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1 Introduction

Efficiency is an important issue in economics and mechanism design. A typical mechanism

design problem tries to find the second-best efficient mechanism for an incentive compatibility

constraint, an individual rationality constraint, a budget-balance constraint. However, there

are possibilities that problems have additional constraints. These are often ignored or studied

only in specific contexts (e.g., [REFERENCES]). Also, we often consider only a handful of

alternatives as an implementable allocation in real life (e.g., political debate on finite number

of alternatives, voting on binomial decision, and finite number of candidates during elections

where the elected implement a specific policy upon winning), instead of considering all the

feasible allocations. In this situation, we investigate each alternative whether it is feasible and

to characterize how much of transfers (e.g. taxation/subsidization) are required for each.

We do not try to incorporate the further restrictions for implementation in a unified or

specific framework of mechanism design problems. Instead, we consider a general problem

where non-monetary allocation is given: for given non-monetary allocation, (i) we investigate

when this allocation can be implemented with the three constraints (IC/IR/BB), and (ii) we

characterize how much monetary transfer has to be for each realization. Thus we determine

how much information rent should be given to each type of an agent.

The theory of Bayesian mechanism design provides a universally accepted implementation

tool for a large variety of environments, such as contracting, auctions, and bargaining. For this

reason, it is important to understand the scope and limits of Bayesian implementation. In this

regard, it is reasonable to consider budget balance, ex-post individual rationality and efficiency

as desirable properties of a mechanism. Examples of environments, where one would like

these properties to hold jointly, include standard and double auctions, public good provision,

various trading situations. Ex-post individual rational mechanisms secure the participation

of all agents even when all relevant information is disclosed. In summary, our environment

has interim incentive compatibility constraint, ex-post individual rationality constraint, and

ex-ante budget balance.

Under the aforementioned environment, ex-ante budget balance, ex-post individual ratio-

nality and interim incentive compatibility conditions, we use several linear programmings to
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characterize information rent given to each agent, even for inefficient allocation rules. The

environment includes interdependent values drawn from a correlated probability distribution.

For any given allocation rule, social surplus from the allocation rule is “revenue” to the mech-

anism designer. The implementation of the allocation rule requires certain inputs: agents are

“inputs” in the sense that they are the (only) resource for the “production process” of the

allocation rule generating the revenue. The minimized cost of using each input factor (each

agent) is minimal information rent given to the agent. If the sum of the minimal rent for each

agent is smaller than the revenue, the mechanism is implementable with the ex-ante budget

balance. Our paper’s focus is more on the detailed characterization of minimal information

rent for given allocation rule, than on the optimal choice of allocation rule.

In section 2, we introduce basic notations and mechanism design environment. In section

3, we set up an auxiliary problem for minimized information rent where an agent is committed

to a certain mixed deviation strategy before the agent’s own type is known to himself. The

information rent given to the agent under the deviation strategy is weakly smaller than the

actual information rent. We show that the information rent for a certain deviation strategy

has the same value of the actual information rent. This observation is used to provide an

implementation condition under which the information rent is finite. More importantly, such

deviation strategy turns out to describe how information rent is accumulated across the types

of an agent. We identify the deviation strategy achieving the minimized information rent by

duality of linear programming. In section 4, we completely characterize the case where there

are two types of an agent. In section 5, we introduce a few more linear programmings to fully

characterize the case where there are three types of an agent. In section 6, we provide an

algorithm to find information rent.

2 The Model

There are n agents, N = {1, 2, . . . , n}. Agent i ∈ N has privately known type which belongs to

the type space Θi ≡ {θ1
i , ..., θ

mi
i } of cardinality mi, 2 ≤ mi <∞. A generic element of Θi will

be denoted by θi or θ′i. A state of the world is characterized by a type profile θ = (θ1, ..., θn).

The set of type profiles is given by Θ ≡
∏
i=1,...,n Θi, with cardinality L ≡

∏
i=1,...,nmi. When
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focussing on agent i, we will use the notation (θi, θ−i) for the profile of agent-types, where

θ−i stands for the profile of types of agents other than i. Let Θ−i =
∏
l 6=i Θl, L−i =

∏
l 6=iml,

Θ−i−j =
∏
l 6∈{i,j}Θl, and L−i−j =

∏
l 6∈{i,j}ml. A generic element of Θ−i−j is denoted by θ−i−j .

The (true) probability distribution of the agents’ type profile θ is denoted by p(θ), with

pi(θi) and pi,j(θi, θj) denoting the corresponding marginal probability distribution of agent

i’s type and the marginal probability distribution of types of agents i and j, respectively.

We assume that p(θ) is common knowledge. We also assume that pi,j(θi, θj) > 0 for any

θi ∈ Θi, θj ∈ Θj of any two agents i and j.1 Further, let p−i(θ−i|θi) denote the probability

distribution of type profiles of agents other than i conditional on the type of agent i. We use

a similar system of notation for other probability distributions over Θ that will be introduced

below. The set of all probability distributions over Θ is denoted by P(Θ).

A mechanism designer, who does not possess any private information, controls the set

of public decisions X. Let x denote a generic element of X. Agent i’s utility function is

quasilinear in the decision x and transfer ti that she receives from the mechanism and is given

by ui(x, θ)+ ti. Without loss of generality, an agent’s reservation utility is normalized to zero.2

A (social) decision rule x(·) is a function mapping the type space Θ into the set of public

decisions X.3 Also, t(·) = (t1(·), ..., tn(·)) is a collection of transfer functions to all agents,

where ti(·) : Θ 7→ R is a transfer function to agent i. An allocation profile is a combination of

a decision rule x(·) with a collection of transfer functions t(·).

By the Revelation Principle, we can restrict the analysis to direct mechanisms in which

the mechanism designer offers an allocation profile to the agents. If the agents, informed of

their types, decide to participate in this mechanism, they report their types to the mechanism

designer, and the allocation corresponding to the reported type profile is implemented.

Our main goal is to provide necessary and sufficient conditions for the existence of ex-

post individually rational and ex-ante budget-balanced Bayesian mechanisms implementing

1This condition is clearly generic.
2Suppose that agent i’s utility from her outside option is equal to wi(θi, θ−i). Such environment is equivalent

to the environment where i’s utility function is given by ui(x, θ)−wi(θ)+ti and her outside option is 0. Note that

the sets of ex-post efficient decision rules and the notions of social surplus are the same in both environments.
3Note that randomization in public decisions is implicitly allowed, since X can be regarded as a set of

probability distributions over some set of “pure” outcomes.
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desirable decision rules. Let us describe these properties formally.

We will say that the allocation profile (x(·), t(·)) is incentive compatible if the following

Interim Incentive Constraint ICi(θi, θ
′
i) holds for all i ∈ {1, ..., n} and θi, θ

′
i ∈ Θi:∑

θ−i

[
ui(x(θ−i, θi), (θ−i, θi))+ti(θ−i, θi)−ui(x(θ−i, θ

′
i), (θ−i, θi))−ti(θ−i, θ′i)

]
p−i(θ−i|θi) ≥ 0. (1)

A decision rule x(·) is said to be implementable if there exists a profile of transfer functions

t(·) such that (x(·), t(·)) is incentive compatible.

Ex-post Individual Rationality (EPIR) requires the following EPIRi(θ) constraint to hold

for all i ∈ {1, ..., n} and θ ∈ Θ:

ui(x(θ), θ) + ti(θ) ≥ 0. (2)

Ex-ante Budget Balancing (EABB) constraint can be written as follows:∑
θ∈Θ

n∑
i=1

ti(θ)p(θ) = 0. (3)

A decision rule x(·) is ex-post efficient if x(θ) ∈ arg maxx∈X
∑n

i=1 ui(x, θ) for all θ ∈ Θ, i.e.

x(θ) maximizes ex-post social surplus
∑n

i=1 ui(x, θ). Since the principal always has an option

to disband the mechanism and cause the agents to take their outside options, we assume

without loss of generality that maxx∈X
∑n

i=1 ui(x, θ) ≥ 0 for all θ ∈ Θ. Finally, EPIR and

EABB together imply the following Ex-Ante Social Rationality (EASR) condition:

S ≡
∑
θ∈Θ

n∑
i=1

ui(x(θ), θ)p(θ) ≥ 0. (4)

EASR simply says that a decision rule must generate a nonnegative (ex ante) expected sur-

plus. Clearly, this is a very weak requirement. It is satisfied by a large variety of decision

rules, including the ex-post efficient ones. Having established EASR as a necessary condition,

in the next section we characterize necessary and sufficient conditions for EPIR and EABB

implementation of EASR decision rules which include ex-post efficient ones.

3 Analysis

Under truth-telling agent i gets net utility

Ui(θ) = ui(x, θ) + ti(θ). (5)
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Since function Ui(·) uniquely specifies transfers ti(·) we can use them interchangeably. As

it will be seen later the mechanism design in terms of Ui(·) is more convenient and intuitive.

In terms of set of net utilities which the agents get under truth-telling, {Ui(·), i ∈ {1, ..., n}}, a

decision rule x(·) is implementable via ex-post individual rational and ex-ante budget balanced

mechanism if for every i the following conditions are satisfied:

ICi(θi, θ
′
i) :

∑
θ−i∈Θ−i

p−i(θ−i|θi)
{
Ui(θ−i, θi)− Ui(θ−i, θ′i)

}
≥

∑
θ−i∈Θ−i

{
ui(x(θ−i, θ

′
i), (θ−i, θi))− ui(x(θ−i, θ

′
i), (θ−i, θ

′
i))
}
p−i(θ−i|θi), (6)

EPIRi(θ) : Ui(θ) ≥ 0, (7)

EABB :
∑
θ∈Θ

n∑
i=1

Ui(θ)p(θ) =
∑
θ∈Θ

n∑
i=1

ui(x(θ), θ)p(θ) = S. (8)

The above inequalities are counterparts of (1), (2) and (3).

Next, consider the following problem of minimizing agent i’s ax-ante expected surplus.

min
{Ui(θ)≥0:θ∈Θ}

∑
θ∈Θ

Ui(θ)p(θ) (9)

s.t. Ui(θ) ≥ 0, for all θ ∈ Θ (10)∑
θ−i∈Θ−i

p−i(θ−i|θi)
{
Ui(θ−i, θi)− Ui(θ−i, θ′i)

}
(11)

≥
∑

θ−i∈Θ−i

{
ui(x(θ−i, θ

′
i), (θ−i, θi))− ui(x(θ−i, θ

′
i), (θ−i, θ

′
i))
}
p−i(θ−i|θi), for all θi, θ

′
i ∈ Θi

The solution to the linear programming problem (9)-(11) determines the minimal ex-ante

surplus Vi necessary to ensure truth-telling by agent i and her voluntary participation in the

mechanism. Specifically, if the constraint set of this problem is compatible i.e., there is a profile

{Ui(θ)}θ∈Θ s.t. all inequalities (10) and (11) hold, then there exists a solution {U∗i (θ)}θ∈Θ to

(9)-(11), and

Vi =
∑
θ∈Θ

U∗i (θ)p(θ) <∞. (12)

Note that by by construction, Vi ≥ 0.

If the constraint set is empty, i.e. there is no {Ui(θ)}θ∈Θ satisfying (10) and (11), then we

take the value of the problem (9) to be infinite i.e., Vi = +∞.
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Next, we establish the following important Lemma:

Lemma 1 There exists a profile {Ui(θ)i∈N,θ∈Θ} of players’ net expected surpluses satisfying

conditions (6)-(8) if and only if the solution to (9)-(11) for all i induces such V1, ..., Vn via

(12) that
n∑
i=1

Vi ≤ S. (13)

Proof. ”If” part. For each i, let U∗i (θ) be a solution to (9)-(11) and suppose that (13)

hold. Now consider a profile of players expected surpluses, (Û1(θ), U∗2 (·), ..., U∗n(·)), where

Û1(θ) = U∗1 (θ) + S −
∑n

i=1 Vi for all θ ∈ Θ. Obviously, this profile of expected surpluses they

satisfies all constraints in (6)-(8).

”Only If” part. The proof is obvious, and is therefore omitted.

Lemma 1 establishes a very important decomposition property of our mechanism design

problem that it is sufficient to analyze the incentive problem for each agent separately. This

result will allow us to find minimal informational rents required for implementability. If social

surplus is sufficient to cover these rents then the mechanism exist. From the proof of the lemma

it can be seen that the excess of social surplus over the sum of minimal informational rents

can be split among the agents in an arbitrary way.

