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1. Introduction 

In the study of coalitional games with transferable or non-transferable utilities (TU or 

NTU), the previous literature has largely focused on the question of how to split the grand 

coalition’s payoff. This paper explores whether players could obtain higher payoffs than the 

grand coalition’s payoffs. Such exploration discovers each coalition’s shadow value and the 

concept of the maximum of generated-payoffs (efficient generated-payoffs) in coalitional TU 

(NTU) games, which reveals the duality between sub-coalitions’ blocking power and 

producing ability. In TU games, the duality says that the maximum of generated-payoffs 

(mgp) and the minimal worth of the grand coalition needed to guarantee no-blocking are 

exactly the same. In NTU games, the duality becomes that the set of efficient generated-

payoffs (EGP) and the minimum no-blocking frontier have a non-empty intersection. 

Such duality is perhaps the most salient feature of cooperation, because it leads to a 

new theory of coalition formation and the concept of the new core. Further, it implies not only 

the existing theorems on core existence (Bondareva [1962], Shapley [1967], and Scarf 

[1967b]) but also a new theorem on core existence: the usual TU (NTU) core is empty if and 

only if (if) players can produce a higher payoff than the grand coalition’s payoff by forming a 

minimal balanced collection. Such payoffs generated by minimal balanced collections are a 

step forward beyond payoffs generated by partitions in previous studies such as Sun, Trockel, 

and Yang (2008) on market games, Zhou (1994) on bargaining set, and Guesnerie and Oddou 

(1979) on the c-core. 

Finally, the paper defines the new TU (NTU) core as the splits of the maximal payoff 

(subset of the efficient payoffs) that are unblocked by all coalitions. It then shows that the 

new core is always non-empty and that the optimal (efficient) collections of coalitions will 

form in coalitional TU (NTU) games in a manner determined by their shadow values. 
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The rest of the paper is organized as follows. Section 2 studies the duality between 

sub-coalitions’ blocking power and producing ability in TU games, section 3 studies the new 

TU core and the formation of optimal coalitions, and section 4 provides deeper results on the 

new NTU core and on the formation of efficient coalitions. Section 5 applies the new core to 

three known examples, section 6 concludes, and the appendix provides proofs. 

2. The Maximum of Generated-payoffs and a New Theorem on the Usual Core 

Let N={1,2,…,n} be the set of players, N =2N be the set of all coalitions. A TU game 

in coalitional (or characteristic) form is a set function v: N→R+ with v(∅)=0, given below,  

(1) Γ = {N, v(.)}, 

which specifies a joint payoff v(S) for each coalition S∈N.  We use a lowercase v in v(.) to 

define the above TU game (1), and an uppercase V in V(.) to define NTU games in Section 4.   

Let X(v(N)) = {x∈ Rn
+ |Σi∈Nxi = v(N)} denote the set of payoff vectors that are splits of 

v(N), which is called the preimputation space. Given S∈N, a split x=(x1,…,xn)∈ X(v(N)) is 

unblocked by S if it gives S no less than v(S) (i.e., Σi∈Sxi ≥ v(S)), and it is in the usual core if it 

is unblocked by all S≠ N.  Denote the usual core of (1) as 

 (2) c0(Γ) = {x∈ X(v(N)) | Σi∈Sxi ≥ v(S) for all S ≠ N}. 

We use a lowercase c in c0(Γ) to denote TU core and an uppercase C in C0(Γ) to 

denote NTU core. Before we define generated-payoffs, let us review the concept of balanced 

collections. A collection of coalitions B = {T1, ..., Tk} is balanced if it has a balancing vector 

or a positive vector w∈Rk 
++ such that ΣT∈B(i)wT=1 for each i∈N, where B(i)={T∈B | i∈T} is 

the subset of coalitions in B  to which player i belongs. A balanced collection is minimal if no 

proper subcollection is balanced. It is known that a balanced collection is minimal if and only 
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if its balancing vector is unique (Shapley, 1967). 

Definition 1: Given game (1) and a minimal balanced collection B with its unique 

balancing vector w, the payoff generated by B  is given by gp(B) = Σ T∈BwTv(T).  The maximum 

of generated-payoffs (mgp) and the maximal payoff (mp) are given, respectively, by 

(3) mgp = mgp(Γ)= Max {gp(B) | B ∈ B}, and 

(4) mp = mp(Γ) = Max {mgp, v(N)}, where 

(5) B = {B = {T1, ..., Tk} |N∉ B, B is a minimal balanced collection} 

denotes the set of all minimal balanced collections, excluding the grand coalition. 

The definition considers only minimal balanced collections because mgp is achieved 

among minimal balanced collections, this is similar to linear programming whose optimal 

value is achieved among its extreme points. If B =Δ is a partition (i.e., ∪Ti=∪T∈ΔT=N; 

Ti∩Tj=∅ , i≠ j), it is clear gp(Δ)=ΣT∈Δv(T). If B  is not a partition, it might be unclear to some 

readers how gp(B)=Σ T∈BwTv(T) is generated by the players. To ameliorate such conceptual 

difficulty, we treat game (1) as a production (or input allocation) problem described below.  

Assume that each player i has one unit of inputs to produce a homogeneous output. 

For each coalition (or factory) S, it produces v(S) outputs if each of its members contributes 

one unit of inputs, and wSv(S) outputs (0≤wS≤1) if each of its members contributes wS of 

inputs. With such technology, a balanced collection B with its balancing vector w produce 

gp(B)= ΣT∈BwTv(T) outputs, and the maximal outputs (excluding v(N)) are equal to mgp in (3).  

