which ex post implementation is equivalent to Bayesian implementation that is ro-

bust to higher order beliefs. In those separable environments, they conclude, ex post

implementation/equilibrium is desirable because of its robustness to beliefs. Jehiel,
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Meyer-Ter-Vehn, Moldovanu, and Zame (2006) show that if agents have multidimen-

sional signals, any finite, non-constant allocation rule cannot be ex post implemented

for generic valuation functions. As in Ausubel (2004) and Perry and Reny (2005),

however, we show that in many real-life markets where each bidder’s signal is one-

dimensional (i.e. a subset of R), an ex post equilibrium exists.

2 Ex Post Equilibria with Interdependent Values

2.1 Model

We consider a uniform-price double auction of a divisible asset. Divisible assets

include commodities, electricity, and financial securities and derivatives. A total

quantity S of the divisible asset is up for auction, where S can be positive, negative,

or zero. Without loss of generality, we refer to S as the supply of the asset. There

are n ≥ 2 symmetric bidders. Bidder i, i ∈ {1, 2, . . . , n}, receives a signal, si ∈ (s, s),

that is observed by bidder i only.6 Given the profile of signals (s1, s2, . . . , sn), bidder

i values the asset at the weighted average of all signals:

vi = α si + (1− α)
1

n− 1

∑
j 6=i

sj, (1)

where α ∈ (0, 1] is a commonly known constant. Thus, bidders have interdependent

values. This form of additive interdependent values can be interpreted as a generalized

“Wallet Game” (see, for example, Bulow and Klemperer 2002). Because other bidders’

signals {sj}j 6=i are unobservable to bidder i, vi is also unobservable to bidder i.

Bidder i with the value vi has the utility

U(qi, p; vi) = (vi − p)qi −
1

2
λq2

i , (2)

where qi is the amount of the asset that he receives in the auction, p is the price

determined in the auction, and λ > 0 is a commonly known constant that represents

bidders’ decreasing marginal values for holding each additional unit of asset. In the

remaining of the paper, we also refer to the quadratic term −1
2
λq2

i as the “holding

6Our results go through if different bidders have different supports of signals, so long as each
support of signals is a subset of the real line.
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cost.”

Bidder i submits a downward-sloping and differentiable demand schedule xi( · ; si) :

R → R, contingent on his signal si. Each bidder’s demand schedule is unobservable

to other bidders. (As discussed shortly, our equilibrium analysis is robust to whether

demand schedules are observable.) Bidder i’s demand schedule specifies that bidder

i wishes to buy a quantity xi(p; si) of the asset at the price p. A positive xi(p; si)

represents a buy interest, whereas a negative xi(p; si) represents a sell interest. Given

the submitted demand schedules (x1( · ; s1), . . . , xn( · ; sn)), the auctioneer determines

the transaction price p∗ = p∗(s1, . . . , sn) from the market-clearing condition 7

n∑
i=1

xi(p
∗; si) = S. (3)

After p∗ is determined, bidder i is allocated the quantity xi(p
∗; si) of the asset and

pays xi(p
∗; si)p

∗.

Definition 1. An ex post equilibrium is a profile of strategies (x1, . . . , xn) such

that for every profile of signals (s1, . . . , sn) ∈ (s, s)n, every bidder i has no incentive

to deviate from xi. That is, for any alternative strategy x̃i of bidder i,

U(xi(p
∗; si), p

∗; vi) ≥ U(x̃i(p̃; si), p̃; vi),

where vi is given by (1), p∗ is the market-clearing price given xi and {xj}j 6=i, and p̃

is the market-clearing price given x̃i and {xj}j 6=i.

In an ex post equilibrium, no bidder deviates from his equilibrium strategy even if

he observes the other bidders’ signals. Thus, the optimality condition in Definition 1 is

written in terms of the ex post utility U( · ), rather than the expected utility E[U( · )].
Therefore, our analysis below is valid for any joint distribution of (s1, . . . , sn), and we

do not have to specify this distribution.

2.2 Characterizing an Ex Post Equilibrium

We now explicitly solve for an ex post equilibrium. A modeling challenge associated

with interdependent values is that the bidding strategy of bidder i must be optimal

for each realization of {sj}j 6=i, but bidder i’s strategy cannot depend on {sj}j 6=i.
7Assume that if no market-clearing price exists, each bidder gets a utility of zero.
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We conjecture a strategy profile (x1, . . . , xn). For notational convenience, we define

β ≡ 1− α
n− 1

. (4)

Given that all other bidders use this strategy profile and for a fixed profile of signals

(s1, . . . , sn), the profit of bidder i at the price of p is

Πi(p) =

(
αsi + β

∑
j 6=i

sj − p

)(
S −

∑
j 6=i

xj(p; sj)

)
− 1

2
λ

(
S −

∑
j 6=i

xj(p; sj)

)2

.

We can see that bidder i is effectively selecting an optimal price p. Taking the first-

order condition of Πi(p) at p = p∗, we have, for all i,

0 = Π′i(p
∗) = −xi(p∗; si) +

(
αsi + β

∑
j 6=i

sj − p∗ − λxi(p∗; si)

)(
−
∑
j 6=i

∂xj
∂p

(p∗; sj)

)
.

(5)

Therefore, an ex post equilibrium corresponds to a solution {xi} to the first-order

condition (5), such that for each i, xi depends only on si, p, and S.

We conjecture a symmetric linear demand schedule:

xj(p; sj) = asj − bp+ cS, (6)

where a, b, and c are constants. In this conjectured equilibrium, all bidders j 6= i use

the strategy (6). Thus, we can rewrite the each bidder j’s signal sj in terms of his

demand xj:

∑
j 6=i

sj =
∑
j 6=i

xj(p
∗; sj) + bp− cS

a
=

1

a
(S − xi(p∗; si) + (n− 1)(bp∗ − cS)) ,

where we have also used the market clearing condition. Substituting the above equa-

tion into bidder i’s first order condition (5) and rearranging, we have

xi(p
∗; si) =

α(n− 1)bsi − (n− 1)b [1− β(n− 1)b/a] p∗ + S [1− (n− 1)c] β(n− 1)b/a

1 + λ(n− 1)b+ β(n− 1)b/a

≡ asi − bp∗ + cS.
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Matching the coefficients and using the normalization that α+ (n−1)β = 1, we solve

a = b =
1

λ
· nα− 2

n− 1
, c = β =

1− α
n− 1

.

It is easy to verify that under this linear strategy, Π′′i ( · ) = −n(n−1)αb < 0 if nα > 2.

We thus have a linear ex post equilibrium.

Proposition 1. Suppose that nα > 2. In a double auction with interdependent values,

there exists an ex post equilibrium in which bidder i submits the demand schedule

xi(p; si) =
nα− 2

λ(n− 1)
(si − p) +

1− α
n− 1

S, (7)

and the equilibrium price is

p∗ =
1

n

n∑
i=1

si −
λ(nα− 1)

n(nα− 2)
S =

1

n

n∑
i=1

vi −
λ(nα− 1)

n(nα− 2)
S. (8)

A Special Case with Private Values

Before discussing properties of the equilibrium in Proposition 1, we first consider a

special case of Proposition 1 in which bidders have purely private values, i.e. α = 1.

Our next result reveals that in this special case the equilibrium of Proposition 1 is

also ex post optimal with respect to uncertainty regarding the supply S.

Corollary 1. Suppose that α = 1 and n > 2. In this double auction with private

values, there exists an ex post equilibrium in which bidder i submits the demand

schedule

xi(p; si) =
n− 2

λ(n− 1)
(si − p) , (9)

and the equilibrium price is

p∗ =
1

n

n∑
i=1

si −
λ(n− 1)

n(n− 2)
S =

1

n

n∑
i=1

vi −
λ(n− 1)

n(n− 2)
S. (10)

Note that the equilibrium demand schedules xi in (9) is independent of the supply

S, and therefore remains an equilibrium given any uncertainty about S. This feature

is reminiscent to Klemperer and Meyer (1989), who characterize supply function

equilibria that are ex post optimal with respect to demand shocks. In their model,
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however, bidders’s marginal values are common knowledge. Similarly, in a setting

with a commonly known asset value, Ausubel, Cramton, Pycia, Rostek, and Weretka

(2011) characterize an ex post equilibrium with uncertain supply. As we discuss

shortly, a key contribution of our results is information aggregation, i.e., when private

information regarding the common-value component of the asset is dispersed across

many bidders.

2.3 Uniqueness of the Ex Post Equilibrium

In this short subsection, we show that under mild conditions, ex post optimality is a

sufficiently strong equilibrium selection criterion such that it implies the uniqueness

of the ex post equilibrium characterized in Proposition 1.

Proposition 2. In addition to nα > 2, suppose that either α < 1 and n ≥ 4, or α = 1

and n ≥ 3. Then the equilibrium in Proposition 1 is the unique ex post equilibrium

in the class of strategy profiles (x1, . . . , xn) in which for every i, xi is continuously

differentiable, ∂xi
∂p

(p; si) < 0, and ∂xi
∂si

(p; si) > 0.

Proof. See Section A.1.

The proof of Proposition 2 is relatively involved, but its intuition is simple.

For strategies to be ex post optimal, each bidder must be able to calculate an

one-dimensional sufficient statistic of other bidders’ signals from variables that he

observes—the equilibrium allocation and price. Because the equilibrium allocations

{xi(p∗; si)} satisfy the linear constraint
∑n

i=1 xi(p
∗; si) = S, and because valuations

{vi} are linear in the signals {si}, it is natural to conjecture that the ex post equilib-

rium condition holds only if each bidder’s demand is linear in his signal and the price.

