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Abstract. Recent works on political competition incorporate a valence dimension into

the standard spatial model. The analysis of the game between candidates in these mod-

els is typically based on two assumptions about voters’ preferences. One is that valence

scores enter the utility function of a voter in an ‘additively separable’ way, so that

the total utility can be decomposed into the ‘ideological utility’ from the implemented

policy (based on the Euclidean distance) plus the valence of the winner. The second is

that all the voters identically perceive the platforms of the candidates and agree about

their valence score.

The goal of this paper is to axiomatize collections of preferences that satisfy these

assumptions. Specifically, we consider the case where only the ideal point in the policy

space and the ranking over candidates are known for each voter. We characterize the

case where there are policies x1, . . . , xm for the m candidates and numbers v1, . . . , vm

representing valence scores, such that a voter with an ideal policy y ranks the candidates

according to vi − ||xi − y||2.
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1. Introduction

Since the seminal works of Hotelling [24] and Downs [15], spatial models of elections

have been widely used in the political economy literature. Typically, these models iden-

tify the policy space with a finite dimensional Euclidean space. Each potential voter in

the electorate is assumed to have an ideal point in the policy space, and his utility is

decreasing in the Euclidean distance between the implemented policy and his ideal point.

Candidates then choose their platforms, and each voter votes for the candidate with the

closest platform to her ideal policy. Usually, the emphasis is on equilibrium analysis of

the resulting game between candidates.

More recently, researchers incorporated a “valence” dimension to the standard model.

This additional dimension influences voters’ preferences and was shown to have an im-

portant effect on the outcome of the political game, both in theory and in empirical

studies. This additional dimension may represent any non–policy issue on which candi-

dates differ in the “score” they get from voters. Examples include charisma, experience,

past success, communication skills, etc. The difference between the valence dimension

and other dimensions, which are part of the policy space, is that all voters prefer high

valence scores to low. References to works that incorporate valence issues can be found

in the related literature section below.

Let C denote the set of candidates competing in some elections, and let the d dimen-

sional linear space Rd represent the policy space.1 When valence issues are present, the

preferences of voters are defined over Rd+1. Indeed, the utility of a potential voter if

a certain candidate i ∈ C is elected depends both on the policy that i implements (a

d-dimensional real vector) and on the valence score that this voter gives to i (a real num-

ber). Notice that we deal here with a collection of preference orders, one for each voter.

The analysis of the game between candidates is typically based on two fundamental

assumptions about this collection of preferences, which we now discuss.

The first assumption concerns the preferences of individual voters. Each voter is

assumed to have an ideal point in the policy space. If candidate i ∈ C is elected and

implements the policy xi ∈ Rd, then the utility of a voter with an ideal point y ∈ Rd is

given by vi − ||y − xi||2, where vi is the valence score of i (according to this voter) and

|| · || is the Euclidean norm in Rd. This particular functional form can be interpreted

1The focus of this paper is on multidimensional policy spaces, i.e. d ≥ 2. Most of our results do not

hold in the case d = 1. See subsection 3.4 for a discussion of the one dimensional case.
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as follows. Voters have an ‘ideological’ utility function based on the distance between

their ideal policy and the platform of the candidate. In addition, they derive utility from

having a leader with high valence. The total utility of a voter is ‘additively separable’

in the policy and valence dimensions, so that it can be decomposed into the ideological

utility plus the valence index.2 While this utility function is very natural, it is not clear

why the Euclidean norm is the appropriate measure of ideological utility, and why valence

scores enter in an additive way.

The second key assumption usually made is that all voters perceive the alternatives

they face in the same way. First, the voters agree on the location of the candidates in

the policy space. That is, the beliefs of all voters regarding the policy that a certain

candidate is going to implement if elected coincide. Although this seems like a rather

strong assumption, it can be justified by the claim that candidates commit to a certain

policy prior to the elections, which is the policy that voters anticipate will be implemented

if the candidate is elected. But voters are also supposed to agree about the valence of each

candidate. This is harder to justify since it seems reasonable that voters with different

ideological views will also have different views of the valence of candidates. Notice that,

if one allows to each potential voter to perceive the platforms and/or valences of the

candidates differently, then the model may become completely unfalsifiable.

Obviously, it is very hard (not to say impossible) to extract the entire preferences of

each voter over Rd+1. Therefore, it is not easy to check whether the aforementioned

assumptions make sense in any particular political campaign. Thus, it is an important

matter to identify conditions on more easily observable data that guarantee consistency

with the spatial model assumptions. Introducing such necessary and sufficient conditions

is the main result of this paper.

Specifically, we assume that, for each potential voter in the electorate, only his ideal

policy and his ranking of the candidates can be observed. While this may also seem

quite demanding, it is much more reasonable than observing the entire utility function

of the voter. We characterize the case where this data is consistent with voters having

utility functions as above. That is, we characterize the case where there are platforms

{xi}i∈C ⊆ Rd and numbers {vi}i∈C ⊆ R representing valence scores, such that a voter

with an ideal policy y ranks the candidates according to vi − ||xi − y||2. We emphasize

2Notice that we take the square of the Euclidean norm (and not just the norm) as the ideological

utility function. We discuss this point in subsection 3.2.
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that the representation is for the collection of preference orders of all voters jointly, and

not for the preferences of a single voter.

We use four axioms for the characterization. The first is that each voter preferences

over candidates are rational (complete and transitive). The second, a continuity condi-

tion, is that the set of voters who strictly prefer one candidate over another is open. The

third and perhaps most important condition is ‘betweenness’. This condition is due to

Grandmont [22]. Basically, this means that the set of voters preferring one candidate

over another is convex. There is a close connection between convexity and the Euclidean

norm, as other norms would typically induce non–convex sets. The last condition re-

quires sufficient heterogeneity in the preferences. This is a more technical condition that

is not necessary for the representation but is required for the sufficiency part of the

proof.3

We think of our result as “good news” since it shows that if voters’ preferences satisfy

a set of rather natural axioms, then they are consistent with the standard spatial model

with a valence dimension.4 From a theoretical viewpoint, the result provides a possible

justification for the assumptions (discussed above) that allow to study the game between

candidates. From an empirical perspective, the axioms may help to check whether the

spatial model makes sense in any particular campaign.

