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Abstract
I study and compare preference aggregation in a simultaneous and

a sequential multicandidate election. Voters have perfect information
about their own preference but do not know the median voter’s preference.
A voter has an incentive to vote for her second choice for fear that a
tie between her second and third choice is more likely than she would
like. Therefore, a voter may want to coordinate with supports of her
second choice. I show that when voters’ preference intensity for their
first choice is moderate, in the limit as the electorate increases, there is a
unique equilibrium in the voting game within one voting round exhibiting
multi-candidate support. In such an equilibrium, the ex ante probability
that a candidate wins increases in her supporters’ preference intensity
and decreases in her opponents’preference intensity. There is too much
coordination with supporters of a voter’s second choice in that sometimes
the median voter’s second choice wins the election. A sequential election
allows later voters to coordinate with earlier voters. Therefore, in the
last voting round, votes are split between the two front runners. The
voting outcome in the first round affects the voting behavior of the second
round. A victory of a voter’s favorite candidate in the first round may
change the outcome of the second round from the voter’s second choice to
her favorite candidate or from her last choice to her second choice. When
preference intensity is moderate, voters vote more for their first choice if
they vote first in a sequential election than in a simultaneous election, and
the probability that the median voter’s first choice does not win a voting
round is smaller if voting takes place sequentially.

1 Introduction

The outcomes of early elections play an out-of-proportion role in the US Presi-
dential primary. Adam (1987) reports that the 1984 New Hampshire primary
got nearly 20% of the season’s coverage in ABC,CBS, NBC and the New York
Times, even though New Hampshire accounts for only 0.4% of the US popula-
tion, and only four votes out of 538 electoral votes in the presidential election.
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In the 1980 Republican primaries, George Bush and Ronald Reagan spent about
3/4 of their respective campaign budgets in early primary states, which account
for much less than a fifth of the votes in the Republican convention in 1980
(Malbin, 1985). The emphasis on winning early primaries may come from the
widely-held belief that early winners gain “momentum”due to the sequential
nature of the election.
However, recent primaries have become more “front-loaded” into the early

weeks. California has recently passed a legislation to move forward its primary
to Feb. 5, 2008, only after 4 other primaries held in January. The media in
general views this as “selfish”behavior on the part of those states. It has been
argued that a more front-loaded primary system makes it more important for
candidates to raise a lot of money early (William Schneider, 1997) and a more
front-loaded 2008 primary gives well-established candidates an advantage. On
what ground do these assertions stand? And if they are true, through what
channel does the timing structure affect the voting outcomes?
Existing literature that study sequential elections has for the most part re-

stricted attention to contests between two candidates. However, there are
usually many candidates in a presidential primary. For example, Sen. Hillary
Rodham Clinton of New York, Sen. Barack Obama of Illinois and former sen-
ator John Edwards of North Carolina, are all considered front runners in the
2008 primary for the Democratic party. With only two candidates, voters sim-
ply vote for their preferred candidate. In a multi-candidate contest, however,
some voters have to vote strategically for their second choice if they believe
their most preferred candidate has a smaller probability of being in a close race.
Therefore, voters’beliefs about relative popularity of every candidate, and the
relative likelihood of different pivotal events, play an important role in their
decision.
Given this element of coordination in multicandidate contest under plurality

rule, it is not surprising that with common knowledge assumption of the elec-
toral situation, the voting outcome involves either a complete success or failure
of coordination. Duverger’s Law (see Riker 1982) asserts that “plurality rule
brings about and maintains two-party competition”, because only two candi-
dates should be expected to get any vote. This represents complete success of
coordination. Most of the literature focuses on these “Duvergerian”equilibria,
but offers no formal theory as to which two candidates should be considered
“serious”contenders. In addition, it cannot explain the incomplete coordina-
tion observed in many multicandidate election outcomes. For example, in the
1970 New York senatorial election, even the trailing candidate among the three
got more than 24% of the votes, and the winner gets only 2% more votes than
the second.
Moreover, common knowledge of the electoral situation seems a very strong

assumption. The 1997 British Election Survey indicates that about two-third
of voters who expected their preferred party to come second actually found that
it came third (Fisher, 2000). There was clearly lack of common knowledge
among voters as to the identities of the first and second place winner, which is
inconsistent with that literature.
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This paper presents a model of preference aggregation in a multi-candidate
election that features a candidate who is “a common second choice” for sup-
porters of the other two extreme candidates. Voters in the model only have
imperfect information about the distribution of preferences in the electorate.
Supporters of an extreme candidate have an incentive to coordinate with sup-
porters of the “common second choice” against their least favorite candidate.
Relaxing common knowledge assumption enables meaningful analysis of this co-
ordination effect. I show that this coordination incentive among supporters of
an extreme candidate is stronger when preference intensity for that candidate is
smaller, when preference intensity for the opposing extreme candidate is higher,
or when the prior belief of the share of supporters of the extreme candidate is
smaller. In addition, in those situations, there is excess coordination in that the
“common second choice”wins too often, i.e. sometimes “the common second
choice”wins even though the median voter favors one of the extreme candidates.
One interpretation of “the common second choice”is a candidate that’s widely
known and considered a “safe option”.
I then study an election that involves voting in three states (electorates) in

which the candidate winning the most states wins the election. This is close
to a Republican primary system. I compare voting behavior and outcomes
under simultaneous and sequential election. When preference intensity is not
too big, in the last state, supporters of the extreme candidate that has not
governed any victory always vote for the “common second choice”. Thus the
equilibrium exhibit winnowing down of front runners. In addition, a victory by
one extreme candidate in the first state boosts the morale of her supporters in
the second state and results in more aggressive voting behavior by her supporters
and higher chance of winning in the second state. I show that when preference
intensity is moderate, a sequential election reduces excess coordination motive
in the first state as compared to the outcome under simultaneous election and
reduces the ex ante probability that the candidate winning that state is not the
median voter’s first choice.

2 Literature Review

Dekel and Piccione (2000) and Ali and Kartik (2006) both study sequential elec-
tions between two candidates in which some voters have only imperfect infor-
mation about their own preference over the two candidates. Dekel and Piccione
(2000) show that any outcome of a voting equilibrium in a simultaneous election
is also an equilibrium outcome of a sequential election with any timing structure.
Ali and Kartik (2006), on the other hand, construct a Perfect Bayesian equilib-
rium in which “herding,” i.e. voting according to the history of vote counts so
far and disregarding one’s own information, happens with positive probability.
This suggests that in a race between two candidates, a simultaneous election
can be (but is not necessarily due to multiplicity of equilibria) more effi cient in
gathering information than a sequential election.
Myerson andWeber (1993) and Myerson (2002) both assume common knowl-
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edge of the preference distribution of the electorate, and show that under plu-
rality rule, for any pair of candidates in a “three-horse race”, there exists an
equilibrium in which only this pair are considered “serious”and get any vote.
Myerson (2002) call these discriminary equilibria because labeling of the can-
didates matter as to whether they have positive probability of winning. They
argue that “a large multiplicity of equilibria creates a wider scope for focal
manipulation by political leaders.”
Myerson and Weber (1993) also show via an example the existence of a “non-

Duvergerian”equilibria in which a group of voters fail completely to coordinate
to avoid the worst outcome, and the two losers exactly tie. They conjecture
that some additional assumption of dynamic stability or persistence may be
used to eliminate these “non-Duvergerian”equilibria.
This paper is most closely related to Myatt (2007), which studies simulta-

neous elections under plurality rule in which one candidate (the conservative
status quo) has a commonly known fixed fraction (< 1

2 ) of supporters, while
the rest of the electorate share the distaste of the status quo but disagree on
which of the other two (liberal) candidates is optimal. This assumption ef-
fectively reduces an election under plurality rule with three candidates to one
under qualified-majority rule between two candidates. Essentially, the (liberal)
voters have to coordinate behind the two (liberal) candidates. They relax the
common knowledge assumption by assuming that each voter gets an imperfect
signal about the preference distribution of the electorate (as evident in the UK
General Election of 1997). They construct a uniqe symmetric equilibrium that
is consistent with the 1970 New York Senatorial election, which displays limited
strategic voting and incomplete coordination. However, the assumption of a
fixed and commonly known support for one candidate does not seem to fit US
Presidential primaries.
It is diffi cult to characterize equilibria in a large election because probabil-

ity ratios of close-race events between different pairs of candidates can be quite
intractable. Myatt (2007) develops the solution concept of strategic-voting equi-
librium for large elections, which can be viewed as a Bayesian Nash equilibrium
with a continuum of voters. It facilitates the calculation through law of large
numbers arguments. Myerson (2000), on the other hand, tackels this issue by
assuming population uncertainty. They assume that voter turnout follows a
Poisson process with a commonly known preference distribution. The feature
of Poisson process that an individual voter’s belief about the behavior of the
electorate does not depend on his own preference type facilitates comparison of
limiting probabilities of different pivotal events as the size of the electorate goes
to infinity.
On relaxing common knowledge assumptions in voting situations, Fedder-

sen and Pesendorfer (1997, 1998) use a common value model for jury decision
making. In their model, each juror decides on one of two votes based on a
private signal about the defendant’s guilt and aims to convict the guilty and
acquit the innocent. Thus other jurors’information matters even for a juror’s
own preference over outcomes. Each juror infers about the merits of his two
actions from an assessment of the information possessed by others conditional
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on his vote being pivotal. Therefore, if other jurors respond a lot to their
signals, a juror may have an incentive to disregard his own signal because the
information contained in the pivotal event outweighs his own information. This
is why bandwagon effects may arise in sequential elections with two candidates
in Ali and Kartik (2006). However, since there are only two outcomes, the
coordination effect in multicandidate contests is not present in these models.

