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Abstract

We propose a family of measures of difference between ordinal prefer-
ence relations. The difference between two preferences is the probability
that they would disagree about the optimal choice from a random avail-
able set. It is in this sense that these measures are choice-based. Measures
differ according to the distribution of the random available sets. We use
these measures to propose new social choice rules that achieve maximal
expected assent among the members of the population. We also propose
two further applications of these measures. The first is to welfare mea-
surement when choice is irrational. The second is to the measurement of
polarization in a population.



1 Introduction

We define a family of metrics on the space of ordinal preference relations and
trace the implications of these metrics for social choice theory and other prob-
lems. Our metrics are choice-based in that they depend on the distribution of
the actual feasible set – a member of the collection of all subsets of alternatives.
The main idea is that social choice, as a function of the preferences of a group
of individuals, should depend on the relative frequency of the decision problems
that these individuals might face. Doubt about the actual feasible set is one
justification for Arrow’s [3] requirement that social choice be derivable from an
ordering. Through that requirement Arrow was able to insure that the choice
would display collective rationality whatever the feasible set turned out to be.
Thus, in our choice-based methodology, the distribution on the feasible sets de-
termines the metric on preferences, and from this metric and a knowledge of
the population of preferences we proceed to various economic applications.

Our metrics are simple to explain. Given a distribution over the feasible sets
the distance between any two preferences is the probability that these preference
would disagree about the optimal decision. Two people will agree on the optimal
choice if the differences in their preferences involve only unavailable alternatives
or alternatives that they both rank lower than those alternatives that they do
agree on. Differences between the ordinal preferences with respect to highly-
ranked alternatives will produce more conflict than differences between lower-
ranked alternatives because there will be more feasible sets at which such high-
ranked differences will matter.

In applying these ideas to social choice theory we evaluate a potential social
ordering by computing the probability that a randomly-selected member of the
population agrees with the choice that it would induce. The social ordering we
propose is the one that maximizes expected agreement, or assent, to the social
choice. We show how the assent-maximizing ordering depends upon the statis-
tical assumptions that are made about the distribution of feasible alternatives.

We relate the assent-maximizing social orderings to the one discussed by
Kemeny [13], Kemeny and Snell [14] and Young [19], as axiomatized by Young
and Levenglick [20]. Their solution, which we call the Kemeny Rule, is the
assent maximizing rule when the feasible set is sure to be a pair of alternatives
and all pairs are equally likely. The Kemeny Rule is one of our social welfare
functions, and as is well-known, the associate metric is Kendall’s τ . However
whenever the distribution over feasible sets allows for sets larger than pairs, our
metric will differ from Kendall’s τ and the social welfare function will differ from
Kemeny’s Rule.

Kemeny, Kemeny-Snell and Young-Levenglick were motivated by Condorcet’s
wish to ”break” cycles in pairs in the least intrusive way possible, reversing pair-
wise choices that are supported by weak majorities. In this paper, we construct
an ordering that aims to respect choices from all subsets, to the maximum ex-
tent possible. This ordering reverses majority choices on some pairs in order to
better match the the population’s choices on subsets of larger cardinalities. We
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are motivated by the decision-theoretic idea that the feasible set could well be
a large subset of the set of all alternatives, and thus we adopt the objective of
staying as close as possible to the individuals’ wishes on these sets. Pairs are
treated in the same way as feasible sets of any other cardinality.

In addition to social choice theory, we give two further applications of this
family of metrics. The first is to the problem of multiple-self explanations of
irrational individual choice functions.1 Here the question is how to make a good
selection from a set of alternative multi-self explanations of an irrational choice
function.

The second application is to measurement of polarization in a society. Es-
teban and Ray [10] have described polarization measures on distributions over
one-dimensional attributes, such as income. Our measures quantify polarization
of preferences – a domain that is not one-dimensional.

We provide a computational technique to calculate our metrics. The Kemeny
metric is the minimal number of adjacent pairs of alternatives that have to be
reversed to go from one preference to another2. Our metrics are determined
by similar counts of pairwise exchanges. However the position in the order at
which these reversals are made is relevant for us, not merely the total number
of reversals. Thus, as in Kemeny’s case, we have a small-dimensional statistic
that characterizes the metric and it can be determined algorithmically.

2 Measuring Conflict

The space of alternatives is denoted X = {a1, a2, ...., an}. A preference π
over X is identified with both an ordering of the elements of X and with a
permutation of the integers {1, ..., n}. The set of all n! preferences over X is
denoted Π. Thus π = (aπ(1)aπ(2)...aπ(n)) represents the preference in which
ai is preferred to aj if and only if π−1(i) < π−1(j). We will say in this case
that ai precedes aj in the order determined by π. We will also say that if
π = (π1...πi...πn) the alternative πi = aπ(i) is in position i.

We will refer to the natural ordering of the alternatives as the element
e = (a1a2...an) ∈ Π and the associated permutation is the identity e(i) = i for
all i = 1, ..., n.

Let the set of all non-empty subsets of X be denoted X . Typically we denote
a set of feasible alternatives by A ∈ X . Given a preference π let cπ(A) be the
element in A that precedes all other elements in A. The function cπ : X → X
is the rational choice function generated by the preference π.

Let ν be a probability distribution over X . We define our measure of
conflict between preferences as

f(π,π′; ν) = ν{A ∈ X|cπ(A) #= cπ′(A)}
1Green-Hojman [11], Kalai-Rubinstein-Spiegler [12], Ambrus-Rosen [1], Apestigua-

Ballester [2]
2This metric is called Kendall’s τ and is a well-known measure of rank correlation.
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We are going to pay special attention to the case in which the alternatives
enter the feasible set in a neutral fashion. Under this assumption the probability
distribution ν is invariant to any permutation of the names of the alternatives;
and ν is said to be exchangeable. Exchangeable ν can be summarized by the
distribution of the cardinality of the feasible set, or the size distribution, of
the feasible set, µ = (µ1, ..., µn). For every probability vector µ there is one
exchangeable distribution of the feasible set and in that distribution all sets
A with cardinality i are equally likely and collectively have probability µi.

3 4

In treating the exchangeable case we will write µ instead of ν to specify the
distribution of feasible sets under discussion.

Under neutrality, once we know the probability of disagreement between an
arbitrary π and the natural ordering e the probability of disagreement between
all pairs of orderings are determined. The probability of disagreement between
π and e depends on ν through the size distribution µ of the feasible set A thus
we can define it as

F (π;µ) = f(π, e; ν)

The elements of Π form a non-directed graph in which the links are pairs of
permutations obtainable from each other by a single transposition of adjacent
elements. That is (π,π′) is a link if there is some i ∈ {1, ..., n} such that
πi = π′

i−1, πi−1 = π′
i and πj = π′

j for all j #= i− 1, i. If this relation holds we
say that π differs from π′ by a transposition at position i, the index i being
the larger of the two positions at which they differ.

