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Abstract

The de Finetti Theorem on exchangeability is generalized to a frame-
work where beliefs are represented by belief functions. This is done while
extending the scope of the bridge provided by de Finetti between subjec-
tivist and frequentist approaches. The model is shown to accommodate
ambiguity about how experiments are �correlated.�

1. INTRODUCTION

Let a family of experiments be indexed by the set N = f1; 2; :::g. Each experiment
yields an outcome in the set S (technical details are suppressed until later). Thus

 = S1 is the set of all possible sample paths. A probability measure P on 
 is
exchangeable if

(�P ) (A1 � A2 � :::::) = P (A��1(1) � A��1(2) � :::::),

for all �nite permutations � of N. De Finetti [10, 15] shows that exchangeability
is equivalent to the following representation: There exists a (necessarily unique)
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probability measure � on �(S) such that

P (�) =
Z
�(S)

`1 (�) d� (`) , (1.1)

where, for any probability measure ` on S (written ` 2 �(S)), `1 denotes the
corresponding i.i.d. product measure on 
. Thus beliefs are �conditionally i.i.d.�
Kreps [17, Ch. 11] refers to the de Finetti Theorem as �the fundamental theo-
rem of (most) statistics,�because of the justi�cation it provides for the analyst
to view samples as being independent and identically distributed with unknown
distribution function.
Though the de Finetti theorem can be viewed as a result in probability the-

ory alone, it is typically understood in economics as describing the prior in the
subjective expected utility model of choice. That is how we view it in this paper.
From the choice-theoretic perspective, the subjective expected utility framework
precludes ambiguity aversion, as typi�ed by Ellsberg�s celebrated experiments. To
permit a role for ambiguity, we consider preference on a domain of (Anscombe-
Aumann) acts that conforms to Choquet expected utility where the capacity is
a belief function - we call this model belief function utility.1 Using the latter
as the basic framework, we then impose two further axioms - Symmetry (corre-
sponding to exchangeability) and Weak Orthogonal Independence (relaxing the
Independence axiom). These axioms are shown (Theorem 4.1) to characterize the
following representation for the belief function � on 
 (see the noted theorem for
the corresponding representation for utility):

� (�) =
Z
Bel(S)

�1 (�) d� (�) , (1.2)

whereBel (S) denotes the set of all belief functions on S, � is a probability measure
on Bel (S), and �1 denotes a suitable �i.i.d. product� of the belief function �.
The de Finetti-Savage model is the special case where (Independence is satis�ed
and hence) each � in the support of � is additive.
In an earlier paper Epstein and Seo [8], we elaborate on the motivation for ex-

tending the de Finetti theorem to incorporate ambiguity averse preferences, and
we provide such an extension to the class of multiple-priors preferences (Gilboa
and Schmeidler [13]). Belief function utility is appealing because it is a special case
of both multiple-priors utility and Choquet expected utility (Schmeidler [25]), and

1See Section 2 for more on belief functions and the corresponding utility functions.
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thus is �close�to the benchmark expected utility model. This closeness permits
a sharper representation result. For example, Weak Orthogonal Independence is
considerably weaker than the corresponding axiom (called Orthogonal Indepen-
dence) employed in our other paper. Secondly, the latter employs an axiom called
Super-Convexity that is redundant here.
The representation result obtained here is also sharper in another way. The

rule for forming the i.i.d. product �1 is pinned down - it corresponds to that
advocated by Hendon et al [14]. In contrast, the representation in [8] is much less
speci�c in this regard, re�ecting the fact (see Ghirardato [12], in particular) that
stochastic independence is more complicated in the nonadditive probability (or
multiple-priors) framework in that there is more than one way to form independent
products. Ghirardato [12, Theorem 3] shows that the Hendon rule is the only
product rule for belief functions such that the product (i) is also a belief function,
and (ii) it satis�es a mathematical property called the Fubini property. In our
model, it emerges as an implication of assumptions about preference. To our
knowledge, our main result (see also Corollary 4.2) is the �rst choice-theoretic
rationale for any particular i.i.d. product rule.
The Hendon product rule permits modeling ambiguity about how experiments

are �correlated,�which is further motivation for our model. Think, for example, of
a cross-sectional empirical model where experiments correspond to the regression
errors. The statistical decision-maker faces ambiguity about how these errors are
related. For example, she may be concerned that some relevant variables have
been omitted from the regressions, though she cannot be speci�c about which
variables and about the consequences of their omission - some omitted variables
may in�uence speci�c experiments in the same direction and others in opposite
directions, while other omitted variables may have di¤erent e¤ects. The decision-
maker simply does not understand the regression errors in her model well enough
to be more speci�c. But she is sophisticated enough to realize this and wishes to
take it into account when making decisions. Our model prescribes behavior for
such a decision-maker.
Thus far we have focussed on representation results. However, the importance

of the de Finetti Theorem extends beyond the representation to the connection it
a¤ords between subjective beliefs and empirical frequencies. One form that the
connection takes in the Bayesian framework is to relate subjective beliefs about
the unknown but �xed probability law on S (the unknown �parameter�), repre-
sented by � in (1.1), to empirical frequencies. By the law of large numbers (LLN)
for exchangeable measures, empirical frequencies converge with probability 1, and
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thus one can view � as representing ex ante beliefs about the limiting empirical
frequency of Heads, a random variable. Thus a bridge is provided between subjec-
tivist and frequentist theories of probability (see Kreps [17, Ch. 11], for example).
Secondly, this connection can help a decision-maker to calibrate her uncertainty
about the true parameter. Using a LLN for belief functions due to Maccheroni
and Marinacci [18], we show (Section 5) that these aspects of the de Finetti model
extend also to our generalization.2

Another important aspect of the de Finetti Theorem is the connection between
beliefs and observations a¤orded via Bayesian updating of the prior �. The com-
bination of the de Finetti Theorem and Bayes�Rule gives the canonical model of
learning or inference in economics and statistics. Our generalization of de Finetti�s
Theorem also admits intuitive (and dynamically consistent) updating in a limited
but still interesting class of environments, namely, where an individual �rst sam-
ples and observes the outcomes of some experiments, and then chooses how to bet
on the outcomes of remaining experiments. The analysis of updating described in
our other paper spells this out and, importantly, it applies virtually verbatim to
the present belief-function-based model. Thus we do not elaborate on updating
here.
Shafer [27] is the �rst, to our knowledge, to discuss the use of belief functions

within the framework of parametric statistical models analogous to de Finetti�s.
In particular, he sketches (section 3.3) a de Finetti-style treatment of randomness
based on belief functions. His model is not axiomatic or choice-based, but ignoring
these di¤erences, one can translate his suggested model into our framework in the
following way. Consider the de Finetti representation (1.1), where the probability
measure � models beliefs about `, the unknown �parameter�. An obvious gener-
alization is to replace � by a belief function on �(S), or more generally by a set
of probability measures on �(S), thus generalizing prior beliefs. Epstein and Seo
[8, Theorem 3.2] axiomatize such a model within the multiple-priors framework,
and Al-Najjar and De Castro [1] provide a more general model in the same vein.
These models intersect the present model only in the classic de Finetti expected
utility model. The present paper is most closely related to the second model in
[8], which has a counterpart of Theorem 4.1 for the multiple-priors framework.
We described above some ways in which the present theorem is much sharper.