The next subsection we will build on these insights.

3.1 The Minimal Informational Rent

Consider some agent i. As it will be seen later in this subsection, we need to elaborate

the notion of strategies chosen by the agent in a direct mechanism. For this, we need some

additional notation. Agent i’s strategy si in a direct mechanism is a vector of size m2
i such

that its entry si(θi, θ
′
i) denotes the probability with which agent i of type θi reports type θ′i.

Note that it has to be si(θi, θ
′
i) ∈ [0, 1] and

∑
θ′i∈Θi

si(θi, θ
′
i) = 1 for all θi ∈ Θi. Let Si be the

set of all such strategies si. A truthful strategy s∗i of agent i is such that si(θi, θi) = 1 and

as a result si(θi, θ
′
i) = 0 for all θi, θ

′
i ∈ Θi s.t. θi 6= θ′i. A strategy profile s ≡ (s1, ..., sn) is

a collection of strategies followed by the agents. A strategy profile such that agent i follows

strategy si and all other agents follow truthful strategies is denoted by (si, s
∗
−i).

7



Definition 1 Say that the strategy profile s ≡ (s1, ..., sn) induces the probability distribution

over the reported type profiles q(.|s) if type profile θ′ ∈ Θ is reported with probability q(θ′|s)

when the agents follow strategies s = (s1, ..., sn) and the types are drawn from the prior p(·).

To compute q(.|s), note that

q(θ′1, ..., θ
′
n|s) =

∑
(θ1,...,θn)∈Θ

(
p(θ1, ..., θn)

n∏
i=1

si(θi, θ
′
i)
)

for any (θ′1, ..., θ
′
n) ∈ Θ.

In terms of deviation strategies and induced probability distributions, the problem (9) can be

rewritten as follows

Vi = min
Ui(·)≥0

∑
θ∈Θ

Ui(θ)p(θ) (14)

s.t. for any si ∈ Θi,∑
θ∈Θ

{p(θ)− q(θ|si, s∗−i)}Ui(θ)

≥
∑

θi,θ′i∈Θi

∑
θ−i∈Θ−i

{
ui(x(θ−i, θ

′
i), (θ−i, θi))− ui(x(θ−i, θ

′
i), (θ−i, θ

′
i))
}
si(θi, θ

′
i)p(θ−i, θi).

In the above problem an inequality has the following intuitive meaning. Individual ratio-

nality constraints secure the minimal transfer to the agent of size −ui(x(θ−i, θ
′
i), (θ−i, θ

′
i))

given that the reported profile is (θ−i, θ
′
i). Meanwhile the utility she gets from misreport is

ui(x(θ−i, θ
′
i), (θ−i, θi)). Hence the difference of utilities in (14) describes the “guaranteed” util-

ity gain when agent-type θi misreports θ′i in the environment where at all states of nature agent

i gets zero net utility. The whole right-hand side is the ex-ante expected utility gains when the

agent follows strategy si. Indeed, given types θ−i agent-type θi misreports θ′i with probability

si(θi, θ
′
i)p(θ−i, θi) so the summation yields the expected ex-ante value of the utility gain.

The left-hand side of the inequality reflects ex-ante potential losses (gains) when the prob-

ability distribution of the reported types changes given that the agent gets positive net utility

at some states of nature.

In short, the equivalent problems (9) and (14) differ in the nature of their constraints.

Problem (9) has restrictions on possible values of Ui(·) in terms of interim payoffs while problem

(14) has the restrictions of the ex-ante nature.
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Now rewrite the constraint in (14) as follows

si :
∑
θ∈Θ

{p(θ)− q(θ|si, s∗−i)}Ui(θ) ≥ gi(si) (15)

where

gi(si) =
∑

θi,θ′i∈Θi

∑
θ−i∈Θ−i

[ui(x(θ−i, θ
′
i), (θ−i, θi))−ui(x(θ−i, θ

′
i), (θ−i, θ

′
i))]si(θi, θ

′
i)p(θ−i, θi). (16)

To get a better understanding of problem (14), consider a simpler problem. Let us fix

some strategy si and assume that there is only one constraint in (14) - the constraint which

corresponds to the strategy si. The following are the simpler problem and its dual problem.

Vi(si) = min
Ui(θ)≥0

∑
θ

Ui(θ)p(θ) s.t.
∑
θ

(p(θ)− q(θ|si))Ui(θ) ≥ gi(si), [LPP (si)]

Vi(si) = max
αi(si)≥0

gi(si)αi(si) s.t. αi(si)[p(θ)− q(θ|si)] ≤ p(θ) [LPD(si)]

where ∆ui(θi, θ
′
i) =

∑
θ−i∈Θ−i

{ui(x(θ−i, θ
′
i), (θ−i, θi))− ui(x(θ−i, θ

′
i), (θ−i, θ

′
i))} p−i(θ−i|θi).

Note, gi(si) =
∑

θi,θ′i
∆ui(θi, θ

′
i)si(θi, θ

′
i)pi(θi)

The original problem and its dual are summarized as follows.

Vi = min
Ui(θ)≥0

∑
θ

Ui(θ)p(θ) s.t.
∑
θ−i

p(θi, θ−i)[Ui(θ)− Ui(θ−i, θ′i)] ≥ ∆ui(θi, θ
′
i)pi(θi) [LPP ]

Vi = max
γi(θi,θ′i)≥0

∑
θi,θ′i

γi(θi, θ
′
i)∆ui(θi, θ

′
i)pi(θi)

s.t.
∑
θ′i

γi(θi, θ
′
i)p−i(θ−i, θi)−

∑
θ′i

γi(θ
′
i, θi)p−i(θ−i, θ

′
i) ≤ p(θ). [LPD]

Note that the incentive compatibility constraints in [LPP ] is written with respect to uncondi-

tional probabilities. Also note γi(θ
′
i, θi) is the dual value of the constraint in [LPP ].

We reproduce the fundamental theorem of linear programming in the below.

Lemma 2 (Fundamental theorem of (finite) linear programming)

[1] The solution of the primal and dual linear programs coincides.

[2] If the shadow value of a constraint is positive, the constraint is binding.

[3] If a constraint is not binding, the shadow value of the constraint is zero.
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3.2 Analysis of Vi(si)

The problem that we are considering can be viewed as a simple cost minimization problem.

Indeed, suppose that gi(si) > 0, and interpret Ui(θ) as an input, p(θ) as its price, p(θ) −

q(θ|si, s∗−i) as marginal productivity of this input and, finally, gi(si) should be interpreted as

an output.

We know that for cost minimization with linear production function we should use factors

of production where marginal productivity to price ratio reaches the maximum or if U∗i (θ) > 0

then θ ∈ arg max
θ∈Θ

{(p(θ)− q(θ|si, s∗−i))/p(θ)} = arg min
θ∈Θ

{q(θ|si, s∗−i))/p(θ)}. As a result

Vi(si) =
gi(si)

1−min
θ∈Θ
{q(θ|si, s∗−i))/p(θ)}

. (17)

Formula (17) can also be interpreted as follows. Suppose that the mechanism designer

provides 1 unit of ex-ante expected utility to player i. If this utility is provided by paying i

when the state of the world is θ, then the payment to player i is equal to Ui(θ) = 1/p(θ) for i

and this will cause ex-ante losses from deviation of size (p(θ)−q(θ|si, s∗−i))/p(θ). Thus the most

efficient use of budget money is to put money at one of states where (p(θ)− q(θ|si, s∗−i))/p(θ)

= maxθ{(p(θ)− q(θ|si, s∗−i))/p(θ)}. And the total budget money required to create “ex-ante”

punishment of size gi(si) is gi(si)/maxθ{(p(θ)− q(θ|si, s∗−i))/p(θ)} which is equal to (17).

We have derived the informational rent Vi(si) of agent i when si is his only possible deviation

strategy. Clearly, the informational rent Vi, which agent i earns when he could use any si ∈ Si

exceeds (at least weakly) the maximum of of Vi(si) over Si i.e., Vi ≥ supsi∈Si Vi(si).

Moreover, we Vi ≥ supsi∈Si Vi(si) under the following condition.

Assumption 1 (Implementability Condition) For any strategy si, if q(θ|si, s∗−i) = p(θ)

for all θ, utility gain from this strategy gi(si) is not positive.

If there is one θ such that q(θ|si) 6= p(θ), there must be θ such that q(θ|si) < p(θ) as q(·|si)

and p(·) are probability distributions, i.e.
∑

θ p(θ) =
∑

θ q(θ|si) = 1. For θ = argmin
θ̃

[
q(θ̃|si)
p(θ̃)

]
,

α(si) = 1

1− q(θ|sis)
p(θ)

is an optimal solution for LPD(si). Thus we will not need any condition for

gi(si) so that Vi(si) < ∞. However, if q(θ|si) = p(θ) for all θ, we will need gi(si) ≤ 0: if that
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is not the case, Vi = ∞ as is clear from LPD(si). Therefore, the condition is a sufficient and

necessary condition for Vi <∞. This is why we call it Implementability Condition.

By proving Vi = maxsi Vi(si), we can move between the analyses of Vi and Vi(si) back and

forth, whenever we want. We prove Vi = maxsi Vi(si) by using the following lemma (Proofs

for Lemma 3 and Proposition 1 are in Appendix A.1 and A.2).

Lemma 3 γi(θi, θ
′
i) = si(θi, θ

′
i)αi for an αi ≥ 0 and si(θi, θ

′
i) ≥ 0 such that

∑
θ′i
si(θi, θ

′
i) = 1.

Proposition 1 If implementability condition holds, then the minimal informational rent is:

Vi = max
si∈Si

Vi(si) where Vi(si) =
gi(si)

1−min
θ∈Θ
{q(θ|si, s∗−i))/p(θ)}

.

Remark: For optimal si = argmax
s̃i

Vi(s̃i), it is useful to consider marginal benefit and cost

in si. For example, a change in si may make gi(si) larger (marginal benefit), but may make

1

1−min
q(·|si)
q(·)

smaller (marginal cost). We repeatedly use this kind of observation.

Remark: The existence of si such that Vi(si) = Vi enables us to reduce [LPP ] to a simpler

problem [LPP (si)]. This reduction makes it possible to simplify the characterization of how

information rent is accumulated over types. More specifically, we can assume that a certain

class of si achieves Vi(si) = Vi. Under the assumption, we can analyze the accumulation of

information rent easily. After the analysis, we can derive the condition for the primitives (such

as p(·) and ∆ui(θi, θ
′
i)) where si indeed achieves the maximum Vi = Vi(si). This essentially

generates a mapping from the set of primitives to the structure of information rent. We first

examine an example in the following. Then, we provide full characterization for the cases

where |Θi| = 2 and |Θi| = 3 in the next two sections.

Example 1: Θi = {θ1
i , θ

2
i , θ

3
i , θ

4
i }. The primitive has the characteristic of

∆ui(θ
4
i , θ

3
i ) > 0,∆ui(θ

3
i , θ

2
i ) > 0,∆ui(θ

2
i , θ

1
i ) > 0,∆ui(θi, θi) = 0,∀θi,∆ui(·, ·)� 0 otherwise.

In other words, it is prohibitively expensive for θi to mimic θ′i, except when (θi, θ
′
i) is one of

(θ4
i , θ

3
i ), (θ3

i , θ
2
i ) and (θ2

i , θ
1
i ). Thus the following should be the picture of an optimal si.

θ4
i

si(θ
4
i ,θ

4
i )

II

si(θ
4
i ,θ

3
i )

// θ3
i

si(θ
3
i ,θ

3
i )

II

si(θ
3
i ,θ

2
i )

// θ2
i

si(θ
2
i ,θ

2
i )

II

si(θ
2
i ,θ

1
i )

// θ1
i

si(θ
1
i ,θ

1
i )=1

II
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Exact value of si is calculated by the following.

First, θ4
i achieves the minimum of q(θ|si)

p(θ) with a certain θ−i. Suppose not. if si(θ
4
i , θ

4
i ) = 0,

then minθ
q(θ|si)
p(θ) =

q(θ−i,θ4
i |si)

p(θ−i,θ4
i )

= 0. If si(θ
4
i , θ

4
i ) > 0. Then a (marginal) change in si(θ

4
i , ·) does

not change 1

1−min
q(·|si)
p(·)

, but only gi(si). If si(θ
4
i , θ

4
i ) > 0, this si cannot be an optimum as

decrease of si(θ
4
i , θ

4
i ) and increase of si(θ

4
i , θ

3
i ) increase gi(si) (hence, Vi(si) too).