1.1. Related literature. A few recent papers study questions related to the implica-

tions of assuming Euclidean preferences in spatial models. Degan and Merlo [13] ask

under what conditions the assumption that voters vote ideologically (i.e., according to

Euclidean preferences) is falsifiable when data about the voting choices in several elec-

tions is available. Their answer is based on a relation between the dimension of the

policy space and the number of elections.5 Bogomolnaia and Laslier [9] find the exact

number of dimensions required in order to be able to represent any preference profile of I

voters over A alternatives. Knoblauch [27] provides a polynomial time algorithm to check

whether a given finite preference profile has a one–dimensional Euclidean representation.

There are also several works that study similar questions for a more general class of

preferences that includes Euclidean preferences as a special case. Eguia [16] axiomatizes

3Nevertheless, our main result (Theorem 1) is an equivalence theorem. See Section 2 for details.
4Our conditions are not sufficient if one doesn’t allow for a valence dimension, and we do not know

how to characterize data consistent with spatial models without this additive term. See subsection 3.2.
5Some of their results generalize to the case where candidates get different valence scores from voters.

See Section 3.2 in [13].
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preference relations over lotteries over multi–attribute objects that admit a representa-

tion by some lp norm. He also studies the case of multiple voters and characterizes the

case where their preferences can be jointly represented by such a norm. Kalandrakis [25]

considers the case where a finite number of binary choices is observed, and characterizes

the case where these choices can be rationalized by a concave utility function. He further

studies the case where the rationalizing function has a bliss point.

An important difference between our paper and all of the above is that we assume

that, for any point in the policy space, the preferences of a voter with this ideal point

over candidates are observed. All of the above papers deal with either a single preference

relation or with a finite number of relations. We note that many previous works assume a

continuous distribution of voters’ ideal points. We further discuss this point in subsection

3.1.

Papers using spatial models of elections with valence issues similar to the one studied

here are numerous in recent years. Examples include Ansolabehere and Snyder [1],

Aragones and Palfrey [2], Degan [12], Dix and Santore [14], Enelow and Hinich [17],

Gersbach [18], Groseclose [23], Kim [26] and Schofield [31] among others. These papers

study different aspects of the political competition and provide various interpretations

for the additive constant in the utility functions of the voters. Krasa and Polborn [28]

consider competition between political candidates when preferences of voters are more

general than those studied here. In particular they allow for preferences which are not

additively separable in the valence and policy dimensions.

From a technical point of view, our main result is closely related to Theorem 1 in

Azrieli and Lehrer [7], who characterize categorization systems that are generated by

proximity to a set of prototypical cases. There are several important differences however.

First, the primitive in that paper consists of a collection of partitions of Rd indexed by

subsets of the set of alternatives, while here the primitive is a collection of preference

orders over alternatives indexed by points in Rd. As a result, some of the axioms used

for the characterization are different. Second, the representation in [7] is according to

the Euclidean distance in Rd+1 between the points (y, 0) and (xi, vi). Thus, the valence

dimension in the current paper works in the opposite direction than the ‘extra dimension’

in [7]. In addition, this paper contains several new results that did not appear in [7].

There is also a surprisingly close mathematical connection between the result of this

paper and the characterization of a collection of preference orders that can be represented
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by linear functionals.6 Such axiomatizations appear in works on scoring rules (Myerson

[30], Smith [32], Young [33]), case–based decision theory (Gilboa and Schmeidler [19, 20]),

expected utility in the context of games (Gilboa and Schmeidler [21]), relative utility

(Ashkenazi and Lehrer [5]) and individual welfare functionals (Chambers and Hayashi

[11]). While the axioms used in these works are similar to ours, the representation we

obtain is significantly different.

Finally, the mathematical object we deal with here is known in the geometry litera-

ture as (generalized) Voronoi diagram or (generalized) Dirichlet tessellation.7 The most

relevant papers in this literature are Ash and Bolker [3], [4] and Aurenhammer [6]. The

book by Boots et al. [10] surveys applications of Voronoi diagrams in many different

fields.

1.2. Organization. The next section contains the model and the main result of the

paper, as well as a result regarding the uniqueness of the representation. In Section 3 we

discuss several issues related to the model. In particular, we study the case of a finite set

of voters, discuss the importance of the valence dimension for the result, and consider

the special cases of three candidates and of one–dimensional policy space.

2. Axioms and main result

2.1. Setup. Let C = {1, 2, . . . , m} be the set of candidates where m ≥ 2. The policy

space is taken to be Rd with d ≥ 2. Each potential voter is identified with her ideal point

in the policy space and we assume that for every y ∈ Rd, there is a voter with y as her

ideal policy. Thus, we can identify the electorate with Rd. The letters i, j, k to denote

candidates (elements of C) and x, y, z, w denote voters or policies (points in Rd).

Our primitive is a collection of binary relations {ºy}y∈Rd over C, one for every voter

y ∈ Rd. The interpretation of i ºy j is that a voter with an ideal point y (weakly) prefers

candidate i to candidate j. As usual, for any i, j ∈ C, we let i Ây j if and only if both

i ºy j and j �y i, and i ∼y j if and only if both i ºy j and j ºy i.

2.2. Axioms. The following properties will be used for the characterization.

(A1) Weak order: For every y ∈ Rd, ºy is complete and transitive.

(A2) Continuity: For every i, j ∈ C, the set {y ∈ Rd : i Ây j} is open.

6We thank Itzhak Gilboa for pointing out this connection.
7The word ‘generalized’ is added to indicate that there is an additive constant associated with each

candidate. These objects are also called power diagrams in some places in the geometry literature.



AXIOMATIZATION OF SPATIAL MODELS 7

(A3) Betweenness: For every i, j ∈ C and y, z ∈ Rd, if i ºy j (i Ây j) and i ºz j then

i ºαy+(1−α)z j (i Âαy+(1−α)z j) for every α ∈ (0, 1).