3 A Multicandidate Contest in One State

3.1 The Model

Three candidates L,M,R compete in a simultaneous election. There are n
voters in the electorate where n follows a Poisson distribution with mean N .
Each voter has to voter for exactly one candidate. A voter can be of three
preference types: a right wing voter, r, prefers candidate R to M to L, a
left-wing voter, l, prefers candidate L to M to R, while a moderate voter m
prefers candidate M the most and is indifferent between R and L. A voter
of preference type i receives payoff Uij when candidate j ∈ {L,M,R} wins the
election. Write φr = UrR−UrM

UrM−UrL . It represents the preference intensity of a right
wing voter for her favorite candidate. Define ur = log (2φr). φl and ul are
defined analogously.
A voter in the electorate is right-wing with probability F (η − θ), left-wing

with probability F (−η − θ) and moderate with probability 1 − F (η − θ) −
F (−η − θ), where F is the cumulative distribution function for Laplace dis-
tribution with mean 0 and variance 2. θ is an exogenously given parameter of
the model and in a way measures the size of the moderate population. Under
this specification, the median voter is moderate if η ∈ (−θ, θ), right-wing if
η > θ and left-wing if η < −θ.

A voter does not know the ideology of the median voter in her electorate.
That is, a voter in the electorate does not know η. She believes that η ∼
Laplace (0, α). Let G (.) and g (.) denote the cumulative distribution function
and the probability density function of the prior. In addition to the common
prior about η, voter i gets some additional information about the preference
of the electorate. She obtains a signal η̂i ∈ Laplace (η, 1) independent of her
preference type. Based on her information and the prior, she then forms an
updated belief about η. Denote by f (.|η̂i) the probability density function of
voter i’s posterior given her signal η̂i.

3.2 Equilibria

3.2.1 Strategies and best responses

A voter’s type is her ideology-information pair (oi, η̂i) where oi ∈ {l,m, r} and
η̂i ∈ R. A pure strategy for voter i is then a mapping from her type to the set of
candidates {L,M,R}. A sincere voting strategy simply chooses the candidate
that’s most preferred according to voter i’s ideology.
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There are many equilibria in this game. For example, if every voter votes
for candidate j, then a voter is never pivotal and thus she is indifferent between
all candidates. Given any two candidates c1, c2, there is an equilibrium in
which every voter votes for the one in {c1, c2} that she prefers. In such an
equilibrium, the election is reduced to a binary voting game. One can say that
the two candidates c1 and c2 are the front-runners and the focal point of the
election. However, the model cannot answer the question of how front runners
are chosen.
For these reasons, we focus on Bayesian Nash equilibria in type-dependent

strategies. In particular, we focus on equilibria in symmetric pure voting strate-
gies where the same type-dependent voting strategy s (oi, η̂i) is used by every
voter.
Consider a voter’s payoff given that voting strategy s is adopted by all the

other voters. Let xj denote the number of votes candidate j gets from everyone
other than voter 0. Then (xR, xM , xL) is a vector of random variables whose
distribution depend on the voting strategy v adopted by everyone else. If
voter 0 is moderate, then it is her best response to vote for M regardless of
her information because she is indifferent between R and L. It is a strict best
response as long as Pr {xR = xM ∪ xM = xL|η̂i} > 0. If voter 0 is right-wing,
then her best response is to vote for R if(

Pr {xR = xM |η̂i}+
1

2
Pr {|xR − xM | = 1|η̂i}+

1

2
Pr {xR = xL|η̂i}

)
(UrR − UrM )

≥ 1

2
(Pr {xM = xL|η̂i}+ Pr {xR = xL|η̂i}) (UrM − UrL) ,

and to vote for M otherwise. A left-wing voter’s strategy is analogous. There-
fore, candidate R gets votes only from right-wing voters.
Denote by pj (η|v) the probability that a voter votes for candidate j condi-

tional on η given that voting strategy v is adopted. Then

pR (η|v) = F (η − θ) Pr {η̂i : v (r, η̂i) = R|η} .

3.2.2 Voting in Large Electorates

We assume that the turn-out, n, follows a Poisson distribution with mean N .
Denote by sN (oi, η̂i) an equilibrium voting strategy in such an electorate. We
focus on the limit of the equilibrium voting strategy sN (oi, η̂i) as N →∞.

Lemma 3.1 If everyone else in the electorate adopts a voting strategy such that
the probability that a voter votes for candidate c is equal to pc (η) when the state
variable is η, and voter turn-out follows a Poisson process with mean N , then
for any d ∈ {−1, 0, 1},

lim
N→∞

Pr {|xR − xM | = d and min {xR, xM} > xL|η̂i, p}
Pr {|xL − xM | = d and min {xM , xL} > xR|η̂i, p}

=
f (ηR|η̂i)
f (ηL|η̂i)

|p′L (ηL)− p′M (ηL)|
|p′R (ηR)− p′M (ηR)| ,
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where ηR is the solution to pR (η) = pM (η) and ηL is the solution to pL (η) =
pM (η). In addition, if pR (η̂) < pM (η̂) for all solution η̂ to pR (η) = pL (η),
then

lim
N→∞

Pr {|xR − xL| = d and min {xR, xL} > xM |η̂i, p}
Pr {|xj − xM | = d and min {xM , xj} > x−k|η̂i, p}

= 0

where j, k ∈ {R,L} and j 6= k.

3.2.3 Equilibria Characterization

It follows that a right-wing voter votes for R if and only if

log
f (ηR|η̂i)
f (ηL|η̂i)

≥ − log 2
UrR − UrM
UrM − UrL

− log
|p′R (η∗R)− p′M (η∗R)|
|p′L (η∗L)− p′M (η∗L)|

where f (.|η̂i) is a voter’s posterior about η given her signal η̂i. Using Bayes
update, we have

log
f (ηR|η̂i)
f (ηL|η̂i)

=


(ηR − ηL) + 2α

(
η0 −

ηR+ηL
2

)
if η̂i > ηR

2
(
η̂i −

ηR+ηL
2

)
+ 2α

(
η0 −

ηR+ηL
2

)
if η̂i ∈ (ηL, ηR)

− (ηR − ηL) + 2α
(
η0 −

ηR+ηL
2

)
if η̂i < ηL

.

Let BRN (vN ) (oi, η̂i) be a voter’s best response when everyone else adopts
sN when the mean of voter turnout is N . Write uR = log 2UrR−UrMUrM−UrL , then
limN→∞BRN (vN ) (r, η̂i) = R if and only if

min {η̂i, ηR} ≥ (1 + α)
ηR + ηL

2
− αη0 −

1

2
log
|p′R (ηR)− p′M (ηR)|
|p′L (ηL)− p′M (ηL)| −

1

2
uR

where ηc is the such that limN→∞ (pR (ηc|vN )− pM (ηc|vN )) = 0, for c ∈
{R,L}. Let s∗ be the limit of sN . Then by continuity, limN BRN (s∗) (r, η̂i) =
R if and only if

min {η̂i, ηR} ≥ (1 + α)
ηR + ηL

2
− αη0 −

1

2
log
|p′R (ηR)− p′M (ηR)|
|p′L (ηL)− p′M (ηL)| −

1

2
uR

where ηc is the such that pc (ηc|s∗) = pM (ηc|s∗) > p−c (ηc|s∗), for c ∈ {R,L}.
Therefore, if s∗ is the limit of a symmetric equilibrium as N →∞, then it is a
fixed point of the mapping limN BRN→∞.