Second, we determine si(θ
3
i , ·) and si(θ

2
i , ·). Since min q(·|si)

p(·) = 1− si(θ4
i , θ

3
i ), we get:

si(θ
4
i , θ

3
i )p(θ

4
i , θ−i) + (1− si(θ3

i , θ
2
i ))p(θ

3
i , θ−i)

p(θ3
i , θ−i)

≥ 1− si(θ4
i , θ

3
i ) (18)

si(θ
3
i , θ

2
i )p(θ

3
i , θ−i) + (1− si(θ2

i , θ
1
i ))p(θ

2
i , θ−i)

p(θ2
i , θ−i)

≥ 1− si(θ4
i , θ

3
i ) (19)

si(θ
2
i , θ

1
i )p(θ

2
i , θ−i) + p(θ1

i , θ−i)

p(θ1
i , θ−i)

=
si(θ

2
i , θ

1
i )p(θ

2
i , θ−i)

p(θ1
i , θ−i)

+ 1 ≥ 1− si(θ4
i , θ

3
i ) (20)

We derive the following two inequalities from (18) and (19):(
1 + min

θ−i

p(θ4
i , θ−i)

p(θ3
i , θ−i)

)
si(θ

4
i , θ

3
i ) ≥ si(θ3

i , θ
2
i ), (21)(

1 + min
θ−i

p(θ3
i , θ−i)

p(θ2
i , θ−i)

(
1 + min

θ−i

p(θ4
i , θ−i)

p(θ3
i , θ−i)

))
si(θ

4
i , θ

3
i ) ≥ si(θ2

i , θ
1
i ), (22)

Note that (22) cannot be an equality without (21) being an equality. Also note that si(θ
4
i , θ

3
i )

is strictly positive (otherwise, si(θ
3
i , θ

2
i ) = si(θ

2
i , θ

1
i ) = 0, which clearly cannot be an optimal

solution). Thus, (20) does not bind. Note also that, when (21) and (22) are equalities, the

relevant θi will achieve the minimum of q(·|si)
p(·) with a certain θ−i. For example, if si(θ

2
i , θ

1
i ) =(

1 + minθ−i
p(θ3

i ,θ−i)

p(θ2
i ,θ−i)

(
1 + minθ−i

p(θ4
i ,θ−i)

p(θ3
i ,θ−i)

))
si(θ

4
i , θ

3
i ) in (22), q(·|si)

p(·) achieves the minimum at

(θ2
i , θ−i) where θ−i = argmin

p(θ3
i ,θ−i)

p(θ2
i ,θ−i)

.

Third, we determinesi(θ
1
i , ·). Since the last inequality was strict, si(θ

1
i , ·) should not influ-

ence min q(·|si)
p(·) . Thus si(θ

1
i , θ

1
i ) = 1 should be optimal.

Fourth, we characterize gi(si). If (21) and (22) hold as equalities, i.e., if(
1 + min

θ−i

p(θ3
i , θ−i)

p(θ2
i , θ−i)

(
1 + min

θ−i

p(θ4
i , θ−i)

p(θ3
i , θ−i)

))
si(θ

4
i , θ

3
i ) ≤ 1,

(
1 + min

θ−i

p(θ4
i , θ−i)

p(θ3
i , θ−i)

)
si(θ

4
i , θ

3
i ) ≤ 1,

gi(si) is a linear function of si(θ
4
i , θ

3
i ) , gi(si) = Ksi(θ

4
i , θ

3
i ), where

K =
[
∆ui(θ

4
i , θ

3
i )pi(θ

4
i ) + ∆ui(θ

3
i , θ

2
i )
(

1 + min
θ−i

p(θ4
i , θ−i)

p(θ3
i , θ−i)

)
pi(θ

3
i )

+ ∆ui(θ
2
i , θ

1
i )
(

1 + min
θ−i

p(θ3
i , θ−i)

p(θ2
i , θ−i)

(
1 + min

θ−i

p(θ4
i , θ−i)

p(θ3
i , θ−i)

))
pi(θ

2
i )
]
.
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Also 1−min q(·|si)
p(·) = si(θ

4
i , θ

3
i ). Thus, if (21) and (22) hold as equalities at an optimal solution,

the value of Vi(si) is 1

1−min
q(·|si)
p(·)

gi(si) = K for any si(θ
4
i , θ

3
i ) such that

0 ≤ si(θ4
i , θ

3
i ) ≤min

{ 1

1 + minθ−i
p(θ4

i ,θ−i)

p(θ3
i ,θ−i)

,
1

1 + minθ−i
p(θ3

i ,θ−i)

p(θ2
i ,θ−i)

(
1 + minθ−i

p(θ4
i ,θ−i)

p(θ3
i ,θ−i)

)}. (23)

Finally, we show that Vi is maximized only if si(θ
4
i , θ

3
i ) is in the range given by (23). If si(θ

4
i , θ

3
i )

is not, gi(si) is no more a linear function, and gi(si) < Ksi(θ
4
i , θ

3
i ). Thus 1

1−min
q(·|si)
p(·)

gi(si) < K.

Thus, we have shown the result.

Note that Vi shows how information rent is accumulated across types. Vi is equivalent to:

Vi = pi(θ
2
i )
[
∆ui(θ

2
i , θ

1
i )
]

+ pi(θ
3
i )
[
∆ui(θ

3
i , θ

2
i ) + min

θ−i

p(θ−i|θ3
i )

p(θ−i|θ2
i )

∆ui(θ
2
i , θ

1
i )
]

+ pi(θ
4
i )
[
∆ui(θ

4
i , θ

3
i ) + min

θ−i

p(θ−i|θ4
i )

p(θ−i|θ3
i )

∆ui(θ
3
i , θ

2
i ) + min

θ−i

p(θ−i|θ4
i )

p(θ−i|θ3
i )

min
θ−i

p(θ−i|θ3
i )

p(θ−i|θ2
i )

∆ui(θ
2
i , θ

1
i )
]
.

The term in the second bracket represents the information rent given to type θ3
i . Note that

the information rent given to type θ2
i is added to this information rent with discount factor

minθ−i
p(θ−i|θ3

i )

p(θ−i|θ2
i )

. In the last line, a similar accumulation of information rent is seen for type θ4
i .

Assuming that the support of min p(·|θi)
p(·|θ̃i)

is unique for any θi and θ̃i, it is straightforward

that this accumulation of information rent can be achieved by the following transfer Ui(·):

Ui(θ
1
i , θ−i) ≡ 0,

Ui(θ
2
i , θ−i) =

∆ui(θ
2
i , θ

1
i )

pi(θ2
i )

if θ−i = argmin
p(θ−i|θ3

i )

p(θ−i|θ2
i )
, 0 otherwise,

Ui(θ
3
i , θ−i) =

∆ui(θ
3
i , θ

2
i )

pi(θ3
i )

if θ−i = argmin
p(θ−i|θ4

i )

p(θ−i|θ3
i )
, 0 otherwise, and

any Ui(θ
4
i , θ−i)s.t.

∑
θ−i

Ui(θ
4
i , θ−i)p(θ−i|θ4

i ) = ∆ui(θ
4
i , θ

3
i ).

Minimums of probability ratios determine the states when positive Ui(·) is given.

4 Full characterization of the case with |Θi| = 2

Let Θi = {θ1
i , θ

2
i }. If ∆ui(θ

1
i , θ

2
i ) < 0 and ∆ui(θ

2
i , θ

1
i ) < 0, then si(θi, θi) ≡ 1 is optimal trivially.

Suppose ∆ui(θ
1
i , θ

2
i ) > 0 and ∆ui(θ

1
i , θ

2
i )pi(θ

1
i ) ≥ ∆ui(θ

2
i , θ

1
i )pi(θ

2
i ) without loss of general-

ity. There are two possibilities: si(θ
2
i , θ

1
i ) = 0 or si(θ

2
i , θ

1
i ) > 0 depicted below.

13



θ1
i

si(θ
1
i ,θ

1
i )

''
si(θ

1
i ,θ

2
i )
$$
θ2
i

si(θ
2
i ,θ

2
i )

ww

si(θ
2
i ,θ

1
i )

dd θ1
i

si(θ
1
i ,θ

1
i )

''
si(θ

1
i ,θ

2
i )
$$
θ2
i

si(θ
2
i ,θ

2
i )

ww

Case : si(θ
2
i , θ

1
i ) > 0 Case : si(θ

2
i , θ

1
i ) = 0

si(θ
l
i, θ

k
i ) > 0 means that the incentive compatibility constraint for θli not to mimic θki is binding.

The “arrows” in the diagrams represent the binding incentive compatibility constraints.

We characterize the first and the second cases and derive the condition separating them.

4.1 The case with si(θ
2
i , θ

1
i ) > 0:

Lemma 4 If si(θ
2
i , θ

1
i ) > 0, then (θ1

i , θ−i), (θ2
i , θ
′
−i) ∈ argmin q(·|si)

p(·) for some θ−i, θ
′
−i ∈ Θ−i.

Proof. See Appendix A.3.

From Lemma 4, both of θ1
i and θ2

i achieves the minimum. Hence, for certain θ−i and θ′−i,

min
q(·|si)
p(·)

=
p(θ1

i , θ−i)si(θ
1
i , θ

1
i ) + p(θ2

i , θ−i)si(θ
2
i , θ

1
i )

p(θ1
i , θ−i)

=
p(θ2

i , θ
′
−i)si(θ

2
i , θ

2
i ) + p(θ1

i , θ
′
−i)si(θ

1
i , θ

2
i )

p(θ2
i , θ
′
−i)

.

Plugging si(θ
1
i , θ

1
i ) = 1− si(θ1

i , θ
2
i ) and si(θ

2
i , θ

2
i ) = 1− si(θ2

i , θ
1
i ), we get(

1 + min
θ−i

p(θ1
i , θ−i)

p(θ2
i , θ−i)

)
si(θ

1
i , θ

2
i ) =

(
1 + min

θ′−i

p(θ2
i , θ−i)

p(θ1
i , θ−i)

)
si(θ

2
i , θ

1
i ). (24)

Unless ∆ui(θ
1
i , θ

2
i )p(θ

1
i ) + ∆ui(θ

2
i , θ

1
i )p(θ

2
i ) ≤ 0, the equality θ′−i = θ−i implies that the infor-

mation rent is infinity since

min
q(·|si)
p(·)

= si(θ
1
i , θ

1
i ) +

p(θ2
i , θ−i)si(θ

2
i , θ

1
i )

p(θ1
i , θ−i)

= 1− si(θ1
i , θ

2
i ) +

p(θ1
i , θ−i)si(θ

1
i , θ

2
i )

p(θ1
i , θ−i)

= 1.