2Our other paper does not include a version of this result.
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2. BELIEF FUNCTIONS

We will deal with two di¤erent (compact metric) state spaces - S corresponding
to a single experiment, and 
 = S1, describing all possible sample paths. Thus
in this section we consider an abstract (compact metric) state space X. It has
Borel �-algebra �X .
A belief function on X is a set function � : �X ! [0; 1] such that:3

Bel.1 � (?) = 0 and � (X) = 1

Bel.2 � (A) � � (B) for all Borel sets A � B

Bel.3 � (Bn) # � (B) for all sequences of Borel sets Bn # B

Bel.4 � (G) = supf� (K) : K � G, K compactg, for all open G

Bel.5 � is totally monotone (or 1-monotone): for all Borel sets B1; ::; Bn,

�
�
[nj=1Bj

�
�

P
? 6=J�f1;:::;ng

(�1)jJ j+1 � (\j2JBj)

The set of all belief functions on X is Bel (X). It is compact metric when
endowed with the topology for which �n ! � if and only if

R
fd�n !

R
fd� for

every continuous function f on X, where the integral here and throughout is in
the sense of Choquet (see Schmeidler [25]).
Denote by �(X) the set of Borel probability measures on X, endowed with

the weak convergence topology (generated by continuous functions), and by K (X)
the set of compact subsets of X, endowed with the Hausdor¤ metric. Both are
compact metric. If m 2 �(X), then m1 denotes the usual i.i.d. product measure
on X1.4

Each belief function de�nes a preference order or utility function. Interpreting
X as a state space, denote by F (X) the set of all (measurable) acts f : X ! [0; 1].
For any � 2 Bel (X), let U� : F (X)! R be de�ned by

U� (f) =

Z
fd�. (2.1)

3These conditions are adapted from [23], to which we refer the reader for details supporting
much of the outline in this section. We point out only that when restricted to probability
measures, Bel.4 is the well-known property of regularity.

4Throughout product spaces are endowed with the product metric.
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Refer to U� as a belief-function utility, and to the corresponding preference order
as a belief-function preference.
Since a belief function is also a capacity (de�ned by Bel.1-Bel.4), belief-function

utility is a special case of Choquet expected utility, axiomatized by Schmeidler
[25]; and since it is convex (supermodular, or 2-alternating, that is, satis�es the in-
equalities in Bel.5 restricted to n = 2), it is well-known that (2.1) can be expressed
alternatively as

U� (f) = min
P2core(�)

Z
fdP ,

where
core (�) = fP 2 �(X) : P (�) � � (�)g .

Thus the current model is also a special case of multiple-priors utility, which has
been axiomatized by Gilboa and Schmeidler [13].
Note that acts are taken to be real-valued and to enter linearly into the Cho-

quet integral. This may be justi�ed as follows: Suppose that outcomes lie in an
abstract set Z, and that (Anscombe-Aumann) acts map states into �(Z). Sup-
pose also that there exist best and worst outcomes z and z. Then, under weak
conditions, for each state ! and act f , there exists a unique probability p, so that
the constant act f (!) is indi¤erent to the lottery (z; p; z; 1� p); refer to such a
lottery as (a bet on) the toss of an (objective) p-coin. Such calibration renders the
util-outcomes of any act observable, and these are the [0; 1]-valued outcomes we
assume herein and that justify writing utility as in (2.1). A further consequence,
given (2.1) is that the utility U� (f) is also scaled in probability units - it satis�es

f � (z; U� (f) ; z; 1� U� (f)) . (2.2)

Thus f is indi¤erent to betting on the toss of a U� (f)-coin.
Belief functions have been widely studied (see [5, 19, 21], for example) and used

(for applications in robust statistics see Huber [16], and for applications in decision
theory and economics, see [9, 23, 18], for example). They (and their corresponding
utility functions) also admit an intuitive justi�cation due to Dempster [6] and
Shafer [26], (see also Mukerji [20] and Ghirardato [11]), that we outline next.
Though there exists a Savage-style state space X, the agent�s perceptions are

coarse and are modeled through an auxiliary epistemic (compact metric) state
space bX and a (measurable and nonempty-compact-valued) correspondence �
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from bX into X. There is a Borel probability measure p representing beliefs on bX.
( bX; p) � (X; �)

& #f
[0; 1]

(2.3)

A Bayesian agent would view each physical action as an act from X to the out-
come set [0; 1], and would evaluate it via its expected utility (using a probability
measure on X). The present agent is aware that while she can assign probabili-
ties on bX, events there are only imperfect indicators of payo¤-relevant events in
X. Such awareness and a conservative attitude lead to preference that can be
represented by the utility function

UDS (f) =

Z
bX
�
inf

x2�(bx) f (x)
�
dp =

Z
X

fd�,

where � is the belief function given by5

� (A) = p
�nbx 2 bX : �(bx) � Ao� , for every A 2 �X .

As a foundation for belief function utility, the preceding is suggestive though
limited, because bX; p and � are presumably not directly observable. However,
Epstein, Marinacci and Seo [7, Section 4.3] describe behavioral foundations for a
Dempster-Shafer representation.
A central fact about belief functions is the Choquet Theorem [23, Thm. 2].6

To state it, note that, by [23, Lemma 1], fK 2 K (X) : K � Ag is universally
measurable for every A 2 �X . Further, any Borel probability measure (such as
m on �K(X)) admits a unique extension (also denoted m) to the collection of all
universally measurable sets.7

5We can view � as a function from bX to K (X). Then � is measurable [2, Thm. 18.10]
and induces the measure p � ��1 on K (X). Choquet�s theorem (see below) implies that � (�) =
p � ��1 (fK : K � �g) is a belief function.

6The �nal assertion in the theorem stated below relies also on [23, Thm. 3]. See also [19,
Thm. 5.1] and [4, Thm. 3.2].

7Throughout, given any Borel probability measure, we identify it with its unique extension
to the �-algebra of universally measurable sets.
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Theorem 2.1 (Choquet). The set function � : �X ! [0; 1] is a belief function
if and only if there exists a (necessarily unique) Borel probability measure m� on
K (X) such that

� (A) = m� (fK 2 K (X) : K � Ag) , for every A 2 �X . (2.4)

Moreover, in that case, for every act f ,8

U� (f) =

Z
X

fd� =

Z
K(X)

�
inf

P2�(K)
P � f

�
dm� (K) (2.5)

=

Z
K(X)

�
inf
x2K

f (x)

�
dm� (K) .