A best response to any symmetric voting strategy profile is a cutoff strategy
involving an information threshold: r votes for R if η̂i ≥ a− uR

2 and l votes for
L if and only if −η̂i ≥ −a− uL

2 . The information cutoff depends on the voter’s
preference intensity, but also on a systematic bias a. a > 0 represents a bias
toward L because the information cutoff is higher than preference intensity for
right wing voters, but lower than preference intensity for left-wing voters.
If everyone else adopts such a cutoff strategy indexed by a, then the proba-

bility that voter i votes for R is equal to

pR (η; a) = F (η − θ)F
(
η − a+

uR
2

)
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and the probability that voter i votes for L is

pL (η; a) = F (−η − θ)F
(
−η + a+

uL
2

)
.

Because pR is increasing in η and pL is decreasing in η, there exists a unique
solution η̃ to pR (η) = pL (η). For θ > 3

2 , F (−θ) < 1
3 . Thus pR (η̃) = pL (η̃) <

pM (η̃). Define ηR (a) to be the solution to 2pR (η; a) + pL (η; a) = 1. Then
if everyone adopts a cutoff strategy indexed by a, the probability that voter i
votes forM is equal to the probability that voter i votes for R when η = ηR (a).
When the electorate is large, R ties with M for the winner at η near ηR (a).
Define

â (a) = (1 + α)
ηR (a) + ηL (a)

2
− αη0 −

1

2
log
|p′R (ηR (a))− p′M (ηR (a))|
|p′L (ηL (a))− p′M (ηL (a))| .

Then if sN is a symmetric equilibrium in an electorate with meanN , limN→∞ sN
is a cutoff strategy indexed by a∗ where a∗ is a fixed point of â.
We first solve for pR (η, a) = pM (η, a).

Lemma 3.2 If uR + uL < 0 and θ > 3
2 , then

ηR (a) = log
eθ + ea−

uR
2 +

√
e2θ + e2a−uR − e−θ+a+

uL
2

2
.

Proposition 1 If uR+uL < 0, α < 1
4 and θ > min

{
−uR+uL

4 ,−max{uR,uL}
2 + log 2

}
,

then there exists a unique fixed point a∗ for the mapping â. In addition, a∗ ·
(uR − uL) < 0 and η∗R (ur, ul, θ, α) := ηR (a∗, uR, ul, θ, α) > θ, η∗L (ur, ul, θ, α) :=
ηL (a∗, ur, ul, θ, α) < −θ.

Therefore, the game has a unique symmetric equilibrium with multi-candidate
support. The equilibrium involves threshold a∗ such that a right wing voter
votes for R if and only if her information is more optimistic than the threshold
a∗ − ur

2 . If voters in the opposing camp have higher preference intensity, then
the threshold will be lower.

3.3 Comparative Statics

Let η∗c (ur, ul, θ, α) = ηc (a∗ (ur, ul, θ, α)) for c ∈ {R,L}.

Proposition 2 If ur+ul < 0,α < 1
4 , and θ > min

{
−ur+ul

4 ,−max{ur,ul}
2 + log 2, 3

2

}
,

then
∂|η∗j (ur,ul,θ,α)|

∂uj
< 0 and

∂|η∗j (ur,ul,θ,α)|
∂uk

> 0 for j 6= k and j, k ∈ {L,R}.

η∗R decreases with right wing voters’preference intensity ur and increases
with left-wing voters preference intensity ul. In other words, the prior proba-
bility that R wins the election increases with ur and decreases with ul. This is
true for preference intensities that are not very strong nor too weak.
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When left-wing voters’ preference intensity ul goes up, there are two off-
setting effects. First, this will increase the information threshold for right-wing
voters and thus decrease the probability that a right wing voter votes for R
by increasing the fixed point a∗. On the other hand, given the same a, this
will decrease the information threshold for left-wing voters, and this will also
decrease equilibrium a∗. A stronger left-wing force will eat into the voter base
for M , and improves the prospect of R w.r.t. M . When ul is not too big , the
former force dominates.
Because η∗R > θ, strategic voting results in conservative voting behavior

that favors candidate M , the common second choice or middle ground. When
η ∈ (θ, η∗R), the median voter prefers R, but M wins the election. On the
other hand, if every voter votes sincerely, then the voting outcome exhibits
miscoordination. There exists ηNR ∈ (0, θ) where N stands for naive voting
such that when η ∈

(
ηNR , θ

)
, the median voter prefers M the most but R wins

the election because left-wing voters do not coordinate with moderate voters.
η∗R (u, u, θ, α) is decreasing in u and increasing in θ.

4 Sequential v.s. Simultaneous Election

4.1 Model

The electorate consists of three states, state 1,2,3. The candidate that wins
most states wins the election. In case of a tie between 2 or 3 candidates, the
winner is determined by a random draw among those that tie for the first place.
The winner within a state is determined also by plurality rule as described in
the previous section. Voter i is state k is right-wing with probability F (ηk − θ)
and left-wing with probability F (−ηk − θ). Every voter shares the same prior
that ηk’s follow i.i.d. Laplace (0, α). In addition to the common prior, voter i
in state k obtains an additional signal η̂i about ηk where η̂i ∼ Laplace (ηk, 1).
The independence of ηk’s across states implies that there is no learning when
voting takes place sequentially. This allows me to focus on the coordination
effect of sequential voting.
Let voc denote the payoff to voter of ideology type o when candidate c wins

the election. We will look at the symmetric case where vrR = vlL > vrM =
vlM > vrL = vlR and vmM > vmL = vmR. Define

φ =
vrR − vrM
vrM − vrL

and u = log 2φ. We call φ the extreme voters’preference intensity for their
favorite candidate.

4.2 Sequential Election

This section analyzes equilibria in a sequential election and illustrate the coor-
dination effect. We only look at the election where φ < 1

2 . In such elections,
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coordination is important because the payoff difference between the second and
the least favorite candidate is more than twice that of the first and the second
favorite candidate.

4.2.1 Voting in the last state

The voting outcome in the last state may affect the election outcome if and only
if the previous two states split between two candidates. It is weakly dominant
for a moderate voter to vote for M . Given any voting strategy in which m
always votes for M , the probability that candidate R ties with L vanishes more
quickly than the probability that candidate L ties with M . Therefore, voter i
only weighs between the probability of an R−M tie and the probability of an
M − L tie.
When candidate L and candidate M each wins one state, then a right

wing voter’s payoff when candidate c wins the third state is given by UrR =
vrR+vrM+vrL

3 , UrM = vrM and UrL = vrL. When φ < 1, UrM − UrL =
(vrR−vrM )−(vrM−vrL)

3 < 0. Therefore, in both an R−M tie and an M − L tie,
a right wing voter prefers to vote for M . Therefore, in all weakly undominated
equilibria, a right wing voter votes for M . Thus the last state is a runoff be-
tween L and M . L wins the last state and the election if η3 < −θ and M wins
the last state and the election if η3 > −θ.
When candidate L andR each wins one state, ULRrR −ULRrM = urR−urM+urR−urL

3
and UrM − UrL = urR−urL+urM−urL

3 . Therefore, the preference intensity for
the last-state election, denoted by φRL, is equal to 1. Thus, the equilibrium in
the subgame after R and L split the first two states gives rise to the two cutoff
points η∗R (1, 1, α, θ) and η∗L (1, 1, α, θ). Because θ > 1+1

4 , η∗R (1, 1, α, θ) > θ.

4.2.2 Voting in the second state

In this section we will show how the cutoff points on η2 for different voting
outcomes in state 2 depends on the voting outcome of state 1. In particular,
we will show that when preference intensity for the overall election is moderate,
probability that candidate R wins the second state increases as the outcome of
the state 1 changes from L to M to R. In particular, we will analyze how ηhR
changes with h, where h ∈ {R,M,L} is the outcome of the first state and ηhR is
lower bound on η2 for candidate R to win the second state.
Given the voting outcome h ∈ {R,M,L} of state 1, the eventual election

outcome depends on the voting outcome of state 2 and the electoral preference
of state 3, η3. Figure illustrates how the election outcome depends on the
voting outcomes of the first two states and η3.
Consider the voting game in state 2 after candidate R wins the first state.

State 2’s voting outcome is pivotal only when M will win state 3, i.e. η3 < θ.
Therefore, we get UrR − UrM = G (θ) (vrR − vrM ), where G is the cumulative
distribution function of the prior on η3. But the payoff difference whenM wins
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state 2 v.s. when L wins state 2 gets even smaller. Therefore, we get

φRr =
G (θ)φ

1
2 −

G(−θ,θ)
2 φ− G(−θ,θ)

6 (1− φ)− G(θ,η∗R(1,1))
3 (1− φ)

.