If π differs from e by a transposition at position i, then the family of feasible
sets on which cπ(A) differs from ce(A) is precisely those sets that contain ai−1

and ai and do not contain any element aj for j < i − 1. For example, if π
differs from e by a transposition at position n then the only feasible set on
which they differ is A = {an−1, an}. If π differs from e by a transposition at
position i, then there are 2n−i sets A at which cπ(A) #= ce(A) because any
subset of {ai+1, ..., an} when combined with {ai−1, ai} will be such a feasible
set. Therefore a transposition at position i generates a collection of changes in
the choice function, and we know the number of sets of each cardinality k that
are affected by this transposition.

A path ρ from π to π′ is a list of preferences ρ0, ..., ρM such that (ρm−1, ρm)
is a link for all m = 1, ...,M , and ρ0 = π, ρM = π′. Clearly there are many
paths between any two permutations.

3deFinetti [7] showed that there is a definite structure to the family of exchangeable ran-
dom sequences - countable collections of exchangeable random variables. Such sequences are
essentially mixtures of independently identically distributed random variables, with different
distributions. Thus, with probability one, only countable sets will arise. In the finite case
there is more flexibility and the distribution of the cardinalities is unrestricted. Diaconis
and Friedman [9] give error bounds in the approximation of finite exchangeable collections of
random variables by subsets of exchangeable random sequences.

4We usually will set µ1 = 0. Choice problems with only a single feasible element are
possible, but as there can be no disagreement they are trivial for our purposes. To simplify
calculations we frequently assume that such problems do not arise at all.
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There are many algorithms which can be applied to a permutation π that
will connect it via a path to e. One of the best known of these sorting proce-
dures is bubble sort.5 In bubble sort we make a series of passes through the
alternatives, beginning each time with the best (left-most) alternative. At each
step in the algorithm, we compare the element in position i with the element in
position i+ 1. If this pair of elements does not appear in its natural order, the
elements are transposed. The algorithm continues this series of pairwise com-
parisons, moving from i = 1 to i = n−1, at which point a pass is complete. The
algorithm then begins again at i = 1, making another pass through the order-
ing. The algorithm terminates when a pass is completed with no transpositions
made.

In this paper, we will use a very similar algorithm: reverse bubble sort
(RBS). RBS is exactly like bubble sort except that its passes move leftward
from position i = n until i = 2.

While bubble sort and reverse bubble sort both convert π into e and both
make only transpositions of adjacent alternatives, they generate different se-
quences of choice functions along the way. We choose RBS because its associated
sequence has an analytically-useful property that we exploit, whereas ordinary
bubble sort (and all other sorting procedures) do not share this property. The
following example is an illustration.

Example 1 Bubble Sort and Reverse Bubble Sort

Let n = 3 and π = (a3a2a1). As RBS sorts π, the following sequence of
preferences is created. Each successive pair (ρi−1, ρi), i = 1, 2, 3 is a link because
at each step only one transposition is made.

ρ0 = (a3a2a1)

ρ1 = (a3a1a2)

ρ2 = (a1a3a2)

ρ3 = (a1a2a3)

The first link changes cπ({a1, a2}). The second link changes cπ({a1, a3})
and cπ({a1, a2, a3}). And the third link changes cπ({a2, a3}). Note that no set
A has its associated choice changed more than once.

If we had used (ordinary) bubble sort to transform π into e then we would
generate the path (a3a2a1), (a2a3a1), (a2a1a3), (a1a2a3). The first link would
change cπ({a1, a2, a3}) and cπ({a2, a3}). The second link would change cπ({a1, a3}).
And the third link would change cπ({a1, a2, a3}) and cπ({a1, a2}). Note that
cπ({a1, a2, a3}) would be changed twice along this path, first from a3 to a2, then
from a2 to a1. !

Example 1 illustrates a general point that is central to our analysis. We will
show below that RBS never changes choice at a set A more than once. For the

5Bubble sort is not efficient as an algorithm. We are not concerned with computational
efficiency here. As will be seen below, we are using the sorting procedure as an analytic tool.
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purpose of characterizing preferences π by the choice functions they generate,
we can use RBS to sort them each into e and keep track of the positions at
which RBS makes a transposition. The counts of how many transpositions RBS
makes as it transforms π into e will form a sufficient statistic for the family of
sets at which π makes a different choice than e. These ideas are formalized as
follows:

A minimal path from π to π′ is a path ρ0, ..., ρM in which there is no set
A ∈ X at which cρm−1

(A) #= cρm
(A) for more than one value of m. Minimal

paths are useful because the set of decision problems on which π and π′ disagree
can be characterized by the minimal paths between them. We will now show
that RBS generates a minimal path between any two preferences and we examine
the families of sets where the choice function changes in more detail.

Theorem 1 The permutations successively reached as reverse bubble sort con-
verts π to e constitute a minimal path from π to e.

Proof is in the Appendix.

Given π, cπ(A) #= ce(A) for some family of sets A. All minimal paths from
π to e change the choice at each of these sets exactly once. RBS can be used as
a computational method to form a list of all sets in this family and to compute
how many there are of each cardinality.

Because of our exchangeability assumption, all sets of a given cardinality
have equal probability under ν. Therefore, once we know how many sets of
each cardinality are changed by RBS, the probability of disagreement will be
the linear combination of these counts weighted by µ.

Let us keep track of the positions at which RBS makes a transposition. In
each pass, either there is or is not a transposition at position i; there can never
be more than one transposition at position i in any one pass because the pass
continually steps through the positions. Let xi be the number of passes at which
there is a transposition at position i. We call the vector x = (x2, ..., xn) the
RBS signature of π. (If it is necessary to be explicit we write x(π) instead
of x.) For example, the RBS signature in Example 1 above is x(π) = (1, 2)
because the first and second passes make transpositions at position 3 but only
the first pass makes a transposition at position 2.

The RBS relationships between the six orderings of the three-alternative case
can be represented geometrically. The diagram below features each ordering as
a vertex of a regular hexagon. The RBS signature between each ordering and its
neighbors, the two orders obtainable by a single transposition, appear around
the outside of the hexagon. The element e appears in the upper left-hand corner.
The arrows in the interior of the diagram are labeled with the RBS signatures
for the move from the ordering e to the three non-adjacent orderings which
require more than one transposition.