The main theme of the proof of Proposition 2 is to establish this linearity. As we

discussed in the introduction, the uniqueness property makes the ex post equilibrium

particularly appealing in uniform-price auctions, which usually admit a continuum of

Bayesian-Nash equilibria (Wilson 1979).

2.4 Information Aggregation and Robustness

Information aggregation is an important property of the ex post equilibrium in Propo-

sition 1. Equation (8) reveals that the equilibrium p∗ aggregates the average signal
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∑n
i=1 si/n, or equivalently the average valuation

∑n
i=1 vi/n, even though the demand

schedule of each bidder depends only on his own signal. In the special case of S = 0,

i.e. if bidders only trade among themselves, the market-clearing price p∗ is exactly

equal to the average signal
∑n

i=1 si/n. Information aggregation in the ex post equi-

librium applies to double auction with a finite number n of bidders, whereas many

prior models of information aggregation rely on large markets, as in Wilson (1977),

Milgrom (1979), and Kremer (2002), and Reny and Perry (2006), Kazumori (2012),

among others. While Kyle (1985), Kyle (1989), Vives (2011), Ostrovsky (2011), and

Rostek and Weretka (2012) also have information aggregation with a finite number of

agents, their equilibria are Bayesian and rely on the normal distribution. Our ex post

equilibrium, by contrast, does not hinge upon normality or any other distribution

assumption of the signals.

Such robustness is another key feature of the equilibrium of Proposition 1. For

example, the ex post equilibrium does not require bidders to have common knowledge

about the signal distributions. Nor does the ex post equilibrium rely on any particular

implementation of the double auction,8 such as whether the bids are observable, as

long as the implementation method does not change bidders’ preferences. Therefore,

the ex post equilibrium is consistent with the Wilson criterion that desirable proper-

ties of a trading model include its robustness to common-knowledge assumptions and

implementation details (Wilson, 1987).

The ex post equilibrium of Proposition 1 has yet another advantage of being less

sensitive to preferences than Bayesian equilibria are. Clearly, maximizing a bidder’s

ex post utility U in equation (2) is equivalent—in terms of equilibrium strategies,

prices and allocations—to maximizing a strictly increasing function of his ex post

utility. In other words, our ex post equilibrium in a static double auction (this

section and Section 3) remains an ex post equilibrium given utility function of the form

f(U( · )), where f is a strictly increasing function, and U is the original utility function.

By contrast, in a Bayesian equilibrium and for an arbitrary increasing function f ,

the optimal strategy that maximizes a bidder’s expected utility under the original

preference, E[U( · )], may not maximize his expected utility under the alternative

preference, E[f(U( · ))], because E[U ′( · )f ′(U( · ))] 6= E[U ′( · )]E[f ′(U( · ))] in general

(i.e., the two marginal utilities can be correlated under uncertainty). Compared with

8By a “double auction” we refer to a trading mechanism that allows demand schedules to be
submitted.
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Bayesian equilibrium, therefore, an ex post equilibrium is less sensitive to assumptions

on preferences and can be more appealing for practical applications.

There are two main differences between the ex post equilibrium of Proposition 1

and rational expectation equilibria (REE) under asymmetric information (Grossman,

1976, 1981). First, strategies in the ex post equilibrium are optimal for each real-

ization of the n-dimensional signal profile (s1, s2, . . . , sn), whereas strategies in REE

models are optimal for each realization of the one-dimensional equilibrium price. Be-

cause each market-clearing price corresponds to multiple possible signal profiles, the

ex post optimality of this paper seems to be a sharper notation of information ag-

gregation than the Bayesian optimality in REE models. Second, consistent with the

Milgrom 1981 critique of REE models, the double-auction mechanism of this paper

provides an explicit formulation of the price-formation process.

2.5 Efficiency

We now study the efficiency of the ex post equilibrium in Proposition 1. For a fixed

profile of signals (s1, . . . , sn), the efficient allocation, {qei }, maximizes the total welfare:

max
{qi}

n∑
i=1

(
viqi −

λ

2
q2
i

)
subject to:

n∑
i=1

qi = S.

For each bidder i, the efficient allocation, {qei }, and the allocation in the ex post

equilibrium, {q∗i }, are given by

qei =
nα− 1

λ(n− 1)

(
si −

1

n

n∑
j=1

sj

)
+

1

n
S, (11)

q∗i =
nα− 2

λ(n− 1)

(
si −

1

n

n∑
j=1

sj

)
+

1

n
S. (12)

Comparing (11) and (12), we see that in both cases allocations are increasing in

signals. Bidders, however, trade less in the ex post equilibrium in the sense that

q∗i − S/n
qei − S/n

=
nα− 2

nα− 1
< 1.

This feature is the familiar demand reduction in multi-unit auctions (see, for example,
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Ausubel et al. 2011). As n→∞, q∗i − qei → 0, regardless how S changes with n.

We now turn to the competitive equilibrium price. By the second welfare theorem,

the efficient allocation is also the competitive equilibrium allocation. The correspond-

ing competitive equilibrium price is

pe =
1

n

n∑
i=1

si −
λ

n
S. (13)

Comparing (13) with the ex post equilibrium price p∗ in (8), we see that p∗ differs

from pe by a factor of (nα − 1)/(nα − 2) in the coefficient of S. In other words, the

ex post equilibrium price “overreacts” to supply shocks, relative to the competitive

equilibrium price. Again, this is an effect of the finite number of bidders in the market.

Finally, we calculate the allocative inefficiency of the ex post equilibrium in the

one-shot double auction. The allocative inefficiency is defined as the difference be-

tween the total utility associated with the efficient allocation and the total utility

associated with the ex post equilibrium allocation:

n∑
i=1

(
viq

e
i −

λ

2
(qei )

2

)
−

n∑
i=1

(
viq
∗
i −

λ

2
(q∗i )

2

)
=

∑n
i=1

(
si − 1

n

∑n
j=1 sj

)2

2λ(n− 1)2
. (14)

In this calculation, we have assumed that the total revenues pe
∑n

i=1 q
e
i and p∗

∑n
i=1 q

∗
i

enter linearly into the utility function of the auctioneer who provides the supply S.

Thus, all payments have a zero effect on total utility. We can see that the allocative

inefficiency is independent of the supply S. Thus, while the ex post equilibrium

price can be substantially different from the competitive equilibrium price when the

supply is large, the resulting allocative inefficiency remains invariance to the size of

the supply.

Moreover, if the signals {si} are i.i.d. with a finite variance, the allocative ineffi-

ciency in (14) is the unbiased variance estimator of the signals scaled by a factor of

1/(2λ(n− 1)). Thus, the allocative inefficiency of the ex post equilibrium vanishes at

the rate of O(1/n) as n tends to infinity. This rate of convergence is same as the one

in Rustichini, Satterthwaite, and Williams (1994) on double auction of a single indi-

visible asset. In Section 4 we show that, for a fixed number n of bidders, a sequence

of double auctions achieves exponential convergence to the efficient allocation, as the

number of auction rounds increases.
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3 Extensions

3.1 Inventory Management

We now extend the ex post equilibrium of Proposition 1 to bidders with inventories;

we will further extend this analysis to a dynamic setting in Section 4. For example,

broker-dealers in financial markets often hold inventories as part of their normal busi-

ness of market-making. Inventories matter because they can affect bidders’ marginal

valuations. Bidders update their inventories by buying or selling additional units in

the auction.

Before the auction, bidder i holds an ex ante inventory zi on the traded asset,

where zi is bidder i’s private information (in addition to his private signal si), for

i ∈ {1, . . . , n}. The total ex ante inventory

Z =
n∑
i=1

zi

is common knowledge. For example, in financial markets the total supply of a security

(e.g., stocks or bonds) is often public information, and the net supply of a derivative

contract (e.g., futures or swaps) is usually zero. After acquiring an additional quantity

qi of the asset in the auction, bidder i incurs the cost of λ(qi + zi)
2/2, so his utility is:

U(qi, p; vi, zi) = vizi + (vi − p)qi −
1

2
λ(qi + zi)

2, (15)

where p is the price determined in the auction and vi is given in (1). All other parts

of the model are the same as Section 2.

As before, we look for an ex post equilibrium in a uniform-price double auction.

In an ex post equilibrium, each bidder i’s strategy, which depends only on his private

signal si and inventory zi, is optimal for all realizations of other bidders’ private

signals {sj}j 6=i and inventories {zj}j 6=i. We denote by xi(p; si, zi) the demand schedule

of bidder i who has a signal of si and an inventory of zi, and characterize the following

ex post equilibrium.

Proposition 3. Suppose that nα > 2. In a double auction with interdependent values

and private inventories, there exists an ex post equilibrium in which bidder i submits

14



the demand schedule

xi(p; si, zi) =
nα− 2

λ(n− 1)
(si − p) +

1− α
n− 1

S − nα− 2

nα− 1
zi +

(1− α)(nα− 2)

(n− 1)(nα− 1)
Z, (16)

and the equilibrium price is

p∗ =
1

n

n∑
i=1

si −
λ

n

(
nα− 1

nα− 2
S + Z

)
. (17)

Under the same conditions stated in Proposition 2, this is the unique ex post equilib-

rium.

Proof. See Section A.2.