So a win by R boosters the preference intensity of right-wing voters in the second

state. The ratio φRr
φ is higher the weaker the general preference intensity is,

and the less likely an extreme candidate will win state 3. Because the game
is symmetric, φLl = φRr . φRr is different from the payoff difference ratio in
a simultaneous election conditional on one state being taken by candidate R.
Conditional on one state being R, a R-win or anM -win makes a difference when
state 3 is taken by either M or L. But in a sequential election, L never wins
state 3 if R wins state 1 and state 2 is taken by either R or M . In other words,
voting outcome in the first two states can change a left-wing state from being
taken by L to being taken by M .

Consider the voting game in state 2 after L wins the first state. We get that

φLr =

(
1
2 −

G(−θ,θ)
2

)
φ+ G(−θ,θ)

6 (1− φ) +
G(θ,η∗R(1,1))

3 (1− φ)

G (θ)
.

Given that M wins the first state, φMr = φ.
Therefore, we see that φhr increases as h changes from L to M to R. Right

wing voters’preference intensity for the voting outcome in the second state is
higher the closer the voting outcome in the first state is to their preferred choice.

Proposition 3 If u < 0,α < 1
4 , and θ > min

{
−u2 + log 2, 3

2

}
, then ηRR (u, θ, α) <

ηMR (u, θ, α) < ηLR (u, θ, α).

This follows immediately from Proposition 2 because right wing voters’pref-
erence intensity increases while left-wing voters’preference intensity decreases
as the outcome of the first state changes from L to M to R.

4.2.3 Voting in the first state.

φ∅r =
φ− c∅
1− c∅φ

where

c∅ =
1

2

2
3 −

2
3
F (θ,η∗R(1,1))

P (m) − 2
F(ηMR ,η

L
R)

PL(R)
P (r)
P (m)

PR(R)
PL(R)

+ P (r)
PL(R)

+ 1
2 −

1
6 −

1
3

F(θ,η∗R(1,1))
P (m) + 2 P (r)

PL(R)
P (r)
P (m) +

F(ηRR,ηMR )
PL(R)

P (r)
P (m)

.

Because φ < 1, φ∅r is decreasing in c
∅.

Outcome in the first state can change outcome in the second state and/or
outcome in state 3. The reason a right-wing voter may strategically vote for
M instead of her favorite candidate R is for fear of a tie between M and L and

11



getting L elected instead of M in that situation. Roughly speaking, M and L
tie in the overall election when one of the other two states is moderate and the
other is left-wing. But when R wins the first state, the left state has to be very
left for L to win, and once an R − L split has formed, R may win a moderate
state as well.

4.3 Simultaneous (Front-loaded) Election

The payoff difference to voter i in state k when candidate c wins state k v.s.
candidate c′ depends on how the voting outcome in state k affects the election
outcome. We will focus on symmetric equilibria in which every voter in very
state use the same voting strategy. Suppose voters in the other two states
use voting strategy s such that R wins state k if ηk > η̃ and L wins state k
if ηk < −η̃. Then the probability that R wins state k is G (−η̃). Denote by
pF (c) the probability that candidate c wins a state. This vector of probabilities
depend on the voting strategy s employed and is determined by η̃.

UFR − UFM = PF (R)PF (M) (vcR − vcM ) + PF (R)PF (L)
(vcR − vcM ) + (vcR − vcL)

3

+PF (M)PF (L)
(vcR − vcM )− (vcM − vcL)

3

=

(
PF (R)P (M) +

2

3
P (R)P (L) +

1

3
P (M)P (L)

)
(vcR − vcM )

−PF (L)
(
PF (M)− PF (R)

)
(vcM − vcL) .

Because the game is symmetric and we are looking for symmetric equilibria,
PF (R) = PF (L) and we get

φF : =
UFR − UFM
UFM − UFL

=
φ− cF
1− cFφ

where

cF =
1
3

(
PF (M)− PF (R)

)
4
3P

F (M) + 2
3P

F (L)

=
1

2

1− PF (R)
PF (M)

2 + PF (L)
PF (M)

.

Note that cF is a function of η̃, and thus uF is a function of u and η̃.
Given that voters in the other two states use symmetric voting strategy

v characterized by η̃, preference intensity for voting outcome of the state is
given by uF (u, η̃). Because the game within the state is symmetric, a∗ =

12



0. In this equilibrium, an extreme voter votes for her favorite candidate if
her signal η̂i > −

uF (u,η̃)
2 . Note that when φ < 1, φF (φ, η̃) < φ if and

only if PF (R)
PF (M)

< 1. Therefore, in a symmetric equilibrium, the cutoff for

R to win a state is ηFR (u, θ, α) > η∗R (u, u, θ, α). Define ηF (η̃;u, θ, α) =
η∗R
(
uF (u, η̃) , uF (u, η̃) , θ, α

)
. ηF (η̃) is increasing for η̃ ≥ η∗R (u, u, θ, α) and

ηF (η∗R (u, u, θ, α)) > η∗R. Define the fixed point to be ∞ when ηF (η̃) > η̃ for
all η̃ > η∗R (u, u, θ, α). Then ηFR is a fixed point of the function. ηFR = ∞ is a
simultaneous voting equilibrium in which all voters vote for M .

4.4 Voting Behavior in State 1 under sequential and front-
loaded election

Comparing η∅R and ηFR is equivalent to comparing c∅ and cF . When φ < 1,
η∅R < ηFR if and only if c

∅ < cF .

Proposition 4 For θ big enough, or u small enough, voters in state 1 behave
more aggressively under a sequential election than under a simultaneous election.

5 Conclusion

This paper studies preference aggregation in a multi-candidate contest when the
preference of the electorate is not common knowledge. In a multi-candidate
contest, voters have an incentive to coordinate with supporters of their second
choice to avoid a victory by the least favorite candidate. I show that the coor-
dination incentive is stronger when preference intensity is weaker. I then use
this model as cornerstone to compare a simultaneous election in which several
states vote at the same time and a sequential election in which each state votes
one by one after observing outcomes of previous states. I show that when the
prior probability of extreme voters is small or when the preference intensity of
extreme voters is small, coordination incentives are stronger for extreme voters
and thus they vote more aggressively in a sequential election than in a simulta-
neous election. As a result, the prior probability that the winner in a state is
not the first choice of the median voter is smaller in a sequential election.

6 Appendix

6.1 Proof for lemma 3.1.

Proof. It suffi ces to show that

lim
N→∞

N Pr {VR = VM > VL|η̂i, p} =
f (ηR|η̂i)

|p′R (ηR)− p′M (ηR)| .

Let

Hu = {(VR, VM , VL) |VR = VM > VL where Vc ≥ 0 for c = R,M,L}

13



Then

Pr {VR = VM > VL|η̂i, p} =

∫ ∞
η=−∞

P (Hu|N, p (η)) f (η|η̂i) dη.

Let
H = {(VR, VM , VL) |VR = VM where Vc ≥ 0 for c = R,M,L}

and H∗ = {(VR, VM , VL) |VR = VM where Vc ≥ 0 for c = R,M,L}. Then H is
a hyperplane in (N ∪ {0})3 spanned by w1 = (1, 1, 0) and w2 = (0, 0, 1).

Given η, we first show that yN :=
([
N
√
pR (η) pM (η)

]
,
[
N
√
pR (η) pM (η)

]
, [NpL (η)]

)
is a near maximizer

∑
c pcψ

(
x(c)
Npc

)
over x in H∗ where ψ (θ) = θ (1− log θ)− 1.

H∗ = {γ (1, 1, 0) + j (0, 0, 1) |γ ≥ 0 and j ≥ 0}. Let

(γ∗, j∗) ∈ arg max
γ≥0,j≥0

(
pRψ

(
γ

NpR

)
+ pMψ

(
γ

NpM

)
+ pLψ

(
j

NpL

))
.

Because the derivative is ∞ for γ = 0 or j = 0 and the function goes to 0 as
γ or j → ∞, the solution must be interior of H∗. Thus γ∗, j∗ satisfy the first
order condition:

0 = − log
γ

NpR
− log

γ

NpM

0 = − log
j

NpL
.