The one-to-one mapping � 7�! m� is denoted �. It constitutes a homeomor-
phism between Bel (X) and �(K (X)). One perspective on the theorem is that it
shows that any belief function has a special Dempster-Shafer representation where

bX = K (X) , � (K) = K � X and p = m� .

Conclude this overview of belief functions with a simple example. Let X =
fH;Tg and [pm; pM ] � [0; 1], thought of as an interval of probabilities for Heads.
De�ne � on subsets of X, by � (H) = pm, � (T ) = 1 � pM , and � (X) = 1.
Then � is a belief function - the measure m from Choquet�s Theorem is m (H) =
� (H),m (T ) = � (T ) andm (fH;Tg) = 1�� (T )�� (H), the length of the interval.
An interpretation is that the coin is seen as being drawn from an urn containing
many coins, of which the proportion � (H) (� (T )) are sure to yield Heads (Tails),
and where there is complete ignorance about the remaining proportion. In par-
ticular, for binary state spaces, a belief function can be thought of simply as a
probability interval.

8P � f is short-hand for
Z
X

fdP .
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3. THE MODEL

While the above refers to an abstract state spaceX, we assume a speci�c structure
here corresponding to the presence of many experiments. Thus let S be a compact
metric space thought of as the stage state space, or the set of possible outcomes
for any single experiment. The full state space is


 = S1 � S2 � :::: = S1, where Si = S for all i.

Denote by �i the Borel �-algebra on Si, which can be identi�ed with a �-algebra
on 
, and by �
, the product Borel �-algebra. For the most part, we take the
abstract space X above to be 
, and in that case, when there is no danger of
confusion, we abbreviate �
; K (
), Bel (
) and F (
) by �, K, Bel and F . For
any I � N, �I is the �-algebra generated by f�i : i 2 Ig and FI denotes the set
of �I-measurable acts. An act is said to be �nitely-based if it lies in [I �niteFI .
We will have occasion to refer also to K (S) and Bel (S).
Let � be the set of (�nite) permutations on N. For � 2 � and ! = (s1; s2; :::) 2


, let �! =
�
s�(1); s�(2); :::

�
. Given an act f , de�ne the permuted act �f by

(�f) (s1; :::; sn; :::) = f
�
s�(1); :::; s�(n); :::

�
.

We are given a belief-function preference � and the corresponding utility func-
tion U . We adopt two axioms for preference (or equivalently, for utility) that
describe the individual�s perception of how experiments are related.
The �rst axiom is the preference counterpart of de Finetti�s assumption of

exchangeability.

Axiom 1 (SYMMETRY). For all �nitely-based acts f and permutations �,

f � �f:

Our second axiom relaxes the Independence axiom.

Axiom 2 (WEAK ORTHOGONAL INDEPENDENCE (WOI)). For all
0 < � � 1, and acts f 0; f 2 FI and g 2 FJ , with I and J �nite and disjoint,

f 0 � f () �f 0 + (1� �) g � �f + (1� �) g.

It is easy to show that WOI is satis�ed if and only if U satis�es: For all f 2 FI
and g 2 FJ , where I and J are �nite and disjoint, and for all � in [0; 1],

U (�f + (1� �) g) = �U (f) + (1� �)U (g) : (3.1)

9



We use this characterization of WOI frequently in the sequel.
Roughly, the invariance that is imposed by the Independence axiom for all acts

is restricted in WOI to mixtures of acts that depend on di¤erent experiments. To
interpret the axiom, recall the Gilboa-Schmeidler intuition for violation of Inde-
pendence when ambiguity matters: randomization can be desirable because it
smooths out ambiguity, or, adapting �nance terminology, because the acts being
mixed may �hedge�one another. From this perspective, WOI says, in part, that
acts that depend on di¤erent experiments do not hedge one another, presum-
ably because the poorly understood factors underlying ambiguity are �unrelated�
across experiments. However, as noted in the introduction, �stochastic indepen-
dence�is multifaceted if there is ambiguity, and WOI leaves a great deal of scope
for ambiguity about how experiments are related. This will be con�rmed by the
representation and its interpretation, and is also illustrated by the following ex-
amples.
Let each experiment correspond to a coin toss, S = fH;Tg. It is the same coin

being tossed repeatedly, but di¤erent tosses are performed by di¤erent people. The
coin is known to be unbiased (a simpli�cation that can be relaxed, as described
below), but the decision-maker believes that outcomes depend also on the way in
which the coin is tossed. Her understanding of tossing technique is poor, which
leads to ambiguity about the sequence of outcomes she can expect. In particular,
there is ambiguity about whether outcomes are �positively correlated�- a speci�c
outcome on the �rst toss makes it more likely that the same outcome occurs in
the second toss - or �negatively correlated�, de�ned analogously.
To see what the latter ambiguity implies, for any event A � 
, let A denote

also the bet on A, the act that pays 1 util if ! 2 A and pays 0 otherwise). Then
fH1T2; T1H2g and fH1H2; T1T2g denote the bets that the �rst two outcomes are
di¤erent or the same respectively. These acts hedge against ambiguity about
correlation - the �rst pays well if correlation is negative and poorly otherwise, while
the opposite holds for the second bet. In fact, they hedge each other perfectly
in that the mixed bet yields the payo¤ 1

2
regardless of the outcomes of the coin

tosses. Thus it is intuitive that9

U
�
1
2
fH1T2; T1H2g+ 1

2
fH1H2; T1T2g

�
> 1

2
U (fH1T2; T1H2g)+ 1

2
U (fH1H2; T1T2g) .

(3.2)
This is contrary to the Independence axiom, but is consistent with WOI.