Insert Figure 1 RBS Signatures for the Three-Alternative Case

We will now show how the RBS signatures between preferences can be used
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to define a metric6 on Π. This metric will be the basis for our methods in all
applications. We will use it to find a central preference that best represents the
preferences of a population. We also use it to measure the dispersion among
preferences. Theorem 2 shows that the RBS signature between two preferences
is uniquely determined at all minimal paths between these preferences. This
generalizes the diagrammatic situation from Figure 1 to cases of larger n, where
there can be many minimal paths. Theorem 3 then shows that the disagreement
probabilities that we have discussed above define a metric on Π.

Having a metric on Π is a great analytical convenience in the computation
of social choice rules and other functions on the space of distributions over
Π. Specific instances of the use of metrics for this purpose are Kemeny[13],
Craven[5], Klamler[15], and Barthelemy and Monjardet[4].

A converse of Theorem 3 is also valid, and we provide a proof in the appendix.
Any metric on Π that is exactly additive along the minimal paths in Π can
be viewed as a disagreement probability for some suitably chosen distribution
over X . The additivity property along minimal paths reflects the choice-based
nature of the metric. Theorem 6 in the Appendix characterizes all such metrics,
extending the axiomatization of Kemeny-Snell [14] who required additivity along
all paths. Taken together, Theorems 3 and 6 show that the assumption of
assent maximization is equivalent to the assumption that the procedure used
for preference aggregation is a function of a metric structure on preferences.

Theorem 2 Let ρ0, ...ρM be any minimal path from e to π and let yi be the
number of transpositions at position i that are made along this path. Let y =
(y2, ..., yn). Then y = x(π).

Proof is in the Appendix.

Theorem 3 For any µ, the probabilities F (π;µ) form a semi-metric on Π. If
µ2 #= 0, then F (π;µ) is a metric on Π.

Proof is in the Appendix.

We now turn to the computational use of the RBS signature in deriving the
numerical values for disagreement probabilities. We will compute the number,
r(k, i), of sets A with cardinality k such that, if a transposition is made at
position i that converts π to π′ then cπ(A) #= cπ′(A). The transposition changes
the order of two alternatives, πi−1 and πi. If A has k elements in all, then k− 2
of them must come from those n− i alternatives that follow πi−1 and πi in the
order π. Thus

r(k, i) =

(
n− i

k − 2

)

Of course if k − 2 < 0 then r(k, i) = 0.

6More generally, in limiting cases, the RBS signatures define only a semi-metric, although
the difference will not be operationally important below. In these limiting cases we cannot
distinguish between two preferences based on the choices they induce. The semi-metric
induces a metric on the equivalence classes of preferences.
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As all sets with cardinality k are equally likely under our assumptions, each
has probability µk

(nk)
. Therefore the probability wik that the feasible set is one of

the sets with cardinality k where the choice is changed by the transposition at
position i is

wik =
µk(n
k

)r(k, i)

Each transposition is a measure of disagreement between π and e. The
algorithm changes the choice at a family of feasible sets from cπ(A) to ce(A)
which is precisely the family at which π and e disagree, and it never makes a
change where cπ(A) = ce(A). The minimality of the path assures that the total
disagreement is partioned among the links with no double counting. Thus, the
probability that the feasible set is such that π and e disagree can be computed
by adding the disagreement probabilities at every step of the RBS algorithm.
Adding the probabilities as computed above and weighting each of them by the
number of transpositions required at each position we have:

Theorem 4 If π has RBS signature x(π) and ν is exchangeable with size dis-
tribution µ then the probability of disagreement between π and e is given by

F (π;µ) =
n∑

i=2

n∑
k=2

wikxi =
n∑

i=2

xi(π)
n∑

k=2

µk(n
k

)
(
n− i

k − 2

)
(1)

This Theorem follows from the above discussion of counts of sets by cardi-
nality.

Formula (1) shows how π and the size distribution µ enter into the proba-
bility of disagreement. The effect of the preference π is completely summarized
by its RBS signature x(π). This disagreement probability is a linear function of
the signature, with coefficients dependent on the size distribution of the feasible
sets.

We now examine some special cases of exchangeable distributions and see
what this formula tells us.

The case in which it is sure that the feasible set will contain exactly two
alternatives is the problem studied by Kemeny [13]. In this case we define

µK = (0, 1, 0, ..., 0)

. We know from the Kemeny [13] and Young and Levenglick [20] papers that in

this case F is Kendall’s tau: wik = 1 for all k and
n∑

i=2
xi is the total number of

pairwise exchanges needed to carry π into e.
In the case in which all A ∈ X with two or more elements are equally likely,

a transposition at position i affects the optimum if and only if both πi−1 and
πi are in A and none of πk are in A for k < i− 1. The probability of this event
is 1

2i . Under this distributional assumption we define

µE = (
n∑

j=2

(
n

j

)
)−1(0,

(n
2

)
, ...

(n
n

)
)
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The scalar factor adjusts for the fact that we put zero probability on sets of
order zero and one.

Finally, in the case where it is certain that all alternatives will be available,
so that A = X with probability one, we define

µX = (0, ..., 0, 1)

Two preferences π and π′ disagree if and only if π1 #= π′
1. Thus w2n = 1 and

wik = 0 for i > 1 or k < n. In this case F assigns zero distance between all
preferences that agree with e on the top element, and a unit distance for all
those that disagree. It is in cases such as this that F is a semi-metric instead
of a metric, because only top elements matter to choice.7

3 Assent-maximizing Social Welfare Functions

Having identified conflict with the mathematical expectation of disagreement
between preferences, we now look for social orderings that minimize expected
conflict. Specifically, we look for a social ordering π∗ that maximizes the prob-
ability that its choice from a random given subset agrees with the choice that
would be made by a randomly-selected member of the population.

We discuss the relationship of the social ordering that is produced by our
measures with that produced by the Kemeny method. We will emphasize the
contrast between µK and the special case of equally-likely feasible sets µE .
Similar examples can be constructed for many other size distributions. The
important point is that larger potential feasible sets will generate a different
pattern of agreement and disagreement than if only pairs are possible.

Imagine a population of individuals, each of whom holds a particular prefer-
ence overX. Following the classical social choice approach, we invoke anonymity
in our treatment of these individuals. Therefore, we can represent this popula-
tion as a distribution over Π. Denote a particular population by λ and let Λ
be set of all populations.