However, if θ′−i 6= θ−i, the value is not infinity. Firstly, we get the following from equality (24).

gi(si) =
[
∆ui(θ

1
i , θ

2
i )p(θ

1
i ) + ∆ui(θ

2
i , θ

1
i )

1 + minθ−i
p(θ1

i ,θ−i)

p(θ2
i ,θ−i)

1 + minθ−i
p(θ2

i ,θ−i)

p(θ1
i ,θ−i)

p(θ2
i )
]
si(θ

1
i , θ

2
i ),

1−min
q(·|si)
p(·)

= si(θ
1
i , θ

2
i )−min

p(θ2
i , ·)

p(θ1
i , ·)

si(θ
2
i , θ

1
i ) =

1−min
p(θ2

i , ·)
p(θ1

i , ·)

1 + min
p(θ1

i ,·)
p(θ2

i ,·)

1 + min
p(θ2

i ,·)
p(θ1

i ,·)

 si(θ1
i , θ

2
i ).
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Then the optimal value Vi is

[
∆ui(θ

1
i , θ

2
i )p(θ

1
i ) + ∆ui(θ

2
i , θ

1
i )

1 + min
p(θ1

i ,·)
p(θ2

i ,·)

1 + min
p(θ2

i ,·)
p(θ1

i ,·)

p(θ2
i )
]/[

1−min
p(θ2

i , ·)
p(θ1

i , ·)

1 + min
p(θ1

i ,·)
p(θ2

i ,·)

1 + min
p(θ2

i ,·)
p(θ1

i ,·)

]

=
1

1−min
p(θ2

i ,·)
p(θ1

i ,·
min

p(θ1
i ,·)

p(θ2
i ,·)

[
∆ui(θ

1
i , θ

2
i )
(

1 + min
p(θ2

i , ·)
p(θ1

i , ·)

)
pi(θ

1
i ) + ∆ui(θ

2
i , θ

1
i )
(

1 + min
p(θ1

i , ·)
p(θ2

i , ·)

)
pi(θ

2
i )
]

=
[
1 + min

p(θ2
i , ·)

p(θ1
i , ·)

min
p(θ1

i , ·)
p(θ2

i , ·)
+
(

min
p(θ2

i , ·)
p(θ1

i , ·)
min

p(θ1
i , ·)

p(θ2
i , ·)

)2
+ · · ·

]
×
[
∆ui(θ

1
i , θ

2
i )
(

1 + min
p(θ2

i , ·)
p(θ1

i , ·)

)
pi(θ

1
i ) + ∆ui(θ

2
i , θ

1
i )
(

1 + min
p(θ1

i , ·)
p(θ2

i , ·)

)
pi(θ

2
i )
]

=
[
∆ui(θ

1
i , θ

2
i ) + min

p(·|θ1
i )

p(·|θ2
i )

∆ui(θ
2
i , θ

1
i ) + min

p(·|θ1
i )

p(·|θ2
i )

min
p(·|θ2

i )

p(·|θ1
i )

∆ui(θ
1
i , θ

2
i )

+

(
min

p(·|θ1
i )

p(·|θ2
i )

)2

min
p(·|θ2

i )

p(·|θ1
i )

∆ui(θ
2
i , θ

1
i ) +

(
min

p(·|θ1
i )

p(·|θ2
i )

)2(
min

p(·|θ2
i )

p(·|θ1
i )

)2

∆ui(θ
1
i , θ

2
i ) + . . .

]
pi(θ

1
i )

+
[
∆ui(θ

2
i , θ

1
i ) + min

p(·|θ2
i )

p(·|θ1
i )

∆ui(θ
1
i , θ

2
i ) + min

p(·|θ2
i )

p(·|θ1
i )

min
p(·|θ1

i )

p(·|θ2
i )

∆ui(θ
2
i , θ

1
i )

+

(
min

p(·|θ2
i )

p(·|θ1
i )

)2

min
p(·|θ1

i )

p(·|θ2
i )

∆ui(θ
1
i , θ

2
i ) +

(
min

p(·|θ2
i )

p(·|θ1
i )

)2(
min

p(·|θ1
i )

p(·|θ2
i )

)2

∆ui(θ
2
i , θ

1
i ) + . . .

]
pi(θ

2
i ).

The last four lines shows how the information rent is (infinitely) accumulated with discount

rates min
p(·|θ2

i )

p(·|θ1
i )

and min
p(·|θ1

i )

p(·|θ2
i )

.

4.2 The case with si(θ
2
i , θ

1
i ) = 0:

In this case, the minimum of q(·|si)
p(·) is achieved only at (θ1

i , θ−i) for some θ−i ∈ Θ−i since

q(·|si)
p(·) is already larger than unity at (θ2

i , θ−i) for any θ−i ∈ Θ−i. Thus minθ−i
q(θ1

i ,θ−i|si)
p(θ1

i ,θ−i)
=

(1−si(θ1
i ,θ

2
i ))p(θ1

i )

p(θ1
i )

= 1− si(θ1
i , θ

2
i ). So we derive the following:

Vi =
1

si(θ1
i , θ

2
i )

[
si(θ

1
i , θ

2
i )∆ui(θ

1
i , θ

2
i )p(θ

1
i )
]

= ∆ui(θ
1
i , θ

2
i )p(θ

1
i ).
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4.3 Characterization

Let us compare the two optimal values of the two cases:

∆ui(θ
1
i , θ

2
i )p(θ

1
i ) ≶

∆ui(θ
1
i , θ

2
i )
(

1 + min
p(θ2

i ,·)
p(θ1

i ,·)

)
pi(θ

1
i ) + ∆ui(θ

2
i , θ

1
i )
(

1 + min
p(θ1

i ,·)
p(θ2

i ,·)

)
pi(θ

2
i )

1−min
p(θ2

i ,·)
p(θ1

i ,·)
min

p(θ1
i ,·)

p(θ2
i ,·)

⇔ 0 ≶ ∆ui(θ
2
i , θ

1
i ) + ∆ui(θ

1
i , θ

2
i ) min

θ−i

p(θ−i|θ2
i )

p(θ−i|θ1
i )
. (25)

In other words, if the θ2
i ’s utility loss from mimicking θ1

i , −∆ui(θ
2
i , θ

1
i ), is smaller than the

information rent accumulated to θ1
i discounted by minθ−i

p(θ−i|θ2
i )

p(θ−i|θ1
i )

,
[
∆ui(θ

1
i , θ

2
i ) minθ−i

p(θ−i|θ2
i )

p(θ−i|θ1
i )

]
,

then θ2
i will have incentive to mimic θ1

i . Note that the discount factor minθ−i
p(θ−i|θ2

i )

p(θ−i|θ1
i )

specifies

the state of θ−i in which type θ1
i receives positive Ui(θi, θ−i).

Thus inequality (25) characterizes the shape of si(·, ·) (hence, γi(·, ·) as well).

5 Full characterization of the case with |Θi| = 3

There are three types of agent i, θi ∈ {θ1
i , θ

2
i , θ

3
i }, andM types of agent (−i), θ−i ∈ {θ1

−i, . . . , θ
M
−i}.

For notational simplicity, we let the probability distribution function on Θ be pjk := p(θji , θ
k
−i),

type j’s marginal distribution of agent i is pj =
∑

θ−i∈Θ−i
p(θji , θ−i), conditional probability of

θk−i given θji is pkj = pjk∑
1≤l≤M pjl

, and we use γjk := γi(θ
j
i , θ

k
i ) and ∆jk := ∆ui(θ

j
i , θ

k
i ).

Each case is characterized by its unique set of binding incentive constraints. A binding

incentive constraint between types θji to θki is represented by a directed edge from θji to θki

in a graph with nodes of {θ1
i , θ

2
i , θ

3
i }. There are sixteen directed graphs to consider up to

permutation of agent i’s types (Figure 1). We will derive the conditions for each of the 16

cases to arise. The procedure in each case is as follows: (i) we provide the conditions for

the corresponding incentive constraints to be binding and derive the optimal mechanism and

the corresponding informational rents, then (ii) we provide the conditions under which all the

other incentive constraints are non-binding.

Case 1: θ3
i θ2

i θ1
i

In this case, information rents are trivially: R1 = 0, R2 = 0, R3 = 0.
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Six incentive compatibility constraints characterizing this case are:

R1 = 0 ≥ ∆12, R1 = 0 ≥ ∆13, R2 = 0 ≥ ∆21, R2 = 0 ≥ ∆22, R3 = 0 ≥ ∆31, R3 = 0 ≥ ∆32.

Case 2: θ3
i θ2

i
oo θ1

i

Informational rents are trivially: R1 = 0, R2 = ∆23, R3 = 0.

Let R2(k) denotes the information rent given to θ2
i when θ−i = θk−i. Case 2 arises if and

only if the following conditions are met:

R2 = ∆23 ≥ 0, R1 = 0 ≥ ∆13, R2 = ∆23 ≥ ∆21, R3 = 0 ≥ ∆31,

∃(R2(k) ≥ 0)k∈Θ−i s.t. ∆23 =
∑
k

R2(k)pk2, 0 ≥ ∆12 +
∑
k

R2(k)pk1, 0 ≥ ∆32 +
∑
k

R2(k)pk3.

The first constraint is non-negativity of type θ2
i ’s information rent. The next three constraints

are type θ1
i ’s incentive compatibility constraint not to mimic θ3

i , type θ2
i ’s constraint not to

mimic θ3
i , and type θ3

i ’s constraint not to mimic θ1
i . In the second line, the first equality means

that θ2
i ’s expected information rent is ∆23. The last two inequalities are type θ1

i ’s incentive

compatibility constraint not to mimic θ2
i and type θ3

i ’s constraint not to mimic θ2
i .
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For notational simplicity, define the following vectors:

P1 = (pk1)k∈Θ−i ,P2 = (pk2)k∈Θ−i ,P3 = (pk3)k∈Θ−i ,

R1 = (R1(k))k∈Θ−i ,R2 = (R2(k))k∈Θ−i ,R3 = (R3(k))k∈Θ−i .

For the existence of such R2, let us consider the following linear program:

max
R2≥0

R2 · 0 s.t. P1 · R2 ≤ −∆12, P3 · R2 ≤ −∆32, P2 · R2 = ∆23. (26)

Note that the constraints are those in the second line of the above conditions.

Let ρ1, ρ3, and γ are the dual variables for constraints of (26), dual linear program is:

min
ρ≥0,γ

(−∆12,−∆32,∆23) · (ρ1, ρ3, γ) s.t. pk1ρ1 + pk3ρ3 + pk2γ ≥ 0 for all k. (27)

Note that the first two constraints for the primal LP are inequality constraints; thus, the

dual variables for the constraints will be non-negative, i.e., ρ1 ≥ 0 and ρ3 ≥ 0. The last

constraint for the primal LP is equality constraint; thus, the dual variable can be negative or

positive, i.e., γ ∈ R. Also the primal LP restricts that R2(k) is non-negative; thus the each

dual constraint corresponding to each R2(k) is an inequality constraint.

Clearly, ρ1 = ρ3 = γ = 0 is a feasible solution, and the value of the dual linear program is

zero at it. The optimal value of the primal linear program is zero, as long as the domain of

the primal linear program is non-empty. Thus, R2 exists if and only if the optimal value of

the dual linear program is zero, i.e., if and only if ρ1 = ρ3 = γ = 0 is an optimal solution.

Each constraint pk1ρ1 + pk3ρ3 + pk2γ ≥ 0 (indexed by k) represents a half-space in three-

dimensional Euclidean space R3 passing the origin. Let us it by Hk. Also ρ1, ρ3 ∈ R+ can be

represented by the half planes, 1 · ρ1 + 0 · ρ3 + 0 · γ ≥ 0 and 0 · ρ1 + 1 · ρ3 + 0 · γ ≥ 0; let us

denote the first half-space by Q1, and the second half-space by Q3. It is well known that the

intersection of half-spaces passing the origin is a convex polyhedral cone. Thus the feasibility

of the dual linear program is summarized by convex cone
(⋂

k∈Θ−i
Hk

)
∩Q1 ∩Q2.

Using the aforementioned dual linear program, we can show the following proposition.
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Proposition 2 The following is a necessary and sufficient condition for case 2 to arise.

∆23 ≥ 0, 0 ≥ ∆13,∆23 ≥ ∆21, 0 ≥ ∆31,

α∆12 + (1− α)∆32 + ∆23 min
k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]
≤ 0, ∀α ∈ [0, 1].

Proof. See Appendix A.4

For α = 0, the last inequality implies ∆32 + ∆23 mink

[
pk3
pk2

]
≤ 0, which means that the mis-

representation of θ3
i can be deterred. For α = 1, the inequality implies ∆12+∆23 mink

[
pk1
pk2

]
≤ 0,

which means that θ1
i ’s misrepresentation is deterred.

Remark: The last inequality can be re-written as:

−α∆12

∆23
− (1− α)

∆32

∆23
≥ min

k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]
≤ 0, ∀α ∈ [0, 1].

For given α, the constraint is “easier” to satisfy as the structure of Θ−i becomes “richer”.

Case 3: θ3
i θ2

i
oo θ1

i
oo

By the same way in Example 1, we calculate the informational rent as follows:

R3 = 0, R2 = ∆23, R1 = ∆12 + min
k

pk1
pk2
R2 = ∆12 + min

k

pk1
pk2

∆23

Let k2 = argmin
k

pk1
pk2

, i.e., type θ2
i receives positive rent at state θk2

−i. The conditions for this

case to arise are as follows:

R1 = R1 · P1 = ∆12 + min
k

pk1
pk2

∆23 ≥ 0, R2 = ∆23 ≥ 0, ∆12 + min
k

pk1
pk2

∆23 ≥ ∆13,

0 ≥ ∆32 +
pk2

3

pk2
2

∆23, ∆23 ≥ ∆21 +
∑

R1(k)pk2, 0 ≥ ∆31 +
∑

R1(k)pk2.