So γ∗ = N
√
pRpM and j∗ = NpL. Then yN as defined is a near maximizer.

pRψ

(
γ∗

NpR

)
+ pMψ

(
γ∗

NpM

)
+ pLψ

(
j∗

NpL

)
= pR

(
γ∗

NpR

(
1− log

(
γ∗

NpR

))
− 1

)
+pM

(
γ∗

NpM

(
1− log

(
γ∗

NpM

))
− 1

)
+pL

(
j∗

NpL

(
1− log

(
j∗

NpL

))
− 1

)
= −1 +

γ∗

N

(
1− log

(
γ∗

NpR

)
+ 1− log

(
γ∗

NpM

))
+
j∗

N

(
1− log

(
j∗

NpL

))
= −1 + 2

γ∗

N
+
j∗

N
= 2

√
pRpM − (1− pL)

= 2
√
pRpM − pR − pM

= − (
√
pR −

√
pM )

2 .
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Then using theorem 3 in Myerson (2000),

lim
N→∞

Pr {H|Np (η)}
Pr {yN |Np (η)} (2π) (det (M (yN )))

−0.5 = 1

whereM (yN (η)) =

[ 2[
N
√
PR(η)pM (η)

] 0

0 1
[NpL(η)]

]
and limN→∞N ∗M (yN ) =[

2√
PR(η)pM (η)

0

0 1
pL(η)

]
. By Myerson (2000),

Pr {yN |Np (η)} ≈ e
N∗
(
pRψ

(
γ∗
NpR

)
+pMψ

(
γ∗
NpM

)
+pLψ

(
j∗
NpL

))
Πc∈{R,M,L}

√
2πyN (c)

=
e−N(

√
pR−

√
pM)

2

(2π)
3
2

√
(γ∗)

2
j∗

=
e−N(

√
pR−

√
pM)

2

(2Nπ)
3
2
√
pRpMpL

.

(det (M (yN )))
−0.5 ≈

(
1

N2√pRpMpL

)−0.5

= N
√√

pRpMpL.

So

Pr {H∗|Np (η)} ≈ Pr {yN |Np (η)} (2π) (det (M (yN )))
−0.5

≈ N
√√

pRpMpL (2π)
e−N(

√
pR−

√
pM)

2

(2Nπ)
3
2
√
pRpMpL

=
e−N(

√
pR−

√
pM)

2

√
2πN

√√
pRpM

.

Given ε > 0, let δ be such that |pR (η)− pM (η)| ≥ ε for all η such that
|η − ηR| ≥ δ. Define Λδ := {η : |η − ηR| < δ}. Then want to show that
limN→∞

Pr{H|Np(η)}
Pr(H∗|Np(η)) = 1 for η ∈ Λδ. Then show that limN→∞N Pr {H∗|Np (η)} =

0 for η /∈ Λδ. Then

lim
N→∞

N Pr {VR = VM > VL|η̂i, p}

= lim
N→∞

N

∫
η

Pr {H|Np (η)} f (η|η̂i) dη

= lim
N→∞

(
N

∫
η∈Λδ

Pr {H|Np (η)} f (η|η̂i) dη +N

∫
η/∈Λδ

Pr {H|Np (η)} f (η|η̂i) dη
)

= lim
N→∞

N

∫
η∈Λδ

Pr {H|Np (η)} f (η|η̂i) dη + lim
N→∞

N

∫
η/∈Λδ

Pr {H|Np (η)} f (η|η̂i) dη.
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lim
N→∞

N

∫
η/∈Λδ

Pr {H|Np (η)} f (η|η̂i) dη

≤ lim
N→∞

∫
η/∈Λδ

N Pr {H|Np (η)} f (η|η̂i) dη

= 0.

And

N

∫
η∈Λδ

Pr {H|Np (η)} f (η|η̂i) dη

∈


√

2f (ηR|η̂i)√√
pM (ηR)
pR(ηR) p

′
R (ηR)−

√√
pR(ηR)
pM (ηR)p

′
M (ηR)

− ζ,
√

2f (ηR|η̂i)√√
pM (ηR)
pR(ηR) p

′
R (ηR)−

√√
pR(ηR)
pM (ηR)p

′
M (ηR)

+ ζ



∗
∫
η∈Λδ

N


√

2√√
pM
pR
p′R (η)−

√√
pR
pM
p′M (η)


−1

Pr {H|Np (η)} dη

=

[ √
2f (ηR|η̂i)

p′R (ηR)− p′M (ηR)
− ζ,

√
2f (ηR|η̂i)

p′R (ηR)− p′M (ηR)
+ ζ

]

∗
∫
η∈Λδ

N


√

2√√
pM
pR
p′R (η)−

√√
pR
pM
p′M (η)


−1

Pr {H|Np (η)} dη

∫
η∈Λδ

N Pr {H|Np (η)} dη

=

∫ ηR+ε

η=ηR−ε

√
Ne
−N

(√
pR(η)−

√
pM (η)

)2
√

2π
√√

pR (η) pM (η)
dη.

Write x =
√

2N
(√

pR (η)−
√
pM (η)

)
. Then

dx =
√

2N

√
pM (η)p′R (η)−

√
pR (η)p′M (η)

2
√
pRpM

dη

=
√
N

√√
pM
pR
p′R (η)−

√√
pR
pM
p′M (η)

√
2
√√

pRpM
dη
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∫
η∈Λδ

N Pr {H|Np (η)} dη

=

∫ √2N
(√

pR(ηR+ε)−
√
pM (ηR+ε)

)
x=
√

2N
(√

pR(ηR−ε)−
√
pM (ηR−ε)

)
√

2√√
pM
pR
p′R (η)−

√√
pR
pM
p′M (η)

1√
2π
e−

x2

2 dx.

Then

lim
N→∞

∫
η∈Λδ

N


√

2√√
pM
pR
p′R (η)−

√√
pR
pM
p′M (η)


−1

Pr {H|Np (η)} dη

= lim
N→∞

∫ √2N
(√

pR(ηR+ε)−
√
pM (ηR+ε)

)
x=
√

2N
(√

pR(ηR−ε)−
√
pM (ηR−ε)

) 1√
2π
e−

x2

2 dx

= 1.

Let ζ → 0. Then we get limN→∞N Pr {VR = VM > VL|η̂i, p} =
√

2f(ηR|η̂i)
p′R(ηR)−p′M (ηR) .

Need
√

2f(η|η̂i)√√
pM (η)

pR(η)
p′R(η)−

√√
pR(η)

pM (η)
p′M (η)

to be absolutely continuous.

6.2 Additional proofs and lemmas for Section3.2.3

Lemma 6.1 If θ > uR+uL
4 , then ηR (a) > max

{
θ, a− uR

2

}
and ηL (a) <

min
{
−θ, a+ uL

2

}
.

Proof. We first observe that 2pR (η, a)+pL (η, a) is increasing in η. Suppose
η∗R ∈

[
θ, a− ũR

2

]
, then

0 = 2pR (ηR) + pL (ηR)− 1

=

(
1− 1

2
e−(η−θ)

)
e

(
η−a+

ũR
2

)
+

1

2
e−η−θF

(
−η + a+

ũL
2

)
− 1

≤ 2pR

(
a− ũR

2

)
+ pL

(
a− ũR

2

)
− 1

≤ −1

2
eθ−a+

ũR
2 +

1

2
e−θ−a+

ũR
2 < 0,

contradiction.
Otherwise,η∗R ∈

[
a− ũR

2 , θ
]
. Because η∗R > 0 > −θ, then

0 = 2pR (ηR) + pL (ηR)− 1

=

(
1− 1

2
e−η+a− ũR2

)
eη−θ +

1

2
e−ηR−θF

(
−η + a+

ũL
2

)
− 1

≤ 2pR (θ) + pL (θ)− 1

≤ −1

2
e−θ+a−

ũR
2 +

1

2
e−θ−θ

< 0
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contradiction.

Lemma 6.2 For a such that max
{
θ, a− uR

2

}
> a+uL

2 and max
{
−θ,−a− uL

2

}
>

−a+ uR
2 ,

â (a)

=
(

1 +
α

2

) log
(
eθ + ea−

1
2uR +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL
)

− log
(
eθ + e−a−

1
2uL +

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR
) 

−1

2

[
log
√
e2θ + e2a−uR − e−θ+a+ 1

2uL

− log
√
e2θ + e−2a−uL − e−θ−a+ 1

2uR

]
− αη0

Suppose ηR > max
{
θ, a− 1

2 ũR, a+ ũL
2

}
and ηL < min

{
−θ, a+ uL

2 ,−a−
uR
2

}
,

then ηR is the solution to

1 = 2

(
1− 1

2
e−(ηR−θ)

)(
1− 1

2
e
−
(
ηR−a+

ũR
2

))
+

1

2
e−ηR−θ

1

2
e−ηR+a+

ũL
2 .