Given a population λ, we can describe the level of expected conflict between
a randomly-drawn member of the population and any potential candidate for a
social ordering. Let the frequency of expected conflict between a candi-
date social ordering π′ and individual preferences in the population λ
be defined by

q(π′,λ, ν) =
∑
π
f(π,π′; ν)λ(π) (2)

This expression is the key argument in our social aggregation procedure. The
assent-maximizing social welfare function is defined as the social ordering

7Craven (1996) examines the social choice rule associated several metrics on the space
of orderings different from µK following the Kemeny’s approach in other respects. One of
his metrics is µX , corresponding to the case in which it is certain that all alternatives are
available. The other metrics are among those described in Diaconis (1988). They do not lead
to an interpretation as the probablity of disagreement and are thus not ”choice-based” in our
terminology.
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that minimizes this expected conflict

π∗(λ, ν) = argmin
π′

q(π′,λ, ν) (3)

If ν is exchangeable and we want to emphasize the dependence of social
choice on the size distribution µ of the set of alternatives, we will write the
assent-maximizing social welfare function as a function of µ, with the slight
abuse of notation π∗(λ, µ).

When (2) is evaluated at the assent-maximizing social welfare function we
have the measure of conflict with assent-maximization

Q(λ, ν) = q(π∗(λ, ν),λ, ν) =
∑
π
f(π,π∗; ν)λ(π) (4)

The measure Q corresponds to the ”goodness of fit” of the social preference
to the population of individual preferences.

Given a population λ, we can also define the measure of internal conflict

Q̄(λ, ν) =
∑
π

∑
π′

λ(π)λ(π′)f(π,π′; ν) (5)

The measure Q̄ does not depend on a social ordering. It is a direct measure
of the diversity of preferences within the population.

Example 2 Maximizing Assent to Plurality-Induced Choices

This is our basic example where we show that the Kemeny method, which
maximizes assent under the assumption that only pairs are possible, can lead to
substantially less average assent then the true assent-maximizing social welfare
function, in cases where larger feasible sets are likely. We take the case of
equally-likely feasible sets for concreteness, with n = 3 and µ = µE = (0, 3

4 ,
1
4 ).

The population λ is concentrated on three of the six orderings in Π according
to the distribution: λ((a1a2a3)) = .49, λ((a3a2a1)) = .48, λ((a2a3a1)) = .03.
This distribution exhibits the tension between selecting the ordering consistent
with the transitive majority relation (Condorcet Consistency) and selecting the
Plurality winner from the three-alternative set A = X. Using Plurality rule on
every subset, the choice function would be

c({a1, a2}) = a2

c({a1, a3}) = a3

c({a2, a3}) = a2

c({a1, a2, a3)} = a1

Condorcet Consistency requires that the social ordering be (a2a3a1) as the
majority choices from the pairs are transitive. But this ordering does not de-
scribe the result of plurality rule when all three alternatives are available, as
a1 not a2 is the plurality choice from the order three subset. This illustrates
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an important point: populations that satisfy Condorcet Consistency will not
necessarily generate plurality choice functions that are consistent with an or-
dering. Thus, if the social choice procedure must produce an ordering, it will
have to make tradeoffs between matching plurality choices on subsets of various
sizes. The Kemeny method selects the ordering π = (a2a3a1), which implies
a choice of c({a1, a2, a3}) = a2, supported by just 3% of the population. If
A = {a1, a2, a3} never arises, then this choice from the triple does not create
any expected dissent. If A = {a1, a2, a3} may arise, however, expected assent
may be maximized by an ordering that has a1 as its top element instead of
a2. When all subsets with two or more elements are equally likely, we have
π∗(λ, µE) = (a1a2a3), implying a choice of a1 from A = {a1, a2, a3} that is sup-
ported by 49% of the population. This gain of 46% in expected support for the
social choice at A = {a1, a2, a3} more than outweighs the decrease of 1% or 2%
in support that occurs when {a1, a2} or {a1, a3} are the feasible sets. Assent-
maximization with µE sacrifices matching the majority preference on two of the
three pairs problems in order to better match the population preferences in the
case where all three alternatives are available. !

Example 2 emphasizes the tension between assent-maximization and the
ordering requirement. In these cases we need to consult the distribution ν
when forming a social ordering. On the other hand, when the plurality choice
from each A is explainable by an ordering, that is, when there exists π̂ such that
cπ̂(A) coincides with the plurality winner at every A ∈ X , then this tension does
not exist and, as the following Theorem states, the social ordering should be
independent of ν - in fact it should be the same as the ordering π̂.

Theorem 5 If λ ∈ Λ is a population of preferences such that the assent-
maximizing social welfare function π∗(λ, ν) is independent of ν then plurality
choice at each A ∈ X coincides with π∗(λ, ν). Conversely, if plurality choice
at A ∈ X is a rational choice function, then this choice function is the assent-
maximizing social welfare function for every distribution ν.

Proof is in the Appendix.

The condition that the plurality choice function be derivable from an order-
ing is very strong. The simplest type of population which generates a rational
plurality choice function contains a majority held preference, where λi > .5 for
some πi. It is obvious in this case that the choice funtion induced by πi maxi-
mizes assent at every subset A ∈ X , implying that πi is assent-maximizing for
any distribution ν. Populations with a majority-held preference are a strict sub-
set of the populations which satisfy the premises of Theorem 5. Note that if we
restrict attention to only exchangeable distributions, this result would not hold.
It is possible that the assent-maximizing ordering is invariant over the smaller
space of exchangeable distributions and yet the plurality choice function is not
rational.8.

8An example of this situation is the following. Take a population λ at which plurality rule
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We now concentrate on the typical case in which there is a tension be-
tween assent-maximization and the ordering requirement. Through a series of
four examples we will demonstrate some features of assent-maximizing social
welfare functions. We will show that assent-maximization may select some-
thing other than a Condorcet winner, even when one exists. We show that the
assent-maximizing ordering may lie outside the support of the preferences in
the population. We show that the method of compromise inherent in assent-
maximization is different from both the compromises made by positional meth-
ods such as scoring rules and the compromises made by methods that use only
the numerical vote tallies from pairwise contests. Finally we explore the re-
lationship between the dispersion around the social choice and the measure of
average disagreement across pairs in the population, showing that these variance
like measures can change their order depending on the probabilities ν.

Example 3 Assent-maximization may not rank a Condorcet winner first

This is a well-known four-alternative problem, that of chosing the capital
city of Tennessee (see Young [19], Moulin[16]), which we adapt for the present
discussion by allowing the feasible sets to be larger than pairs. For concreteness,
we assume that all subsets are equally likely.