The first two are non-negativity conditions for R1 and R3. The next four conditions are the

incentive compatibility constraints for θ1
i not to mimic θ3

i , for θ3
i not to mimic θ2

i , for θ2
i not

to mimic θ1
i , and for θ3

i not to mimic θ1
i .

Similarly to case 2, we need to characterize R1(k) satisfying the following.

R1 · P1 = ∆12 + min
k

pk1
pk2

∆23, ∆23 = ∆21 ≥ R1 · P2, −∆31 ≥ R1 · P3

By a similar way to that of case 2, we can prove the following.
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Proposition 3 The following is a necessary and sufficient condition for case 3 to arise.

∆12 + min
k

pk1
pk2

∆23 ≥ 0, ∆23 ≥ 0, ∆12 + min
k

pk1
pk2

∆23 ≥ ∆13, 0 ≥ ∆32 +
pk2

3

pk2
2

∆23(
∆12 + min

k

pk1
pk2

∆23

)
min
k

[
α
pk2
pk1

+ (1− α)
pk3
pk1

]
+ α(∆21 −∆23) + (1− α)∆31 ≤ 0, ∀α ∈ [0, 1].

Case 4: θ3
i θ2

i
oo // θ1

i
(non-generic case)

Information rents are: R1 = 0, R2 = ∆23 = ∆32, R3 = 0.

Note that this case is non-generic because it requires ∆23 = ∆32.

This case arises under the following conditions:

∆23 = ∆32 = R2 · P2 ≥ 0, 0 ≥ ∆12 +R2 · P1, 0 ≥ ∆13, 0 ≥ ∆31, 0 ≥ ∆32 +R2 · P3.

Similarly to case 2, we can prove the following.

Proposition 4 The following is a necessary and sufficient condition for case 4 to arise.

∆23 = ∆32 ≥ 0, 0 ≥ ∆13, 0 ≥ ∆31,

∆23 min
k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]
+ α∆12 + (1− α)∆32 ≤ 0, ∀α ∈ [0, 1].

Case 5: θ3
i

// θ2
i θ1

i
oo

The informational rents are: R1 = ∆12, R2 = 0, R3 = ∆32.

This case is characterized by the following conditions:

∆12 ≥ 0, ∆32 ≥ 0, ∆12 ≥ ∆13 +R3 · P1, 0 ≥ ∆23 +R3 · P2, ∆32 = R3 · P3,

0 ≥ ∆21 +R1 · P2, ∆32 ≥ ∆31 +R1 · P3, ∆12 = R1 · P1

Similarly to case 2, we can prove the following.

Proposition 5 The following is a necessary and sufficient condition for case 5 to arise.

∆12 ≥ 0, ∆32 ≥ 0

α(∆13 −∆12) + (1− α)∆23 + ∆32 min
k

[
α
pk1
pk3

+ (1− α)
pk2
pk3

]
≤ 0, ∀α ∈ [0, 1],

α∆21 + (1− α)(∆31 −∆32) + ∆12 min
k

[
α
pk2
pk1

+ (1− α)
pk3
pk1

]
≤ 0, ∀α ∈ [0, 1].
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Case 6: θ1
i θ2

i

$$
θ3
idd

From R1 = 0, R2 = ∆23 +mink
pk2
pk3
R3, R3 = ∆32 +mink

pk3
pk2
R2, we derive informational rent:

R1 = 0, R2 =
∆23 + mink

pk2
pk3

∆32

1−mink
pk2
pk3

mink
pk3
pk2

, R3 =
∆32 + mink

pk3
pk2

∆23

1−mink
pk3
pk2

mink
pk2
pk3

.

Let k23 = argmin
k

pk2
pk3

, and k32 = argmin
k

pk3
pk2

. Type θ2
i receives positive rent at state (θ2

i , θ
k32
−i ),

and type θ3
i at (θ3

i , θ
k23
−i ). For the information rent to be finite, k23 and k32 should be different.4

The necessary and sufficient conditions for this case are:

k23 6= k32, R2 ≥ 0, R3 ≥ 0, R1 ≥ ∆13 +
pk23

1

pk23
3

R3, R1 ≥ ∆12 +
pk32

1

pk32
2

R2, R2 ≥ ∆21, R3 ≥ ∆32.

Case 7: θ1
i

$$
θ2
i

$$
θ3
igg

From R1 = ∆12 + mink
pk1
pk2
R2, R2 = ∆23 + mink

pk2
pk3
R3, R3 = ∆31 + mink

pk3
pk1
R1, we derive:

R1 =
∆12 + mink

pk1
pk2

∆23 + mink
pk1
pk2

mink
pk2
pk3

∆31

1−mink
pk1
pk2

mink
pk2
pk3

mink
pk3
pk1

, R2 =
∆23 + mink

pk2
pk3

∆31 + mink
pk2
pk3

mink
pk3
pk1

∆12

1−mink
pk1
pk2

mink
pk2
pk3

mink
pk3
pk1

,

R3 =
∆31 + mink

pk3
pk1

∆12 + mink
pk3
pk1

mink
pk1
pk2

∆23

1−mink
pk1
pk2

mink
pk2
pk3

mink
pk3
pk1

.

Let k12 = argmin
k

pk1
pk2

, k23 = argmin
k

pk2
pk3

, and k31 = argmin
k

pk3
pk1

. Type θ1
i receives positive rent at

state (θ1
i , θ

k31
−i ), type θ2

i at (θ2
i , θ

k12
−i ), and type θ3

i at (θ3
i , θ

k23
−i ). For finite information rent, at

least two of k12, k23, and k31 should be different. The conditions for this case are:

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R1 ≥ ∆13 +
pk23

1

pk23
3

R3, R2 ≥ ∆21 +
pk31

2

pk31
1

R1, R3 ≥ ∆32 +
pk12

3

pk12
2

R2

Assuming all of k12, k23, k31 are all different, The last three inequalities can be simplified into

R1 ≥
∆13 +

p
k23
1

p
k23
3

∆31

1− p
k23
1

p
k23
3

p
k31
3

p
k31
1

, R2 ≥
∆21 +

p
k31
2

p
k31
1

∆12

1− p
k31
2

p
k31
1

p
k12
1

p
k12
2

, R3 ≥
∆32 +

p
k12
3

p
k12
2

∆23

1− p
k12
3

p
k12
2

p
k23
2

p
k23
3

.

4Note mink
pk2
pk3

mink
pk3
pk2
< 1 if and only if k23 6= k32 since mink

pkl
pkm

< 1 unless p(·|θmi ) ≡ p(·|θli).
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These conditions mean that any deviation to form a local cycle (as in case 6) is never profitable.

Case 8: θ1
i 77

$$
θ2
i

$$
θ3
i

(non-generic case)

Information rents are:

R3 = 0, R2 = ∆23, R1 = ∆12 + min
k

pk1
pk2
R2 = ∆12 + min

k

pk1
pk2

∆23 = ∆13

Note that ∆12 + mink
pk1
pk2

∆23 = ∆13 is a measure zero case. Thus this is a non-generic case.

For k2 = argmin
pk1
pk2

, type θ2
i receives positive rent at (θ2

i , θ
k2
−i). This case is characterized

by the following conditions on the primitive:

∆23 ≥ 0, R1 · P1 = ∆12 + min
k

pk1
pk2

∆23 = ∆13 ≥ 0

R2 = ∆23 ≥ ∆21 +R1 · P2, R3 = 0 ≥ ∆31 +R1 · P3, R3 = 0 ≥ ∆32 +
pk2

3

pk2
2

R2 = ∆32 +
pk2

3

pk2
2

∆23

Similarly to case 2, we can prove the following.

Proposition 6 The following is a necessary and sufficient condition for case 8 to arise.

∆23 ≥ 0, ∆12 + min
k

pk1
pk2

∆23 = ∆13 ≥ 0, 0 ≥ ∆32 +
pk2

3

pk2
2

∆23,

∆13 min
k

[
α
pk2
pk1

+ (1− α)
pk3
pk1

]
+ α(∆21 −∆23) + (1− α)∆31 ≤ 0, ∀α ∈ [0, 1].

Case 9: θ3
i

// θ2
i

$$
θ1
idd

Information rents (Derivation is in Appendix A.5.) are:

R1 =
∆12 +

pk̄1
pk̄2

∆21

1− pk̄1
pk̄2

mink
pk2
pk1

, R2 =
∆21 + mink

pk2
pk1

∆12

1− pk̄1
pk̄2

mink
pk2
pk1

, R3 = ∆32 +
pk̄3

pk̄2

∆21 + mink
pk2
pk1

∆12

1− pk̄1
pk̄2

mink
pk2
pk1

.

where k̄ = argmin
k̃

(
1 + p1k̃+p3k̃

p2k̃

)/(
1 − pk̃1

pk̃2
mink

pk2
pk1

)
. The condition for finite information

rent is k̄ 6= argmin
pk2
pk1

. k̄ is such that type θ2
i receives positive rent at state (θ2

i , θ
k̄
−i), and

k1 = argmin
pk2
pk1

is such that type θ1
i receives positive rent at state (θ1

i , θ
k1
−i).
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This case is characterized by the following conditions on the primitive.

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R1 ≥ ∆13 +R3 · P1, R2 ≥ ∆23 +R3 · P2, R3 ≥ ∆31 +R1
pk1

3

pk1
1

.

Similarly to case 2, we can prove the following.

Proposition 7 The following is a necessary and sufficient condition for case 9 to arise.

∆12 +
pk̄1
pk̄2

∆21

1− pk̄1
pk̄2

min
pk2
pk1

≥ 0,
∆21 + min

pk2
pk1

∆12

1− pk̄1
pk̄2

min
pk2
pk1

≥ 0, ∆32 +
pk̄3

pk̄2

∆21 + min
pk2
pk1

∆12

1− pk̄1
pk̄2

min
pk2
pk1

≥ 0, R3 ≥ ∆31 +R1
pk1

3

pk1
1

α(∆13 −R1) + (1− α)(∆23 −R2) +R3 min
k

[
α
pk1
pk3

+ (1− α)
pk2
pk3

]
≤ 0, ∀α ∈ [0, 1].

Case 10: θ3
i θ2

i
oo

$$
θ1
idd

(non-generic case)

The following characterizes information rent:

R2 = ∆21 +R1 min
k

pk2
pk1

= ∆23, R1 = ∆12 +R2 min
k

pk1
pk2
, R3 = 0

⇒ R1 =
∆12 + mink

pk1
pk2

∆21

1−mink
pk2
pk1

mink
pk1
pk2

, R2 =
∆21 + mink

pk2
pk1

∆12

1−mink
pk2
pk1

mink
pk1
pk2

= ∆23, R3 = 0

Note that ∆12 + mink
pk1
pk2

∆23 = ∆13 is a measure zero case. Thus this is a non-generic case.

k1 = argmin
pk1
pk2

is the state when θ1
i is given positive rent, k2 = argmin

pk2
pk1

is when θ2
i is

given positive rent, and k3 = argmin
pk3
pk2

is when θ3
i is given positive rent. k1 6= k2 is required

for finite information rent.

This case is characterized by the following conditions on the primitive.

R1 ≥ 0, R2 ≥ 0, R1 ≥ ∆13, R3 = 0 ≥ ∆31 +
pk1

3

pk1
1

R1, R3 = 0 ≥ ∆32 +
pk2

3

pk2
2

R2.

Case 11: θ3
i

$$
θ2
idd

$$
θ1
idd

Suppose M = 2, i.e., Θ−i = {θ1
−i, θ

2
−i}. Information rents are decided by:

R1 = ∆12 +R2(1)p1
1 +R2(2)p2

1, R3 = ∆32 +R2(1)p1
3 +R2(2)p2

3

R2(1)p1
2 +R2(2)p2

2 = ∆21 + min
k

pk2
pk1
R1 = ∆23 + min

k

pk2
pk3
R3
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Plugging in the first and the second constraints into the third and the fourth:

R2(1)

(
p1

2 −min
k

pk2
pk1
p1

1

)
+R2(2)

(
p2

2 −min
k

pk2
pk1
p2

1

)
= ∆21 + min

k

pk2
pk1

∆12

R2(1)

(
p1

2 −min
k

pk2
pk3
p1

3

)
+R2(2)

(
p2

2 −min
k

pk2
pk3
p2

3

)
= ∆23 + min

k

pk2
pk3

∆32

If argmin
k

pk2
pk1

= argmin
k

pk2
pk3

, the two equations above become:

either R2(2)

(
p2

2 −
p1

2

p1
1

p2
1

)
= ∆21 +

p1
2

p1
1

∆12, R2(2)

(
p2

2 −
p1

2

p1
3

p2
3

)
= ∆23 +

p1
2

p1
3

∆32

or R2(1)

(
p1

2 −
p2

2

p2
1

p1
1

)
= ∆21 +

p2
2

p2
1

∆12, R2(1)

(
p1

2 −
p2

2

p2
3

p1
3

)
= ∆23 +

p2
2

p2
3

∆32.