As in Proposition 1, the equilibrium price in Proposition 3 aggregates bidders’

private information. Clearly, the larger is the inventory zi, the less does the bidder

wish to buy (or equivalently, the more does the bidder wish to sell). We also observe

that because of the price impact of his limit orders, a bidder’s demand xi moves less

than one-for-one with respect to his existing inventory zi. This demand reduction

contributes to allocative inefficiency.

In this market, the efficient allocation9 {qei }, the corresponding competitive equi-

librium price pe, and the ex post equilibrium allocation, {q∗i }, are, respectively,

qei + zi =
nα− 1

λ(n− 1)

(
si −

1

n

n∑
j=1

sj

)
+

1

n
(S + Z), (18)

pe =
1

n

n∑
j=1

sj −
λ

n
(S + Z), (19)

q∗i + zi =
nα− 2

λ(n− 1)

(
si −

1

n

n∑
j=1

sj

)
+

1

n
(S + Z) +

1

nα− 1

(
zi −

1

n
Z

)
. (20)

As in Section 2, the ex post equilibrium price overreacts to supply shocks, relative

to the competitive equilibrium price. That is, p∗ < pe if S > 0 and p∗ > pe if

S < 0. Moreover, in addition to producing a smaller scaling factor in front of the

(si−
∑n

j=1 sj/n) term, the ex post equilibrium allocation in (20) is also corrected by an

extra (zi −Z/n) term, in comparison with the efficient allocation in (19). This extra

9The allocation {qei } solves max{qi}
∑n
i=1

(
vi(zi + qi)− λ

2 (zi + qi)
2
)

subject to:
∑n
i=1 qi = S.
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term indicates that the allocation in the ex post equilibrium depends not only on the

heterogeneity of information, but also on the heterogeneity of existing inventories. In

Section 4 we analyze a sequence of double auctions in which valuation signals and

inventories evolve over time.

3.2 Multiple Assets

In this subsection we extend the analysis of ex post equilibrium to multiple assets.

In addition to bolstering the basic intuition of Proposition 1, this subsection sheds

light on how the complementarity and substitutability among multiple assets affect

the bidding strategies.

Suppose that there are m ≥ 2 distinct assets. Bidder i receives a vector of private

signals ~si ≡ (si,1, . . . , si,m)′ and values asset k (1 ≤ k ≤ m) at

vi,k = αk si,k + (1− αk)
1

n− 1

∑
j 6=i

sj,k. (21)

Again, the joint probability distribution of (~s1, . . . , ~sn) is inconsequential because we

focus on ex post equilibrium. Let ~α ≡ (α1, . . . , αm)′.

With multiple assets, bidder i’s utility after acquiring ~qi ≡ (qi,1, . . . , qi,m)′ units of

assets at the price vector ~p ≡ (p1, . . . , pm)′ is

U(~qi, ~p; ~vi) =
m∑
k=1

(vi,k − pk)qi,k −
1

2

m∑
k=1

m∑
l=1

qi,kΛk,lqi,l ≡ (~vi − ~p) · ~qi −
1

2
~qi
′Λ~qi, (22)

where ~vi ≡ (vi,1, . . . , vi,m)′ is the vector of bidder i’s valuations and Λ ≡ {Λk,l} is a

symmetric, positive definite matrix. The matrix Λ captures the complementarity and

substitutability among the assets. For example, a negative Λk,l indicates that asset

k and asset l are complements because holding one of them increases the marginal

valuation of holding the other.

In this double auction, each bidder i simultaneously bids on all assets by sub-

mitting a demand schedule vector ~xi(~p; ~si) ≡ (xi,1(~p; ~si), . . . , xi,m(~p; ~si))
′. Due to

the complementarity and substitutability among assets, bidder i’s demand for any

given asset can depend on the prices of all assets. The market-clearing price vector

~p∗ ≡ (p∗1, . . . , p
∗
m)′ is determined such that, for each asset k ∈ {1, . . . ,m} that has the
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supply Sk,
n∑
i=1

xi,k(~p∗; ~si) = Sk. (23)

We denote by ~S ≡ (S1, . . . , Sm)′ the vector of asset supplies.

In an ex post equilibrium of this multi-asset auction, bidder i’s demand schedule

vector ~xi, which depends only on his own signal vector ~si, is optimal even if he

learns all other bidders’ signal vectors ex post. We now characterize such an ex post

equilibrium in the following proposition, where we denote by Diag(~a) the diagonal

matrix whose diagonal vector is ~a.

Proposition 4. Suppose that nαk > 2 for every k ∈ {1, . . . ,m}. In a double auction

with multiple assets and interdependent values, there exists an ex post equilibrium in

which bidder i submits the demand schedule vector

~xi(~p; ~si) = Λ−1 Diag

(
n~α− 2

n− 1

)
(~si − ~p) + Λ−1 Diag

(
1− ~α
n− 1

)
Λ~S, (24)

and the equilibrium price vector is

~p∗ =
1

n

n∑
i=1

~si −Diag

(
n~α− 1

n

)
Diag

(
1

n~α− 2

)
Λ~S. (25)

Proof. See Section A.3.

Proposition 4 reveals that a bidder’s bidding strategy for any asset can depend on

his signals, prices, and supplies on all other assets. This interdependence of strategies

is a natural consequence of the complementarity and substitutability among multiple

assets. And similar to Proposition 1 and Proposition 3, the equilibrium price vector

(25) aggregates bidders’ dispersed information on all assets and is independent of any

distributional assumption about the signals.

4 Dynamic Trading

In this section we study dynamic trading in a market with stochastic arrivals of new

information and an infinite sequence of uniform-price double auctions. We character-

ize a stationary and subgame perfect ex post equilibrium, as well as demonstrating

its efficiency properties.
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The clock time is continuous. Trading occurs in repeated rounds of double auctions

at each clock time in {0,∆, 2∆, 3∆, . . .}, where ∆ > 0 is the length of clock time

between consecutive rounds of trading. The smaller is ∆, the higher is the frequency

of trading. (We later discuss the limiting behavior of the market as ∆→ 0.) Bidders

have a discounting factor of e−rτ at the clock time τ , where r > 0 is the discount rate

per unit of clock time. We will refer to each trading round as a “period,” indexed by

t ∈ {0, 1, 2, . . .}, so the period-t auction occurs at the clock time t∆. We will use the

letter τ to denote a generic clock time.

Signals arrive stochastically. For each bidder i, his signals {si,τ}τ≥0 follow a

continuous-time martingale. That is, for every i and τ ′ > τ ≥ 0,

E[si,τ ′ | {sj,τ ′′}1≤j≤n,0≤τ ′′≤τ ] = si,τ . (26)

Under the martingale assumption, bidder i’s current signal si,τ is the best estimate of

his future signals. As long as this martingale property is satisfied, the exact detail of

the signal processes is inconsequential to our equilibrium analysis. For example, future

signals can arrive continuously and follow a diffusion process; or, they can arrive in

discrete, irregular intervals, in which case the signal process exhibits “jumps.” Each

bidder’s signal process can have arbitrary autocorrelation and conditional variance,

and any pair of signal processes, {si,τ}τ≥0 and {sj,τ}τ≥0, for i 6= j, can have arbitrary

conditional covariance. The realizations of bidder i’s signal process are bidder i’s

private information.

In each period t ≥ 0, a new uniform-price double auction is held to reallocate the

asset among the bidders. At the clock time 0, which is also the trading time of the

first auction, each bidder i starts with a private inventory of zi,0 of the asset. The

initial total inventory Z =
∑n

i=1 zi,0 is common knowledge. The external supply S

is zero in each trading period, which implies that the total inventory in each period

t ≥ 1 is also Z. In the period-t auction, bidder i starts with an inventory of zi,t∆ and

submits a demand schedule xi,t∆(p). The auctioneer determines the market-clearing

price p∗t∆ by
n∑
i=1

xi,t∆(p∗t∆) = 0, (27)

and bidder i receives qi,t∆ = xi,t∆(p∗t∆) units of the asset at the price of p∗t∆. Inventories
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therefore evolve according to

zi,(t+1)∆ = zi,t∆ + qi,t∆. (28)

Bidder i’s inventory history is his private information.