The four alternatives are the four largest cities in Tennessee:
Memphis = a1, Nashville = a2, Chattanooga = a3, Knoxville = a4
The distribution of preferences λ is: λ((a1a2a3a4)) = .42, λ((a2a3a4a1)) =

.26, λ((a3a4a2a1)) = .15, λ((a4a3a2a1)) = .17
We have π∗(λ, µE) = (a1a2a3a4) and π∗(λ, µK) = (a2a3a4a1). The differ-

ence between our method and the Kemeny method is based on a rather narrow
difference in average assents to the social choice: q((a1a2a3a4),λ, νE) = .5282,
but q((a2a3a4a1),λ, νE) = .5173. This is an admittedly small difference in
average assent. Nevertheless, the induced choice functions are quite different

would generate cyclic choice over the pairs in a three-alternative problem:
λ(a1a2a3) =

1
3 − ε, λ(a2a3a1) =

1
3 + ε, λ(a3a1a2) =

1
3 , where ε is small and positive. The

claim is that π∗ = (a2a3a1) is the assent-maximizing order for all exchangeable distributions.
Consider the following table of assents to choices from the pair subsets for each potential
social ordering.

A π1 π2 π3 π4 π5 π6

{a1, a2} 2
3 − ε 2

3 − ε 1
3 + ε 1

3 + ε 2
3 − ε 1

3 + ε
{a2, a3} 2

3
1
3

2
3

2
3

1
3

1
3

{a1, a3} 1
3 − ε 1

3 − ε 2
3 + ε 1

3 − ε 2
3 + ε 2

3 + ε
Sum 5

3 − 2ε 4
3 − ε 5

3 + 2ε 5
3

5
3

4
3 + 2ε

For an exchangeable distribution, the assent to each pair is weighted equally in the maxi-
mization. Thus, the final row of sums captures the relevant information about assent to the
pairs. We see π3 strictly dominates the other candidates on pairs. The total expected assent
for any candidate for any exchangeable distribution will be a weighted sum of the pairs assent
and the triple assent. Since a2 is the assent-maximizing choice from the order three subset,
π3 weakly dominates the other candidates on the triple. Therefore π3 is assent-maximizing
at all exchangeable distributions. But, the plurality choice function of this population is not
rational because of the cyclic relationship on the pairs.

By Theorem 5, there are non-exchangeable distributions at which π3 would not be assent-
maximizing. For example, a non-exchangeable distribution that put most of the weight on
{a1, a2} would not produce π3 as a social ordering.
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because (a1a2a3a4) selects Memphis whenever it is available, whereas (a2a3a4a1)
never puts the capital in Memphis at any feasible set.

Notice that Nashville (a2) is a Condorcet winner, beating the other three
alternatives in the three pairwise contests where it is one of the options. For
that reason the Kemeny method must rank a2 first. On the other hand, in
every available set with three or more alternatives in which a1 is one of the
options, it is chosen by the plurality of the population. Therefore as long as
the probability is high enough that the actual available set will have three or
more options, a1 should be chosen from these sets. In these cases, therefore,
a1 should be first in the social ordering. !

Example 4 Compromising on a Second Best

In both Example 2 and Example 3 the assent-maximizing π∗ was one of the
orderings in the support of λ. This is not always the case as the following four
alternative example shows:

Let λ((a3a1a2a4)) = .33, λ((a2a1a3a4)) = .34, λ(a4a1a2a3) = .33. For a
variety of metrics, including the equally-likely size distribution µE , π∗(λ, µ) =
(a1a2a3a4). This social ordering is somewhat of a compromise of the three
orderings in the population; it places the alternative that everyone in the pop-
ulation ranks second, a1, at the top of the social ordering. Though this means
that no one in the population will agree with the choice from the order four
subset, this social ordering will perform better on average on subsets of order
two and three than an ordering chosen to match the first-place choice of one
segment of the population. The conflict-minimization method trades off support
on the order four subset in order to garner greater support on the more likely
order two and three subsets. Note, however, that if the probability of facing
the order four subset was sufficiently high, the social ordering would change to
π = (a2a1a3a4). !

The social choice rules based on assent maximization differ from the two
main classes of methods that have been applied and characterized in the litera-
ture. These methods are the scoring rules, which produce an ordering by com-
bining rank information from the individual preferences, and pairwise methods
that produce an ordering as a function of the majority tournament. Theorem
5 demonstrates assent maximization is not equivalent to any scoring rule. The
reason is that scoring rules will not always produce a social ordering coincident
with that of majority of the population. A minority with very different prefer-
ences will be able to influence the relative scores.9 We can also see that assent
maximization is not a member of the class of social welfare functions based only

9A population at which a strict majority would not dominate the social ordering under
a scoring rule is λ((a1a2a3a4)) = .55, λ((a2a4a3a1)) = .25, λ((a2a3a4a1)) = .2. For all ν
our method reproduces the majority’s preference π∗ = (a1a2a3a4) but Borda count produces
(a2a1a3a4) because the minority preferences give a2 an advantage over their last-choice, a1.

13



on pairwise comparisons and satisfying neutrality. There can well be a tension
between the way that pairwise methods break a Condorcet cycle, at its weakest
link, and the plurality choice from a larger feasible set. The following example
shows that the assent maximizing ordering can differ from the unique recom-
mendations of both of these classes of methods, and thus that the social welfare
function it defines does not lie in either class.

Example 5 Positional and Pairwise Methods and Assent-Maximization

In this example we show that for a particular population, with preferences
over just three alternatives, positional methods, pairwise methods, and our
method for a range of µ can generate three distinct social orderings.

Consider the population λ defined by

λ((a1a2a3)) = .10

λ((a1a3a2)) = .30

λ((a3a2a1)) = .25

λ((a2a1a3)) = .35

Saari[17] has shown that all positional methods will select (a1a2a3)10, while
Kemeny’s method (and all pairwise-based methods) will select (a2a1a3). Our
rule, for sufficiently large µ3, will yield (a1a3a2).11 This range of µ places a
probability on the three-alternative choice problem greater than the .25 assigned
by µE . As a result, there is a range of µ under which alternative a1 is in first-
place, as it will be supported as the choice from the triple by .40 of the voters.
Alternative a2 from the triple would be supported by just .35 of the population,
and a choice of alternative a3 is supported by just .25. Thus, with respect to
the first-place choice, our method looks similar to the positional methods. Now
consider the ordering of the final two alternatives. Since .55 of the population
of voters prefer a3 to a2 our method selects the ordering (a3a2), respecting
the will of the majority on this pair. Positional methods select the ordering
(a1a2a3). Thus no positional method or pairwise based method will agree with
our methods over the entire range of µ. !

Example 6 Conflict and Compromise

Let λ and λ′ be two populations such that for a given µ , λ is less internally
conflicted than λ′: Q̄(λ, ν) < Q̄(λ′, ν) Will there be more assent to the assent-
maximizing social ordering at λ than there will be at λ′? In other words, is it
easier to find a good compromise when the population is less conflicted?