9By (2.2), this is a statement about preference. It can be restated as: if fH1T2; T1H2g � p
and fH1H2; T1T2g � q, then 1

2fH1T2; T1H2g+
1
2fH1H2; T1T2g �

1
2p+

1
2q.
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For another example of behavior that can be interpreted similarly and that is
consistent withWOI, consider the bets f = fH1H2; T1T2g and �f = fH1H3; T1T3g,
where � is the permutation that switches experiments 2 and 3. Then f � �f by
Symmetry. Suppose the individual is concerned that tosses may follow a pattern
- either the �rst two tosses are �negatively correlated�, or negative correlation
exists between the �rst and third tosses. The �rst pattern would make f a poor
prospect, but not the second, and their roles reverse for �f . Therefore, randomiz-
ing between f and �f would hedge the uncertainty about which pattern is valid,
and leave a mixture strictly preferable to f . Thus the ranking

1
2
f + 1

2
�f � f (3.3)

seems intuitive even though, unlike in the previous instance, the two bets do not
hedge one another perfectly.
There is another side to WOI, because there is another motivation for random-

izing that is not derived from ambiguity about correlation. Thus, for example,
consider the rankings

1
2
H1 +

1
2
T2 � H1 � T2. (3.4)

Here we assume for simplicity that Heads and Tails are thought to be equally
likely. Modify the description of the coin-tossing experiments by supposing that
(i) technique is thought to be irrelevant, but (ii) the coin�s bias is unknown, and
indeed, is ambiguous. Then the mixed bet 1

2
H1 +

1
2
T2 may be strictly preferable

if there is ambiguity about the physical bias of the coin - this is exactly the
intuition in Gilboa and Schmeidler [13]. WOI excludes the rankings (3.4). Thus
we interpret the axiom as expressing both a weak form of stochastic independence
across experiments and the absence of ambiguity about the factors (such as the
bias of the single coin) that are common to all experiments.10

For a functional form example, let K� = f(H;H; :::) ; (T; T; :::)g and

� (A) =

�
1 A � K�

0 otherwise.

Then, by the Choquet Theorem, � is a belief function on 
. The corresponding
utility function, as in (2.1), satis�es Symmetry but not WOI, since (3.4) is easily

10See our other paper [8] for further discussion and for a model, in the multiple-priors frame-
work, that captures ambiguity about the bias. We do not, however, have a single model that
accommodates both reasons for randomization being valuable.
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veri�ed.11 The reason is that according to �, there is ambiguity about whether the
coin is completely biased towards Heads (corresponding to the sequence (H;H; :::))
or completely biased towards Tails (corresponding to the sequence (T; T; :::)).

4. THE REPRESENTATION

Given � 2 Bel (S), we de�ne an �i.i.d. product� �1, a belief function on S1,
as follows. We have � (�) 2 �(K (S)), and hence (� (�))1 2 � [(K (S))1] �
� [(K (S1))].12 By the Choquet Theorem, there exists a (unique) belief function
on S1 corresponding to (� (�))1. Denote it by �1, so that

� (�1) = (� (�))1 .

Since Hendon et al [14] propose this rule in the case of �nite Cartesian products,
we refer to �1 as the Hendon i.i.d. product.13 When � is additive, and thus a
probability measure, then �1 is the usual i.i.d. product.
The belief-function utility V on F is called an i.i.d. (belief-function) utility if

there exists � 2 Bel (S) such that

V (f) = V�1 (f) �
Z
fd (�1) , for all f 2 F .

It is easily veri�ed (using (2.4)) that14

�1 (AI � AJ � S1) = �1 (AI � S1) �1 (AJ � S1) , (4.1)

for AI 2 �I and AJ 2 �J , where I; J � N are �nite and disjoint, which suggests
one sense in which �stochastic independence�is embodied in �1.
Our main result is that Symmetry and WOI characterize utility functions that

are �mixtures�of i.i.d. utilities.

11Talagrand [28] contains the study of symmetric belief functions, where WOI for the corre-
sponding utility function is not assumed.
12Recall that � denotes the homeomorphism de�ned by Theorem 2.1. We denote by � a

generic belief function on S1 and by � a generic belief function on S.
13Recall the discussion in the introduction and the connection to Ghirardato [12].
14A more general �product relation� involving (nonindicator) acts is aso satis�ed; see (B.1)

in the proof of Corollary 4.2 below.
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Theorem 4.1. Let U be a belief function utility. Then the following statements
are equivalent:
(i) U satis�es Symmetry and Weak Orthogonal Independence.
(ii) There exists a (necessarily unique) Borel probability measure � on Bel (S)

such that

U (f) =

Z
Bel(S)

V�1 (f) d� (�) , for every f in F . (4.2)

(iii) There exists a (necessarily unique) Borel probability measure � on Bel (S)
such that �, the belief-function corresponding to U , can be expressed in the form

� (A) =

Z
Bel(S)

�1 (A) d� (�) , for every A in �. (4.3)

As emphasized earlier, we interpret the de Finetti Theorem as a result regard-
ing preference that assumes subjective expected utility. With this interpretation,
we generalize his result to the framework of belief function preference.
The more general representation (4.3) also admits a �conditionally i.i.d.� in-

terpretation. The fact that each � is a belief function rather than a probability
measure leads to a di¤erence in interpretation. Consider the above coin-tossing
setting for concreteness, so that S = fH;Tg. Let the bias be unknown and let
tossing technique be thought to be important. In the Bayesian model, each exper-
iment is characterized by a single number in the unit interval - the probability of
Heads. Here, instead an experiment is characterized by an interval of probabili-
ties for Heads, which is nondegenerate because even given the physical bias of the
coin, the in�uence of tossing technique is poorly understood. For any � 2 Bel (S)
appearing in (1.2), the interval is [� (H) ; 1� � (T )].
Nonadditivity of belief functions leaves scope for ambiguity about correlation.

At the functional form level, the latter can be seen by examining more closely the
form of each i.i.d. utility function V�1, and thus expressions of the form

V�1 (f) �
Z
fd (�1) .

Let m� 2 �(K (S)) denote the measure on subsets implied by Choquet Theorem
2.1, in which case the i.i.d. product (m�)

1 2 � [(K (S))1] is the corresponding
measure for �1. Then, by (2.5),

V�1 (f) =

Z
(K(S))1

�
inf

P2�(K1�K2�:::)
P � f

�
d(m�)

1 (K1; K2; :::) . (4.4)
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Aversion to correlation between experiments, such as expressed by (3.2) or (3.3),
derives from the minimization over all joint measures on each K1 �K2 � :::.15
Paralleling de Finetti�s contribution for a Bayesian framework, the represen-

tation (1.2) can aid in forming a (probabilistic) prior even where experiments are
ambiguous. For example, it is arguably easier to decide on which intervals might
describe every coin and on a probability distribution over these intervals than to
arrive at beliefs, in the form of a belief function, directly over all possible sample
realizations.
Finally, for those readers who are concerned about practicality, we o¤er some

reassurance. One obstacle to evaluating the utility functions appearing in the
theorem, is evaluation of i.i.d. utility functions V�1, and thus expressions of the
form

V�1 (f) �
Z
fd (�1) .

But as just noted in (4.4), V�1 (f) equals a standard integral with respect to an
additive product measure. One need only derive m� for each relevant �. For a
binary state space, the one-to-one map between � and m� was described at the
end of Section 2. Also more generally, if S is �nite, then m� can be constructed
explicitly from � by the so-called Mobius inversion formula16

m� (A) = �B�A (�1)#(AnB) � (B) , if A � S.