After describing the information structure and trading protocol, we now turn to

the preferences. Bidder i’s “flow” utility in period t for holding each unit of the asset

is

vi,t∆ = α si,t∆ + (1− α)
1

n− 1

∑
j 6=i

sj,t∆, (29)

where α ∈ (0, 1] is a constant known to all bidders. Similarly, bidder i’s “flow” cost

of holding the inventory of zi,t∆ + qi,t∆ in period t is 1
2
λ(qi,t∆ + zi,t∆)2. Thus, bidder

i’s utility in period t alone is the integral of time-discounted net flow utility less the

one-off payment of asset transaction, i.e.,

U(qi,t∆, p
∗
t∆; vi,t∆, zi,t∆)

=

∫ ∆

τ=0

e−τr
(
vi,t∆(zi,t∆ + qi,t∆)− 1

2
λ(qi,t∆ + zi,t∆)2

)
dτ − p∗t∆ qi,t∆

=
1− e−r∆

r

(
vi,t∆(zi,t∆ + qi,t∆)− 1

2
λ(qi,t∆ + zi,t∆)2

)
− p∗t∆ qi,t∆. (30)

Note that bidder i’s flow utility in period t, vi,t∆, depends only on the profile of signals

at the clock time t∆, {sj,t∆}nj=1. This valuation structure is natural in markets where

a bidder’s information about his valuation improves over time (and thus a later signal

subsumes an earlier one).10

Bidder i’s overall utility, or “continuation value,” at the clock time t∆ (including

the period-t auction) is

Vi,t∆ =
∞∑
t′=t

e−r(t
′−t)∆U(qi,t′∆, p

∗
t′∆; vi,t′∆, zi,t′∆)

= U(qi,t∆, p
∗
t∆; vi,t∆, zi,t∆) + e−r∆Vi,(t+1)∆. (31)

10In principal, a new signal may arrive between two trading clock times t∆ and (t+ 1)∆. Given
the martingale property, however,

E[vi,τ | {sj,τ ′}1≤j≤n,τ ′≤t∆] = vi,t∆

for all τ ∈ (t∆, (t+ 1)∆). Thus, the specification of flow utility is almost without loss of generality.
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We emphasize that in period t before the new auction is held, bidder i’s informa-

tion consists of the paths of his signals {si,t′∆}t′≤t and of his inventories {zi,t′∆}t′≤t,
as well as his submitted demand schedules {xi,t′∆(p)}0≤t′<t. For notational simplicity,

we let bidder i’s information set at the beginning of period t be

Hi,t∆ = {{si,t′∆}0≤t′≤t, {zi,t′∆}0≤t′≤t, {xi,t′∆(p)}0≤t′<t} . (32)

Notice that by the identity zi,(t′+1)∆ − zi,t′∆ = qi,t′∆ = xi,t′∆(p∗t′∆), a bidder can infer

the previous price path {p∗t′∆}t′<t from his history Hi,t∆. Bidder i’s period-t strategy,

xi,t∆ = xi,t∆(p;Hi,t∆), is measurable with respect to Hi,t∆.

In this dynamic market we define an equilibrium concept that is a dynamic ex-

tension of the one in Section 2. In the definition below, each bidder’s strategy is ex

post optimal with respect to other bidders’ histories up to period t, but is Bayesian

optimal with respect to signals in the future. We nonetheless call this equilibrium

“ex post” because, in the absence of new information immediately after the period-t

auction, each bidder still has no regret.

Definition 2. A subgame perfect ex post equilibrium consists of the strategy

profile {xj,t∆}1≤j≤n,t≥0 such that for every bidder i and for every path of his history

Hi,t, bidder i has no incentive to deviate from {xi,t′∆}t′≥t even if he learns the profile

of other bidders’ histories. That is, for every alternative strategy {x̃i,t′∆}t′≥t and every

profile of other bidders’ histories {Hj,t∆}j 6=i,

E[Vi,t∆({xi,t′∆}t′≥t, {xj,t∆}j 6=i,t′≥t) | Hi,t∆, {Hj,t∆}j 6=i]

≥E[Vi,t∆({x̃i,t′∆}t′≥t, {xj,t∆}j 6=i,t′≥t) | Hi,t∆, {Hj,t∆}j 6=i],

where the expectations are taken over all possible realizations of future signals {sj,τ}1≤j≤n,τ>t∆.

We now characterize a subgame perfect ex post equilibrium. This equilibrium is

stationary, that is, a bidder’s strategy only depends on his current signal and current

level of inventory, but does not depend explicitly on t.

Proposition 5. Suppose that nα > 2, ∆ > 0 and r > 0. In the market with

interdependent values and dynamic trading, there exists a stationary and subgame

perfect ex post equilibrium in which bidder i submits the demand schedule

xi,t∆(p; si,t∆, zi,t∆) = a

(
si,t∆ − rp−

λ(n− 1)

nα− 1
zi,t∆ +

λ(1− α)

nα− 1
Z

)
, (33)
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where

a =
nα− 1

2(n− 1)e−r∆λ

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
> 0.

(34)

The period-t equilibrium price is

p∗t∆ =
1

r

(
1

n

n∑
i=1

si,t∆ −
λ

n
Z

)
. (35)

Proof. See Section A.4.

By L’Hospital’s rule, the constant a in (34) converges to its static counterpart

in Proposition 3 as the interval of time ∆ between trading periods tends to infinity.

That is,

lim
∆→∞

a =
nα− 2

λ(n− 1)
. (36)

Therefore, as ∆→∞, the equilibrium in Proposition 5 converges to the static equi-

librium in Proposition 3 with S = 0.

With dynamic trading, an asset purchased in period t gives a bidder a stream of

utilities during the clock time τ ∈ (t∆,∞). Thus, the equilibrium price p∗t∆ under

dynamic trading is adjusted by a factor of
∫∞
τ=0

e−rτ dτ = 1/r. In every period,

the equilibrium price p∗t∆ aggregates the current information on the value of the

asset. Although bidders learn from p∗t∆ the average signal
∑

i si,t∆/n in period t, new

information may arrive by the clock time (t + 1)∆ of the next auction. Therefore, a

period-(t+1) strategy that depends explicitly on the lagged price p∗t∆ is generally not

ex post optimal. Moreover, since the signal processes are martingales, the equilibrium

prices {p∗t∆}t≥0 also form a martingale.

The next proposition characterizes the allocative efficiency in the subgame per-

fect ex post equilibrium of Proposition 5. Let us use {z∗i,t∆} to denote the path of

inventories obtained by the subgame perfect ex post equilibrium.

Proposition 6. Given any 0 ≤ t < t, if si,t∆ = si,t̄∆ for all i and all t ∈ {t, t +

1, . . . , t}, then

z∗i,t∆ − zei,t∆ = (1 + d)t−t(z∗i,t∆ − zei,t∆), (37)

21



where

zei,t∆ =
nα− 1

λ(n− 1)

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
+

1

n
Z, (38)

is the the efficient allocation in period t, and

1 + d =
1

2e−r∆

(√
(nα− 1)2(1− e−r∆)2 + 4e−r∆ − (nα− 1)(1− e−r∆)

)
∈ (0, 1).

(39)

Moreover, let us define the rate of convergence to efficiency per unit of clock time

to be − log[(1 + d)1/∆]. This convergence rate is increasing with the number n of

bidders, the weight α of the private components in bidders’ valuations, the discount

rate r, and the clock-time frequency of trading 1/∆.

Proof. It is easy to verify that the allocation {zei,t∆} solves

max
{zi}

n∑
i=1

(
vi,t∆ zi −

λ

2
(zi)

2

)
subject to:

n∑
i=1

zi = Z.

The convergence result and comparative statics are proved in Section A.5.

The intuition for the comparative statics of Proposition 6 is simple. A larger n

makes bidders more competitive, and a larger r makes them more impatient. Both

effects encourage aggressive bidding and speed up convergence. The effect of α is

slightly more subtle. Intuitively, the interdependence of valuations, represented by 1−
α, creates adverse selection for the bidders. To protect themselves from trading losses,

bidders reduce their demand or supply relative to the fully competitive market. The

higher is α, the more bidders care about the private components of their valuations,

and the less they worry about adverse selection. Therefore, a higher α implies more

aggressive bidding and faster convergence to the efficient allocation. Finally, a higher

trading frequency increases the convergence speed in clock time, even though it makes

bidders more patient and thus less aggressive in each trading period.

Proposition 6 reveals that a sequence of double auctions serves as an effective

method to dynamically achieve allocative efficiency. Allocations under the subgame

perfect ex post equilibrium converge exponentially in time to the efficient one, as

determined by the most recent signals. Once new signals arrive, the efficient allocation

changes accordingly, and allocations under the subgame perfect ex post equilibrium

start to converge toward the new efficient level.
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The dynamic ex post equilibrium of Proposition 5 differs in several aspects from

those of Kyle (1985) and Kyle (1989), who model the trading behavior of informed

speculator(s) in the presence of noise traders. First, while Kyle (1985, 1989) rely on

the normal distribution to derive Bayesian equilibria, the equilibrium of Proposition 5

is ex post optimal and thus robust for any distribution of signals. Second, because we

do not rely on noise traders to generate trades, the economic implications of allocative

efficiency and welfare are more transparent in the ex post equilibrium. Third, the

equilibrium price in our dynamic model immediately reflects the average signals of all

bidders, whereas prices in the Kyle (1985) model gradually reveal the information of

the informed speculator over time. This last feature of Kyle (1985) can be attributed

to noise traders, who provide camouflage to informed speculators.

4.1 Ex Post Equilibrium in Continuous Trading

In this subsection we study the limiting behavior of the subgame perfect ex post

equilibrium of Proposition 5 as trading in clock time becomes infinitely frequent. By

letting ∆ → 0 in the equilibrium of Proposition 5 and using L’Hospital’s rule, we

obtain the following limiting equilibrium in continuous time.

Proposition 7. Suppose that nα > 2 and r > 0. As ∆ → 0, the equilibrium of

Proposition 5 converges to the following ex post equilibrium:

1. Bidder i’s equilibrium strategy is represented by a process {x∞i,τ}τ∈R+. At the

clock time τ , x∞i,τ specifies bidder i’s rate of order submission and is defined by

x∞i,τ (p; si,τ , zi,τ ) = a∞
(
si,τ − rp−

λ(n− 1)

nα− 1
zi,τ +

λ(1− α)

nα− 1
Z

)
, (40)

where

a∞ =
(nα− 1)(nα− 2)r

2λ(n− 1)
. (41)

Given a clock time T > 0, in equilibrium the total amount of trading by bidder

i in the clock-time interval [0, T ] is

z∗i,T − zi,0 =

∫ T

τ=0

x∞i,τ (p
∗
τ ; si,τ , z

∗
i,τ ) dτ. (42)

23



2. The equilibrium price at any clock time τ is

p∗τ =
1

r

(
1

n

n∑
i=1

si,τ −
λ

n
Z

)
. (43)

3. Given any 0 ≤ τ < τ , if si,τ = si,τ for all i and all τ ∈ [τ , τ ], then

z∗i,τ − zei,τ = e−
1
2
r(nα−2)(τ−τ)

(
z∗i,τ − zei,τ

)
, (44)

where

zei,τ =
nα− 1

λ(n− 1)

(
si,τ −

1

n

n∑
j=1

sj,τ

)
+

1

n
Z (45)

is the the efficient allocation at clock time τ .