Here, the balancing weights for a balanced collection B  are the proportions of inputs 

allocated to the coalitions in B(i)={T∈B | i∈T} by each player i. Given such interpretation, it 

stands to reason that the grand coalition will not be formed in TU games with mgp>v(N), 
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because players could produce a higher payoff than grand coalition’s payoff.1 

To illustrate this point, consider the following Internet Game in which three students 

are asked to host an online-forum and will be paid by sponsors according to the number of 

visits they generate. Suppose each student has 100 minutes of connection time (i.e., one unit 

of input) and could simultaneously co-host two forums with each of the two others by logging 

onto two computers but the total connection time is limited to 100 minutes. An example of 

the payoffs for each coalition or forum T are given below: 

Example 1 (Internet Game): n=3, v(1)=v(2)=v(3)=0, v(12)=v(13)=v(23)=v(123)= 

$1000.  The five minimal balanced collections (excluding {N}) are: B1={1,2,3}, B2={12,3}, 

B3={13,2}, B4={23,1}, and B5={12,13,23} with w={0.5,0.5,0.5}. By mgp=gp(B5)=1500> 

v(N)=1000, students could obtain a higher payoff than the grand coalition’s payoff by hosting 

each of the three two-member forums for 50 minutes.2 

In this game, it is clear that the grand coalition will not be formed. By forming each of 

the three two-member coalitions for 50 minutes, students will earn $500 more than v(N) . Such 

new payoff beyond v(N)  is what gives rise to our new theory. The following duality result 

provides a foundation for our new core results and coalition formation theory. 

Proposition 1: Given game (1), the maximization problem (3) for mgp is dual to the 

following minimization problem: 

(6) mnbp = Min {Σi∈Nxi | x∈ Rn
+; Σi∈S xi ≥ v(S), all S ≠ N}, 

so mgp = mnbp holds, where mnbp denoted the minimum no-blocking payoff.   

By the above duality, the balancing weights or proportions of input allocations for 

                                                 
1   Other interpretations are discussed in Remark 1 at the end of next section.  
2   We simplify v({i}) as v(i), v({1,2}) as v(12).  Similar simplifications apply to other coalitions. 
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mgp in (3) are coalitions’ shadow values3 for mnbp in (6), so the maximum of generated-

payoffs are produced by allocating inputs to coalitions in a minimal balanced collection 

according to their shadow values. Since mgp represents sub-coalitions’ ability to produce 

outputs or payoffs that are different from v(N) and mnbp represents their power to block the 

grand coalition’s proposals (Zhao, 2001), the producing ability and blocking power of sub-

coalitions are dual to each other. In other words, the duality says that the maximal outputs 

produced by sub-coalitions and the minimal worth of the grand coalition needed to guarantee 

no-blocking are exactly the same. Such dual relationship is perhaps the most salient feature of 

cooperation, as it also holds in NTU games (see Proposition 3), and it leads directly to both 

previously known theorems and a new theorem on the existence of the usual core as given 

below: 

Corollary 1: Given game (1), its usual core is non-empty if and only if each of the 

following three arguments holds:  

(i) the game is balanced (Bondareva, 1962; Shapley, 1967); 

(ii) players can not produce a higher payoff than the grand coalition’s payoff; and 

(iii) the grand coalition has enough to guarantee no-blocking (Zhao, 2001). 

Precisely, the above three core arguments are: (i) Σ T∈BwTv(T)≤ v(N) for each balanced 

B with a balancing vector w, (ii) mgp≤ v(N), and (iii) v(N)≥ mnbp. Note that the precise 

statement of part (iii) or v(N)≥ mnbp was only formulated by the author in 2001, although the 

intuition was well known since early 1950’s when Shapley first used the term core in 

Princeton workshops. As readers will see, Proposition 1 not only implies the above three core 

arguments, but also answers four other questions in the next section: What payoffs will be 

                                                 
3   The shadow value for the grand coalition N can be given as: wN=1 if v(N)≥ mgp, and wN=0 if v(N)<mgp.  
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split? How will the payoff be split? What coalitions will form? and How much inputs will 

each of the formed coalitions receive?  

3.   The New Core and its Optimal Coalitions 

Part (ii) of Corollary 1 implies that players will not split the grand coalition’s payoff 

in games with an empty usual core, because they could split a higher payoff than v(N) by 

forming minimal balanced collections. Then, what payoffs will players split in games with an 

empty usual core?  We postulate that they split the maximal payoff given by mp= Max {mgp, 

v(N)} in (4). By mp=v(N) if c0(Γ)≠∅ and mp=mgp>v(N) if c0(Γ)=∅, it stands to reason 

that players will always split mp. This answers the question of what payoffs will be split. 

Next, consider the question of how to split the maximal payoff. The requirement that a 

solution be free of coalitional deviations leads to the following new core: 

(7) c(Γ) = {x∈ X(mp) | Σi∈Sxi ≥ v(S), all S}= 
( )
( )

0 if   

 if   

c ( ) v N mp

Y( ) v N mp,

Γ

Γ

⎧ =⎪
⎨

<⎪⎩
 

which is identical to the usual core in (2) if the usual core is non-empty, and the optimal set 

Y(Γ) for mnbp in (6) if the usual core is empty, where the optimal set Y(Γ) is given by 

(8) Y = Y(Γ) = Arg-Min{Σi∈Nxi | x∈Rn
+, Σi∈S xi ≥ v(S) for all S≠N}. 