See Hendon et al [14, p. 100], for example.
Another possible concern is whether a decision-maker can plausibly arrive at

a prior � over belief functions. However, belief functions are often not such com-
plicated objects. For example, with repeated coin-tossing, when S is binary, each
belief function � corresponds to a unique interval, and the latter corresponds to
an ordered pair of real numbers - in other words, one need only formulate a prior
over an unknown two-dimensional parameter. More generally, since each � corre-
sponds to a unique Mobius inverse m�, the task is to form a prior over �(K (S)).
This is perhaps more di¢ cult than forming a prior over �(S), as required by
de Finetti, but is qualitatively comparable to the latter. Some guidance for our

15The former is immediate. For the latter, let � attach positive probability to �, where
� (H) ; � (T ) > 0, and � (H) + � (T ) < 1. Then, by straightforward but tedious cal-
culations, V�1 (f) = (� (H))

2
+ (� (T ))

2
< V�1

�
1
2f +

1
2�f

�
= (� (H))

2
+ (� (T ))

2
+

� (H) � (T ) (1� � (H)� � (T )). Therefore, (3.3) follows.
16Since m� is additive, it is uniquely de�ned as a measure on K (S) by its values m� (A) for

every A � S:
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agents in calibrating beliefs is provided in the next section, when the connection
to empirical frequencies is considered.

A special case of the model is where there is certainty about the true belief
function, and hence where the utility function U itself is IID, that is,

U (�) = V�1 (�) for some � in Bel (S) . (4.5)

This case is of particular interest, especially from the perspective of the question of
how to form independent products of belief functions (Hendon [14] and Ghirardato
[12]). The next result gives a behavioral justi�cation for using the Hendon product.
Denote by { the shift operator, so that, for any act,

({f) (s1; s2; s3; :::) = f (s2; s3; ::) .

It is straightforward to show that Symmetry implies also indi¤erence to shifts,17

{f � f for all f 2 F .

We de�ne also the pointwise product of two acts. For any two acts f � and f , f � �f
denotes the act satisfying

(f � � f) (!) = f � (!) f (!) , for all !.

Let F1 � F denote the set of acts depending on the �rst experiment only (f :
S1 �! [0; 1]). Then, for any f in F1,

(f � {f) (s1; s2; :::) = f (s1) f (s2) .

For example, if f is the bet H1 on the outcome Heads, then f � {f is the bet
H1H2 that the �rst two tosses both yield Heads.

Corollary 4.2. Let U be a belief function utility. Then the following statements
are equivalent:
(i) The utility function U has the IID form in (4.5).
(ii) U satis�es Symmetry and Weak Orthogonal Independence, and for all

f 2 F1,
f � p =) f � {f � p2. (4.6)

17See our earlier paper [8].
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To interpret the behavioral condition in (ii), consider for simplicity the special
case of bets (binary acts). Suppose that a bet on A is indi¤erent to the bet on a
coin with known objective probability p.18 How would an individual rank two-fold
repetitions of each? In the case of the coin, the two tosses would be independent
and thus have probability p2 of success. For the subjective bet, the repetitions
are not plausibly viewed as independent in general, where there is a common
unknown element connecting experiments - like the unknown bias of a coin that
is tossed repeatedly. In that case, (4.6) is replaced by f � p =) f � {f � p2,
(Epstein and Seo [8, Section 5]), generalizing the well-known fact that for any
random sequence (Xt) having an exchangeable probability law, the covariance of
any Xi and Xj is non-negative. Intuitively, indi¤erence holds as in (4.6) if and
only if there is no unknown common element, which the Corollary translates into
the precise statement that utility is IID.

5. FREQUENCIES

In this section, we relate subjective uncertainty about the true i.i.d. belief function
�1, represented by �, to beliefs about empirical frequencies. Formally, our result
is a corollary of our de Finetti-style representation and a law of large numbers
(LLN) for belief functions due to Maccheroni and Marinacci [18].
The coin-tossing setting conveys the point most clearly. Let S = fH;Tg and

denote by 	n (!) the proportion of Heads realized in the �rst n experiments along
the sequence !. Then, for any � 2 Bel (S), the noted LLN for belief functions
implies that

�1 (f� (H) � lim inf 	n (!) � lim sup	n (!) � 1� � (T )g) = 1. (5.1)

Further, these bounds on empirical frequencies are tight in the sense that19

[a > � (H) or b < 1� � (T )] =) 0 = (5.2)

�1 (fa � lim inf 	n (!) � lim sup	n (!) � bg) .

Therefore, the representation (4.3) implies that, for every 0 � a � b � 1,

� (f� : a � � (H) � 1� � (T ) � bg) (5.3)

= � (fa � lim inf 	n (!) � lim sup	n (!) � bg) .
18Recall (2.2).
19This is proven in the context of proving the Corollary below.
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This equality admits an appealing interpretation. In the Bayesian setting, each
coin toss is described by a common unknown probability of Heads, and the LLN
justi�es interpreting uncertainty about this �parameter�in terms of uncertainty
about the limiting empirical frequency of Heads. In our setting, the individual is
not certain that empirical frequencies converge to a �xed point, and she thinks in
terms of intervals that will contain all limit points. Supposing for simplicity that
� has �nite support, then (5.3) is equivalent to:

� (�) = � (f! : � (H) � lim inf 	n (!) � lim sup	n (!) � 1� � (T )g) . (5.4)

Thus the prior subjective probability of the unknown (but nonrandom) parameter
� equals the prior likelihood, according to �, that the interval [� (H) ; 1�� (T )] will
contain the random interval of empirical frequencies in the long run. This provides
a frequentist perspective for the probability measure � over belief functions.
Consistent with the normative slant of our model, it is also worthwhile noting

that (5.4) can also help a decision-maker, a statistician for example, to calibrate
her uncertainty about the true �. That is because � (�) equals that prize which, if
received with certainty, would be indi¤erent for her to betting (with prizes 1 and
0) on the event that

[lim inf 	n (!) ; lim sup	n (!)] � [� (H) ; 1� � (T )].