Proposition 7 reveals that even if all information arrives at the very beginning

and if trading occurs continually, in equilibrium the efficient allocation is not reached

instantaneously. The delay comes from bidders’ price impact and associated demand

reduction. Although submitting aggressive orders allows a bidder to achieve his de-

sired allocation sooner, aggressive bidding also moves the price against the bidder and

increases his trading cost. Facing this tradeoff, each bidders uses a finite rate of order

submission in the limit. Consistent with Proposition 6, the rate of convergence to

efficiency in Proposition 7, r(nα− 2)/2, is increasing in the number of bidders n, the

discount rate r, and the weight α of the private components in bidders’ valuations.

4.2 Welfare and Optimal Trading Frequency

In this subsection we study the effect of trading frequency on welfare and characterize

the optimal trading frequency, 1/∆. We show that the optimal trading frequency

depends critically on the nature of information (i.e., the signals). If new information

arrives at deterministic times, then slow, batch trading (i.e., a large ∆) tends to be

optimal. If new information arrives at stochastic times, then fast, continuous trading

(i.e., a small ∆) tends to be optimal. Our primary objective in this subsection is to

demonstrate the intuition through a simplistic but useful special case of our dynamic

trading model, and our results here may serve as building blocks for future research.

We suppose that bidders enter the market at time zero with the initial inventory
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profile {zei,0}, which are efficient given the time-0 signal profile {si,0}:

zei,0 =
nα− 1

λ(n− 1)

(
si,0 −

1

n

n∑
j=1

sj,0

)
+

1

n
Z. (46)

Labeling the starting time to be zero is without loss of generality, and the efficient

initial allocation can be interpreted as the result of previous rounds of trading. We

also suppose that a new profile of signals, {si}, arrives at the clock time T , after which

no new signals arrive. This simplistic process of information arrival is sufficient to

convey the intuition. As in the main model of the dynamic market, trading can occur

at clock times τ ∈ {0,∆, 2∆, . . .}, and the signals are martingales:

E[si | {si′,0}1≤i′≤n] = si,0. (47)

We separately analyze two cases: T = 0 or T is an exponential random variable.

4.2.1 Information arrives at T = 0

Given that new information arrives at time T = 0, the first round of trading (at

time 0) immediately reacts to this new information. By Proposition 5, the path of

allocations from the subgame perfect ex post equilibrium is:

z∗i,t∆ = zei + (1 + d)t(zei,0 − zei ), t ∈ {1, 2, 3, . . .}, (48)

where {zei,0} is the efficient allocation given the old signals {si,0}, and {zei } is the

efficient allocation given the new signals {si}:

zei =
nα− 1

λ(n− 1)

(
si −

1

n

n∑
j=1

sj

)
+

1

n
Z. (49)

In this case, we can define the welfare of bidders as the sum of time-discounted

utilities:

W (∆) =
n∑
i=1

∞∑
t=0

1− e−∆r

r
e−t∆r

(
viz
∗
i,(t+1)∆ −

λ

2
(z∗i,(t+1)∆)2

)
. (50)

Proposition 8. Suppose that nα > 2 and T = 0. For any realization of the initial
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signals {si,0} and any distribution of new signals {si} that satisfies (47), the social

welfare W (∆) is increasing in ∆, and the optimal ∆∗ =∞.

Proof. See Section A.6.

Proposition 8 suggests that if information arrives at the moment of trading, then

slower trading (i.e., a larger ∆) is better for total welfare. The intuition for this result

is simple. For a high ∆, bidders have to wait for a long time before the next round

of trading. So they bid aggressively whenever they have the opportunity to trade,

which leads to a relatively efficient allocation early on. For a low ∆, however, bidders

know that they can trade again soon. Consequently, they bid less aggressively in each

round of trading and end up paying a higher costs of holding inefficient allocations.

Although it may appear artificial that the information arrival time coincides with

the trading time, in practice the trading time can adjust to meet the scheduled infor-

mation announcement. Moreover, Proposition 8 provides the natural intuition that

if new information repeatedly arrives at scheduled times (e.g., macroeconomic data

releases or corporate earnings announcements), the optimal trading frequency should

be no higher than the frequency of information arrival.

4.2.2 Stochastic arrival of new information

Now we turn to stochastic arrival of information. For tractability, we let T be an

exponential random variable with mean 1/ν and independent of all else. We let T̄ be

the clock time of the next trading period after T : T̄ ≡ min{t∆ : t∆ ≥ T}.
We also use {z∗i,t∆} to denote the path of allocations in the subgame perfect ex

post equilibrium of Proposition 5. Before time T̄ , we have z∗i,t∆ = zei,0, and after time

T̄ , the allocations start to converge toward {zei }. Therefore, the social welfare is:

W (∆) =E

[
n∑
i=1

∫ T̄

τ=0

e−τr
(
vi,0z

e
i,0 −

λ

2
(zei,0)2

)
dτ

]
(51)

+ E

[
e−rT̄ ·

n∑
i=1

∞∑
t=0

1− e−r∆

r
e−t∆r

(
viz
∗
i,T̄+(t+1)∆ −

λ

2
(z∗i,T̄+(t+1)∆)2

)]
.

Proposition 9. Suppose that nα > 2 and T is an exponential random variable. For

any realization of the initial signals {si,0} and any distribution of new signals {si}
that satisfies (47), W (∆) is decreasing in ∆, and the optimal ∆∗ = 0.
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Proof. See Section A.7.

Proposition 9 suggests that faster trading is better if the arrival time of new

information is stochastic and unpredictable. This is because more frequent trading

enables bidders to react sooner after new information arrival, which dominates the

cost of lower bidding aggressiveness in the subsequent rounds of trading. As a result,

a continuous market (with ∆∗ = 0) is optimal.

5 Conclusion

In this paper we characterize an ex post equilibrium in a uniform-price double auction

with interdependent values. In the ex post equilibrium, a bidder’s strategy depends

only on his own private information, but he does not deviate from it even after ob-

serving the private information of other bidders. This ex post equilibrium aggregates

private information dispersed across bidders, and is robust to distributional assump-

tions and details of auction design. Under mild conditions this ex post equilibrium is

unique in the class of continuously differentiable strategy profiles. Moreover, we show

that the ex post equilibrium can be adapted to settings with private inventories and

with multiple classes of assets.

We further generalize our ex post equilibrium to a dynamic market with an infinite

sequence of double auctions and stochastic arrivals of new signals. If signals are

martingales, there exists a stationary and subgame perfect ex post equilibrium, in

which the equilibrium price in each auction aggregates the most recent signals, and

the allocations of assets among bidders converge exponentially to the efficient level

over time. A key economic implication of our analysis is that a sequence of double

auctions is a simple and effective mechanism to achieve allocative efficiency. Our

results also suggest that the socially optimal trading frequency is lower for scheduled

information releases, but higher for information that arrives at stochastic times.

A Appendix: Proofs

A.1 Proof of Proposition 2

We fix an ex post equilibrium strategy (x1, . . . , xn) such that for every i, xi is con-

tinuously differentiable, ∂xi
∂p

(p; si) < 0 and ∂xi
∂si

(p; si) > 0. We will show that the
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equilibrium demand schedule xi must be linear in si and p.

For any fixed p, we let the inverse function of xi(p; · ) be s̃i(p; · ). That is, for any

realized allocation yi ∈ R, we have xi(p; s̃i(p; yi)) = yi. Because xi(p; si) is strictly

increasing in si, s̃i(p; yi) is strictly increasing yi. Throughout the proof, we will denote

dealer’s realized allocation by yi and his demand schedule by xi( · ; · ). With an abuse

of notation, we denote ∂xi
∂p

(p; yi) ≡ ∂xi
∂p

(p; si(p; yi)).

We also fix a profile of signal s = (s1, . . . , sn) ∈ (s, s)n. Let p̄ = p∗(s) and

ȳi = xi(p
∗(s); si). By continuity, there exists some δ > 0 such that, for any i and any

(p, yi) ∈ (p̄−δ, p̄+δ)×(ȳi−δ, ȳi+δ), there exists some s′i ∈ (s, s) such that xi(p; s
′
i) = yi.

In other words, every price and allocation pair in (p̄ − δ, p̄ + δ) × (ȳi − δ, ȳi + δ) is

“realizable” given some signal.

We will prove that there exist constants A 6= 0, B and E such that

s̃i(p; yi) = Ayi +Bp+ E (52)

for (p, yi) ∈ (p̄ − δ/n, p̄ + δ/n) × (ȳi − δ/n, ȳi + δ/n), i ∈ {1, . . . , n}. Once (52) is

established, we can then rewrite

xi(p; s
′
i) =

s′i −Bp− E
A

for p ∈ (p̄− δ′, p̄+ δ′), s′i ∈ (si− δ′, si + δ′), and i ∈ {1, . . . , n}, where δ′ > 0 is a suffi-

ciently small constant so that xi(p; s
′
i) ∈ (ȳi− δ/n, ȳi + δ/n) for (p, s′i) in this interval.