Now, consider the question of what coalitions will form. Because players always split 

mp, they will form the optimal collections or optimal coalitions that generate mp, which will 

be either the grand coalition (if v(N)>mgp) or the optimal set for (3) (if v(N)<mgp) or their 

union (if v(N)=mgp).  The set of optimal collections is denoted as B*(Γ) given below:  

(9) B* = B*(Γ) = 
⎩
⎨
⎧      {N}              if mgp(Γ)< v(N);

    B0(Γ)             if mgp(Γ)>v(N);
 {N}∪B0(Γ)      if mgp(Γ) = v(N);
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where mgp(Γ) is given in (3), and B0(Γ) is its optimal set given by   

(10) B0 = B0(Γ) = {B∈B| gp(B)= mgp} = Arg-Max{gp(B)|B∈B}. 

Finally, the unique balancing vector for each optimal B answers the question of how 

much inputs will each of the formed coalitions receive. These answers are summarized below:    

Proposition 2: Given game (1), let mp(Γ), c(Γ)≠∅ and B*(Γ) be given in (4), (7) and 

(9), respectively. Then, players will split mp(Γ) within the new core c(Γ); the optimal 

collections in B*(Γ) will form, and each coalition T in an optimal collection B  with a unique 

balancing vector w will receive wT of inputs from each of its members.   

In the following three remarks, we discuss new interpretations for the balancing 

weights, the relationship between the new core and the game’s balanced cover, and the 

advantage of the new core and its policy implications, respectively. 

Remark 1: Besides proportions of input allocations, the balancing weights can also be 

interpreted as: (i) length or percentage of time for which coalitions form, assuming the game 

lasts for one unit of time (see Example 6 in section 5); (ii) the frequency with which a player 

joins his coalitions in a collection, assuming the game is replicated/repeated for a finite 

number of times (such as k identical sets of the travelers in Example 5 in Section 5); and (iii) 

the probability with which each player joins the coalition, by introducing uncertainty. 

Remark 2: To see the relationship between the new core and the core of the game’s 

balanced cover, let mp(S) denote the maximal payoff of the subgame obtained by restricting 

the game (1) to each S⊆ N. Then, the game’s balanced cover is the game Γ bc={N, mp(S)}, 

while the new core is the core of another game Γ new={N, u(S)} in which u(S)=v(S) for all 

S≠N and u(N)= mp(N)=mp. Therefore, the new core and the core of the game’s balanced 

cover are the usual core of two different games, although they are identical. 
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Remark 3: The new core has three advantages: it is always non-empty, it advances 

coalition formation from grand coalition and partitions to optimal collections (see Myerson 

[1980] and Maskin [2003] for survey), and it achieves the maximal surplus with a superior 

policy (see the discussion after Example 5 for an example of such policy advantage).  

4.  The New NTU Core and its Efficient Coalitions 

A coalitional NTU game, or an NTU game in characteristic form, is defined as  

(11) Γ = {N, V(.)}, 

which specifies a non-empty set of payoffs, V(S)⊂ RS, for each S∈N , where RS is the 

Euclidean space whose dimension is the number of players in S and whose coordinates are the 

players in S.  For each S∈ N , let the (weakly) efficient set of V(S) be given as 

∂V(S)  = { y∈V(S) | there is no x ∈ V(S) such that x>>y},  

where vector inequalities are defined as below:  x ≥ y  ⇔  xi ≥ yi,  all i;  x > y ⇔  x ≥ y and x 

≠ y; and x >> y ⇔ xi > yi, all i. 

Scarf (1967b) introduced the following two assumptions for (11): (i) each V(S) is 

closed and comprehensive (i.e., y∈ V(S), u∈ RS and u≤ y imply u∈ V(S)); (ii) for each S, 

{y∈ V(S)|yi≥ ∂V(i)>0, all i∈S} is non-empty and bounded, where ∂V(i)=Max{xi|xi∈V(i)}.  

Under these assumptions, each ∂V(S) is closed, non-empty and bounded.   

Given S∈ N , a payoff vector u∈ Rn
+ is blocked by S if S can obtain a higher payoff for 

each of its members than that given by u, or precisely if there is y∈ V(S) such that y >> uS = 

{ui|i∈S} (i.e., uS∈V(S)\∂V(S)).  A payoff vector u∈∂V(N) is in the usual core if it is 

unblocked by all S ≠ N, so the usual core of (11) can be given as 
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(12) C0(Γ)  = { u∈∂V(N) | uS∉V(S)\∂V(S), all S≠N }. 

We now define a balanced NTU game (Scarf, 1967b) geometrically. For each S≠N, let 

~v (S)=V(S)×R−S⊂Rn, where R−S=∏i∈Ν \SRi. The following concepts of efficient generated-

payoffs and efficient payoffs are the NTU counterparts of mgp and mp in Definition 1: 

 Definition 2: Given game (11), the payoffs generated by each B∈B are given by 

GP(B) =∩S∈B
~v(S)⊂ Rn. The sets of generated-payoffs (GP), efficient generated-payoffs (EGP) 

and efficient payoffs (EP) are given, respectively, as 

(13) GP = ∪
B∈BGP(B), EGP =∂GP = {y∈GP|∃ no x∈GP such that x>>y}, and 

(14) EP = EP(Γ)=∂ (GP∪V(N))= {y∈GP∪ V(N) | ∃ no x∈GP∪ V(N) with x>>y}, 

where B is the set of minimal balanced collections (excluding N) given in (5). 