(A4) Heterogeneity:

(i) For every (ordered) three distinct candidates (i, j, k) there is y ∈ Rd such that

i Ây j Ây k; and

(ii) The sets {y ∈ Rd : 1 ∼y i ∼y j} and {y ∈ Rd : 2 ∼y i ∼y j} are not equal for

every pair of candidates {i, j} such that {1, 2} ∩ {i, j} = ∅.

The first property is standard. The second implies that if a voter with ideal point y

strictly prefers candidate i over j, then any voter with an ideal point sufficiently close to

y also prefers i over j. (A3) states that if w = αy + (1− α)z for some 0 < α < 1, then

the preferences of a voter with an ideal point w are ‘between’ the preferences of voters

with ideal points y and z. The definition of betweenness for binary relations that we use

here is due to Grandmont [22]. This axiom implies that the set of voters who weakly

prefer candidate i over j is convex for every i and j. Furthermore, if one voter z weakly

prefers i over j and another voter y strictly prefers i over j, then every voter with an

ideal point strictly between y and z strictly prefers i to j.

Finally, (A4) requires the population of voters to be sufficiently diverse in its pref-

erences. Namely, for any (strict) ranking of every three candidates, there should be a

voter who ranks these candidates according to that given order; and, for every i ≥ 3 and

j ≥ 3 (i 6= j), there should be a voter who is indifferent between candidates 1, i and j

but is not indifferent between 2, i and j. Similar conditions to (A4) appear already in

the early social choice literature (see, e.g., Blau [8] page 309). Note that if m = 2, then

(A4) is trivially satisfied, and if m = 3, then the second part of (A4) is trivially satisfied.

2.3. Main result. Before stating our main theorem we need one more definition.

Definition 1. Fix two sets {x1, x2, . . . , xm} ⊆ Rd and {v1, v2, . . . , vm} ⊆ R. The set

{(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ Rd+1 is in a general position if the following two con-

ditions hold:

(i) For every distinct 1 ≤ i, j, k ≤ m, the vectors xi, xj, xk are affinely independent in Rd

(equivalently, xj − xi and xk − xi are linearly independent in Rd).

(ii) For every i ≥ 3 and j ≥ 3 (i 6= j) the sets

{y ∈ Rd : v1 − ||x1 − y||2 = vi − ||xi − y||2 = vj − ||xj − y||2}
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and

{y ∈ Rd : v2 − ||x2 − y||2 = vi − ||xi − y||2 = vj − ||xj − y||2}
are not equal.

Informally speaking, if a set of points is not in a general position, then it has a

‘degenerate structure’. We remark that if the points {(x1, v1), (x2, v2), . . . , (xm, vm)} are

independently drawn from some continuous distribution over Rd+1, then the resulting

set will be in a general position with probability 1. The precise meaning of the term

general position varies with the context in which it is used. A discussion of this term

can be found in, e.g., Matoušek ([29], pp. 3-5).

Theorem 1. The following two statements are equivalent:

(i) The collection of binary relations {ºy}y∈Rd satisfies properties (A1) through (A4).

(ii) There are points {x1, x2, . . . , xm} ⊆ Rd and numbers {v1, v2, . . . , vm} ⊆ R such that

{(x1, v1), (x2, v2), . . . , (xm, vm)} is in a general position and, for every i, j ∈ C and every

y ∈ Rd, i ºy j if and only if vi − ||xi − y||2 ≥ vj − ||xj − y||2.

Proof. (ii) implies (i):

A simple but useful observation is that for any xi 6= xj ∈ Rd and vi, vj ∈ R, the set

{y ∈ Rd : vi − ||xi − y||2 = vj − ||xj − y||2} is an affine subspace of dimension d− 1 (a

hyperplane), perpendicular to the direction xi−xj. Indeed, a simple computation shows

that this set can be rewritten as8 {y ∈ Rd : y · (xi− xj) = 1
2
(vj − vi + ||xi||2 − ||xj||2)}.

Similarly, the set {y ∈ Rd : vi − ||xi − y||2 > vj − ||xj − y||2} is an open half space in

Rd (given that xi 6= xj).

Fix the sets {x1, x2, . . . , xm} ⊆ Rd and {v1, v2, . . . , vm} ⊆ R. Property (A1) is ob-

viously satisfied. Denote Aij = {y ∈ Rd : vi − ||xi − y||2 = vj − ||xj − y||2} and

Bij = {y ∈ Rd : vi − ||xi − y||2 > vj − ||xj − y||2}. By property (i) of Definition 1,

xi 6= xj for every i 6= j ∈ C. Thus, each Bij is open and convex and each Aij is the

boundary of the closed half space Bij ∪ Aij. This shows that properties (A2) and (A3)

are satisfied.

(A4) is satisfied because the set {(x1, v1), (x2, v2), . . . , (xm, vm)} is in a general position.

To see that, take any distinct i, j, k ∈ C. We need to show that there is some y with

i Ây j Ây k. If this was not true then it must be that Bij and Bjk do not intersect. But

this can only happen if xi − xj and xj − xk are linearly dependent, a contradiction to

8For two vectors z, w ∈ Rd we denote by z · w =
∑d

i=1 ziwi the standard inner product in Rd.
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the assumption of general position (property (i)). Finally, take any distinct i ≥ 3 and

j ≥ 3. By the general position assumption (property (ii)), B1i ∩ Bij and B2i ∩ Bij are

not equal. This proves that (A4) is satisfied. ¤

(i) implies (ii):

The proof is broken into several claims.

Claim 1. For every ordered pair (i, j) of distinct candidates there is a non–zero vector

sij ∈ Rd and a number cij ∈ R such that {y ∈ Rd : i ºy j} = {y ∈ Rd : sij · y ≤ cij}.
Moreover, these vectors and numbers can be chosen such that sji = −sij and cji = −cij

for every (i, j).

Proof. This follows from the betweenness axiom (A3) and the continuity axiom (A2)

using a separation argument. See Grandmont [22] for the details. (A4) is used to

guarantee that there is no total indifference between some pair of candidates, and that

there is no domination of one candidate over another in the entire electorate. ¤

From now until the end of the proof we fix a collection {sij, cij}i,j∈C as in Claim 1.