That is, the demand schedule xi is linear and symmetric in a neighborhood of (p, si),

for every bidder i. Once linearity and symmetry are established, the construction in

the main text preceding Proposition 1 then pins down the values of A, B and E, which

are independent of (s1, . . . , sn) and the choice of the neighborhood. Since (s1, . . . , sn)

is arbitrary, the same constants A, B, and E apply to any s = (s1, . . . , sn) ∈ (s, s)n

and p = p∗(s), which implies the uniqueness of the strategy xi(p; si).

We now proceed to prove (52). There are two cases. In Case 1, α < 1 and n ≥ 4.

In Case 2, α = 1 and n ≥ 3.

A.1.1 Case 1: α < 1 and n ≥ 4

The proof for Case 1 consists of two steps.

Step 1 of Case 1: Lemma 1 and Lemma 2 below imply equation (52).
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Lemma 1. There exist functions A(p), {Bi(p)} such that

s̃i(p; yi) = A(p)yi +Bi(p), (53)

holds for every p ∈ (p̄− δ, p̄+ δ) and every yi ∈ (ȳi − δ/n, ȳi + δ/n), 1 ≤ i ≤ n.

Proof. This lemma is proved in Step 2 of Case 1. For this lemma we need the condition

that n ≥ 4; in the rest of the proof n ≥ 3 suffices.

Lemma 2. Suppose that l ≥ 2 and that

l∑
i=1

fi(p; yi) = fl+1

(
p,

l∑
i=1

yi

)
, (54)

for every p ∈ P and (y1, . . . , yl) ∈
∏l

i=1 Yi, where Yi is an open subset of R, fi is

differentiable and P is an arbitrary set. Then there exists function C(p) and {Di(p)}
such that

fi(p; yi) = C(p)yi +Di(p)

holds for every i ∈ {1, . . . , l}, p ∈ P and yi ∈ Yi.

Proof. We differentiate (54) with respect to yi and to yj, where i, j ∈ {1, 2, . . . , l},
and obtain

∂fi
∂yi

(p; yi) =
∂fl+1

∂yi

(
p;

l∑
j=1

yj

)
=
∂fj
∂yj

(p; yj)

for any yi ∈ Yi and yj ∈ Yj. Because (y1, . . . , yl) are arbitrary, the partial derivatives

above cannot depend on any particular yi. Thus, there exists some function C(p)

such that ∂fi
∂yi

(p; yi) = C(p) for all yi. Lemma 2 then follows.

In Step 1 of the proof of Case 1 of Proposition 2, we show that Lemma 1 and

Lemma 2 imply equation (52). Let us first rewrite bidder i’s ex post first-order

condition as:

− yi +

(
αs̃i(p; yi) + β

∑
j 6=i

s̃j(p; yj)− p− λyi

)(
−
∑
j 6=i

∂xj
∂p

(p; yj)

)
= 0, (55)

where yn = S −
∑n−1

j=1 yj, p ∈ (p̄− δ, p̄+ δ) and yj ∈ (ȳj − δ/n, ȳj + δ/n). 11

11We restrict yj to (ȳj − δ/n, ȳj + δ/n) so that yn = S −
∑n−1
j=1 yj ∈ (ȳn − δ, ȳn + δ), and as a
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Our strategy is to repeatedly apply Lemma 1 and Lemma 2 to (55) in order to

arrive at (52).

First, we plug the functional form of Lemma 1 into (55). Without loss of generality,

we let i = n and rewrite (55) as

n−1∑
j=1

∂xj
∂p

(p; yj)︸ ︷︷ ︸
left-hand side of (54)

= − yn

α(A(p)yn +Bn(p)) + β
∑n−1

j=1 (A(p)yj +Bj(p))− p− λyn︸ ︷︷ ︸
right-hand side of (54)

.

Applying Lemma 2 to the above equation, we see that there exist functions C(p) and

{Dj(p)} such that
∂xj
∂p

(p; yj) = C(p)yj +Dj(p), (56)

for j ∈ {1, . . . , n − 1}. Note that we have used the condition n ≥ 3 when applying

Lemma 1.

By the same argument, we apply Lemma 2 to (55) for i = 1, and conclude that

(56) holds for j = n as well.

Using (53) and (56), we rewrite bidder i’s ex post first-order condition as:(
(α− β)s̃i(p; yi) + β

(
A(p)S +

n∑
j=1

Bj(p)

)
− p− λyi

)(
−C(p)(S − yi)−

∑
j 6=i

Dj(p)

)
−yi = 0.

(57)

Solving for s̃i(p; yi) in terms of p and yi from equation (57), we see that for the so-

lution to be consistent with (53), we must have C(p) = 0. Otherwise, i.e. if C(p) 6= 0,

then (57) implies that s̃i(p; yi) contains the term yi/
(
−C(p)(S − yi)−

∑
j 6=iDj(p)

)
,

contradicting the linear form of Lemma 1.

Inverting (53), we see that xi(p; si) = (si−Bi(p))/A(p). Therefore, for ∂xi
∂p

(p; si) to

be independent of si (i.e., C(p) = 0), A(p) must be a constant function, i.e. A(p) = A

for some constant A ∈ R. This implies that

Di(p) = −B
′
i(p)

A
, (58)

by the definition of Di(p) in (56).

result s̃(p; yn) and ∂xn

∂yn
(p; yn) are well-defined.
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Given C(p) = 0 and A(p) = A, (57) can be rewritten as

(α− β)s̃i(p; yi) + β

(
AS +

n∑
j=1

Bj(p)

)
− p− λyi −

yi
−
∑

j 6=iDj(p)
= 0. (59)

For (59) to be consistent with s̃i(p; yi) = Ayi +Bi(p), we must have that Dj(p) = Dj

for some constants Dj, j ∈ {1, . . . , n}, and that

1∑
j 6=iDj

=
1∑

j 6=i′ Dj

, for all i 6= i′,

which implies that for all i, Di ≡ D for some constant D.

By (58), this means that Bi(p) = Bp+Ei where B = −DA. Finally, (59) implies

that Ei = Ej = E for some constant E as well.

Hence, we have shown that Lemma 1 implies (52). This completes Step 1 of the

proof of Case 1 of Proposition 2. In Step 2 below, we prove Lemma 1.

Step 2 of Case 1: Proof of Lemma 1.

Bidder n’s ex post first order condition can be written as:

n−1∑
j=1

∂xj
∂p

(p; yj) = − yn

αs̃n(p; yn) + β
∑n−1

j=1 s̃j(p; yj)− p− λyn
, (60)

where yn = S −
∑n−1

j=1 yj. Differentiate (60) with respect to yi gives:

∂

∂yi

(
∂xi
∂p

(p; yi)

)
=

Γ(y1, . . . , yn−1) + yn

(
−α ∂s̃n

∂yn
(p; yn) + β ∂s̃1

∂y1
(p; y1) + λ

)
Γ(y1, . . . , yn−1)2

, (61)

where

Γ(y1, . . . , yn−1) = αs̃n(p; yn) + β
n−1∑
j=1

s̃j(p; yj)− p− λyn. (62)

Solving for Γ(y1, . . . , yn−1) in (61), we get

Γ(y1, . . . , yn−1) = ρi

(
yi,

n−1∑
j=1

yj

)
(63)

for some function ρi, i ∈ {1, 2, . . . , n− 1}.
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We let ρi,1 be the partial derivative of ρi with respect to its first argument, and

let ρi,2 be the partial derivative of ρi with respect to its second argument. For each

pair of distinct i, k ∈ {1, . . . , n− 1}, differentiating (63) with respect to yi and yk, we

have

dΓ(y1, . . . , yn−1)

dyi
= ρi,1 + ρi,2 = ρk,2,

dΓ(y1, . . . , yn−1)

dyk
= ρk,1 + ρk,2 = ρi,2,

which imply that for all i 6= k ∈ {1, . . . , n− 1},

ρi,1 + ρk,1 = 0. (64)

Clearly, (64) together with n ≥ 4 imply that ρi,1 = −ρi,1, i.e., ρi,1 = 0 for all

i ∈ {1, . . . , n− 1}. That is, each ρi is only a function of its second argument:

ρi

(
yi,

n−1∑
j=1

yj

)
= ρi

(
n−1∑
j=1

yj

)
. (65)

Then, using (62), (63) and (65) for i = 1, we have

β
n−1∑
j=1

s̃j(p; yj) = ρ1

(
n−1∑
j=1

yj

)
+ p+ λyn − αs̃n(p; yn). (66)

Applying Lemma 2 to (66) (recall that yn = S −
∑n−1

j=1 yj), we conclude that, for all

j ∈ {1, . . . , n− 1},
s̃j(p; yj) = A(p)yj +Bj(p). (67)

Finally, we repeat this argument to bidder 1’s ex post first-order condition and con-

clude that (67) holds for j = n as well. This concludes the proof of Lemma 1.

A.1.2 Case 2: α = 1 and n ≥ 3

We now prove Case 2 of Proposition 2. Bidder n’s ex post first order condition in

this case is:
n−1∑
j=1

∂xj
∂p

(p; yj) =
−yn

s̃n(p∗; yn)− p− λyn
, (68)
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for every p ∈ (p̄− δ, p̄+ δ) and (y1, . . . , yn−1) ∈
∏n−1

j=1 (ȳj − δ/n, ȳj + δ/n), and where

yn = S −
∑n−1

j=1 yj.