10Saari’s result can be seen as follows: Consider any scoring rule, standardized to the
vector (1, s, 0) where s ∈ [0, 1]. Then, we have the following scores for a, b, c, respectively:
8 + 7s, 7 + 7s, 5 + 6s.

11The value of µ3 needed for this result is well in excess of .25 which is µE
3 .
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A simple example shows that this will not generally be the case. We will fix
µ = µE and let λ and λ′ be given by:

λ((a1a2a3)) = .5

λ((a2a1a3)) = .5

λ′((a1a2a3)) = .5

λ′((a1a3a2)) = .25

λ′((a2a1a3)) = .25

Insert Figure 2 Conflict and Compromise

It is straightforward to show that λ′ is more internally conflicted than λ.

Q̄(λ, ν) = .0625

Q̄(λ′, ν) = .0703

But

Q(λ, ν) = .125 with π∗(λ) = {(a1a2a3), (a2a1a3)}
Q(λ′, ν) = .0938 with π∗(λ′) = {(a1a2a3)}

The reason for this difference in conflict measures can be traced to the fact
that the space of preferences is discrete. The measure of conflict with the
assent-maximizing ordering is like a second moment taken around a point in the
space which is not a true mean – one that is chosen in asymmetric situations
because it is an approximate compromise and lies within the space from which
compromises must be selected. The measure of internal conflict, on the other
hand, deals directly with pairs of preferences chosen from the population and
does not require any such point of reference. !

4 Explanations of Irrationality and the Measure-
ment of Welfare

This section relates to the work of Green and Hojman [11] on the measurement
of welfare when the decision-maker is irrational. Green and Hojman analyze a
decision-maker who displays an arbitrary choice function c : X → X that is,
in general, inconsistent with the maximization of any single preference relation.
Green and Hojman assume that the decision-maker has multiple objectives,
holding each with a possibly different strength. Thus there is a distribution of

15



preferences λ ∈ Λ that is welfare relevant. As in the case of ordinary welfare
economics, we wish to infer λ from the observation of c. However, we can-
not identify from the data the way in which the objectives were aggregated to
determine the choice function. Let C be the set of all choice functions and let
v : Λ ×X → C be an aggregation rule that describes how diverse preferences
are combined to make a choice from any feasible set. The aggregation rule is a
correspondence, allowing multiple choices at some boundary situations. Green
and Hojman then define an explanation for a choice function c as distri-
bution over preferences and an aggregation rule (λ, v) such that for all A ∈ X ,
c(A) ∈ v(λ, A). They assume that λ is welfare-relevant and v is not. Therefore,
for welfare purposes we are interested in identifying the set of all λ ∈ Λ that are
part of some explanation of c. This set of preference distributions depends on
the family of aggregators that are allowed. The richer the class of aggregators
the more populations of preferences can be consistent with c.12

Even if the allowable aggregators are a tightly specified family there is still
considerable indeterminacy in the explanatory λ in this theory. The idea ex-
plored in this section is that one way to select a good candidate for welfare
analysis is to choose the λ with the least internal conflict, among those that
can explain c. Our measure of internal conflict will be generated by the metrics
developed above.13

Why is the selection of a conflict-minimizing explanation a good choice for
a welfare measurement method? Two principal reasons can be given. The
first is Occam’s Razor. The simplest explanation is to be preferred; conflict
minimization is one way of defining simplicity.

The second reason is by analogy to what is done in ordinary welfare eco-
nomics with a rational choice function. When the choice function c is rational
– that is, there exists, π such that c(A) = cπ(A) for all A ∈ X , economists
say that c is ”explained” by the ”revealed preference” π. In this favorable cir-
cumstance, π is used for all welfare inferences. However, if one admits that the
decision-maker may simultaneously hold multiple objectives then the selection
of the λ that is a unit mass at π becomes only one possibile explanation among
many. Any other λ′ that produces the same choice function c when aggregated
would also qualify, even though λ′ may give significant weight to ”minority pref-
erences” that conflict with λ at the observed choice at some A. By concentrating
on the λ which is a point mass at π, ordinary welfare economics is selecting the
conflict-minimizing explanation. In this section, therefore we examine the use
of conflict minimization as a selection criterion in the general irrational case.

12Green and Hojman use the family of all scoring rules and the richer family of all monotonic
rules, obtaining similar results in the two cases. Truly perverse behavior, in which choice
responds non-monotonically to changes in the preferences that are held, will make welfare
inferences based on choice behavior essentially impossible.

13Other authors use selection criteria different from conflict minimization. For example,
de Clippel-Eliaz [6] use explanations that have at most two preferences in their support, and
Ambrus-Rozen [1] use explanations with the minimal cardinality of preferences and aggre-
gators that can incorporate cardinal information. It would be interesting to determine the
precise relationship between such cardinality-minimizing criteria and our conflict-minimizing
criterion.
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We now give two examples showing how this approach leads to a much more
tightly-specified selection for welfare purposes. Both examples will deal with
well-known three-alternative cases.

Example 7 Explaining Second-Place Choice

In this example the choice function is consistent with rational choice on
problems with two alternatives, but when all three alternatives are available the
choice is the one that seems to be ranked second based on the preference revealed
in pairwise problems. This choice function is frequently used to illustrate the
compromise effect in psychology.

c({a1, a2, a3}) = a2

c({a1, a2}) = a1

c({a1, a3}) = a1

c({a2, a3}) = a2

Insert Figure 3 Explaining Second-Place Choice

Let the set of allowable aggregation rules be the family of scoring rules. Con-
sider the two populations λ((a1a2a3)) =

1
2 , λ((a2a1a3)) =

1
2 and λ′((a1a2a3)) =

1
2 , λ

′((a2a3a1)) =
1
2 . Both will generate second-place choice as long as the proper

selection is made from multi-valued v(λ, A). For example, if v is Borda count
then v(λ, {a1, a2}) = {a1, a2}, v(λ, {a1, a2, a3}) = {a1, a2}, v(λ′, {a1, a2}) =
{a1}, v(λ′, {a1, a2, a3) = {a2} and therefore both (λ, v) and (λ′, v) are explana-
tions of c.

When we compare these populations using the criterion of least internal
conflict we see that for all metrics (except the limiting semi-metric case of
µ = (0, 0, 1)), λ is less internally conflicted than λ′. Using the criterion of min-
imal internal conflict to select among explanations is telling us to maintain the
agreement between members of the explanatory population on the pair {a1, a3}
whenever it is possible to do so. Despite the fact that we have no evidence of an
internal conflict, as a3 is never chosen by c in any circumstance, we also have
no direct evidence that all preferences in the population do agree on this set.
Using the explanation (λ′, v) would introduce the prospect of a disagreement
over {a1, a3}. The criterion of minimal internal conflict tells us not to invoke
such explanations unless it is necessary to do so.