Claim 2. For every distinct i, j, k ∈ C, the vectors sij and sik are linearly independent.

Proof. This follows from part (i) of (A4). Indeed, if sij and sik are linearly dependent,

then sij = αsik for some α 6= 0 (recall that sij, sik 6= 0). Assume α > 0. If αcik ≥ cij,

then for any y ∈ Rd that satisfies y · sik > cik it holds that y · sij = αy · sik > αcik ≥ cij.

If αcik ≤ cij, then for any y ∈ Rd that satisfies y ·sik < cik it holds that y ·sij = αy ·sik <

αcik ≤ cij. Either case contradicts (A4). The case α < 0 is similar. ¤

Claim 3. For every i, j, k ∈ C, the vectors sij, sik and sjk are not linearly independent.

Proof. Consider the set D = {y ∈ Rd : i ∼y j} ∩ {y ∈ Rd : i ∼y k}. By Claims 1

and 2 it is the intersection of two non–parallel hyperplanes, so it is an affine subspace of

dimension d − 2. By transitivity it is contained in the hyperplane {y ∈ Rd : j ∼y k}.
Thus, sjk is in the orthogonal complement of D. Since sij and sik are also orthogonal to

D, the claim is proved. ¤

Claim 4. In the unique solution to the equation sik = αsij + βsjk both α and β are

positive.
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Proof. First, the previous claims imply that the above equation has a unique solution,

and that both α and β are non–zero. Second, let y satisfy i ∼y j ∼y k (existence of such

y is guaranteed by the previous claims). Then cik = y ·sik = αy ·sij +βy ·sjk = αcij +βcjk.

Now, assume that α < 0 and β < 0. Let y ∈ Rd be such that i Ây j and j Ây k

(existence of such a voter is guaranteed by part (i) of (A4)). Then y · sik = αy · sij +

βy · sjk > αcij + βcjk = cik. Thus, k Ây i which contradicts transitivity. Finally,

assume α < 0 and β > 0. Let y ∈ Rd be such that i Ây k and k Ây j. Then

αy · sij = y · sik − βy · sjk < cik − βcjk = αcij, so y · sij > cij. This implies that j Ây i

which contradicts transitivity. The case α > 0 and β < 0 is similar. ¤

Fix x1 ∈ Rd arbitrarily. Choose some positive number α12 > 0 and let x2 = x1 + α12s12.

Let α21 = α12.

Claim 5. For every 3 ≤ i ≤ m, there are unique positive numbers α1i, α2i > 0 such that

x1 + α1is1i = x2 + α2is2i. That is, the rays from x1 and x2 in the directions s1i and s2i

respectively intersect.

Proof. Rearranging the equality in the claim we get x2 − x1 = α1is1i − α2is2i. We have

x2 − x1 = α12s12, and recall that s2i = −si2. Thus, the claim is equivalent to the

existence and uniqueness of α1i, α2i > 0 such that s12 = α1i

α12
s1i + α2i

α12
si2. This is however

an immediate consequence of the two previous claims. ¤

For every 3 ≤ i ≤ m, define xi = x1 + α1is1i. By the previous claim, we also have

xi = x2 + α2is2i. That is, xi is placed at the intersection of the rays from x1 in the

direction s1i and from x2 in the direction s2i. Denote αi1 = α1i and αi2 = α2i for every

3 ≤ i ≤ m.

Claim 6. For every distinct 1 ≤ i, j ≤ m there is αij > 0 such that xj − xi = αijsij.

Proof. First, the claim is true by construction if either i = 1 or i = 2 or j = 1 or j = 2

(or two of the above). Assume therefore that both i ≥ 3 and j ≥ 3. We first show the

existence of αij and then show that it must be positive.

Fix some ȳ that satisfies i ∼ȳ 1 ∼ȳ j (in particular, i ∼ȳ j). To prove the existence of

αij it is sufficient to show that (xj − xi) · (y − ȳ) = 0 for every y that satisfies i ∼y j.

Indeed, this will show that xj − xi is orthogonal to the hyperplane {y : sij · y = cij},
which implies that sij and xj − xi are linearly dependent.
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If i ∼y 1 ∼y j then we have

(xj − xi) · (y − ȳ) = (xj − x1) · (y − ȳ) + (x1 − xi) · (y − ȳ) =

α1js1j · (y − ȳ)− α1is1i · (y − ȳ) = α1j(c1j − c1j)− α1i(c1i − c1i) = 0.

The second equality is by construction of the points xi and xj, and the third equality is

due to the fact that both i ∼ȳ 1 ∼ȳ j and i ∼y 1 ∼y j.

The set {y : i ∼y 1 ∼y j} is an affine subspace of dimension d − 2. Thus, if we can

find a point y such that i ∼y j, i �y 1 and (xj − xi) · (y − ȳ) = 0, we can conclude that

xj − xi is orthogonal to the ij indifference hyperplane. By part (ii) of (A4) there is y

such that i ∼y 2 ∼y j but i �y 1. For this y we have

(xj − xi) · (y − ȳ) = ((xj − x2) + (x2 − x1) + (x1 − xi)) · (y − ȳ) =

(α2js2j + α12s12 − α1is1i) · (y − ȳ) =

α2jc2j + α1ic1i + y · (α12s12 − α1is1i)− ȳ · (α2js2j + α12s12) =

α2jc2j + α1ic1i − y · α2is2i − ȳα1js1j = α2jc2j + α1ic1i − α2ic2i − α1jc1j =

α12c12 − α12c12 = 0.

This proves existence of αij.

Finally, to show that αij > 0, notice that

αijsij = xj − xi = (x1 − xi) + (xj − x1) = αi1si1 + α1js1j.

Divide by αij to obtain

sij =
αi1

αij

si1 +
α1j

αij

s1j.