Thus there is no solution generically. On the other hand, if argmin
k

pk2
pk1
6= argmin

k

pk2
pk3

, there exist

a unique solution. For example, suppose argmin
k

pk2
pk1

= 1 and argmin
k

pk2
pk3

= 2. Define

Cycle(2, 3) =
(

∆23 +
p2

2

p2
3

∆32

)/(
1− p2

2

p2
3

p1
3

p1
2

)
and Cycle(2, 1) =

(
∆21 +

p1
2

p1
1

∆12

)/(
1− p1

2

p1
1

p2
1

p2
2

)
,

then

R2(1) =
1

p1
2

Cycle(2, 3), R2(2) =
1

p2
2

Cycle(2, 1), R2 = Cycle(2, 3) + Cycle(2, 1),

R1 = ∆12 +
p1

1

p1
2

Cycle(2, 3) +
p2

1

p2
2

Cycle(2, 1), R3 = ∆32 +
p1

3

p1
2

Cycle(2, 3) +
p2

3

p2
2

Cycle(2, 1).

This case is characterized by the following conditions on the primitive.

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R3 ≥ ∆31 +
pk1

3

pk1
1

R1, R1 ≥ ∆13 +
pk3

1

pk3
3

R3, k1 6= k3

Consider a general case, i.e., M > 2. Information rents are decided by:

min
R1,R2(k),R3

p1R1 + p2

∑
k

R2(k)pk2 + p3R3

s.t. R1 = ∆12 +
∑
k

R2(k)pk1, R3 = ∆32 +
∑
k

R2(k)pk3

∑
k

R2(k)pk2 = ∆21 + min
k

pk2
pk1
R1 = ∆23 + min

k

pk2
pk3
R3.
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By eliminating R1 and R3, we get

min
R2(k)

p1∆12 + p3∆32 +
∑
k

R2(k)(p1k + p2k + p3k)

s.t.
∑
k

R2(k)
(
pk2 −min

k̃

pk̃2

pk̃1
pk1

)
= ∆21,

∑
k

R2(k)
(
pk2 −min

k̃

pk̃2

pk̃3
pk3

)
= ∆23

Note that even if argmin
k

pk2
pk1

= argmin
k

pk2
pk3

, the solution may exist. More precisely, the solution

exists unless the following two vectors are parallel, but not identical.

1

∆21

(
pk2 −min

k̃

pk̃2

pk̃1
pk1

)
1≤k≤M

and
1

∆23

(
pk2 −min

k̃

pk̃2

pk̃3
pk3

)
1≤k≤M

.

Once we compute R1, R2 and R3, the conditions characterizing this case are:

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R3 ≥ ∆31 +
pk1

3

pk1
1

R1, R1 ≥ ∆13 +
pk3

1

pk3
3

R3, k1 6= k3.

Case 12: θ3
i θ2

i
oo

$$
θ1
idd``

(non-generic case)

Information rents are:

R1 = ∆13 = ∆12 + min
k

pk1
pk2
R2, R2 = ∆23 = ∆21 + min

k

pk2
pk1
R1, R3 = 0

⇒ R1 = ∆13 =
∆12 + mink

pk1
pk2

∆21

1−mink
pk2
pk1

mink
pk1
pk2

, R2 = ∆23 =
∆21 + mink

pk2
pk1

∆12

1−mink
pk2
pk1

mink
pk1
pk2

, R3 = 0

Note that this is a measure zero case. For the information rent to be finite, k2 = argmin
pk2
pk1
6=

k1 = argmin
pk1
pk2

is required.

This case is characterized by the following.

∆13 =
∆12 +

p
k1
1

p
k1
2

∆21

1− p
k2
2

p
k2
1

p
k1
1

p
k1
2

, ∆23 =
∆21 +

p
k2
2

p
k2
1

∆12

1− p
k2
2

p
k2
1

p
k1
1

p
k1
2

, 0 ≥ ∆32 +
pk2

3

pk2
2

R2, 0 ≥ ∆31 +
pk1

3

pk1
1

R1, k1 6= k2

Case 13: θ3
i

// θ2
i

$$
θ1
idd``
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We can calculate information rent similarly to case 11. We omit the special case of M = 2.

Information rents are calculated by:

min
R1,R2(k),R3

p1R1 + p2

∑
k

R2(k)pk2 + p3R3

R1 = ∆12 +
∑
k

R2(k)pk1 = ∆13 + min
k

pk1
pk3
R3,

∑
k

R2(k)pk2 = ∆21 + min
k

pk2
pk1
R1, R3 = ∆32 +

∑
k

R2(k)pk3.

Similarly to case 11, we can show that the solution exists unless the following two vectors are

parallel, but not identical.

1

∆21

(
pk2 −min

k̃

pk̃2

pk̃1
pk1

)
1≤k≤M

and
1

∆23

(
pk2 −min

k̃

pk̃1

pk̃3
pk3

)
1≤k≤M

.

For k1 = argmin
pk2
pk1

and k3 = argmin
pk3
pk1

, this case is characterized by:

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R3 ≥ ∆31 +
pk1

3

pk1
1

R1, R2 ≥ ∆23 +
pk3

2

pk3
3

R3.

Case 14: θ3
i

//
>>

θ2
i

$$
θ1
idd

Suppose M = 2, i.e., Θ−i = {θ1
−i, θ

2
−i}. Information rents are characterized by:

min
R1(k),R2(k),R3

p1(R1(1)p1
1 +R1(2)p2

1) + p2(R2(1)p1
2 +R2(2)p2

2) + p3R3

R1(1)p1
1 +R1(2)p2

1 = ∆12 +R2(1)p1
1 +R2(2)p2

1

R2(1)p1
2 +R2(2)p2

2 = ∆21 +R1(1)p1
2 +R1(2)p2

2

R3 = ∆31 +R1(1)p1
3 +R1(2)p2

3 = ∆32 +R2(1)p1
3 +R2(2)p2

3

The constraints are simplified into

[R1(1)−R2(1)]p1
1 + [R1(2)−R2(2)]p2

1 = ∆12, [R1(1)−R2(1)]p1
2 + [R1(2)−R2(2)]p2

2 = −∆21,

[R1(1)−R2(1)]p1
3 + [R1(2)−R2(2)]p2

3 = −∆31.
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Generically, a solution does not exist. However, if there are more states than two, it is not a

non-generic case. For example, if there are three states, Θ−i = {θ1
−i, θ

2
−i, θ

3
−i}, we derive

[R1(1)−R2(1)]p1
1 + [R1(2)−R2(2)]p2

1 + [R1(3)−R2(3)]p3
1 = ∆12

[R1(1)−R2(1)]p1
2 + [R1(2)−R2(2)]p2

2 + [R1(3)−R2(3)]p3
2 = −∆21

[R1(1)−R2(1)]p1
3 + [R1(2)−R2(2)]p2

3 + [R1(3)−R2(3)]p3
3 = −∆31.

The unique solution exists generically, which is

[R1(1)−R2(1)] =
−∆31p

2
2p

3
1 + ∆21p

2
3p

3
1 + ∆31p

2
1p

3
2 + ∆12p

2
3p

3
2 −∆21p

2
1p

3
3 −∆12p

2
2p

3
3

p1
3p

2
2p

3
1 − p1

2p
2
3p

3
1 − p1

3p
2
1p

3
2 + p1

1p
2
3p

3
2 + p1

2p
2
1p

3
3 − p1

1p
2
2p

3
3

,

[R1(2)−R2(2)] =
−∆31p

1
2p

3
1 + ∆21p

1
3p

3
1 + ∆31p

1
1p

3
2 + ∆12p

1
3p

3
2 −∆21p

1
1p

3
3 −∆12p

1
2p

3
3

−p1
3p

2
2p

3
1 + p1

2p
2
3p

3
1 + p1

3p
2
1p

3
2 − p1

1p
2
3p

3
2 − p1

2p
2
1p

3
3 + p1

1p
2
2p

3
3

,

[R1(3)−R2(3)] =
−∆31p

1
2p

2
1 + ∆21p

1
3p

2
1 + ∆31p

1
1p

2
2 + ∆12p

1
3p

2
2 −∆21p

1
1p

2
3 −∆12p

1
2p

2
3

p1
3p

2
2p

3
1 − p1

2p
2
3p

3
1 − p1

3p
2
1p

3
2 + p1

1p
2
3p

3
2 + p1

2p
2
1p

3
3 − p1

1p
2
2p

3
3

Plugging these into the objective function, p1(R1(1)p1
1 + R1(2)p2

1 + R1(3)p3
1) + p2(R2(1)p1

2 +

R2(2)p2
2 +R2(3)p3

2) + p3R3, the information rent can be calculated.

The extension to the case of M > 3 is straightforward, so we omit it.

Once we calculate R3, R1, and R2, we can derive the incentive compatibility constraints

characterizing this case:

R1 = R1 · P1 ≥ 0, R2 = R2 · P2 ≥ 0, R3 = R3 · P3 ≥ 0,∑
k

R1(k)pk1 ≥ ∆13 +R3 · P1,
∑
k

R2(k)pk2 ≥ ∆23 +R3 · P2.

By a similar way to that of case 2, we can prove the following.

Proposition 8 The following is a necessary and sufficient condition for case 14 to arise.

R1 = R1 · P1 ≥ 0, R2 = R2 · P2 ≥ 0, R3 ≥ 0

α(∆13 −R1) + (1− α)(∆23 −R2) +R3 min
k

[
α
pk1
pk3

+ (1− α)
pk2
pk3

]
≤ 0, ∀α ∈ [0, 1].

Case 15: θ3
i

$$

>>
θ2
idd

$$
θ1
idd
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Information rent is calculated by:

R1(1)p1
1 +R1(2)p2

1 = ∆12 + (R2(1)p1
1 +R2(2)p2

1)

R2(1)p1
2 +R2(2)p2

2 = ∆21 + (R1(1)p1
2 +R1(2)p2

2) = ∆23 + min
k

pk2
pk3
R3

R3 = ∆31 + (R1(1)p1
3 +R1(2)p2

3) = ∆32 + (R2(1)p1
3 +R2(2)p2

3)

By eliminating R3, we get

p1
1[R1(1)−R2(1)] + p2

1[R1(2)−R2(2)] = ∆12, p1
2[R1(1)−R2(1)] + p2

2[R1(2)−R2(2)] = −∆21

R1(1)
[
p1

2 −min
k

pk2
pk3
p1

3

]
+R1(2)

[
p2

2 −min
k

pk2
pk3
p2

3

]
= ∆23 + min

k

pk2
pk3

∆31 −∆21

R2(1)
[
p1

2 −min
k

pk2
pk3
p1

3

]
+R2(2)

[
p2

2 −min
k

pk2
pk3
p2

3

]
= ∆23 + min

k

pk2
pk3

∆32

Without loss of generality, assume
p1

2

p1
3
<

p2
2

p3
3
. Then the constraints are:

p1
1[R1(1)−R2(1)] + p2

1[R1(2)−R2(2)] = ∆12, p1
2[R1(1)−R2(1)] + p2

2[R1(2)−R2(2)] = −∆21

R1(2)
[
p2

2 −
p1

2

p1
3

p2
3

]
= ∆23 +

p1
2

p1
3

∆31 −∆21, R2(2)
[
p2

2 −
p1

2

p1
3

p2
3

]
= ∆23 +

p1
2

p1
3

∆32

These are again reduced to:

p1
1[R1(1)−R2(1)] +

p2
1

p2
2

p1
1

p1
3
(∆31 −∆32)−∆21

1− p1
2

p1
3

p2
3

p2
2

= ∆12,

p1
2[R1(1)−R2(1)] +

p1
1

p1
3
(∆31 −∆32)−∆21

1− p1
2

p1
3

p2
3

p2
2

= −∆21

Thus, this is a non-generic case. However, if there are more states than two, this non-genericity

will disappear. Consider general case, i.e., M > 2. Information rent is calculated by:

min
R1,R2,R3

R1 · P2 +R1 · P2 +R3

s.t. R1 · P1 = ∆12 +R2 · P1, R2 · P2 = ∆21 +R1 · P2 = ∆23 + min
k

pk2
pk3
R3

R3 = ∆31 +R1 · P3 = ∆32 +R2 · P3.
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Once we calculate the information rent, the following incentive compatibility constraints

characterize case 15:

R1 · P1 ≥ 0, R2 · P2 ≥ 0, R3 ≥ 0, R1 · P1 ≥ ∆13 + min
k̃

pk̄1

pk̄3
R3 where k̄ = argmin

pk3
pk2
.