Note that GP(B) is simplified to GP(B)=∏S∈B V(S) when B is a partition. Similar to 

the TU case, we only need to consider minimal balanced collections because they determine 

EGP. Figure 1 illustrates such generated-payoffs in the following Example 2: 

F ig u re  1 .  T he ge nerated  pa yo ffs in E xa m p le 2 , w here  B 1=  {1,  2, 3},   
B 2 =  {12,  3},  B 3 =  {13,  2},  B 4 = {23, 1},  and B 5 =  {12, 13,  23}.  

 

x2  

x1  

x3  

 (2  , 2 , 2) 
 

(c)  GP(B 3 )  
 

x2  
 

x1  
 

x3  
 

(2, 1 , 2) 
 

(a ) GP(B 1 )  

x2  
 

x1  
 

x3  
 

(1 ,1 ,1) 
 

x2  

x1  

x3  

(1 , 2, 3) 

(2, 1 , 2) 
 

(3 , 2, 1) 
 

(d ) GP (B 5)   (e ) GP(B 1 )∪ GP (B 2)∪ GP (B 3) ∪ GP (B 4)  

x2  

x1  

x3  

(1 , 2, 3) 

(3, 2 , 1) 
 

(b ) GP (B 2)∪ GP(B 4 )   

x2  

x1  

x3  

(1 , 2, 3) 

(f)  GP(B 2 )∪ GP (B 3) ∪ GP (B 4)∪ GP (B 5)  

(3 , 2 , 1) 
 

 (2  , 2 , 2) 
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Example 2: n = 3, V(i)= {xi | xi ≤ 1}, i = 1, 2, 3; V(12)= {(x1, x2) | (x1, x2)≤ (3,2)}, 

V(13)={(x1,x3)|(x1,x3)≤(2,2)}, V(23)={(x2,x3)|(x2,x3)≤(2,3)}, V(123)={x|x1+x2+x3≤5}. For 

each B i∈B, one has: GP(B1)={x|x≤(1,1,1)}, GP(B2)={x|x≤(3,2,1)}, GP(B3)={x|x≤(2,1,2)}, 

GP(B4)={x|x≤(1,2,3)}, GP(B5)={x|x≤(2,2,2)}, where B i are the same as in Example 1. 

Now, the game (11) is balanced if GP(Γ)⊂ V(N) or if for each balanced B, u∈V(N) 

must hold if uS∈V(S) for all S∈B.  To see a balanced game geometrically, visualize that one is 

flying in a jet above the Rocky Mountains, and treat the generated-payoffs as peaks of the 

mountains and V(N) as clouds. Then, a game is balanced if one sees only clouds and 

unbalanced if one sees at least one peak above the clouds. In Example 2, one sees three peaks 

above the clouds (see Figure 2b), so the game is unbalanced. In Example 3, one sees only 

clouds  (see Figure 2a), so the game is now balanced. 

    F ig u re  2 .  Ba la nced a nd unba la nced  ga m es.  
 

x2  
 

x1  
 

x3  
 

(2 , 2, 2 )  
 

(0 , 7, 0 )  
 

(7 , 0, 0 )  
 

 (0 , 0, 7 )  
 

(1 , 2 , 3) 
 

x2  
 

x1  
 

x3  
 

(0 , 5, 0 )  
 

(5 , 0, 0 )  
 

 (0, 0, 5)  
 

a =  (1 , 2, 3) 
b =  (2 , 2, 2) 
c  =  (3 , 2 , 1) 
 

(1 , 2 , 2) 
 

 c 
 

(3 , 2 , 0) 
 

(b) A n unba la nced  ga me   (a) A ba la nced  ga me   

(3 , 2, 1 )  
 

  b  
 

 a  
 

(2 ,2 ,1 ) 
 

(0 , 2 , 3) 
 

 

Example 3: Same as Example 2 except V(123)={x|x1+x2+x3≤7}. 

Note that the collection B5 = {12, 13, 23} in Example 2 generates new payoffs that are 

outside of those generated by the four partitions and are better than v(N) (see point b in Figure 

2b and the difference between [e] and [f] in Figure 1).  Needless to say, it is the discovery of 
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such new and better payoffs that gives rise to our new coalition formation theory. 

Recall that a payoff vector u is unblocked by S if u∈ [V(S)\∂V(S)]C× R−S⊂ Rn or if 

uS∉V(S)\∂V(S), where the superscript C denotes the complement of a set. The following 

concept of minimum no-blocking frontier is the NTU counterpart of mnbp in (6): 

 Definition 3:  Given game (11), the set of payoffs unblocked by all S≠N (UBP) and 

the minimum no-blocking frontier (MNBF) are given, respectively, as 

(15) UBP = UBP(Γ) = ∩
S ≠ N{[V(S)\∂V(S)]C×R−S}⊂ Rn, and 

(16) MNBF =MNBF(Γ)=∂UBP ={y∈UBP|∃ no x∈UBP such that x<<y}. 

It is easy to see that each payoff vector on or above MNBF is unblocked by all S≠N, 

and the usual core can be given as C0(Γ)=UBP∩∂V(N)=MNBP∩∂V(N). Similar to the TU 

case, MNBF represents sub-coalitions’ power to block the grand coalition’s proposals. 