Applying Lemma 2 to (68) gives:

∂xj
∂p

(p; yj) = C(p)yj +Dj(p), (69)

for j ∈ {1, . . . , n − 1}. Applying Lemma 2 to the ex post first-order condition of

bidder 1 shows that (69) holds for j = n as well.

Substituting (69) back into the first-order condition (68), we obtain:

(s̃i(p; yi)− p− λyi)

(
−C(p)(S − yi)−

∑
j 6=i

Dj(p)

)
− yi = 0,

which can be rewritten as:

∂xi
∂p

(p; yi) = C(p)yi +Di(p) =
yi

s̃i(p; yi)− p− λyi
+ C(p)S +

n∑
j=1

Dj(p). (70)

We claim that C(p) = 0. Suppose for contradiction that C(p) 6= 0. Then matching

the coefficient of yi in (70), we must have s̃i(p; yi) = λyi + Bi(p) for some function

Bi(p). But this implies that ∂xi
∂p

(p; yi) = −B′i(p)/λ, which is independent of yi. This

implies C(p) = 0, a contradiction. Thus, C(p) = 0.

Then, (70) implies that s̃i(p; yi)− p = Ai(p)yi for some function Ai(p). And since
∂xi
∂p

(p; yi) is independent of yi, Ai(p) must be a constant function, i.e., s̃i(p; yi)− p =

Aiyi for some Ai ∈ R. Substitute this back to (70) gives:

∂xi
∂p

(p; yi) = − 1

Ai
=

1

Ai − λ
−

n∑
j=1

1

Aj
,

which implies
1

Ai − λ
− 1

Aj − λ
=

1

Aj
− 1

Ai
, for all i 6= j,

which is only possible if Ai = Aj ≡ A ∈ R for all i 6= j. Thus, s̃i(p; yi) − p = Ayi,

which concludes the proof of this case.
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A.2 Proof of Proposition 3

We first verify the ex post equilibrium of Proposition 3. Then, we prove uniqueness.

With inventory and given other bidders’ demand schedules, bidder i’s utility is

Πi(p) =

(
S −

∑
j 6=i

xj(p; sj, zj)

)(
αsi + β

∑
j 6=i

sj − p

)
− 1

2
λ

(
zi + S −

∑
j 6=i

xj(p; sj, zj)

)2

,

where β = (1− α)/(n− 1), as in Section 2. Taking the first-order condition of Πi(p),

we obtain

0 = Π′i(p
∗) = −xi(p∗; si, zi) +

(
−
∑
j 6=i

∂xj
∂p

(p∗; sj, zj)

)[
αsi + β

∑
j 6=i

sj − p∗ − λ (zi + xi(p
∗; si, zi))

]
.

(71)

As before, we conjecture a linear demand schedule

xj(p; sj, zj) = asj − bp+ cS + dzj + eZ,

and write

∑
j 6=i

sj =
1

a

[∑
j 6=i

xj(p
∗; sj, zj) + (n− 1)bp∗ − (n− 1)cS − d

∑
j 6=i

zj − (n− 1)eZ

]

=
1

a
[S − xi(p∗; si, zi) + (n− 1)bp∗ − (n− 1)cS − d(Z − zi)− (n− 1)eZ] .

Substituting the above expression into (71) and rearranging, we have

xi(p
∗; si, zi) = [1 + λ(n− 1)b+ β(n− 1)b/a]−1 · (n− 1)b

· {αsi − [1− β(n− 1)b/a] p∗ + S [1− (n− 1)c] β/a

+ (βd/a− λ)zi − Z[d+ (n− 1)e]β/a}

≡ asi − bp∗ + cS + dzi + eZ.

Matching the coefficients and using the normalization that α+ (n−1)β = 1, we solve

a = b =
1

λ
· nα− 2

n− 1
, c =

1− α
n− 1

, d = −nα− 2

nα− 1
, e =

1− α
n− 1

· nα− 2

nα− 1
.
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We now turn to uniqueness. For a fixed ex post equilibrium (x1, . . . , xn) and a

profile of inventories z = (z1, . . . , zn), the ex post first-order condition for bidder i is:

−xi(p∗; si, zi)+

(
αsi + β

∑
j 6=i

sj − p∗ − λ(zi + xi(p
∗; si, zi))

)(
−
∑
j 6=i

∂xj
∂p

(p∗; sj, zj)

)
= 0.

Under the same conditions stated in Proposition 2, we apply the reasoning in the proof

of Proposition 2 to the fixed profile z and conclude that in any ex post equilibrium,

xi(p
∗; si, zi) = a(z)si − b(z)p∗ + d(z)zi + C(z),

for some functions a(z), b(z), d(z), and C(z). The calculations above show that these

functions are independent of z and thus are constants. The uniqueness of the ex post

equilibrium follows.

A.3 Proof of Proposition 4

We define ~β ≡ (β1, . . . , βm)′ where, for each k ∈ {1, . . . ,m},

βk =
1− αk
n− 1

.

Suppose that other bidders j 6= i use the strategy {~xj( · ; ~sj)}j 6=i. For fixed signals

(~s1, . . . , ~sn), bidder i’s utility at the price vector ~p is

Πi(~p) =

(
Diag(~α)~si + Diag(~β)

∑
j 6=i

~sj − ~p

)′(
~S −

∑
j 6=i

~xj(~p; ~sj)

)

− 1

2

(
~S −

∑
j 6=i

~xj(~p; ~sj)

)′
Λ

(
~S −

∑
j 6=i

~xj(~p; ~sj)

)
.

Bidder i’s ex-post first-order condition is that the gradient of Πi vanishes at the

market-clearing prices ~p∗, i.e.,

dΠi(~p∗)

d~p
= −~xi(~p∗; ~si) +

(
−
∑
j 6=i

∂ ~xj(~p∗; ~sj)

∂~p

)′(
Diag(~α)~si + Diag(~β)

∑
j 6=i

~sj − ~p∗ −Λ~xi(~p∗; ~si)

)
= 0,

(72)
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where
∂ ~xj( ~p∗;~sj)

∂~p
is an m-by-m matrix of partial derivatives.

We conjecture that bidders use linear symmetric demand schedules of the form:

~xi(~p; ~si) = B(~si − ~p) + C~S,

where B and C are m-by-m matrices. Furthermore, we assume that B is symmetric

and invertible.

These demand schedules yield the market-clearing price vector of

~p∗ =
1

n

n∑
i=1

~si + B−1

(
C− 1

n
I

)
~S.

where I is the identity matrix. Substituting the expressions of ~xj and ~p∗ into (72)

and rearranging, we have:

(I + (n− 1)BΛ) (B(~si−~p∗)+C~S) = (n−1)B

(
Diag(~α− ~β)(~si − ~p∗)−Diag(n~β)B−1

(
C− 1

n
I

)
~S

)
.

Matching coefficients with our conjecture, we obtain:

B = Λ−1 Diag

(
n~α− 2

n− 1

)
,

C = Λ−1 Diag

(
1− ~α
n− 1

)
Λ.

A.4 Proof of Proposition 5

We conjecture that bidders use the stationary and symmetric strategy:

xi,t∆(p; si,t∆, zi,t∆) = asi,t∆ − bp+ dzi,t∆ + fZ. (73)

We let p∗t∆ be the market-clearing price in period t as determined by the conjec-

tured strategy (73):

p∗t∆ =
a

nb

n∑
j=1

sj,t∆ +
d+ nf

nb
Z. (74)

For notational simplicity we write xi,t∆(p∗t∆; si,t∆, zi,t∆) as xi,t∆.

For a fixed period t and fixed arbitrary profiles (s1,t∆, . . . , sn,t∆) and (z1,t∆, . . . , zn,t∆),

we want to construct the strategy in (73) so that every bidder i does not have an
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incentive to deviate from this strategy in period t if he anticipates that (i) others are

using this strategy from period t on, and (ii) he himself will return to this strategy

from period t+1 and onwards. Then, by the single-deviation principle, this symmetric

strategy profile is a subgame perfect ex post equilibrium.

Bidder i’s ex post first-order condition (with respect to p∗t∆) in period t is:

E

[(
−
∑
j 6=i

∂xj,t∆
∂p

(p∗t∆; sj,t∆, zj,t∆)

)
·

(
1− e−r∆

r

(
vi,t∆ − λ(xi,t∆ + zi,t∆)

+
∞∑
k=1

e−rk∆∂(zi,(t+k)∆ + xi,(t+k)∆)

∂xi,t∆
(vi,(t+k)∆ − λ(zi,(t+k)∆ + xi,(t+k)∆))

)
−p∗t∆ −

∞∑
k=1

e−rk∆∂xi,(t+k)∆

∂xi,t∆
p∗(t+k)∆

)
− xi,t∆ −

∞∑
k=1

e−rk∆ xi,(t+k)∆

∂p∗(t+k)∆

∂p∗t∆

∣∣∣∣∣ si,t∆, {sj,t∆}j 6=i
]

= 0,

(75)

where the expectation E is taken over all realizations of future signals {sj,τ}1≤j≤n,τ>t∆.