Case 16: θ3
i

$$

>>
θ2
idd

$$
θ1
iddYY

Information rent is calculated by:

R1(1)p1
1 +R1(2)p2

1 = ∆12 + (R2(1)p1
1 +R2(2)p2

1) = ∆13 + (R3(1)p1
1 +R3(2)p2

1),

R2(1)p1
2 +R2(2)p2

2 = ∆21 + (R1(1)p1
2 +R1(2)p2

2) = ∆23 + (R3(1)p1
2 +R3(2)p2

2),

R3(1)p1
3 +R3(2)p2

3 = ∆31 + (R1(1)p1
3 +R1(2)p2

3) = ∆32 + (R2(1)p1
3 +R2(2)p2

3).

That is,

[R1(1)−R2(1)]p1
1 + [R1(2)−R2(2)]p2

1 = ∆12, [R1(1)−R3(1)]p1
1 + [R1(2)−R3(2)]p2

1 = ∆13,

[R2(1)−R1(1)]p1
2 + [R2(2)−R1(2)]p2

2 = ∆21, [R2(1)−R3(1)]p1
2 + [R2(2)−R3(2)]p2

2 = ∆23,

[R3(1)−R1(1)]p1
3 + [R3(2)−R1(2)]p2

3 = ∆31, [R3(1)−R2(1)]p1
3 + [R3(2)−R2(2)]p2

3 = ∆32.

Generically, there will be no solution. However, if there are sufficient number of states, this

will not be a non-generic case. In general, where M > 2, the information rents are derived by:

min
R1,R2,R3

R1 · P1 +R2 · P2 +R3 · P3

R1 · P1 = ∆12 +R2 · P1 = ∆13 +R3 · P1, R2 · P2 = ∆21 +R1 · P2 = ∆23 +R3 · P2,

R3 · P3 = ∆31 +R1 · P3 = ∆32 +R2 · P3.

The conditions characterizing case 16 are:

R1 · P1 ≥ 0, R2 · P2 ≥ 0, R3 · P3 ≥ 0
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6 Algorithm to calculate information rent

We provide a method to calculate information rent.

Let cN = (∆ui(θi, θ
′
i)pi(θi))θi 6=θ′i,(θi,θ′i)∈Θ2

i
, xN = (γi(θi, θ

′
i))θi 6=θ′i,(θi,θ′i)∈Θ2

i
, b = (p(θ))θ∈Θ and

AN be |Θ| × |Θi|(|Θi| − 1) matrix where AN ’s θ-th row and (θ̃i, θ̃
′
i)-th column element is:

AN [θ, (θ̃i, θ̃
′
i)] =


p(θ) if θ̃i = θi

−p(θ) if θ̃′i = θi

0 otherwise.

Then linear program LPD is represented by a matrix form:

max cN · xN s.t. ANxN ≤ bN (28)

(Step 1) Start from zero matrix xN = (γi(θi, θ
′
i)) = 0. Choose (θji , θ

k
i ) such that (θji , θ

k
i )-th

column of cN , ∆ui(θ
j
i , θ

k
i )pi(θ

j
i ), is the largest among all ∆ui(θi, θ

′
i)pi(θi) for all θi, θ

′
i. Increase

(θji , θ
k
i )-th row of xN , γi(θ

j
i , θ

k
i ), until one of the constraints in ANxN ≤ b binds.

Let B to be identity matrix of dimension |Θ| × |Θ|. Then ANxN ≤ b is written as the

following with auxiliary variable xB ≥ 0.

ANxN +BxB = b (29)

Trivially, (xN = 0, xB = b) makes constraint (29) satisfied. As we increase γi(θ
j
i , θ

k
i ), xB

will change to satisfy constraint (29). Eventually, one row of xB (say θ1-th row) will become

zero. In other words, the θ1-th constraint of ANxN ≤ b becomes binding. (In this first step,

there are many constraints becoming binding at γi(θ
j
i , θ

k
i ) = 1, all θ such that θ = (θji , θ−i)

with any θ−i ∈ Θ−i. Also note that γi(θ
j
i , θ

k
i ) = 1 is not typical in other steps.)

In this procedure, (θji , θ
k
i )-th row of xN became non-zero, and at least one row of xB became

zero. Interchange (θji , θ
k
i )-th row of xN and the θ1-th row of xB (if there are more than one

row that became zero, choose any arbitrary one). Also interchange (θji , θ
k
i )-th column of AN

and the θ1-th column of B. Then the constraint still looks the same with the re-defined AN ,

B, xN and xB:

ANxN +BxB = b where xN = 0.
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Additionally, let cB be zero matrix of dimension 1× |Θ|, and interchange (θji , θ
k
i )-th column of

cN and θ1-th column of cB. With the redefined cN , cB, xN and xB, the objective function is

cN · xN + cB · xB.

(Step 2) We want to increase another γi(θ̃i, θ̃
′
i) to increase the value of the objective function.

The (θji , θ−i)-th constraint is already binding by Step 1, i.e.∑
θ′i

γi(θ
j
i , θ
′
i)p(θ

j
i , θ−i)−

∑
θ′i

γi(θ
′
i, θ

j
i )p(θ

′
i, θ−i) = p(θji , θ−i).

We cannot increase γi(θ
j
i , θ̃i) for θ̃i 6= θki without decreasing γi(θ

j
i , θ

k
i ). Since ∆ui(θ

j
i , θ

k
i )pi(θ

j
i )

is the largest, this is not an effective way to increase the objective function. In other words,

there is a “negative externality” of increasing γi(θ
j
i , θ̃i) even if ∆ui(θ

j
i , θ̃i)pi(θ

j
i ) is the second

largest after ∆ui(θ
j
i , θ

k
i )pi(θ

j
i ). On the other hand, the increase of γi(θ̃i, θ

j
i ) will make it possible

to increase γi(θ
j
i , θ

k
i ) function; thus, there is a “positive externality”. Even in this second step,

it seems onerous to take all these concern on “externalities” into consideration. Moreover, if

there are more than one γi(·, ·) that are positive during ongoing steps, our consideration of all

these “externalities” seem to become more complicated.

However, matrix algebra can simply capture this concern on “externality” in the following

way. The relevant columns and rows were interchanged between cB and cN , xB and xN ,

and AN and B. These interchange set xN to be zero vector again. Any increase in xN will

result in change in xB from constraint (29). In detail, the change in xN leads to change in

ANxN . Accordingly BxB changes in the opposite direction as (29) is an equality constraint.

Accordingly, the change in xB is exactly measured by B−1(b − ANxN ), and its effect on the

objective function is measured by cBB
−1(b−ANxN ). Note that B is and will be invertible in

the ongoing steps (See Appendix A.6). Simply,

cN · xN + cB · xB = cN · xN + cB · (B−1b−B−1ANxN ) = cBB
−1b+ (cNxN − cBB−1ANxN ).

The second to the last term, cNxN , measures the direct effect of increasing xN . The last term

cBB
−1ANxN captures the externality that we have concern about. In Step 1, cB = 0. Thus

the externality is zero. In Step 2, cB is already a non-zero vector as there was an interchange

of columns in cB and cN .
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Increase γi(θ
l
i, θ

m
i ) when the (θli, θ

m
i )-th column of (cN − cBB−1AN ) is the largest positive

number, i.e., when the direct benefit net of externality is the largest. If there is no positive

column in (cN − cBB−1AN ), we end our procedure. When there is such positive column, we

cannot increase γi(θ
l
i, θ

m
i ) infinitely. We can increase it only without breaking xB = B−1(b −

ANxN ) ≥ 0, i.e., until a certain row in xB becomes zero. Once a certain row of xB (say, θ2-th

element) becomes zero, we exchange θ2-th row of xB and (θli, θ
m
i )-th row of xN , θ2-th column

of cB and (θli, θ
m
i )-th column of cN , and θ2-th column of B and (θli, θ

m
i )-th column of AN ,

respectively. Note that the value of γi(θ
j
i , θ

k
i ) has also changed by increasing γi(θ

l
i, θ

m
i ). The

changed value is the θ1-th row of

B−1(b−AN x̄N )

where x̄N is a zero vector with the exception of (θli, θ
m
i )-th row being the maximum of γi(θ

l
i, θ

m
i ).

(Step n) We repeat the same procedure given by Step 2 until (cN − cBB−1AN ) becomes a

non-positive vector.

To summarize, a formal description of the algorithm is the following.

(Step 1) Start with B = I and cB = 0. Let xN = 0 and xB = b.

(Step 2) Choose (θji , θ
k
i ) such that the (θji , θ

k
i )-th column of (cN − cBB−1AN ) is the maximal.

Increase γi(θ
j
i , θ

k
i ) until one row in xB (say, θ-th row) becomes zero where ANxN +BxB = b.

(Step 3) Interchange the (θji , θ
k
i )-th column of cN and the θ-th column of cB. Accordingly,

exchange the (θji , θ
k
i )-th row of xN and θ-th row of xB. Also exchange the (θji , θ

k
i )-th column

of AN and the θ-th column of B. Repeat Step 2.

Formally, an optimality condition is:

Proposition 9 If (cN − cBB−1AN ) ≤ 0 after a certain number of steps, the basic feasible

solution represented by
(
xB

T , xN
T
)

=
(

(B−1b)
T
, 0
)

is optimal for LPD.

Proof. The algorithm is simplex method of linear programming. The proposition follows from

the simplex method (see any LP TEXTBOOK).

The algorithm finds an optimal solution in finite steps under the following condition.
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Proposition 10 If the basic feasible solution B−1b is a strictly positive vector in each iteration,

the algorithm finishes in finite steps to find the optimal value with an optimal γi(·, ·).

Proof. The algorithm is simplex method of linear programming. The proposition follows from

the simplex method (see any LP TEXTBOOK).

However, the basic feasible solution B−1b is often not strictly positive in our context. Thus

the above algorithm may fail to finish in finite steps, and cycle (See Beale [1955] and Marshall

and Suurballe [1969]). There are also a few additional tests preventing such possibility of a

cycle, and the tests can be incorporated into the algorithm. We do not discuss the tests here

as we do not see meaningful economic intuition behind them. Interested readers can refer to

Dantzig, Ordern and Wolfe (1955), Bland (1977) and Hall and McKinnon (1996).

7 Conclusion

[To be added]
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A Appendix

A.1 Proof for Lemma 3

Suppose not. Then,
∑
θ′i
γi(θi, θ

′
i) = f(θi) where f(·) is not a constant function. Let αi = maxθi f(θi). Note

that γi(θi, θi) could be an arbitrary non-negative number since the incentive compatibility constraint associated

with γi(θi, θi) is a trivial constraint. Re-define γi(θi, θi) as γ̃i(θi, θi) = γi(θi, θi) + (αi − f(θi)). Then we derive

the condition
∑
θ′i
γi(θi, θ

′
i) = αi for all θi. Simply by defining si(θi, θ

′
i) := γi(θi, θ

′
i)/αi, we prove the Lemma.
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A.2 Proof for Proposition 1

First of all, Vi ≥ Vi(si). The result is trivial as there are more constraints for LPP than for LPP (si).

We take si(θi, θ
′
i) and αi as in Lemma 3, i.e., si(θi, θ

′
i) := γi(θi, θ

′
i)/αi and

∑
θ′i
si(θi, θ

′
i) = 1. Then,

Vi = max
si(θi,θ

′
i)≥0:

∑
θi
si(θi,θ

′
i)=1

gi(si)αi s.t. αi[p(θ)− q(θ|si)] ≤ p(θ).