Proposition 3 below shows that sub-coalitions’ blocking power and producing ability are also 

equivalent in coalitional NTU games, which is the NTU counterpart of Proposition 1. 

Proposition 3: Given game (11), its minimum no-blocking frontier and efficient 

generated-payoffs have a non-empty intersection. 

To put it differently, the NTU counterpart of mnbp = mgp in game (1) is 

(17)  Z = Z(Γ) = MNBF∩ EGP≠ ∅. 

It is easy to verify a, b, c∈ Z in Example 2 (see Figure 2b), where a={1,2,3}, b={2,2,2}, and 

c={3,2,1}, so Z≠∅  holds in the example. 

Proposition 3 is proved by a version of Scarf’s closed covering theorem (1967a) due 

to Zhou (1994). Recall that EGP⊆ V(N) holds in balanced games. Then, MNBF∩EGP≠ ∅ 

implies MNBF∩∂V(N)= C0(Γ) ≠ ∅  in balanced games. Hence, our proof of Proposition 3 

implies a new proof of Scarf’s core theorem. Similar to the TU case, the duality between sub-
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coalitions’ blocking power and producing ability leads directly to three (one previously 

known and two new) theorems on the existence of the usual NTU core as given below: 

Proposition 4:  Given game (11), the following three claims hold:  

(i) its usual core is non-empty if it is balanced (Scarf, 1967b);  

(ii) its usual core is empty if players can produce a better payoff than each of the 

grand coalition’s payoff; and  

(iii) its usual core is non-empty if and only if the grand coalition has enough to 

guarantee no blocking. 

Precisely, the above three core results are: (i) C0(Γ)≠∅  if GP⊂ V(N); (ii) C0(Γ)=∅  if 

V(N)⊂ GP\∂GP; and (iii) C0(Γ)≠∅ ⇔ there exists x∈∂V(N) and y∈ MNBF such that x≥ y.  

    F ig u re  3 .   T he us ua l core a nd  the new co re : pa yo ffs in the us ua l 
   co re are b lue- co lored , a nd  pa yo ffs in the new co re are red- co lored .  
 

x2  
 

x1  
 

(0 , 7, 0 )  
 

(7 , 0, 0 )  
 

 (0 , 0, 7 )  
 

(1 , 2 , 4) 
 

x2  
 

x1  
 

x3  
 

(0 , 5, 0 )  
 

(5 , 0, 0 )  
 

 (0, 0, 5)  
 

a =  (1 , 2,  3) 
b =  (2 , 2,  2) 
c  =  (3 , 2 , 1) 
 

d=(1 , 2 , 2) 
 

 c 
 

(3 , 2 , 0) 
 

   (a ) T h e  u s u a l co re  o f E xa mp le  2  a re  d  =  
(1 ,2 ,2 )  an d e  = (2 ,2 ,1) , th e  new co re  is  th e  
th ick red  cu rv e  lin kin g   a ,  d , b ,  e , c .  
 

 a  
 

  e =(2 ,2 ,1) 
 

(0 , 2 , 3) 
 

x3  

 b  
 

(1 , 4 , 2) 
(2 , 3 , 2) 

(2 , 4 , 1) 
(4 , 2 , 1) 

( b)  T h e  u s u a l co re  o f E xa mp le  3.  
 

 

Due to the generality of non-transferable utilities, the usual NTU core is no longer 

convex (such as in Examples 2-3, see Figure 3), and the first two conditions in Proposition 4 

now are only sufficient: balancedness is no longer necessary for a non-empty usual NTU core 

(e.g., the usual core is non-empty in the unbalanced Example 2, see Figure 3a), and “players 

can produce better payoffs than V(N)” is no longer necessary for an empty usual NTU core. 
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Similar to the TU case in which players will not split v(N) if v(N)<mgp, players will 

not choose from V(N) if they can produce better payoffs than V(N) (i.e., if V(N)⊂GP\∂GP). 

This observation suggests that players will choose from the set of efficient payoffs (EP) given 

in (14). The requirement that a solution be unblocked further suggests that players will choose 

from a subset of EP, called the new NTU core, as given below: 

 (18)   C(Γ) = { u∈EP(Γ) | uS∉V(S)\∂V(S), all S ⊆ N } 

     =
0

0

0 0
*

( )     if ( ) ( )
( )    if ( )  or if ( ) ( ) ( )  

( ) ( )    if ( ) ( ) and ( )

C    GP V N
Z     V N GP\ GP V N GP\ GP,GP V N ,C

C Z   V N GP\ GP,GP V N C ,

Γ Γ
Γ Γ

Γ Γ Γ

⎧ ⊂
⎪

⊂ ∂ ⊄ ∂ ⊄ = ∅⎨
⎪

∪ ⊄ ∂ ⊄ ≠ ∅⎩

 

where C0(Γ), GP(Γ) and Z(Γ) are given in (12), (13) and (17), respectively, and Z(Γ)* = 

Z(Γ)∩[V(N)\∂ V(N)]C.  Note that the above new core is defined in three cases.  It is equal to: 

(i) the usual core if the game is balanced; (ii) the set of unblocked and efficient generated-

payoffs if players can produce better payoffs than V(N) or if players can not produce better 

payoffs than V(N) and the game is unbalanced with an empty usual core; and (iii) the union of 

the usual core and a subset of the second case if players can not produce better payoffs than 

V(N) and the game is unbalanced with a non-empty usual core. 