By Claim 4, both αi1

αij
and

α1j

αij
are positive. Since αi1 and α1j are positive by construction

it follows that αij > 0. ¤

It remains to construct the valences {vi}i∈C . Choose v1 arbitrarily and define for every

2 ≤ i ≤ m

vi = v1 − ||x1||2 + ||xi||2 − 2α1ic1i.

Claim 7. The sets {x1, x2, . . . , xm} and {v1, v2, . . . , vm} constructed above represent the

preferences as in Theorem 1.
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Proof.

i ºy j ⇐⇒ sij · y ≤ cij ⇐⇒ (xj − xi) · y ≤ αijcij ⇐⇒ (xj − xi) · y ≤ α1jc1j − α1ic1i

⇐⇒ (xj − xi) · y ≤ 1

2

(
v1 − vj + ||xj||2 − ||x1||2

)− 1

2

(
v1 − vi + ||xi||2 − ||x1||2

)

⇐⇒ (xj − xi) · y ≤ 1

2

(
vi − vj + ||xj||2 − ||xi||2

) ⇐⇒ vi − ||xi − y||2 ≥ vj − ||xj − y||2.

¤

Claim 8. The set {(x1, v1), (x2, v2), . . . , (xm, vm)} constructed above is in a general po-

sition.

Proof. The vectors xi, xj, xk are affinely independent since xj − xi = αijsij and xk −
xi = αiksik, and these are linearly independent vectors by Claim 2. Finally, the sets

{y ∈ Rd : 1 ∼y i ∼y j} and {y ∈ Rd : 2 ∼y i ∼y j} are not equal by part (ii) of

(A4). ¤

This completes the proof of the theorem. ¤

2.4. Uniqueness. Examining the proof of Theorem 1, one can see that the platforms

and valences derived from the properties (A1)-(A4) are not unique. However, we do

have the following relation between any two representations of the voters’ preferences.

Proposition 1. Assume {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ Rd+1 represent the prefer-

ences {ºy}y∈Rd as in Theorem 1. Then {(x′1, v′1), (x′2, v′2), . . . , (x′m, v′m)} ⊆ Rd+1 also

represent {ºy}y∈Rd if and only if there is a positive number α > 0 and a vector β ∈ Rd

such that x′i = αxi + β for every 1 ≤ i ≤ m, and such that the equation

v′i − αvi = v′j − αvj + α(1− α)(||xj||2 − ||xi||2) + 2αβ · (xi − xj)(1)

holds for every i, j ∈ C. In particular, if xi = x′i for 1 ≤ i ≤ m (i.e., α = 1 and β = 0)

then there is some γ ∈ R such that v′i = vi + γ for 1 ≤ i ≤ m.

This result can be interpreted as follows. We may rescale and change the origin of

the policy space to get different sets of platforms that induce the same preferences.

But once the unit of measurement and the origin are fixed, the platforms are uniquely

determined by the preferences. Moreover, once platforms are fixed, the relative valences

of the various candidates (the differences vi − vj) are also unique.
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Proof. First, it is easy to check that if there are α > 0 and β ∈ Rd such that x′i = αxi +β

for 1 ≤ i ≤ m and in addition equation (1) is satisfied, then {(x1, v1), (x2, v2), . . . , (xm, vm)}
and {(x′1, v′1), (x′2, v′2), . . . , (x′m, v′m)} represent the same preferences.

Now, assume that {(x1, v1), (x2, v2), . . . , (xm, vm)} and {(x′1, v′1), (x′2, v′2), . . . , (x′m, v′m)}
represent the same preferences {ºy}y∈Rd . It follows from the proof of Theorem 1 that

for every i, j ∈ C, there is a positive number, say tij > 0, such that xj −xi = tij(x
′
j −x′i)

(with the convention tij = −tji). Fix some three candidates i, j, k ∈ C (if there are

only two candidates jump to the next paragraph). Sum up the equalities xj − xi =

tij(x
′
j − x′i), xi − xk = tki(x

′
i − x′k), xk − xj = tjk(x

′
k − x′j) and rearrange the terms to

obtain (x′i− x′j)(tki− tij) + (x′k − x′j)(tjk − tki) = 0. But the vectors x′i, x
′
j, x

′
k are affinely

independent so tki−tij = tjk−tki = 0. It follows that tij = tki = tjk, so there is a number

α > 0 such that xj − xi = α(x′j − x′i) for every i, j ∈ C. Now, define β = x1 − αx′1. For

every 2 ≤ i ≤ m we have x1 − xi = α(x′1 − x′i) or xi − αx′i = x1 − αx′1 = β. That is,

x′i = αxi + β for every 1 ≤ i ≤ m.

Finally, we must have
{

y ∈ Rd : y · (xj − xi) =
1

2

(
vi − vj + ||xj||2 − ||xi||2

)}
=

{
y ∈ Rd : y · (x′j − x′i) =

1

2

(
v′i − v′j + ||x′j||2 − ||x′i||2

)}

for every i, j ∈ C. Substituting αxi + β for x′i and αxj + β for x′j and rearranging we

obtain equation (1). In particular, if x′i = xi and x′j = xj, then v′i − vi = v′j − vj. Define

γ = v′1 − v1. It follows that v′i = vi + γ for every 1 ≤ i ≤ m. ¤

3. Discussion and further results

3.1. Finite set of voters. From a practical point of view, it would be more interesting

to find the testable implications of the spatial model assumptions for the preferences of

a finite number of voters. The axiom (A3) implies that a finite sample of observations

of voters’ ideal points and rankings must have the property that the convex hulls of the

ideal points of voters who prefer candidate i over j and of those who prefer j over i

are disjoint in order for it to be consistent with the spatial model.9 (A1) also gives an

obvious necessary condition.

It is tempting to try to prove a similar representation result to that of Theorem 1 for

the case of a finite sample of voters, where only (A1) and (the modified version of) (A3)

9Assume for simplicity that only strict preferences are allowed.
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are assumed. For the case of two candidates, it is easy to see that these two axioms are

sufficient for a representation.10 However, if there are at least three candidates, this is

no longer true. We demonstrate the problem with the following example. Let d = 2,

C = {1, 2, 3} and fix some ε > 0. The set of voters, denoted Y , consists of six voters

with the ideal points

Y = {y1 = (ε, ε), y2 = (−ε,−ε), y3 = (−ε,−4), y4 = (ε,−4), y5 = (4, ε), y6 = (4,−ε)}.