We elaborate brie�y on the formal meaning of the preceding. Any � 2 Bel (S)
is completely determined by the two numbers � (H) and � (T ), or equivalently by
the interval

I� = [� (H) ; 1� � (T )]:
Moreover, � 7�! I� is one-to-one. Thus the representing measure � can be thought
of as a measure over intervals I�. Formally, let I be the collection of all compact
subintervals of [0; 1]. As a subset of K ([0; 1]), I inherits the Hausdor¤metric and
the associated Borel �-algebra. Moreover, Bel (S) is homeomorphic to I, and thus
there is a one-to-one correspondence, denoted e, between probability measures on
Bel (S), and probability measures on intervals, that is, measures in �(I). In
particular, � can be identi�ed with a unique b� = e (�) in �(I). Thus (5.3) can
be written in the form

b� (fI : I � [a; b]g) (5.5)

= � (f! : [lim inf 	n (!) ; lim sup	n (!)] � [a; b]g) .
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The general (nonbinary) case is similar. Denote by 	n (�) (!) the empirical
frequency measure given the sample !; 	n (B) (!) is the empirical frequency of
B 2 �S in the �rst n experiments. The above reasoning can be extended to prove:

Corollary 5.1. Let U = U� be a belief function utility satisfying Symmetry and
Weak Orthogonal Independence. Then the equivalent statements in Theorem 4.1
are equivalent also to the following: There exists a probability measure � on
Bel (S) satisfying both (i) � represents U in the sense of (4.2); and (ii) for every
�nite collection fA1; :::; AIg � �S, and for all ai � bi, i = 1; :::; I,

�

�
IT
i=1

f� : [� (Ai) ; 1� � (SnAi)] � [ai; bi]g
�

(5.6)

= �

�
IT
i=1

f! : [lim inf 	n (Ai) (!) ; lim sup	n (Ai) (!)] � [ai; bi]g
�
.

Equation (5.6) relates the prior � over belief functions to ex ante beliefs about
empirical frequencies for the events A1; :::; AI . More precisely, the �-measures
of only the sets shown are so related. However, as our �nal result shows, � is
completely determined by its values on these sets.

Proposition 5.2. If �; �0 2 �(Bel (S)) coincide on all sets of the form

f� 2 Bel (S) : � (A1) � a1; :::; � (AI) � aIg ,

where Ai; ai and I vary over �S, [0; 1] and the positive integers respectively,
then � = �0.
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A. Appendix: Proof of Theorem 4.1

First we prove the measurability required to show that the integrals in (4.2) and
(4.3) are well-de�ned. (Recall that the Borel probability measure � has a unique
extension to the class of all universally measurable subsets.)

Lemma A.1. Both � 7�! V�1 (f) and � 7�! �1 (A) are universally measurable
for any f 2 F and A 2 �.

Proof. Since Bel (S) and �(K (S)) are homeomorphic, and in light of (2.5), it
is enough to prove analytical (and hence universal) measurability of the mapping
from �(K (S)) to R given by

` 7�!
Z
[K(S)]1

inf
!2K

f (!) d`1 (K) .

Step 1. �(K (S)) and f`1 : ` 2 �(K (S))g are homeomorphic when the latter
set is endowed with the relative topology inherited from �([K (S)]1).
Step 2. P 7�!

R
f̂dP from �([K (S)]1) to R is analytically measurable for

any bounded analytically measurable function f̂ on [K (S)]1: If f̂ is simple (has
a �nite number of values), then P 7�!

R
f̂dP is analytically measurable by [3,

p. 169]. More generally,
R
f̂dP equals the pointwise limit of lim

R
f̂ndP for some

simple and analytically measurable f̂n, which implies the desired measurability.
Step 3. Note that�

K 2 K : inf
!2K

f (!) � t
�
= fK 2 K : K � f! : f (!) � tgg (A.1)

is co-analytic by [23, p. 772], and hence analytically measurable.
Steps 1, 2 and 3 complete the proof. �

For Theorem 4.1, we show (iii))(ii))(i))(iii). If � 2 Bel, let m = � (�). We
use (2.5) repeatedly without reference.

(iii))(ii): Let �0 be the �-algebra generated by the class

fK 2 K : K � AgA2� :
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We claim that m (�) =
R
Bel(S)

� (�1) (�) d� (�) on �0. Since the latter is a proba-
bility measure on K, it is enough to show that

m (fK 2 K : K � Ag) =
Z
Bel(S)

� (�1) (fK 2 K : K � Ag) d� (�)

for each A 2 �. This is equivalent to

� (A) =

Z
Bel(S)

�1 (A) d� (�) ,

which is true given (iii).
By a standard argument using the Lebesgue Dominated Convergence Theorem,Z

K
f̂dm =

Z
Bel(S)

�Z
K
f̂d� (�1)

�
d� (�) ,

for all �0-measurable f̂ : K ! [0; 1]. Since K 7�! inf!2K f (!) is �0-measurable
by (A.1),

U� (f) =

Z
K
inf
!2K

f (!) dm (K) =

Z
Bel(S)

�Z
K
inf
!2K

f (!) d� (�1)

�
d� (�)

=

Z
Bel(S)

V�1 (f) d� (�) .

(ii))(i): It is enough to show that V�1 satis�es Symmetry and WOI. Let m =
� (�1) = (� (�))1. Then, m is an i.i.d. measure on [K (S)]1. Since m is symmet-
ric,

V�1 (�f) =

Z
K
inf
!2K

�f (!) dm (K) =

Z
K
inf
!2K

f (�!) dm (K)

=

Z
K
inf

�!2�K
f (�!) dm (K) =

Z
K
inf
!2K

f (!) d (�m) (K)

=

Z
K
inf
!2K

f (!) dm (K) = V�1 (f) :
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Show (3.1) to prove WOI. For simplicity, let f 2 F1 and g 2 F2. The general
case is similar. For 0 < � � 1,

V�1 (�f + (1� �) g)

=

Z
K
inf
!2K

[�f (!) + (1� �) g (!)] dm (K)

=

Z
[K(S)]1

inf
s12K1;s22K2

[�f (s1) + (1� �) g (s2)] dm (K1; K2; :::)

=

Z
[K(S)]1

�

�
inf
s12K1

f (s1)

�
+ (1� �)

�
inf
s22K2

(1� �) g (s2)
�
dm (K1; K2; :::)

= �

Z
[K(S)]1

�
inf
s12K1

f (s1)

�
dm (K1; K2; :::)

+ (1� �)
Z
[K(S)]1

�
inf
s22K2

g (s2)

�
dm (K1; K2; :::)

= �V�1 (f) + (1� �)V�1 (g) :

The second equality follows because K 2 [K (S)]1, a:s:-m [K].

(i))(iii): For C � K, let �C = f�K 2 K : K 2 Cg, and for m 2 �(K), de�ne
�m 2 �(K) by �m (C) = m (�C) for each C 2 �K.

Lemma A.2. For any m 2 �(K), m = �m for all � if and only if m = �(�) for
some symmetric belief function � on 
.

Proof. If m = � (�), then � (K) = m (fK 0 2 K : K 0 � Kg), and

� (�K) = m (fK 0 2 K : K 0 � �Kg) = m (f�K 0 2 K : �K 0 � �Kg)
= m (f�K 0 2 K : K 0 � Kg) = m (�(fK 0 2 K : K 0 � Kg)) .