Example 8 Explaining Cyclic Choice
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The second example is the standard cyclic choice pattern with three alter-
natives:

c({a1, a2, a3}) = a1

c({a1, a2}) = a1

c({a1, a3}) = a3

c({a2, a3}) = a2

Insert Figure 4 Explaining Cyclic Choice

As in the case of the example above there are many populations that are
part of explanations of c. Two candidates that can produce cyclic choice at all
scoring rules are:

λ((a1a2a3)) =
1

2
, λ((a3a2a1)) =

1

2

λ′((a1a2a3)) =
1

3
,λ′((a2a3a1)) =

1

3
,λ′((a3a1a2)) =

1

3

It is straightforward to compute that Q̄(λ, νK) > Q̄(λ′, νK) but that Q̄(λ, νE) =
Q̄(λ′, νE). Moreover, if ν is such that the probability that A = X is higher than
1
4 then Q̄(λ, ν) < Q̄(λ′, ν). Therefore, unlike the case of second-place choice,
the less conflicted explanation for cyclic choice depends on the size distribution
of the problems that are faced. It is less clear which explanation of cyclic choice
is simpler, if by simplicity we mean a smaller measure of internal conflict.

5 Polarization and Conflicting Preferences

In this section we discuss the application of our metrics to the measurement of
polarization in the spirit of Esteban and Ray [10] (ER). ER have pioneered the
axiomatic study of polarization and have distinguished it from the measurement
of diversity, inequality or heterogeneity in a population. The polarization of a
population depends on the sub-populations that comprise it.14 As ER describe it
there are two questions to be asked. The first is how united the sub-populations
are likely to be. The second is how distinct they are from each other. They call
these variables identification and alienation.

Identification is more likely if a group is large and if it is composed of sim-
ilar individuals. It would then be easier for people in this group to find and

14ER describe a situation where there are two exogenous sub-populations between which a
conflict may arise. Their index, however, treats individuals as if they have no group identity
except for their income and tries to predict conflict based on measured polarization of the
income distribution.
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recognize others, and to cooperate with them in a conflict. A small but highly
unified sub-population is unlikely to engage in conflict because they are too
small a proportion of the whole to succeed. A large, highly heterogeneous sub-
population will find conflict difficult because it may not cohere. Coordination
may be difficult and it may even break apart due to internal frictions.

Alienation measures the difference between those in a group and those not in
the group. In the case of income differences, or that of any other one-dimensional
attribute as discussed by ER, the natural measure of alienation is the absolute
value of the difference in this attribute.

In this section we do three things. First we show how to extend the polar-
ization indices of ER to the political sphere by applying our metrics on ordinal
preferences. Second we show how our metrics can be useful for modifying the
measurement of identification and alienation, as propsed by ER. Third we show
how the choice of a particular metric within the class we have characterized
above may affect the comparison of polarization across two populations. Us-
ing a numerical example we explain the choice-theoretic basis for this variation
across metrics.

ER consider a discrete distribution of incomes y where yi represents the
income of group i and γi is the proportion of this group in the whole population.
The measure of polarization that ER derive axiomatically is

∑
i

∑
j
γκ
i γj |yi − yj | where κ ∈ (1, 2.6]

The term γiγj |yi − yj | captures alienation by computing the expected abso-
lute difference between randomly selected members of the population. To the
extent that κ > 1, the additional multiplicative term of γκ−1

i captures iden-
tification recognizing that larger income groups will find it disproportionately
easier to join forces. ER provide axioms to derive this multiplicative form for
the polarization index, based on these measures of identification and alienation.

Our metrics enable us to modify the ER specification of identification to take
into account both group size and similarity of group members and to capture
alienation as the average difference between ordinal preferences. Through these
modifications we try to capture the spirit of the E-R model.

We consider two exogenously-defined groups in the population denoted A
and B and let λA(π) and λB(π) be the portions of the population with preference
π in each of the two groups. Then one way of creating an index of identification
based on our metrics could be

IA(λA) = (
∑
π
λA(π))κ[

∑
π

∑
π′

λA(π)λA(π′)(1− f(π,π′; ν)]

IB(λB) = (
∑
π
λB(π))κ[

∑
π

∑
π′

λB(π)λB(π′)(1− f(π,π′; ν)]

This identification index depends on the size of the group, as determined by
the parameter κ as in the ER theory and homogeneity within the group. We
measure homogeneity by the probability of agreeing on choice from a feasible
set: 1−f(π,π′; ν). The average agreement probability in the group is a measure
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of its cohesiveness. By multiplying the non-linear index of group size by this
index of cohesiveness we obtain a plausible identification index.

Similarly, an index of alienation can be obtained from across-group differ-
ences. The idea is that each person considers how different a randomly-selected
member of the other group would be in comparison to a randomly-selected
member of his own group. Let ηA =

∑
π
λA(π) be the fraction of the whole

population that is in group A, so that λA(π)/ηA is the conditional distribution
of preferences within group A. Then the alienation felt by group A relative to
group B is

aA(λA,λB) =
∑
π
λA(π)

∑
π′

|λ
A(π′)

ηA
− λB(π′)

ηB
|f(π,π′; ν)

And symmetrically,

aB(λB ,λA) =
∑
π
λB(π)

∑
π′

|λ
A(π′)

ηA
− λB(π′)

ηB
|f(π,π′; ν)

If the two sub-populations have the same distribution of preferences then
there is no alienation because the two conditional distributions are identical.
Similarly, if disagreement probabilities are low then there is little alienation,
even if the two groups are large and distinct.

Based on these indices of identification and alienation we can define a mea-
sure of polarization as

P (λA,λB) = (IA(λA) · aA(λA,λB)) · (IB(λB) · aB(λB ,λA))

The reason for taking a multiplicative structure for the polarization measure
is that polarization requires both alienation and identification. If the two groups
have no alienation because they have the same conditional distributions of pref-
erences then there should be no polarization regardless of how well-identified
they are. Likewise, if either of the two groups has low identification, either
because of small size or lack of cohesion, then there should be little polarization
because conflict is unlikely among poorly identified groups. Conflict is highest
when the two groups are distinct in preference and divide the population into
two large sub-groups of similar individuals.15

Example 9 Dependence of Polarization on the Metric

In this example we give two populations and compute the polarization index
above using different metrics from our family. We show how their relative levels
of polarization vary with the choice of the metric, and we give a choice-theoretic
interpretation for this outcome.