The preferences of these six voters are as follows. Voters {y2, y3} prefer candidate 1

over candidate 2 (the rest of the voters prefer candidate 2 over candidate 1). Voters

{y1, y2, y3, y5} prefer candidate 1 over candidate 3, and voters {y1, y5} prefer candidate

2 over candidate 3. Figure 1 illustrates the location of the voters’ ideal points in the

policy space and their rankings.

It is easy to check that the above condition of disjointness of the convex hulls is

satisfied. However, we claim that these preferences are not consistent with the spatial

model. Indeed, assume to the contrary that there are {(x1, v1), (x2, v2), (x3, v3)} that

represent these preferences as in Theorem 1. The locations of the points y1, y2, y3, y4

and the preferences of these voters imply that the line {y ∈ R2 : v1 − ||y − x1||2 =

v2 − ||y − x2||2} should be close to both points (0, 0) and (0,−4). Similarly, the line

{y ∈ R2 : v1 − ||y − x1||2 = v3 − ||y − x3||2} should be close to both points (4, 0) and

(0,−4), and the line {y ∈ R2 : v2 − ||y − x2||2 = v3 − ||y − x3||2} should be close to

both points (0, 0) and (4, 0).

Now, for sufficiently small ε, it must be the case that the point ȳ = (1,−1) is in the

triangle generated by these three lines. It means that at this point we must have

v1 − ||ȳ − x1||2 < v2 − ||ȳ − x2||2 < v3 − ||ȳ − x3||2 < v1 − ||ȳ − x1||2,

a contradiction. If there was a voter with ideal point ȳ and transitive preferences over

candidates, this could not happen.

This example makes it clear that it is also necessary to impose some restrictions on

the preferences of voters over triplets of candidates. Namely, it should be possible to

choose the separating hyperplanes between voters with opposite preferences over pairs

of candidates such that no cycles result. Denote by Aij a possible hyperplane separating

voters with opposite preferences over candidates i and j. Then the above no–cycles

condition means that it is possible to choose the hyperplanes {Aij}i,j∈C such that Aij ∩
10Actually, the valence dimension is not needed in this case.
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Ajk ⊆ Aik for every three candidates i, j, k. If this condition is satisfied, then it typically

would be possible to represent the preferences by the spatial model (an additional minor

condition similar to (A4) is required to guarantee a representation).

3.2. The valence dimension. The utility function of a voter with an ideal point y

that we derive in Theorem 1 is of the form vi − ||xi − y||2. Thus, we use the square

of the Euclidean norm (and not just the norm) as the ‘ideological’ utility function. If

instead voters’ preferences are represented by the utility function vi − ||xi − y||, then

the induced sets of supporters of candidates may not be convex. For instance, let x1 =

(0, 0), x2 = (1, 0), v1 = 0, and v2 = 1. Then voters with ideal points y = (0, 1) and

y′ = (0,−1) strictly prefer candidate 2 over candidate 1. However, a voter with an ideal

point y′′ = y+y′
2

= (0, 0) is indifferent between the candidates. Thus, using the square of

the norm is a consequence of (A3).

Using the square of the norm is natural also for the following reason. We would like

to think of the valence dimension as equally important to the policy dimensions. Recall

that all voters agree that more is better on the valence domension. An alternative way

to put this is to say that the ideal point of every voter is +∞ along this dimension.

For the sake of the argument, assume that we replace +∞ by a large enough constant

M . Then the utility of a voter if candidate i wins should be measured according to the

distance between his ideal point (y, M) and the the point (xi, vi). This implies that we

should add the valence score to the square of the norm of the difference in the policy

space and not to the norm.

Theorem 1 is not true if we require all candidates to have the same score (zero, w.l.o.g.)

on the valence dimension. To see this consider the case where d = 2 and C = {1, 2, 3, 4}.
The preferences of voters are defined as follows:11

{y : 1 ºy 2} =
{
y = (y1, y2) ∈ R2 : 2y2 ≤ −1− y1

}

{y : 1 ºy 3} =
{
y = (y1, y2) ∈ R2 : 2y2 ≥ 1 + y1

}

{y : 1 ºy 4} =
{
y = (y1, y2) ∈ R2 : y1 ≤ 0

}

{y : 2 ºy 3} =
{
y = (y1, y2) ∈ R2 : y2 ≥ 0

}

{y : 2 ºy 4} =
{
y = (y1, y2) ∈ R2 : 2y2 ≥ −1 + y1

}

{y : 3 ºy 4} =
{
y = (y1, y2) ∈ R2 : 2y2 ≤ 1− y1

}

11For simplicity we describe the preferences by the half–spaces of voters who prefer one candidate

over another, for every pair of candidates. See Figure 2.
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It is easy to check (see Figure 2) that the preferences defined by these half–spaces satisfy

axioms (A1)–(A4). Assume by way of contradiction that {(x1, 0), . . . , (x4, 0)} represent

these preferences. Then the point (−1, 0) must be equidistant from x1 and x2, and the

point (1, 0) must be equidistant from x2 and x4. Furthermore, the second coordinates of

x1 and x4 must be equal, and the first coordinate of x1 must be equal to minus the first

coordinate of x4. Putting all these conditions together gives that the second coordinates

of x1 and x4 must be zero. Similarly, it is not hard to check that the first coordinates of

x2 and x3 must equal zero.

To summarize, if {(x1, 0), . . . , (x4, 0)} represent the above preferences, then there must

be α, β > 0 such that x1 = (−α, 0), x2 = (0, β), x3 = (0,−β) and x4 = (α, 0). Since the

point (−1, 0) is equidistant from x1 and x2, we have α2 − 2α = β2. Similarly, since the

point (1, 0) is in equidistant from x3 and x4, we have α2 = β2 + β. However, there is no

positive solution to these two equations.