The asserted equivalence follows, because the class fK 0 2 K : K 0 � KgK2K gen-
erates the Borel �-algebra on K. �

Lemma A.3. Let � be a belief function on S1 and m = � (�) the corresponding
measure on K (S1). If U� satis�es WOI, then m [(K (S))1] = 1.
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Proof. For any ! 2 S1 and disjoint sets I; J � N, !I denotes the projection of
! onto SI , and we write ! = (!I ; !J ; !�I�J). When I = fig, we write !i, rather
than !fig, to denote the i-th component of !.
Let A be the collection of compact subsets K of S1 satisfying: For any n > 0,

and !1; !2 2 K, and for every partition f1; :::; ng = I [ J ,

9!� 2 K, such that !�I = !1I and !�J = !2J . (A.2)

In other words, for every n, the projection of K onto Sn is a Cartesian product.

Step 1. For any continuous acts f 2 FI and g 2 FJ with �nite disjoint I and J ,

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
= 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) , (A.3)

a:s:-m [K]: This is where WOI enters - by (3.1) it implies that

U�
�
1
2
f + 1

2
g
�
= 1

2
U� (f) +

1
2
U� (g) .

Since U� (f) =
R
K inf!2K f (!) dm (K),Z

K
min
!2K

�
1
2
f (!) + 1

2
g (!)

�
dm (K) = 1

2

Z
K
min
!2K

f (!) dm (K)+1
2

Z
K
min
!2K

g (!) dm (K) .

The assertion follows from

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
� 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) .

Let G be the set of all pairs (f; g) such that f and g are continuous and
f 2 FI ; g 2 FJ for some �nite disjoint I and J . Let Bf;g be the collection of
K 2 K satisfying (A.3), given f and g. Step 1 implies m (Bf;g) = 1 for each
(f; g) 2 G.

Step 2. m

 T
(f;g)2G

Bf;g

!
= 1: Since the set of continuous �nitely-based acts is

separable under the sup-norm topology (see [2, Lemma 3.99]), it is easy to see
that G is also separable. Let f(fn; gn)g be a countable dense subset of G. By Step
1,

m

�
Kn
� 1T
i=1

Bfi;gi
��

= m

� 1S
i=1

(KnBfi;gi)
�
�
P
m (KnBfi;gi) = 0:
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Thus it is enough to show that
1T
i=1

Bfi;gi =
T

(f;g)2G
Bf;g.

Only � requires proof. Let K 2
1T
i=1

Bfi;gi, (f; g) 2 G and assume wlog that

(fi; gi)! (f; g). Then, by the Maximum Theorem [2, Theorem 17.31],

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
= lim

i
min
!2K

�
1
2
fi (!) +

1
2
gi (!)

�
= lim

i

�
1
2
min
!2K

fi (!) +
1
2
min
!2K

gi (!)

�
= 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) .

Thus K 2
T

(f;g)2G
Bf;g.

Step 3. If K 2
T

(f;g)2G
Bf;g, then K 2 A: Let n � 0; !1; !2 2 K and

f1; :::; ng = I [ J , with I and J disjoint. For each i, take closed sets

Ai =

(
! :
X
t2I
2�td

�
!t; !

1
t

�
� 1

i

)
and

Bi =

(
! :
X
t2J
2�td

�
!t; !

2
t

�
� 1

i

)
,

where d (�; �) is the metric on S. By Urysohn�s Lemma, there are continuous
functions fi and gi such that, for each i,

fi (!) = 1 if ! 2 Ai and 0 if !I = !1I , and
gi (!) = 1 if ! 2 Bi and 0 if !J = !2J .

Since Ai 2 �I and Bi 2 �J , we can take fi 2 FI , and gi 2 FJ . Then,
min!2K fi (!) = min!2K gi (!) = 0 and, since K 2 Bfi;gi,

min
!2K

[fi (!) + gi (!)] = 0.

Hence, there exists !̂i 2 K such that fi
�
!̂i
�
= gi

�
!̂i
�
= 0: By the construction

of fi and gi, we have !̂
i =2 Ai; Bi, which impliesX

t2I
2�td

�
!̂it; !

1
t

�
+
X
t2J
2�td

�
!̂it; !

2
t

�
<
2

i
:
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Since f!̂ig � K and K is compact, there is a limit point !� 2 K satisfying (A.2).

Step 4. m (A) = 1: By Steps 2-3, 1 � m (A) � m
 T
(f;g)2G

Bf;g

!
= 1.

Step 5. A = (K (S))1: Clearly A � (K (S))1. For the other direction, take
K 2 A and assume !1; !2; ::: 2 K. It su¢ ces to show that

!� =
�
!11; !

2
2; :::; !

n
n; :::

�
2 K: (A.4)

Since K 2 A and !1; !2 2 K, there exists !̂2 2 K such that
�
!̂21; !̂

2
2

�
=

(!11; !
2
2). Similarly, since !̂

2; !3 2 K, there exists !̂3 2 K such that
�
!̂31; !̂

3
2; !̂

3
3

�
=�

!̂21; !̂
2
2; !

3
3

�
= (!11; !

2
2; !

3
3), and so on, giving a sequence f!̂ng in K. Any limit

point !� satis�es (A.4). �

Finally, we prove (i))(ii). Let � be a belief function on S1 and suppose that
U� satis�es Symmetry and WOI. By Lemma A.3, m � � (�) can be viewed as a
measure on [K (S)]1, and by Lemma A.2, m is symmetric. Thus we can apply
de Finetti�s Theorem [15] to m, viewing K (S) as the one-period state space, to
obtain: There exists �̂ 2 �(� (K (S))) such that

m (C) =

Z
�(K(S))

`1 (C) d�̂ (`) for all C 2 �[K(S)]1.

Here each ` lies in �(K (S)) and `1 is the i.i.d. product measure on [K (S)]1.
Extend each measure `1 to �K and write

m (C) =

Z
�(K(S))

`1 (C) d�̂ (`) for all C 2 �K(S1).

We claim that the equation extends also to C 2 �0, where �0 is the �-algebra
generated by the class

fK 2 K : K � AgA2� .
First, note that ` 7�! `1 (C) is universally measurable by Lemma A.1, and hence
the integral is well-de�ned. By a standard argument using the Lebesgue Dom-
inated Convergence Theorem, C 7�!

R
�(K(S)) `

1 (C) d�̂ (`) is countably additive
on �0. This completes the argument because m has a unique extension to the
�-algebra of universally measurable sets, and the latter contains �0.
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Let � � �̂ � � 2 �(Bel (S)) and apply the Change of Variables Theorem to
derive, for any A 2 �,

� (A) = m (fK 2 K : K � Ag)

=

Z
�(K(S))

`1 (fK 2 K : K � Ag) d�̂ (`)

=

Z
�(K(S))

`1 (fK 2 K : K � Ag) d� � ��1 (`)

=

Z
Bel(S)

[� (�)]1 (fK 2 K : K � Ag) d� (�)

=

Z
Bel(S)

� (�1) (fK 2 K : K � Ag) d� (�)

=

Z
Bel(S)

�1 (A) d� (�) .