Figure 3a illustrates the difference between the new core and the usual core in 

Example 2, where the usual core has two points (i.e., d and e) and the new core is the curve 

connecting all three peaks. What makes the NTU core more general and deeper than the TU 

core is that unlike in TU games where either the game is balanced or players can produce a 

better payoff than v(N) (i.e., either v(N)≥ mgp or v(N)<mgp), there exist a large set of 

unbalanced NTU games in which players can not produce a better payoff than each u∈V(N). 

We are now ready to answer the question of what coalitions will form. Because 

players will choose payoffs within the new core, they will form the efficient collections or 
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efficient coalitions that support the new core, which will be either the grand coalition or the 

set of minimal balanced collections supporting Z(Γ) or a subset of their union. Such efficient 

collections is denoted as D*(Γ)  and is given by 

(19)   D*(Γ) =
( )

( ) ( ) ( )
( )

0 0

1 0

{ }

( )     ( )  

{ } ( )    ( )

N        if  GP( ) V N

D    if V N GP\ GP or if V N GP\ GP,GP V N ,C

N D   if V( N ) GP\ GP,GP V N and C ,

Γ

Γ Γ

Γ Γ

⎧ ⊂
⎪

⊂ ∂ ⊄ ∂ ⊄ = ∅⎨
⎪ ∪ ⊄ ∂ ⊄ ≠ ∅⎩

where D0(Γ)={B∈B|GP(B)∈Z(Γ)} is the set of collections supporting Z(Γ) in (17), which is 

the NTU counterpart of B0(Γ)  in (10); C0(Γ) and GP(Γ) are given in (12) and (13); D1(Γ)= 

{B∈D0(Γ)|GP(B)∈Z(Γ)*}, where Z(Γ)*=Z(Γ)∩[V(N)\∂ V(N)]C is the same as in (18). 

It is useful to note that the efficient coalitions are defined according to the three cases 

of the core in (18). In Example 2, the efficient collections are: {N}, B2={12,3}, B3={13,2}, 

B4={23,1}, and B5={12,13,23}.4 Our last proposition summarizes the above results. 

Proposition 5:  Given game (11), let C(Γ)≠∅ and D*(Γ) be given in (18) and (19). 

Then, players will choose efficient payoffs within the new core C(Γ); the efficient collections 

in D*(Γ) will form, and each coalition T in an efficient collection B with a unique balancing 

vector w will receive wT of inputs from each of its members. 

Analogous to the TU case, the advantage of the non-empty NTU core is the 

consequence of utilizing generated-payoffs: in the usual NTU core, players just choose from 

∂V(N); whereas in the new NTU core, players choose from the game’s efficient payoffs, 

which in general includes ∂V(N) as a proper subset.  

                                                 
4   Keep in mind that the set of efficient payoffs here is precisely the weakly efficient set. The payoff (2, 1, 2) 

is only weakly efficient because it is Pareto-dominated by (2, 2, 2). 
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5.  More Examples 

In this section, we apply the new core to three known examples in the literature. First, 

consider the following Garbage Game (Shapley and Shubik, 1969):  each player has a bag of 

garbage which he must dump in someone's yard and the utility of having b bags dumped in 

one's yard is -b. It is known that its usual core is empty with three or more players.     

Example 4 (Garbage Game, Shapley and Shubik [1969]): n≥3, v(k)=-(n-k)  if k<n, 

and v(n)=-n, where k≤ n is the size of each coalition. The emptiness of the usual core follows 

from mp=gp(B0)=-n/(n-1)>v(N)=-n, where B0= {N\{i}| i∈N} is the optimal collection with 

identical weight wT =1/(n-1). By Proposition 5, the new core is non-empty, and each optimal 

coalition N\{i} will be formed with 1/(n-1) of inputs (or for [1/(n-1)]% of time). 

The new core suggests that a player i will dump 1/(n-1) of his garbage in the yard of 

each j(≠ i) together with the (n-2) players in N\{i, j}.5  This outcome is natural because it is 

most efficient for coalitions with (n-1) players to do the job and one can not dump the garbage 

in one’s own yard.  

In the next Flight Game (Bejan and Gómez, 2009), three travelers are willing to pay 

$700, $1,000 and $1,200, respectively, for a trip from New York to Los Angeles. A three-

person jet charges $1,000 per trip while a smaller two-person jet charges $600. 

Example 5 (Flight Game, Bejan and Gómez [2009]): n=3, v(1)=100 ,v(2)=400 ,v(3) 

=600,v(12)=1100 ,v(13)=1300 ,v(23)=1600 ,v(123)=1900. By mp=gp(B5)=2000 > v(N) 

=1900, the usual core is empty, the new core is unique with x={400, 700, 900}, and the 

optimal collection is B5={12,13,23} with identical balancing weight wT =1/2. 

                                                 
5   Here we interpret one bag of garbage as one unit of input.  The frequency and percentage/length of time 

interpretations in Remark 1 can also be used to understand the new core for Garbage Game. 
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The new core recommends that a traveler flies equally often with each of the other two 

travelers in two-person jets (i.e., each of the three two-member coalitions be formed half of 

the time), while the state of art theory based the usual core recommends (see Bejan and 

Gómez [2009, page 4] for details) that all three fly in a three-person jet (i.e., the grand 

coalition be formed), where the modified usual core is non-empty with x={380, 665, 855}, 

supported by $1,000 subsidy to the airline financed by a 5% surplus tax on travelers.  