So

eηR =
1

2
eθ +

1

2
ea−

1
2uR +

1

2

√
e2θ + e2a−uR − e−θ+a+ 1

2uL .

By symmetry,

e−ηL =
1

2
eθ +

1

2
e−a−

1
2uL +

1

2

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR .

Lemma 6.3 If θ > uR+uL
4 , then

√
e2θ + e2a−uR − e−θ+a+ 1

2uL > max

{
eθ+ea−

uR
2

2 ,
∣∣∣eθ − ea−uR2 ∣∣∣}

Proof.

4

√
e2θ + e2a−ũR − ea−θ+

ũL
2

2

−
(
ea−

uR
2 + eθ

)2

= 3
(
e2θ + e2a−ũR

)
− 4ea−θ+

ũL
2 − 2ea−

uR
2 +θ

= 3
(
ea−

uR
2 − eθ

)2

+ 4
(
ea−

uR
2 +θ − ea−θ+

ũL
2

)
≥ 0

if uR+uL
2 < 2θ.

Lemma 6.4 For a such that max
{
θ, a− uR

2

}
> a+uL

2 and max
{
θ,−a− uL

2

}
>

−a+ uR
2 ,
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â′ (a) =
1

2
+

1

2

ea−
uR
2 − eθ√

e2θ + e2a−uR − e−θ+a+ 1
2uL

1−
eθ+ea−

uR
2

2√
e2θ + e2a−uR − e−θ+a+ 1

2uL


+

1

2

e−a−
uL
2 − eθ√

e2θ + e−2a−uL − e−θ−a+ 1
2uR

1−
eθ+e−a−

uL
2

2√
e2θ + e−2a−uL − e−θ−a+ 1

2uR


+
α

2

(
1 +

1

2

ea−
uR
2 − eθ√

e2θ + e2a−uR − e−θ+a+ 1
2uL

+
1

2

e−a−
uL
2 − eθ√

e2θ + e−2a−uL − e−θ−a+ 1
2uR

)
.

Proof. If θ > uR+uL
4 , then for a < θ − uL

2 ,

ηR (a) = log

(
1

2
eθ +

1

2
ea−

1
2uR +

1

2

√
e2θ + e2a−uR − e−θ+a+ 1

2uL

)
> max

{
θ, a− uR

2
, a+

uL
2

}
.

Suppose ηR > max
{
θ, a− 1

2β ũR

}
. Then

p′R (ηR) = (1− F (ηR − θ))F
(
ηR − a+

ũR
2

)
+ F (ηR − θ)

(
1− F

(
ηR − a+

1

2
ũR

))
= F

(
ηR − a+

ũR
2

)
+ F (ηR − θ)− 2pR (ηR) .

If ηR > max
{
−θ, a+ ũL

2

}
, then

p′L (ηR) = −2pL (ηR) .

So if ηR > max
{
θ, a− 1

2 ũR, a+ ũL
2

}
, then

p′R (ηR)− p′M (ηR)

= 2p′R (ηR) + p′L (ηR)

= 2F

(
ηR − a+

ũR
2

)
+ 2F (ηR − θ)− 4pR (ηR)− 2pL (ηR)

= 2F

(
ηR − a+

ũR
2

)
+ 2F (ηR − θ)− 2

= 1− e−
(
ηR−a+

ũR
2

)
+ 1− e−(ηR−θ) ∈ (0, 2)

= e−ηR
(

2eηR − eθ − ea−
uR
2

)
= e−ηR

√
e2θ + e2a−uR − e−θ+a+ 1

2uL .
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So

|p′R (η∗R)− p′M (η∗R)|
|p′L (η∗L)− p′M (η∗L)| =

1− e−ηR+a− ũR2 + 1− e−(ηR−θ)

1− eηL−a− 1
2 ũL + 1− eηL−θ

=

2eηR−
(
ea−

uR
2 +eθ

)
eηR

2e−ηL−
(
e−a−

uL
2 +eθ

)
e−ηL

= e−ηR−ηL

√
e2θ + e2a−uR − e−θ+a+ 1

2uL√
e2θ + e−2a−uL − e−θ−a+ 1

2uR
.

We thus get â (a) but substituting these expressions into

â (a) = (1 + α)
ηR + ηL

2
− αη0 −

1

2
log
|p′R (η∗R)− p′M (η∗R)|
|p′L (η∗L)− p′M (η∗L)| .

Therefore, for α suffi ciently small, â′ (a) < 1 if uR + uL < 0 or for all
a ∈

(
−θ + uR

2 , θ −
uL
2

)
. Let a∗ denote a fixed point of â.

Observation If θ < −uR+uL
4 , then

∣∣∣∣∣log

√
e2a−uR+e2θ−ea+

uL
2
−θ√

e−2a−uL+e2θ−e−a+
uR
2
−θ

∣∣∣∣∣ >
∣∣∣∣∣∣log

(
ea−

uR
2 +eθ

)
(
e−a−

uL
2 +eθ

)
∣∣∣∣∣∣

and log

√
e2a−uR+e2θ−ea+

uL
2
−θ√

e−2a−uL+e2θ−e−a+
uR
2
−θ

log

(
ea−

uR
2 +eθ

)
(
e−a−

uL
2 +eθ

) > 0. If θ > −uR+uL
4 ,

then

∣∣∣∣∣log

√
e2a−uR+e2θ−ea+

uL
2
−θ√

e−2a−uL+e2θ−e−a+
uR
2
−θ

∣∣∣∣∣ <
∣∣∣∣∣∣log

(
ea−

uR
2 +eθ

)
(
e−a−

uL
2 +eθ

)
∣∣∣∣∣∣.

Proof. ( √
e2a−uR + e2θ − ea+

uL
2 −θ√

e−2a−uL + e2θ − e−a+
uR
2 −θ

)2

−

(
ea−

uR
2 + eθ

)2

(
e−a−

uL
2 + eθ

)2

=
e2a−uR + e2θ − ea+

uL
2 −θ

e−2a−uL + e2θ − e−a+
uR
2 −θ

− e2a−uR + e2θ + 2ea−
uR
2 +θ

e−2a−uL + e2θ + 2e−a−
uL
2 +θ

=

(
ea−

uR
2 − e−a−

uL
2

)(
1− e2θ+

uR+uL
2

)(
2eθ−

uR+uL
2 + e−θ

)
(
e−2a−uL + e2θ − e−a+

uR
2 −θ

)(
e−2a−uL + e2θ + 2e−a−

uL
2 +θ

) .

Observation log

√
e2a−uR+e2θ−ea+

uL
2
−θ√

e−2a−uL+e2θ−e−a+
uR
2
−θ

log

(
ea−

uR
2 +eθ

)
(
e−a−

uL
2 +eθ

) > 0 if θ > uR+uL.
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Proof.√
e2θ + e2a−ũR − ea−θ+

ũL
2 −

√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

=
e2a−ũR − ea−θ+

ũL
2 −

(
e−2a−ũL − e−a−θ+

ũR
2

)
√
e2θ + e2a−ũR − ea−θ+

ũL
2 +

√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

=
e2a−ũR − e−2a−ũL −

(
ea−θ+

ũL
2 − e−a−θ+

ũR
2

)
√
e2θ + e2a−ũR − ea−θ+

ũL
2 +

√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

=

(
ea−

uR
2 − e−a−

uL
2

)(
ea−

uR
2 + e−a−

uL
2

)
−
(
ea−

uR
2 − e−a−

uL
2

)
e−θ+

uR+uL
2√

e2θ + e2a−ũR − ea−θ+
ũL
2 +

√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

=
(
ea−

uR
2 − e−a−

uL
2

) ea−
uR
2 + e−a−

uL
2 − e−θ+

uR+uL
2√

e2θ + e2a−ũR − ea−θ+
ũL
2 +

√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

Observation

 (
ea−

uR
2 +eθ

)2
√
e2a−uR+e2θ−ea+

uL
2
−θ
−

(
e−a−

uL
2 +eθ

)2
√
e−2a−uL+e2θ−e−a+

uR
2
−θ

(ea−uR2 − e−a−uL2 ) >
0.