It follows that more restrictions must be imposed on preferences to allow a represen-

tation in the form −||xi − y||2. Finding natural additional axioms that distinguish this

case from the more general one studied in this paper is an interesting direction for future

research.

3.3. The cases m = 2 and m = 3. In contrast to the claim of the previous subsection,

if there are only two or three candidates, then it is possible to represent the voters’

preferences without resorting to valences. The case m = 2 is trivial since one only needs

to choose the platforms x1 and x2 equidistant from the hyperplane separating the voters

that prefer candidate 1 from those preferring candidate 2. For m = 3 we state this fact

as a proposition.

Proposition 2. Assume m = 3. The preferences {ºy}y∈Rd satisfy properties (A1)

through (A4) if and only if there are x1, x2, x3 ∈ Rd in a general position such that

i ºy j if and only if ||xi − y||2 ≤ ||xj − y||2.

Proof. The if part follows from Theorem 1, so we only need to prove the only if part.

By Theorem 1, there are (x1, v1), (x2, v2), (x3, v3) in a general position that represent the

preferences. It follows that the vectors x1 − x2 and x1 − x3 are linearly independent.

Therefore, there is β ∈ Rd that solves the two equations β · (x1 − x2) = v2−v1

2
and

β ·(x1−x3) = v3−v1

2
. Notice that the same vector β must satisfy also β ·(x2−x3) = v3−v2

2
.

Define x′i = xi + β for i = 1, 2, 3.
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By Proposition 1, the set {(x′1, v′1), (x′2, v′2), (x′3, v′3)} represent the same preferences as

{(x1, v1), (x2, v2), (x3, v3)} if the equation v′i − v′j = vi − vj + 2β · (xi − xj) is satisfied for

every i, j ∈ C. By construction, the vector β satisfies β ·(xi−xj) =
vj−vi

2
for every i, j. It

follows that v′1 = v′2 = v′3 = 0 solve the above equations. That is, {(x′1, 0), (x′2, 0), (x′3, 0)}
represent the preferences {ºy}y∈Rd .

¤

3.4. One dimensional policy space. Theorem 1 is no longer true if the policy space

is one dimensional. To understand why, recall that in the proof of Theorem 1 we first

constructed the platforms {x1, . . . , xm} such that xi−xj is orthogonal to the hyperplane

of indifferent voters between i and j. We then arbitrarily chose the valence v1, and each

vi (2 ≤ i ≤ m) was chosen such that the hyperplane corresponding to (x1, v1), (xi, vi)

is exactly the indifference hyperplane of candidates 1 and i. The final step of the proof

(Claim 7) showed that, when the valences are chosen in this way, for every pair of

candidates i and j the hyperplane corresponding to (xi, vi), (xj, vj) is the indifference

hyperplane of candidates i and j.

The reason why this construction works is that the set of voters who are indifferent

between candidates 1 and i and also between 1 and j is not empty. But by transitivity

these voters must also be indifferent between candidates i and j. Thus, if the pairs v1, vi

and v1, vj are chosen appropriately, then it must be the case that vi, vj is also consistent

with the given preferences. However, when d = 1 the set of voters who are indifferent

between some three candidates is typically empty. Thus, there are too many independent

equations that need to be satisfied in order to represent the preferences.

More formally, assume that we replace (A4) by the following weaker axiom:

(A4’): For every ordered pair of distinct candidates (i, j) there is y ∈ Rd such that

i Ây j.

If the policy space has one dimension and the preferences of voters satisfy axioms (A1)–

(A3) and (A4’), then for every i 6= j there is a unique point aij ∈ R such that i ∼aij
j,

voters to the left of aij strictly prefer one of these candidates and voters to the right

of aij strictly prefer the other. Furthermore, it is easy to check that we can order the

candidates such that i < j implies that i Ây j if and only if y < aij and j Ây i if and

only if y > aij.

Now, assume that {(x1, v1), (x2, v2), . . . , (xm, vm)} represent the preferences as in The-

orem 1. First it is obvious that we must have x1 < x2 < . . . < xm. Second, a simple
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computation shows that the equality

aij =
vi − vj + x2

j − x2
i

2(xj − xi)

must hold for every pair of candidates i < j. These equations imply (after some simple

manipulations) that the platforms of every three candidates i < j < k satisfy the linear

equation

aik(xk − xi)− aij(xj − xi)− ajk(xk − xj) = 0,

or alternatively

(aij − aik)xi + (ajk − aij)xj + (aik − ajk)xk = 0.

Consider the above
(

m
3

)
linear equations corresponding to all triplets of candidates,

and the corresponding matrix with m columns and
(

m
3

)
rows. Notice that the sum of the

columns is the zero vector, which means that x1 = x2 = . . . = xm is always a solution

to this system of equations. For m ≥ 4, this matrix will typically have a rank of m− 1,

which means that the solution space is one dimensional. Since constant vectors solve

the system, there is typically no solution in which x1 < x2 < . . . < xm. This shows

that typically the preferences cannot be represented as in Theorem 1 if there are at

least four candidates. If there are two or three candidates, then it is easy to check that

axioms (A1)–(A3) and (A4’) are sufficient for a representation. We summarize this in

the following proposition.

Proposition 3. (i) Assume m = 2 or m = 3. The collection of voters’ preferences satisfy

axioms (A1)–(A3) and (A4’) if and only if there are m distinct points {x1, . . . , xm} ⊆ R
and m numbers {v1, . . . , vm} that represent the preferences as in Theorem 1.

(ii) Assume m ≥ 4. If the preferences can be represented as in Theorem 1, then axioms

(A1)–(A3) are satisfied. However, (A1)–(A3) and (A4’) are not enough to guarantee a

representation.