To see the advantage of the new core with frequency interpretation, consider a more 

practical version of the Flight Game, for example, in which each of the three travelers makes 

2k trips per year (or 2k identical sets of them fly on the same day). The new core recommends 

flying the two-person jet 3k times with $300 tickets, achieving the maximal surplus of 2k×mp  

= $4,000×k; while the modified usual core recommends flying the three-person jet 2k times 

with $300 ticket, achieving a surplus of only 2k×v(N) = $3,800×k;   

Finally, consider the popular Voting Game or the game obtained by diving all payoffs 

by 1,000 in the Internet Game of Example 1, which has no solution in the previous literature 

because its usual core is empty.  

Example 6 (Voting Game): n=3, v(1)=v(2)=v(3)=0, v(12)=v(13)=v(23)=v(123) 

=1. By mp=gp(B5)=1.5> v(N)=1, the usual core is empty, the new core is x={0.5, 0.5, 0.5},  

and the optimal collection is B5={12,13,23} with identical weights wT =1/2. 

The new core predicts that a player will form an alliance with each of the other two for 

half of the time, which provides a natural interpretation for party-switching during a 

politician’s career and multiple marriages in one’s life. Such optimal and stable outcome can 

be achieved through a virtual process, such as in the Internet Game, in which a player is able 

to spend one half of his life before (or after) the game or two halves of his life 
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simultaneously.6 

6.  Conclusion and Discussion 

The above analysis has explored the possibility that players in a coalitional game 

sometimes could produce better payoffs than the grand coalition’s payoffs by forming a 

minimal balanced collection, and it has established a duality or the equivalence between the 

blocking power and producing ability of all sub-coalitions.  Such duality not only leads to 

three different understandings about the usual TU or NTU core, but also leads to a theory of 

coalition formation: players will end up with a payoff vector within the non-empty new core, 

and they will join or form the optimal or efficient coalitions for a length of time (with a 

quantity of inputs, or with a frequency) determined by the shadow values of the formed 

collections. 

The new core has three advantages: it is always non-empty; it applies to situations in 

which minimal balanced collections, rather than a partition or the grand coalition, are formed; 

and it implies the first-best policy with maximal surplus. These advantages suggest a wide 

range of future applications of the new core, such as in partition function games, normal form 

games and general equilibrium models. Readers are encouraged to apply the new core to 

previous studies on values and core-enlargements in games with an empty usual core. 

                                                 
6   Although imaginative, such virtual processes are supported by heuristic empirical evidences. Pre- and post-

season games in sports are examples of the pre- and post-game plays in a virtual process. Another example is 

China’s three-kingdom period (220-280 A.D.) in which two players (Wei and Wu) engaged post-game plays 

(i.e., they lived after the famous three-kingdom game was finished). 
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Appendix 

Proof of Proposition 1:   For each S≠N, let eS = (x1, …, xn)′∈ Rn
+ be its incidence vector or 

the column vector such that xi = 1 if i∈S and xi = 0 if i∉S, and e = eN = (1, …, 1)′  be a 

column vector of ones.  Then, the dual problem for the minimization problem (6) is the 

following maximization problem:  

(20) Max  {ΣS≠NyS v(S) | yS ≥ 0 for all S≠N; and ΣS≠NyS eS ≤  e}. 

We will show that (20) is equivalent to the maximization problem (3).  First, we show 

that the inequality constraints in (20) can be replaced by equation constraints. 

Let Ay≤ e and y≥0 denote the constraints in (20), where A = An×(2
n

-2) = [eS | S≠Ν ] is the 

constraint matrix, and y is the (2n-2) dimensional vector whose indices are the proper 

coalitions. Let the rows of A be a1, …, an, and for each feasible y, let T = T(y) = {i | ai⋅y <1} 

be the set of loose constraints, so N\T = {i | ai⋅y =1}  is the set of binding constraints.   

If T(y) ≠ ∅, let z be defined as:  zS = yS+(1- ai⋅y) if S = {i}, for each i∈T, and zS = yS if 

S ≠ {i} for all i∈ T.  One sees that z > y and T(z) =∅.  Hence, for any y with T(y) ≠ ∅, there 

exists z ≥ 0, Az = e such that ΣS≠NyS v(S)≤  ΣS≠NzS v(S).  Hence, the feasible set of (20) can be 

reduced to {z | z ≥ 0, Az = e}, without affecting the maximum value. So the maximization 

problem in (20) is equivalent to the following problem:   

(21) Max  {ΣS≠NyS v(S) | Ay = e, and y ≥ 0 }. 

Next, we establish the one-to-one relationship between the extreme points of (21) and 

the minimal balanced collections. Note that for each feasible y in (21), B(y) = {S | yS  > 0} is a 

balanced collection. Let y be an extreme point of (21). We now show that B(y)={S | yS  > 0} is a 

minimal balanced collection.   
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Assume by way of contradiction that B(y) is not minimal, then there exists a balanced 

subcollection B’⊂ B(y) with balancing vector z.  Note that zS > 0  implies  yS > 0.  Therefore, for 

a sufficiently small t>0 (e.g., 0<t≤ ½, and t≤ Min {yS /|zS -yS| | all S with yS≠ zS}), one has 

w = y – t(y-z) ≥ 0, w’ = y + t(y-z) ≥ 0.   