Proof.
(
ea−

uR
2 + eθ

)2

√
e2a−uR + e2θ − ea+

uL
2 −θ


2

−


(
e−a−

uL
2 + eθ

)2

√
e−2a−uL + e2θ − e−a+

uR
2 −θ


2

=
1(

e2a−uR + e2θ − ea+
uL
2 −θ

)(
e−2a−uL + e2θ − e−a+

uR
2 −θ

)
×


(
e2a−uR + e2θ + 2eθ+a−

uR
2

)2 (
e−2a−uL + e2θ − e−a+

uR
2 −θ

)
−
(
e−2a−uL + e2θ + 2eθ−a−

uL
2

)2 (
e2a−uR + e2θ − ea+

uL
2 −θ

)


≥ 0

after some algebra.

Lemma 6.5 â (a)
(
2a− uR−uL

2

)
< 0 if θ > uR + uL.
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Proof.

â (a) = α log
ea−

uR
2 + eθ +

√
e2a−uR + e2θ − ea+

uL
2 −θ

e−a−
uL
2 + eθ +

√
e−2a−uL + e2θ − e−a+

uR
2 −θ

+
1

2
log

(
ea−

uR
2 +eθ

)2
√
e2a−uR+e2θ−ea+

uL
2
−θ

+ 2
(
ea−

uR
2 + eθ

)
+
√
e2a−uR + e2θ − ea+

uL
2 −θ

(
e−a−

uL
2 +eθ

)2
√
e−2a−uL+e2θ−e−a+

uR
2
−θ

+ 2
(
e−a−

uL
2 + eθ

)
+
√
e−2a−uL + e2θ − e−a+

uR
2 −θ

.

Because
(√

e2a−uR + e2θ − ea+
uL
2 −θ −

√
e−2a−uL + e2θ − e−a+

uR
2 −θ

)(
ea−

uR
2 − e−a−

uL
2

)
>

0 and

 (
ea−

uR
2 +eθ

)2
√
e2a−uR+e2θ−ea+

uL
2
−θ
−

(
e−a−

uL
2 +eθ

)2
√
e−2a−uL+e2θ−e−a+

uR
2
−θ

(ea−uR2 − e−a−uL2 ) >
0,

â (a)
(
ea−

uR
2 − e−a−

uL
2

)
> 0.

So â (0) (−uR + uL) > 0.

Observation If uR + uL < θ < −uR+uL
4 , then

|â (a)| < 1 + α

2

∣∣∣∣∣log
eθ + ea−

1
2uR +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL

eθ + e−a−
1
2uL +

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR

∣∣∣∣∣ .
Proof. If θ > uR +uL, then log

√
e2θ+e2a−uR−e−θ+a+

1
2
uL√

e2θ+e−2a−uL−e−θ−a+
1
2
uR

has the same sign

as log eθ+ea−
1
2
uR

eθ+e−a−
1
2
uL
and hence log

eθ+ea−
1
2
uR+

√
e2θ+e2a−uR−e−θ+a+

1
2
uL

eθ+e−a−
1
2
uL+

√
e2θ+e−2a−uL−e−θ−a+

1
2
uR

. If θ <

−uR+uL
4 , then

∣∣∣∣∣log

√
e2θ+e2a−uR−e−θ+a+

1
2
uL√

e2θ+e−2a−uL−e−θ−a+
1
2
uR

∣∣∣∣∣ > log eθ+ea−
1
2
uR

eθ+e−a−
1
2
uL
, so

∣∣∣∣∣log

√
e2θ+e2a−uR−e−θ+a+

1
2
uL√

e2θ+e−2a−uL−e−θ−a+
1
2
uR

∣∣∣∣∣ >∣∣∣∣∣log
eθ+ea−

1
2
uR+

√
e2θ+e2a−uR−e−θ+a+

1
2
uL

eθ+e−a−
1
2
uL+

√
e2θ+e−2a−uL−e−θ−a+

1
2
uR

∣∣∣∣∣. We have
â (a)

=
1 + α

2
log

eθ + ea−
1
2uR +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL

eθ + e−a−
1
2uL +

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR

+
1

2

(
log

eθ + ea−
1
2uR +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL

eθ + e−a−
1
2uL +

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR
− log

√
e2θ + e2a−uR − e−θ+a+ 1

2uL√
e2θ + e−2a−uL − e−θ−a+ 1

2uR

)
.
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Therefore

|â (a)| =
1 + α

2

∣∣∣∣∣log
eθ + ea−

1
2uR +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL

eθ + e−a−
1
2uL +

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR

∣∣∣∣∣
+

1

2


∣∣∣∣∣log

eθ+ea−
1
2
uR+

√
e2θ+e2a−uR−e−θ+a+

1
2
uL

eθ+e−a−
1
2
uL+

√
e2θ+e−2a−uL−e−θ−a+

1
2
uR

∣∣∣∣∣
−
∣∣∣∣∣log

√
e2θ+e2a−uR−e−θ+a+

1
2
uL√

e2θ+e−2a−uL−e−θ−a+
1
2
uR

∣∣∣∣∣


<

1 + α

2

∣∣∣∣∣log
eθ + ea−

1
2uR +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL

eθ + e−a−
1
2uL +

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR

∣∣∣∣∣ .
Observation a∗∗ /∈

(
0, uR−uL4

)
if uR − uL > 0 and a∗∗ /∈

(
uR−uL

4 , 0
)
if uR −

uL < 0.

Proof. Because â (a)
(
a− uR−uL

4

)
> 0, If 0 < a < uR−uL

4 , then â (a) <
0 < a, so a cannot be a fixed point. Otherwise −uR−uL4 < a < 0, but then
â (a) > 0 > a.

Lemma 6.6 â′ (a∗∗) ∈
(
0, 3

4 (1 + α)
)
if θ < uR + uL and either

1. θ > −uR+uL
4 , or

2. θ > −max{uR,uL}
2 + log 2.

Proof.

â′ (a;uR, uL)

=
1

2
+

1

2

ea−
uR
2 − eθ√

e2θ + e2a−uR − e−θ+a+ 1
2uL

1−
eθ+ea−

uR
2

2√
e2θ + e2a−uR − e−θ+a+ 1

2uL


+

1

2

e−a−
uL
2 − eθ√

e2θ + e−2a−uL − e−θ−a+ 1
2uR

1−
eθ+e−a−

uL
2

2√
e2θ + e−2a−uL − e−θ−a+ 1

2uR


+
α

2

(
1 +

1

2

ea−
uR
2 − eθ√

e2θ + e2a−uR − e−θ+a+ 1
2uL

+
1

2

e−a−
uL
2 − eθ√

e2θ + e−2a−uL − e−θ−a+ 1
2uR

)
> 0

because 1 −
eθ+e

a−uR
2

2√
e2θ+e2a−uR−e−θ+a+

1
2
uL

∈
(
0, 1

2

)
and ea−

uR
2 −eθ√

e2θ+e2a−uR−e−θ+a+
1
2
uL

∈

(−1, 1) and

(
1−

eθ+e
−a−uL

2
2√

e2θ+e−2a−uL−e−θ−a+
1
2
uR

)
∈
(
0, 1

2

)
and e−a−

uL
2 −eθ√

e2θ+e−2a−uL−e−θ−a+
1
2
uR

∈

(−1, 1).
If either a− uR

2 < θ or −a− uL
2 < θ, then â′ (a;uR, uL) < 1

2 + 1
4 + α

2

(
1 + 1

2

)
=

3
4 (1 + α).
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Case 1 θ > −uR+uL
4

Proof. Then a − uR
2 − θ +

(
−a− uL

2 − θ
)
< 0, so either a − uR

2 < θ or
−a− uL

2 < θ and â′ (a) < 3
4 (1 + α).

Case 2 θ < −uR+uL
4 .

Proof. If a /∈
(
θ + uR

2 ,−θ −
uL
2

)
, then either a − uR

2 < θ or −a − uL
2 <

θ. Therefore, the statement does not hold only if a∗∗ ∈
(
θ + uR

2 ,−θ −
uL
2

)
.