If bidders follow the conjectured strategy in (73) from period t + 1 and onwards,

then we have the following evolution of inventories: for k ≥ 1,

zi,(t+k)∆ + xi,(t+k)∆ =(asi,(t+k)∆ − bp∗(t+k)∆ + fZ) + (1 + d)(asi,(t+k−1)∆ − bp∗(t+k−1)∆ + fZ)

+ · · ·+ (1 + d)k−1(asi,(t+1)∆ − bp∗(t+1)∆ + fZ) + (1 + d)k(xi,t∆ + zi,t∆),

(76)

where p∗t′∆, t+ 1 ≤ t′ ≤ t+ k, is defined in (74). Equations (74) and (76) imply that

∂(zi,(t+k)∆ + xi,(t+k)∆)

∂xi,t∆
= (1 + d)k, (77)

∂xi,(t+k)∆

∂xi,t∆
= (1 + d)k−1d, (78)

∂p∗(t+k)∆

∂p∗t∆
=
∂p∗(t+k)∆

∂xi,t∆
= 0. (79)

Given the conjectured strategy in (73), the derivatives in (77), (78) and (79), and
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the martingale property of signals, the ex post first order condition in (75) becomes:

(n− 1)b

[
1− e−r∆

r

(
vi,t∆ − λ(xi,t∆ + zi,t∆)

+
∞∑
k=1

e−rk∆(1 + d)k(vi,t∆ − λ(E[zi,(t+k)∆ + xi,(t+k)∆ | si,t∆, {sj,t∆}j 6=i]))

)

− p∗t∆ −
∞∑
k=1

e−rk∆(1 + d)k−1d p∗t∆

]
− xi,t∆ = 0, (80)

where, because equilibrium prices follow a martingale,

E[zi,(t+k)∆ + xi,(t+k)∆ | si,t∆, {sj,t∆}j 6=i]

= (asi,t∆ − bp∗t∆ + fZ)

(
1

−d
− (1 + d)k

−d

)
+ (1 + d)k(xi,t∆ + zi,t∆). (81)

Averaging (80) across all bidders and using the fact that
∑n

i=1 xi,(t+k)∆ = 0 and∑n
i=1 zi,(t+k)∆ = Z, we get:

p∗t∆ =
1

r

(
s̄t∆ −

λ

n
Z

)
, (82)

where

s̄t∆ ≡
1

n

n∑
i=1

si,t∆.

Therefore, in (73) we must have

b = ra,
aλ

n
+
d

n
+ f = 0. (83)
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Substituting (81), (82) and (83) into the first-order condition (80), we have:

(n− 1)(1− e−r∆)a

[
1

1− e−r∆(1 + d)

(
vi,t∆ − s̄t∆ +

λ

n
Z

)
(84)

−
∞∑
k=1

λe−rk∆(1 + d)k
(

1

−d
− (1 + d)k

−d

)(
a(si,t∆ − s̄t∆)− d

n
Z

)

− λ

1− e−r∆(1 + d)2
(xi,t∆ + zi,t∆)

]
− xi,t∆ = 0.

Rearranging the term gives:(
1 +

(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
xi,t∆

= (n− 1)(1− e−r∆)a

[
1

1− e−r∆(1 + d)

(
α− 1− α

n− 1

)
(si,t∆ − s̄t∆)

− λe−r∆(1 + d)

(1− (1 + d)e−r∆)(1− (1 + d)2e−r∆)
a(si,t∆ − s̄t∆)

− λ

1− e−r∆(1 + d)2
zi,t∆ +

1

1− e−r∆(1 + d)2

λ

n
Z

]
. (85)

On the other hand, (73) and (83) simplify the conjectured strategy to

xi,t∆ = a(si,t∆ − s̄t∆) + dzi,t∆ −
d

n
Z.

Matching the coefficients in the above expression with those in (85), we obtain two

equations for a and d:(
1 +

(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
=

(1− e−r∆)(nα− 1)

1− e−r∆(1 + d)
− (n− 1)(1− e−r∆)λe−r∆(1 + d)a

(1− (1 + d)e−r∆)(1− (1 + d)2e−r∆)
,(

1 +
(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
d = −(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2
.
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The solution to the above system of equations is

a =
nα− 1

2(n− 1)e−r∆λ

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
,

(86)

d = − 1

2e−r∆

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
,

where we have a > 0 and −1 < d < 0. Finally, we have b = ra and f = −d/n −
aλ/n. This completes the construction of the stationary and subgame perfect ex post

equilibrium.

A.5 Proof of Proposition 6

By (76) and (83), if signals do not change between period t and period t, then

z∗i,t∆ =

(
a

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
− d

n
Z

)(
1

−d
− (1 + d)t−t

−d

)
+ (1 + d)t−tz∗i,t∆.

Substituting the explicit values of a and d from Equation (86) to the above equa-

tion and noticing that a/(−d) = (nα− 1)/(λ(n− 1)), we obtain

z∗i,t∆ = zei,t∆(1− (1 + d)t−t) + (1 + d)t−tz∗i,t∆,

where

zei,t∆ =
nα− 1

λ(n− 1)

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
+

1

n
Z.

The comparative statics with respect to n, α and r follow by differentiating 1 + d

with respectively n, α and r and straightforward calculations.

For the comparative statics with respect to ∆, we find that

∂(log(1 + d)/∆)

∂∆
= − 1

∆2

(
r∆

η
√
η2(er∆ − 1)2 + 4er∆ − η2(er∆ − 1)− 2√

η2(1− e−r∆)2 + 4e−r∆
(√

η2(er∆ − 1)2 + 4er∆ − η(er∆ − 1)
)

+ log

(
1

2

(√
η2(er∆ − 1)2 + 4er∆ − η(er∆ − 1)

)))
,

where we let η ≡ nα − 1. Given η > 1, it is easy to show that the two terms in the
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right-hand side of the above equation are both positive, which implies our conclusion.

A.6 Proof of Proposition 8

We first prove the following two lemmas.

Lemma 3.

n∑
i=1

(
vizi −

λ

2
(zi)

2

)
=

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
− λ

2

n∑
i=1

(zi − zei )2 (87)

Proof. We have:

n∑
i=1

(
vizi −

λ

2
(zi)

2

)
=

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
+

n∑
i=1

(vi−λzei )(zi− zei )−
λ

2

n∑
i=1

(zi− zei )2.

(88)

The middle term in the right-hand side of (88) is zero because vi − λzei = pe for the

competitive equilibrium price pe, and
∑n

i=1 zi − zei = 0. This proves the lemma.

Lemma 4.
(1− e−∆r)(1 + d)2

1− e−r∆(1 + d)2
=

1 + d

nα− 1
. (89)

Proof. We have:

e−r∆(1 + d)2 =
2(nα− 1)2(1− e−r∆)2 + 4e−r∆ − 2(nα− 1)(1− e−r∆)

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

4e−r∆

= 1− (nα− 1)(1− e−r∆)(1 + d).

Now we prove Proposition 8. By Lemma 3 and Lemma 4, we have

n∑
i=1

∞∑
t=0

1− e−∆r

r
e−t∆r

(
viz
∗
i,(t+1)∆ −

λ

2
(z∗i,(t+1)∆)2

)
(90)

=
1

r

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
− λ(1− e−∆r)(1 + d)2

2r(1− e−r∆(1 + d)2)

n∑
i=1

(zei,0 − zei )2 (91)

=
1

r

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
− λ(1 + d)

2r(nα− 1)

n∑
i=1

(zei,0 − zei )2. (92)

It is straightforward to show that 1 + d is decreasing in ∆.
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A.7 Proof of Proposition 9

We can rewrite the first term on the right-hand side of (51) as

1− E[e−rT̄ ]

r

n∑
i=1

(
vi,0z

e
i,0 −

λ

2
(zei,0)2

)
. (93)

Furthermore,

E
[
e−rT̄

]
=
∞∑
t=0

e−(t+1)∆r
(
e−t∆ν − e−(t+1)∆ν

)
=
e−∆r − e−∆(r+ν)

1− e−∆(r+ν)
. (94)

By Equation (90), we have

E

[
n∑
i=1

∞∑
t=0

1− e−∆r

r
e−t∆r

(
viz
∗
i,T̄+(t+1)∆ −

λ

2
(z∗i,T̄+(t+1)∆)2

)]
(95)

=
1

r

n∑
i=1

E
[
viz

e
i −

λ

2
(zei )

2

]
− 1 + d

nα− 1

λ

2r

n∑
i=1

E[(zei,0 − zei )2]. (96)

Because E[vi | {sj,0}1≤j≤n] = vi,0, applying Lemma 3 we have:

n∑
i=1

E
[
viz

e
i −

λ

2
(zei )

2

]
−
(
vi,0z

e
i,0 −

λ

2
(zei,0)2

)
=
λ

2

n∑
i=1

E[(zei,0 − zei )2] ≡ X. (97)

Setting

Y ≡ 1

r

n∑
i=1

(
vi,0z

e
i,0 −

λ

2
(zei,0)2

)
, (98)

we see that (51) is equivalent to:

W (∆)− Y =
e−∆r − e−∆(r+ν)

1− e−∆(r+ν)

(
X − 1 + d

nα− 1
X

)
=
e−∆r − e−∆(r+ν)

1− e−∆(r+ν)
·

(nα− 1)(1 + e−r∆)−
√

(nα− 1)2(1− e−r∆)2 + 4e−r∆

2e−r∆(nα− 1)
·X.

By taking derivatives it is easy to show that both

e−∆r/2 − e−∆(r/2+ν)

1− e−∆(r+ν)
(99)
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and
(nα− 1)(1 + e−r∆)−

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

2e−r∆/2(nα− 1)
(100)

are decreasing in ∆, which proves the proposition.
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