Uniqueness of � follows from the uniqueness of �̂ provided by de Finetti�s
Theorem. �

B. Appendix: Proof of Corollary 4.2

(i) =) (ii): In the proof of Theorem 4.1, we showed that each V�1 satis�es
Symmetry and WOI. The argument used there is readily adapted to prove: for all
�nite and disjoint I and J , subsets of N, and for all f 2 FI and g 2 FJ ,

V�1 (f � g) = V�1 (f)V�1 (g) . (B.1)

Alternatively, the latter follows from (4.4).

(ii) =)(i): By the representation,

U (f � {f) =
Z
V�1 (f � {f) d� (�) =

Z
V�1 (f)V�1 ({f) d� (V )

=

Z
(V�1 (f))

2 d� (�) �
�Z

V�1 (f) d� (�)

�2
= (U (f))2 = p2,

where we use the fact that every V�1 is symmetric (and hence also invariant
to shifts) and satis�es (B.1), and also the familiar property that the geometric
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average is at least as large as the arithmetic average. Evidently, the indi¤erence
in (4.6) implies that

V�1 (f) is constant �-a:s:[�]. (B.2)

The exceptional set depends on f . Since the set of continuous acts in F1 is
separable under the sup-norm topology [2, Lemma 3.99], there exists a �-null set
of ��s that works for all continuous acts in F1 and also for all upper semicontinuous
acts in F1. Since any belief function utility is regular in the sense of [8], the same
�-null set of ��s works for all acts.

C. Appendix: Proofs for Section 5

Proof of Corollary 5.1: Since �1 (A) = � (A) for A 2 �S, � 7�! � (A) is universally
measurable by Lemma A.1. Hence, every set of the form

f� 2 Bel (S) : [� (A) ; 1� � (SnA)] � [a; b]g

is universally measurable and the statement of the Corollary is well-de�ned.
We need two lemmas. Recall that 	n (A) (!) = 1

n

Pn
i=1 I (!i 2 A) where !i

is the i-th component of !. Similarly de�ne b	n (A) (K) = 1
n

Pn
i=1 I (Ki � A) for

K 2 [K (S)]1, where Ki is the i-th component of K.

Lemma C.1. Let K 2 [K (S)]1, K = K1 � K2 � ::: , and � 2 R. Then the
following are equivalent:
(i) lim infn	n (A) (!) > � for every !i 2 Ki, i = 1; :::
(ii) lim infn b	n (A) (K) > �.
Proof. (i))(ii): If Ki � A, let !i be any element in Ki, and otherwise, let !i be
any element in KinA. Then, I (Ki � A) = I (!i 2 A) and thus (ii) is implied.
(ii))(i): If !i 2 Ki, I (Ki � A) � I (!i 2 A). Thus, if !i 2 Ki for i = 1; :::,

then,
lim inf

n
	n (A) (!) � lim inf

n

b	n (A) (K) > �:
�
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Lemma C.2. (i) �1 (f! : � (A) < lim infn	n (A) (!)g) = 0 for each A 2 �S; and
(ii) �1 (f! : lim supn	n (A) (!) < 1� � (SnA)g) = 0 for each A 2 �S.

Proof. Fix A 2 �S. Then,

�1
�n
! : � (A) < lim inf

n
	n (A) (!)

o�
= [� (�)]1

�n
K 2 [K (S)]1 : K �

n
! : � (A) < lim inf

n
	n (A) (!)

oo�
= [� (�)]1

�n
K 2 [K (S)]1 : lim inf

n

b	n (A) (K) > � (A)o� (by Lemma C.1).

By the Law of Large Numbers, b	n (A) (K) converges to
� (�) (fK1 2 K (S) : K1 � Ag) = � (A) almost surely-[� (�)]1, which implies (i).
The proof of (ii) is similar. �

Return to the Corollary. By the LLN in [18], Lemma C.2 and the monotonicity
of belief functions,

�1 (f! : [lim inf 	n (A) (!) ; lim sup	n (A) (!)] � [a; b]g) = 1
, [� (A) ; 1� � (SnA)] � [a; b]

and

�1 (f! : [lim inf 	n (A) (!) ; lim sup	n (A) (!)] � [a; b]g) = 0
, [� (A) ; 1� � (SnA)] is not a subset of [a; b].

Moreover, for any belief function  on 
, if  (A) =  (B) = 1, then  (A \B) = 1
by the Choquet theorem. Therefore,

�

�
IT
i=1

f! : [lim inf 	n (Ai) (!) ; lim sup	n (Ai) (!)] � [ai; bi]g
�

=

Z
Bel(S)

�1
�

IT
i=1

f! : [lim inf 	n (Ai) (!) ; lim sup	n (Ai) (!)] � [ai; bi]g
�
d� (�)

= �

�
IT
i=1

f� : [� (Ai) ; 1� � (SnAi)] � [ai; bi]g
�
. �
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Proof of Proposition 5.2: By exploiting the homeomorphism de�ned in the Cho-
quet Theorem, we can identify �0 and � with measures on �(K (S)). Modulo this
identi�cation, we are given that �0 and � agree on the collection of all subsets of
�(K (S)) of the form

IT
i=1

f` 2 �(K (S)) : ` (fK 2 K (S) : K � Aig) � aig ,

for all I > 0, Ai 2 �S and ai 2 [0; 1]. They necessarily agree also on the generated
�-algebra, denoted ��. Therefore, it su¢ ces to show that

��(K(S)) � ��,

where ��(K(S)) is the Borel �-algebra on �(K (S)).
Step 1. ` 7�! ` (C) is ��-measurable for measurable C 2 �K(S): Let C be

the collection of measurable subsets C of K (S) such that ` 7�! ` (C) is ��-
measurable. Every set of the form fK 0 2 K (S) : K 0 � Kg for K 2 K (S) lies in
C. Since the collection fK 0 2 K (S) : K 0 � KgK2K(S) generates �K(S), it is enough
to show that C is a �-algebra: (i) C 2 C implies K (S) nC 2 C; (ii) if each Ci 2 C,
then ` 7�! ` ([1i=1Ci) is ��-measurable because it equals the pointwise limit of
` 7�! ` ([ni=1Ci) - hence [1i=1Ci 2 C.
Step 2. ` 7�!

R
f̂d` is ��-measurable for all Borel-measurable f̂ on K (S):

Identical to Step 2 in Lemma A.1.
Step 3. ��(K(S)) � ��: By Step 2,

n
` :
R
f̂d` � a

o
2 �� for all Borel-

measurable f̂ on K (S). But ��(K(S)) is the smallest �-algebra containing the
sets

n
` :
R
f̂d� � a

o
for all continuous f̂ and a 2 R.
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