Ay = e and Az = e lead to Aw = e and Aw’ = e.  But y = (w+w’)/2 and w ≠ w’ contradict the 

assumption that y is an extreme point.  So B(y) must be minimal.   

Now, let B = {T1, ..., Tk} be a minimal balanced collection with a balancing vector z.  

We need to show that z is an extreme point of (21).  Assume again by way of contradiction 

that z is not an extreme point, so there exists w ≠ w’ such that z = (w+w’)/2.  By w≥ 0, w’≥ 0, 

one has 

{S | wS >0} ⊆ B ={S | zS >0}, and {S | w 'S >0} ⊆ B ={S | zS >0}. 

The above two expressions show that both w and w’ are balancing vectors for some 

subcollections of B.  Because B is minimal, one has w = w’ = z, which contradicts w ≠ w’.  

Therefore, z must be an extreme point of (21).           

Finally, by the standard results in linear programming, the maximal value of (21) is 

achieved among the set of its extreme points, which are equivalent to the set of the minimal 

balanced collections, so (21) is equivalent to Max {ΣS∈B ySv(S)}, subject to the requirements 

that N∉ B and B is a minimal balanced collection with the balancing vector y.   This shows 

that (20) is equivalent to the maximization problem (3) for mgp, which completes the proof 

for Proposition 1.         Q.E.D 

Proof of Corollary 1:  Given Proposition 1, it is straightforward to show parts (i-iii). Note 

that part (i) was first proved using Min{Σi∈Nxi|x∈X(v(N)), Σi∈Sxi≥v(S), all S≠N}.  Q.E.D 



 21

Proof of Proposition 2:  Discussions before the proposition serve as a proof.  Q.E.D 

Our proof for Proposition 3 uses the following lemma on open covering of the simplex 

ΔN = X(1) = {x∈ Rn
+|Σ i∈Nxi = 1}. 

Lemma 1 (Scarf, 1967a; Zhou, 1994):   Let {CS}, S≠N, be a family of open subsets of ΔN that 

satisfy ΔN\{i}={x∈ΔN | xi = 0}⊂C{i} for all i∈N, and ∪S≠NCS = ΔN, then there exists a balanced 

collection of coalitions B such that ∩S∈ BCS ≠ ∅. 

Proof of Proposition 3:   Let UBP be the set of unblocked payoffs in (15), and EGP be the 

boundary or (weakly) efficient set of the generated payoff in (13).  We shall first show that 

UBP∩ EGP ≠ ∅.   

For each coalition S≠ N, let WS = {Int V(S)×R−S}∩EGP be an open (relatively in EGP) 

subset of EGP, where Int V(S) = V(S)\∂V(S) is the interior of V(S).  For each minimal 

balanced collection of coalitions B, we claim that   

(22)  ∩S∈ BWS = ∅ 

holds.  If (22) is false, there exists y∈ EGP and y∈ Int V(S)×R−S for each S∈ B.  We can now 

find a small t >0 such that y+te∈ Int V(S)×R−S for each S∈ B, where e is the vector of ones.  

By the definition of generated payoffs in (13), y+te∈ GP(B) = ∩S∈ B{V(S)×R−S}⊂  GP, which 

contradicts y∈ EGP.  This proves (22). 

Now, suppose by way of contradiction that UBP∩ EGP = ∅.  Then, EGP⊂  UBPC, 

where superscript C denotes the complement of a set.  The definition of WS and    

UBPC = {∩S≠N{[V(S)\∂V(S)]C×R−S}}C =∪S≠N{Int V(S)×R−S} 

together lead to ∪S≠NWS = EGP, so {WS}, S≠N, is an open cover of EGP.  

 Because the set of generated payoffs is comprehensive and bounded from above, and 
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the origin is in its interior (by ∂V(i)>0, all i), the following mapping from EGP to ΔN:  

  f: x → x/Σ xi, 

 is a homeomorphism.  Define CS = f(WS) for all S⊆ N, one sees that {CS}, S≠N, is an open 

cover of ΔN = f(EGP). 

For each i∈N, ∂V(i)>0 leads to EGP∩ {x∈Rn | xi =0}⊂ W{i} , which in turn leads to 

ΔN\{i}={x∈ΔN | xi = 0} = f(EGP∩ {x∈Rn | xi =0}) ⊂ C{i} = f(W{i}).  Therefore, {CS}, S≠N, is an 

open cover of ΔN satisfying the conditions of Scarf-Zhou open covering theorem, so there 

exists a balanced collection of coalitions B0 such that 

∩ S∈B0 CS ≠ ∅, or ∩ S∈B0 WS ≠ ∅,  

which contradicts (22).  Hence, UBP∩ EGP ≠ ∅. 

For each x∈ UBP∩EGP, we claim x∈ MNBF.  If this is false, we can find a small τ >0 

such that x-τe∈UBP.  Let B∈ B be the minimal balanced collection of coalitions such that 

x ∈ GP(B) = ∩S∈ B{V(S)×R−S}.  Then, x-τe ∈ Int V(S)×R−S for each S ∈ B, which contradicts 

x-τe ∈ UBP.   Therefore, MNBF∩EGP = UBP∩EGP ≠ ∅ .        Q.E.D 

Proof of Propositions 4 and 5:  The discussions preceding the propositions serve as their 

proofs.             Q.E.D 
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