3.5. The Heterogeneity axiom. Although our main result is an equivalence theorem,

the heterogeneity axiom (A4) is not always satisfied when preferences are as in the spatial

model with a valence dimension. When the set {(x1, v1), (x2, v2), . . . , (xm, vm)} is not in

general position, (A4) does not hold. A natural question is therefore whether we can

dispense with this axiom and get a more general representation theorem. We now show

that the answer is negative, and that both parts of (A4) are needed for the sufficiency

result.
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Consider first the following collection of preferences, where the policy space is two–

dimensional (d = 2) and C = {1, 2, 3}:

{y : 1 ºy 2 ºy 3} = {y = (y1, y2) ∈ R2 : y1 ≤ 0, y1 ≤ y2}
{y : 1 ºy 3 ºy 2} = {y = (y1, y2) ∈ R2 : y1 ≤ 0, y1 ≥ y2}
{y : 2 ºy 3 ºy 1} = {y = (y1, y2) ∈ R2 : y1 ≥ 0, y1 ≤ y2}
{y : 3 ºy 2 ºy 1} = {y = (y1, y2) ∈ R2 : y1 ≥ 0, y1 ≥ y2}

These preferences violate part (i) of (A4) since, for instance, there is no voter y

such that 2 Ây 1 Ây 3 (see Figure 3). It is easy to check that the rest of the axioms

are satisfied. We claim that these preferences are not consistent with the spatial model.

Indeed, assume that {(x1, v1), (x2, v2), (x3, v3)} represent these preferences. Then it must

be the case that x2 − x1 = (α, 0) and x3 − x1 = (β, 0) for some α, β > 0. Taking the

difference of these two equalities we get x2−x3 = (α−β, 0). However, the line separating

voters with opposite preferences over candidates 2 and 3 is the main diagonal, and so

x2 − x3 must be of the form (−γ, γ) for some γ > 0.

To see that part (ii) of (A4) is necessary, consider the following preferences (d = 2 and

C = {1, 2, 3, 4}):

{y : 1 ºy 2 ºy 3 ºy 4} = {y = (y1, y2) ∈ R2 : y1 ≤ 0,−y1 ≤ y2}
{y : 1 ºy 3 ºy 2 ºy 4} = {y = (y1, y2) ∈ R2 : y2 ≥ 0,−y1 ≥ y2}
{y : 3 ºy 1 ºy 4 ºy 2} = {y = (y1, y2) ∈ R2 : y2 ≤ 0, y1 ≤ 2y2}
{y : 3 ºy 4 ºy 1 ºy 2} = {y = (y1, y2) ∈ R2 : y1 ≤ 0, y1 ≥ 2y2}
{y : 4 ºy 3 ºy 2 ºy 1} = {y = (y1, y2) ∈ R2 : y1 ≥ 0,−y1 ≥ y2}
{y : 4 ºy 2 ºy 3 ºy 1} = {y = (y1, y2) ∈ R2 : y2 ≤ 0,−y1 ≥ y2}
{y : 2 ºy 4 ºy 1 ºy 3} = {y = (y1, y2) ∈ R2 : y2 ≥ 0, y1 ≥ 2y2}
{y : 2 ºy 1 ºy 4 ºy 3} = {y = (y1, y2) ∈ R2 : y1 ≥ 0, y1 ≤ 2y2}

The axioms (A1)–(A3) and part (i) of (A4) are satisfied, but part (ii) of (A4) is not

satisfied since {y : 1 ∼y 3 ∼y 4} = {y : 2 ∼y 3 ∼y 4} = {(0, 0)} (see Figure 4). We

now show that these preferences are not consistent with the spatial model.

Assume to the contrary that {(x1, v1), . . . , (x4, v4)} represent the preferences. Consider

first the triplet {1, 2, 3}. The preferences imply that there are α, β, γ > 0 such that

x2 − x1 = (α, 0), x1 − x3 = (0, β), and x2 − x3 = (γ, γ). Summing up the first two
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equalities and subtracting the third we get (0, 0) = (α− γ, β − γ). Thus, α = β = γ. A

similar argument for the triplet {2, 3, 4} implies that there is a > 0 such that x2 − x3 =

(a, a), x4−x3 = (a, 0) and x2−x4 = (0, a). Since the pair {2, 3} appears in both triplets, it

must be the case that a = α. Thus, x4−x1 = x4−x3+x3−x1 = (α, 0)+(0,−α) = (α,−α).

However, the line separating voters with opposite preferences over candidates 1 and 4 is

y1 = 2y2, so x4 − x1 must be of the form (α,−2α) for some α > 0.

3.6. Euclidean preferences. Our model does not presume any specific kind of voter

preferences over the policy space. The primitive only consists of a collection of preferences

over candidates indexed by points in Rd. The Euclidean preferences are derived from

the axioms.12

Another approach would be to assume from the start that voters’ preferences over

policies are given by the Euclidean distance from their ideal point, and that valence scores

are additively separable. In other words, one could test only the second assumption of

the spatial model, that the subjective views of voters regarding the implemented policies

and valences of the candidates are identical. In this case the model would consist of sets

{xi(y)}i∈C ⊆ Rd and {vi(y)}i∈C ⊆ R for every y ∈ Rd. It is easy to see that one can

obtain a similar result to that of Theorem 1 in this case.

The Euclidean norm is intimately related to the betweenness axiom (A3). Other

norms, such as the ‘sup–norm’ or the ‘city–block metric’, typically induce non–convex

sets. A thorough study of the relation between convexity and the Euclidean norm, as

well as of the kind of preferences induced by other norms is beyond the scope of this

paper.
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y1 : 2 Â 1 Â 3

y2 : 1 Â 3 Â 2

y3 : 1 Â 3 Â 2

y4 : 3 Â 2 Â 1

y6 : 3 Â 2 Â 1

y5 : 2 Â 1 Â 3

Figure 1: A finite set of voters
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Figure 2: The valence dimension
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Figure 3: Violation of (A4) (i)



26 YARON AZRIELI

1 2
3 4

2
3

1
3
2
4

1
4

1 2
3 4

2
3

1
3

2
4

1
4

1 Â 2 Â 3 Â 4

1 Â 3 Â 2 Â 4

3 Â 1 Â 4 Â 2

3 Â 4 Â 1 Â 2

2 Â 1 Â 4 Â 3

2 Â 4 Â 1 Â 3

4 Â 2 Â 3 Â 1

4 Â 3 Â 2 Â 1

Figure 4: Violation of (A4) (ii)