Since the domain for the above maximization problem is compact, there is si ∈ Si that maximizes the above

program. For such si, we get

Vi ≤ gi(si)
p(θ)

p(θ)− q(θ|si)
for all θ such that q(θ|si) < p(θ).

If there is no such θ, Vi = 0 trivially. Take θ̄ such that θ̄ = argmin
θ
{ q(θ|si)

p(θ)
}. Then Vi ≤ gi(si) p(θ̄)

p(θ̄)−q(θ̄|si)
= Vi(si).

Thus we have shown Vi = maxsi V (si) since we already know Vi ≥ Vi(si).

A.3 Proof for Lemma 4

Firstly, suppose that q(·|si)
p(·) is minimized at (θ2

i , θ
′
−i) for some θ′−i, but not at (θ1

i , θ−i) for any θ−i. A marginal

change in si(θ
1
i , ·) does not affect 1

1−min
q(·|si)
p(·)

, but changes only gi(si). Note that si(θ
1
i , θ

2
i ) < 1 cannot be the

case as a marginal increase of si(θ
1
i , θ

2
i ) will increase gi(si) without changing 1

1−min
q(·|si)
p(·)

. Thus si(θ
1
i , θ

2
i ) = 1.

Also, si(θ
2
i , θ

1
i ) > 0 since

si(θ
2
i , θ

1
i )p(θ

2
i , θ−i)

p(θ1
i , θ−i)

> min
θ−i

q(θ2
i , θ−i|si)

p(θ2
i , θ−i)

= min
θ−i

p(θ1
i , θ−i) + (1− si(θ2

i , θ
1
i ))p(θ

2
i , θ−i)

p(θ2
i , θ−i)

⇒ si(θ
2
i , θ

1
i ) min

θ−i

p(θ2
i , θ−i)

p(θ1
i , θ−i)

> min
θ−i

p(θ1
i , θ−i)

p(θ2
i , θ−i)

+ 1− si(θ2
i , θ

1
i )⇒ si(θ

2
i , θ

1
i ) >

1 + minθ−i
p(θ1i ,θ−i)
p(θ2i ,θ−i)

1 + minθ−i
p(θ2i ,θ−i)

p(θ1i ,θ−i)

.

Then Vi(si) is

Vi(si) =
1

1−minθ−i
p(θ2i ,θ−i)si(θ

2
i ,θ

2
i )+p(θ1i ,θ−i)

p(θ2i ,θ−i)

 ∆ui(θ
1
i , θ

2
i )pi(θ

1
i )

+ si(θ
2
i , θ

1
i )∆ui(θ

2
i , θ

1
i )pi(θ

2
i )


=

1

si(θ2
i , θ

1
i )−minθ−i

p(θ1i ,θ−i)

p(θ2i ,θ−i)

[
∆ui(θ

1
i , θ

2
i )pi(θi) + si(θ

2
i , θ

1
i )∆ui(θ

2
i , θ

1
i )pi(θi)

]
. (30)

Since Vi(si) is maximal, infinitesimal decrease in si(θ
2
i , θ

1
i ) (weakly) decreases Vi(si), i.e.,

1[
si(θ2

i , θ
1
i )−min

p(θ1i ,·)
p(θ2i ,·)

]2
 ∆ui(θ

1
i , θ

2
i )pi(θi)

+si(θ
2
i , θ

1
i )∆ui(θ

2
i , θ

1
i )pi(θi)

− 1

si(θ2
i , θ

1
i )−min

p(θ1i ,·)
p(θ2i ,·)

∆ui(θ
2
i , θ

1
i )pi(θ

2
i ) ≤ 0

⇔ Vi ≤ ∆ui(θ
2
i , θ

1
i )pi(θ

2
i ).

This means that ∆ui(θ
2
i , θ

1
i )pi(θ

2
i ) ≥ 0. Thus, from equality (30), we can clearly see Vi(si) > ∆ui(θ

1
i , θ

2
i )pi(θ

1
i ).

This is a contradiction to ∆ui(θ
1
i , θ

2
i )pi(θ

1
i ) ≥ ∆ui(θ

2
i , θ

1
i )pi(θ

2
i ).
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Secondly, suppose q(·|si)
p(·) is minimized at (θ1

i , θ−i) for some θ−i, but not at (θ2
i , θ
′
−i) for any θ′−i. Also assume

∆ui(θ
2
i , θ

1
i )p(θ

2
i ) > 0. Then si(θ

2
i , θ

1
i ) = 1 by a similar argument as in the above. Also, si(θ

1
i , θ

2
i ) > 0 since

min
θ−i

p(θ1
i , θ−i)(1− si(θ1

i , θ
2
i )) + p(θ2

i , θ−i)

p(θ1
i , θ−i)

< min
θ−i

p(θ1
i , θ−i)si(θ

1
i , θ

2
i )

p(θ2
i , θ−i)

⇒ si(θ
1
i , θ

2
i ) >

1 + min
p(θ2i ,·)
p(θ1i ,·)

1 + min
p(θ1i ,·)
p(θ2i ,·)

.

Similarly, we can calculate Vi as:

Vi =
1

si(θ1
i , θ

2
i )−minθ−i

p(θ2i ,θ−i)

p(θ1i ,θ−i)

[
si(θ

1
i , θ

2
i )∆u(θ1

i , θ
2
i )p(θ

1
i ) + ∆u(θ2

i , θ
1
i )p(θ

2
i )
]
.

Again, the decrease in si(θ
1
i , θ

2
i ) should not increase the value Vi; thus,

1(
si(θ1

i , θ
2
i )−min

p(θ2i ,·)
p(θ1i ,·)

)Vi − 1

si(θ1
i , θ

2
i )−min

p(θ2i ,·)
p(θ1i ,·)

∆ui(θ
1
i , θ

2
i )p(θ

1
i ) ≤ 0⇔ Vi ≤ ∆ui(θ

1
i , θ

2
i )p(θ

1
i ).

It is a contradiction since Vi ≥ ∆ui(θ
1
i , θ

2
i )pi(θ

1
i ) + ∆ui(θ

2
i , θ

1
i )pi(θ

2
i ) if γi(θ

1
i , θ

2
i ) = γi(θ

2
i , θ

1
i ) = 1.

Finally, suppose q(·|si)
p(·) is minimized at θ1

i , but not at θ2
i , and ∆ui(θ

2
i , θ

1
i )p(θ

2
i ) ≤ 0. Then si(θ

2
i , θ

2
i ) = 0 by

a similar reason above. However, this case falls in the second category.

A.4 Proof for Proposition 2

Since the domain is a convex cone, if the minimum is achieved at (ρ1 = 0, ρ3 = 0, γ = 0), the value of the

objective function will (weakly) decrease by moving from (ρ1 = 0, ρ3 = 0, γ = 0) to some other point in the

convex cone. For α ∈ [0, 1], consider the following point:(
ρ1 = εα, ρ3 = ε(1− α), γ = −εmin

k̃

[
α
pk1
pk2

+ (1− α)
pk3
pk2

])
.

Point (ρ1 = εα, ρ3 = ε(1− α)) is away from (0, 0) in the direction of (α, 1−α), and γ was minimally changed so

that all the constraints in (27) are still satisfied, and at least one constraint is binding.5 For k ∈ argmin
[
α
pk1
pk2

+

(1− α)
pk3
pk2

]
, constraint k is still binding after this change.

From this change, the value of the objective function (see (27)) increases by

ε

[
−α∆12 − (1− α)∆32 −∆23 min

k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]]
.

This change of the value is non-positive if and only if (ρ1 = 0, ρ3 = 0, γ = 0) is the minimum of the dual linear

program. Thus, the condition for the existence of R2 ≥ 0 is:

α∆12 + (1− α)∆32 + ∆23 min
k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]
≤ 0, ∀α ∈ [0, 1].

(Notice that a local minimum of the dual linear program is the global minimum.)

5Note ρ1p
k
1 + ρ3p

k
3 + γpk2 ≥ 0 ⇔ γ ≥ −

[
ρ1p

k
1/p

k
2 + ρ3p

k
3/p

k
2

]
.
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A.5 Derivation of information rent for case 9

Binding incentive compatibility constraints were enough to characterize information rent so far. However,

concern on minimization is required in this case. Also, unlike Example 1, there could be more than one state

where type θ2
i receives positive rent as there are two types trying to mimic type θ2

i . Let R2(k) denotes the

information rent given to θ2
i when θ−i = θk−i. The following minimization problem characterizes information

rent.

min
R1,R2(k),R3

p1R1 + p2

∑
k

R2(k)pk2 + p3R3

s.t.
∑
k

R2(k)pk2 = ∆21 +R1 min
k

pk2
pk1
, R1 = ∆12 +

∑
k

R2(k)pk1 , R3 = ∆32 +
∑
k

R2(k)pk3 .

Plugging the second and the third constraints into the first and the objective function, we get:

min
R2(k)

p1∆12 + p3∆32 +
∑
k

R2(k)(p1k + p2k + p3k) s.t.
∑
k

R2(k)
[
pk2 −min

k̃

pk̃2

pk̃1
pk1

]
= ∆21 + min

k̃

pk̃2

pk̃1
∆12.

(Note p1k := p1 × pk1 .) The minimum is achieved when

R2(k) =
(

∆21 + min
k̃

pk̃2

pk̃1
∆12

)/(
pk2 −min

k̃

pk̃2

pk̃1
pk1

)
if k = argmin

p1k + p2k + p3k

pk2 −mink̃
pk̃2

pk̃1
pk1

, 0 otherwise.

Thus, for k = argmin(p1k + p2k + p3k)/(pk2 −mink̃
pk̃2

pk̃1
pk1),

R1 = ∆12 + pk1

∆21 + mink̃
pk̃2

pk̃1
∆12

pk2 −mink̃
pk̃2

pk̃1
pk1

, R2 =
∆21 + mink̃

pk̃2

pk̃1
∆12

1− pk1
pk2

mink̃
pk̃2

pk̃1

, R3 = ∆32 + pk3

∆21 + mink̃
pk̃2

pk̃1
∆12

pk2 −mink̃
pk̃2

pk̃1
pk1

.

A.6 Proof that B is invertible

Let A
(θi,θ

′
i)

N be the (θi, θ
′
i)-th column of matrix AN , Bθ be the θ-th column of matrix B, and xBθ be the θ-th

row of xB . Since xN = 0, (29) becomes ∑
θ̃

Bθ̃xBθ̃ = b.

After increasing γi(θ
j
i , θ

k
i ) up to the maximum, we have

A
(θ
j
i ,θ

k
i )

N γi(θ
j
i , θ

k
i ) +

∑
θ̃ 6=θ

Bθ̃ξBθ̃ = b

where ξB is the value changed from xB by the change in γi(θ
j
i , θ

k
i ), and θ is such that the θ-th row of xB hits

zero the earliest.

From the two equations, we derive

A
(θ
j
i ,θ

k
i )

N xN (θ
j
i ,θ

k
i )

+
∑
θ̃ 6=θ

Bθ̃(ξBθ̃ − xBθ̃)−B
θxBθ = 0.
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If γi(θ
j
i , θ

k
i ) > 0, xBθ > 0 (otherwise, xBθ cannot be the row of xB that becomes the zero the first). Thus,

A
(θ
j
i ,θ

k
i )

N is spanned by {Bθ̃ : θ̃ ∈ Θ}, and the coefficient for Bθ is non-zero. As long as {Bθ̃ : θ̃ ∈ Θ} is a basis,

{Bθ̃ : θ̃ 6= θ} ∪ {A(θ
j
i ,θ

k
i )

N } is a basis too. Therefore, the replacement of Bθ with AN
(θ
j
i ,θ

k
i ) makes matrix B

invertible as long as B was invertible before the replacement. On the other hand, if xN (θ
j
i ,θ

k
i )

= 0, consider the

situation of making xN (θ
j
i ,θ

k
i )

= ε > 0. Then ξBθ will become a strictly negative number. Thus we can argue

the same way to show that A
(θ
j
i ,θ

k
i )

N is spanned by (Bθ̃)θ̃∈Θ, and the coefficient for Bθ is non-zero. Thus B is

invertible after the replacement by the same reason.

Since the algorithm starts with B = I, B remains invertible along the ongoing steps.
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