Because θ ∈
(
uR + uL,−uR+uL

4

)
,

|â (a)| <
1 + α

2

∣∣∣∣∣log
eθ + ea−

1
2uR +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL

eθ + e−a−
1
2uL +

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR

∣∣∣∣∣
<

1 + α

2

(
log 2 +

∣∣∣log e2a−uR−uL2

∣∣∣)
because

√
e2θ + e2a−uR − e−θ+a+ 1

2uL ∈
(

0, eθ + ea−
1
2uR
)
and

√
e2θ + e−2a−uL − e−θ−a+ 1

2uR ∈(
0, eθ + e−a−

1
2uL
)
. Consider uR > uL. By assumption, θ + uR

2 > 0. Because

a∗∗ /∈
(
0, uR−uL4

)
, if a∗∗ ∈

(
θ + uR

2 ,−θ −
uL
2

)
then a∗∗ > uR−uL

4 . Because
â (a)

(
a− uR−uL

4

)
> 0,

â (a)

<
1 + α

2

(
log 2 + 2a− uR − uL

2

)
=

1 + α

2

(
log 2− uR − uL

2

)
+ (1 + α) a

if a ∈
(
uR−uL

4 ,−θ − uL
2

)
. If a fixed point a∗∗ exists in

(
uR−uL

4 ,−θ − uL
2

)
, then

a∗∗ = â (a∗∗)

<
1 + α

2

(
log 2− uR − uL

2

)
+ (1 + α) a∗∗,

so

a∗∗ >

(
1 +

1

α

)
1

2

(
uR − uL

2
− log 2

)
≥ uR − uL

2
− log 2 (because α ≤ 1)

=
uR
2
− log 2− uL

2

> −θ − uL
2
(because we assume that θ > −max {uR, uL}

2
+ log 2),

contradiction to the hypothesis that a∗∗ ∈
(
uR−uL

4 ,−θ − uL
2

)
. The case where

uR < uL is analogous.
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Lemma 6.7 a∗∗ (uR − uL) < 0 if θ < uR + uL, α < 1
4 and either

1. θ > −uR+uL
4 , or

2. θ > −max{uR,uL}
2 + log 2.

Proof. This follows because â′ (a∗∗) < 3
4 (1 + α) < 1 and â (0)

(
−uR−uL2

)
>

0.

6.3 Proofs for Proposition 2

Lemma 6.8 ∂ηR(a;ur,ul)
∂a ∈ (0, 1) if θ > uR+uL

4

Lemma 6.9 ∂ηR(a;ũR,ũL)
∂ũR

< 0 if θ > uR+uL
4

Proof.

∂ηR
∂uR

= −
2∂pR(ηR;a)

∂uR
+ ∂pL(ηR;a)

∂uR

2p′R (ηR) + p′L (ηR)

= −
2
(
F (ηR − θ)

(
1− F

(
ηR − a+ 1

2 ũR
)))

1
2

1− e−ηR+a− ũR2 + 1− e−(ηR−θ)

(this shows that it is negative)

= −
(
1− 1

2e
−ηR+θ

)
1
2e
−ηR+a−uR2

1− e−ηR+a− ũR2 + 1− e−(ηR−θ)

= −
1
2e
a−uR2

(
ea−

uR
2 +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL
)

eηR
√
e2θ + e2a−uR − e−θ+a+ 1

2uL

= − ea−
uR
2

eθ + ea−
uR
2 +

√
e2θ + e2a−uR − e−θ+a+ 1

2uL

(
1 +

ea−
uR
2√

e2θ + e2a−uR − e−θ+a+ 1
2uL

)

Lemma 6.10 ∂â(a;uR,uL)
∂ũR

< 0 if θ > uR+uL
4
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Proof.

∂α (a;uR, uL, θ)

∂uR
= −1

2
(1 + α)

ea−
uR
2

eηR

+
1

4

e2a−uR√
e2θ + e2a−ũR − ea−θ+

ũL
2

 1√
e2θ + e2a−ũR − ea−θ+

ũL
2

− 1 + α

eηR


−1

4

1
2e
−θ−a+ 1

2uR√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

 1√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

− 1 + α

e−ηL


= −1

2
(1 + α)

ea−
uR
2

eηR

+
1

4

ea−
uR
2

eηR

ea−
uR
2

(
1
2e
θ + 1

2e
a−uR2

− 1
2 (1 + 2α)

√
e2θ + e2a−ũR − ea−θ+

ũL
2

)
e2θ + e2a−ũR − ea−θ+

ũL
2

−1

4

1
2e
−θ−a+ 1

2uR√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

 1√
e2θ + e−2a−ũL − e−a−θ+

ũR
2

− 1 + α

e−ηL

 .
So ∂α(a;uR,uL,θ)

∂uR
< 0 if

ea−
uR
2

(
eθ + ea−

uR
2 − (1 + 2α)

√
e2θ + e2a−ũR − ea−θ+

ũL
2

)
< 4

(
e2θ + e2a−ũR − ea−θ+

ũL
2

)
.

If 2θ > uR+uL
2 , then

e2θ + e2a−ũR − ea−θ+
ũL
2

=
(
eθ − ea−

uR
2

)2

+ 2eθ+a−
uR
2 − ea−θ+

uL
2

≥
(
eθ − ea−

uR
2

)2

+ eθ+a−
uR
2 .

Then

ea−
uR
2

(
eθ + ea−

uR
2 − (1 + 2α)

√
e2θ + e2a−ũR − ea−θ+

ũL
2

)
≤ ea−

uR
2

(
eθ + ea−

uR
2 −

∣∣∣eθ − ea−uR2 ∣∣∣)
= ea−

uR
2 2 ∗min

{
eθ, ea−

uR
2

}
≤ 2eθ+a−

uR
2

≤ 2

((
eθ − ea−

uR
2

)2

+ eθ+a−
uR
2

)
≤ 4

(
e2θ + e2a−ũR − ea−θ+

ũL
2

)
.
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So 2θ > uR+uL
2 is suffi cient for α′ (a) ∈ (0, 1) for all a and ∂α(a;uR,uL,θ)

∂uR
< 0.

In fact, because

ea−
uR
2

(
eθ + ea−

uR
2 − (1 + 2α)

√
e2θ + e2a−ũR − ea−θ+

ũL
2

)
< 2

((
eθ − ea−

uR
2

)2

+ eθ+a−
uR
2

)
we get

∂α (a;uR, uL, θ)

∂uR
< −1

2

ea−
uR
2

eηR

1 + α−
ea−

uR
2

(
eθ + ea−

uR
2 − (1 + 2α)

√
e2θ + e2a−ũR − ea−θ+

ũL
2

)
4
(
e2θ + e2a−ũR − ea−θ+

ũL
2

)


< −1

2

ea−
uR
2

eηR

2
(
e2θ + e2a−ũR − ea−θ+

ũL
2

)
+ 2

(
e2θ + e2a−ũR − ea−θ+

ũL
2

)
−2

((
eθ − ea−

uR
2

)2

+ eθ+a−
uR
2

)
4
(
e2θ + e2a−ũR − ea−θ+

ũL
2

)
= −1

2

ea−
uR
2

eηR

1

2
+

2
(
eθ+a−

uR
2 − ea−θ+

ũL
2

)
4
(
e2θ + e2a−ũR − ea−θ+

ũL
2

)


< −1

4

ea−
uR
2

eηR
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∂η∗∗R
∂uL

=
∂ηR (a;uR, uL)

∂a

∂a∗∗

∂uL
+
∂ηR (a;uR, uL)

∂uL

=
∂ηR (a;uR, uL)

∂a

∂â(a;uR,uL)
∂uL

1− â′ (a∗∗) +
∂ηR (a;uR, uL)

∂uL

>
1

4

1

eη
∗∗
R

1

2

√
e2θ + e2a−ũR − ea−θ+

ũL
2

1

e−ηL (1− α′ (a∗∗))

×

 (√e2θ + e2a−ũR − ea−θ+
ũL
2 ea−

uR
2 + e2a−uR − 1

2e
−θ+a+

uL
2

)
e−a−

uL
2

− (1− α′ (a∗∗)) e−ηLe−θ+a+ 1
2uL


∝

 (√e2θ + e2a−ũR − ea−θ+
ũL
2 ea−

uR
2 + e2a−uR − 1

2e
−θ+a+

uL
2

)
e−a−

uL
2

− (1− α′ (a∗∗)) e−ηLe−θ+a+ 1
2uL


>

1

2
eθ−

uR+uL
2 +

3

2
ea−uR−

uL
2 − 1

2
e−θ

−
(
eθ + e−a−

1
2uL
)
e−θ+a+ 1

2uL

>
1

2
eθ−

uR+uL
2 −

(
e−θ + ea+

uL
2

)
+

3

2
ea−uR−

uL
2 − 1

2
e−θ

=
1

2
eθ−

uR+uL
2 − 3

2
e−θ + ea

∗∗+
uL
2

(
3

2
e−(uR+uL) − 1

)
.

Therefore, ∂η
∗∗
R

∂uL
> 0 if

1. uR + uL < log 3
2 and 2θ − uR+uL

2 > log 3, or

2. 1
2e
θ−uR+uL2 − 3

2e
−θ + e

uL
2

(
3
2e
−(uR+uL) − 1

)
> 0 and uR > uL because in

that case, a∗∗ < 0.
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