15Other polarization indices can have different, related functional forms. For example flex-
ible forms that allow for tradeoffs between identification and alienation at a given level of
polarization should be explored.
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The first population contains two subgroups, which we will denote A and
B. Subgroup A has a mass of .5, all of which is concentrated on the preference
(a1a2a3a4). Subgroup B consists of a mass of .25 of the population with the
preference (a2a1a4a3) and a mass of .25 with the preference (a4a1a3a2).

The second population also contains two subgroups, denoted A′ and B′. As
in population 1, subgroup A′ has a mass of .5, all of which is concentrated on the
preference (a1a2a3a4). In this population, however, subgroup B′ consists of a
mass of .25 with the preference (a3a1a2a4) and a mass of .25 with the preference
(a4a2a1a3).

Let us take a detailed look at the choices made by these four subgroups
at each of the eleven subsets of X with two or more elements. In population
1, the two halves of subgroup B, (a2a1a4a3) and (a4a1a3a2), disagree with
subgroup A on 5 and 8 of the 11 subsets of X, respectively. In population
2, disagreement is slighly more prevalent, as the two halves of subgroup B′,
(a3a1a2a4) and (a4a2a1a3), disagree with subgroup A′ at 6 and 9 out of the 11
subsets, respectively. However, when we restrict attention to pairs only, we see
that both subgroup B and subgroup B′ have the same pattern of disagreements
– each has a half that disagrees with A (or A′) on 2 out of 6 pairs and a half
that disagrees with A (or A′) on 4 out of 6 pairs.

Computing the polarization indices using the equally likely metric, we see
that (A′, B′) is more polarized than (A,B), as

P (λA,λB)

P (λA′
,λB′

)
=

133

152 · 11 < 1

However, if the Kemeny metric were used then we have

P (λA,λB)

P (λA′
,λB′

)
=

4

3
> 1

This is because under the Kemeny metric alienation is the same across (A,B)
and (A′, B′). The difference between these populations lies in the identification
of the subgroups. Subgroup B′ is less identified because its two parts have com-
pletely opposed preferences, whereas in Subgroup B the two preferences are very
different, but not maximally so. Since polarization increases in more identified
societies, holding constant the level of alienation, we have the indicated result.

Based on these two calculations one might think that as the metric puts more
weight on larger sets the relative polarization of (A,B) will increase relative to
that of (A′, B′). This conjecture is false, however, because if we use the metric
derived from µ = (0, 0, 1), where only the first-choice of each group matters
because all alternatives are always available, we see that both alienation and
identification are the same in the two populations. Thus, polarization behaves
non-monotonically with respect to the distribution of probabilities over prob-
lems of different sizes. These types of surprising non-monotonicities highlight
the subtleties of measuring polarization in multi-dimensional domains. The
dependence of the measure on the size distribution of the feasible set is an im-
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portant theoretical observation with the potential to inform empirical work on
polarization.!

Example 10 Polarization versus Internal Conflict

The following example illustrates the difference between polarization and the
measure of internal conflict of a population. Let λ and λ′ be two populations
defined as follows:

λ((a1a2a3)) =
1

2
, λ((a3a3a1)) =

1

2

λ′(π) =
1

6
for all π

Insert Figure 5 Polarization versus Internal Conflict

The sub-populations we consider are A = {(a1a2a3), (a1a3a2), (a2a1a3)}
and B = {(a2a3a1), (a3a1a2), (a3a2a1)}. In this example λ is concentrated
on one representative preference from each of the two sub-populations A and
B, whereas λ′ has all preferences equally represented. Population λ is more
polarized than λ′ because the diversity within λ′ reduces identification.

A straightforward calculation reveals that λ is less internally conflicted than
λ′ according to our measure of internal conflict Q̄. The measure Q̄ averages our
metric over all pairs of preferences, without reference to the sub-populations
from which these preferences are drawn. The distinction emphasized by ER is
upheld by our measures as well. Internal conflict captures the overall diversity
in a population whereas polarization measures potential conflict across sub-
populations.

6 Conclusion

We have introduced a new family of metrics on the space of ordinal prefer-
ences, based on the choice-theoretic implications of these preferences when they
face randomly selected decision problems. For the case in which the decision
problems are selected using exchangeable distributions we give an algorithmic
method to find the distance between two preferences

Our principal application of this method has been to social choice theory.
We show that the use of this family of metrics generalizes the Kemeny method
for aggregating the preferences in a population. We give examples illustrating
the difference between the Kemeny method, our methods and other methods
such as scoring rules. We then define two measures of conflict in a population.
One is the measure of conflict with the social preference our method determines.
The other is a measure of internal conflict in the population.
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To illustrate the use of these conflict measures we then examine two further
applications. One is to the selection of one explanation for an irrational choice
function from among the many identified by Green and Hojman. The other is
to modify and extend the measure of polarization defined by Esteban and Ray
to the case of differences in preference rather than differences in income.

There are many open questions and further topics to be explored as a result
of this paper. Here are a few of them.

1) Our paper has dealt primarily with the case of exchangeable distributions
ν. When the decision problem is not permutation-invariant, new methods are
required. They can be defined just as in this paper, but the computational
techniques and most of our illustrative examples would need to be modified.
Non-exchangeable problems are very realistic and constitute an important fam-
ily of choice domains. They arise, for example, when the space of alternatives
has a given algebraic structure, such as the product of different ”issues” on
which preferences can display cross-issue complementarity or substitutability,
instead of being a set abstract alternatives that are treated symmetrically. In
such a structure some feasible sets would arise only when a particular set of
issues is ”on the table”. Random issues will not generate equal probabilities for
all sets of the same cardinality.

Another example leading to non-exchangeability would arise when some al-
ternatives are known in advance to be infeasible, or differentially less likely to
arise. Disagreement about such alternatives should not influence the metric
between preferences.

2) Our paper illustrates the importance of the frequency distribution of
decision problems for the measurement of difference in preference. This suggests
a new source of ”data” for choice theory. Instead of focusing exclusively on the
choice function c which describes the choice made at each feasible set, a theory of
decision-making that takes into account the frequency of different opportunities
could be constructed. In our terminology, the data of choice theory could be
(c, ν) instead of only c. This would give us an empirical basis for selecting a
particular metric from the family we have defined.

3) Our theory defines a mapping from Λ to Π corresponding to each dis-
tribution µ. Thus, given µ, the simplex Λ is divided into equivalence classes
of populations that have the same social ordering. The algebraic structure of
these partitions and their dependence on µ needs to be explored further. It is
different from, but clearly related to, the structure of the equivalance classes
defined by other rules such as the scoring rules studies by Saari[18].
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APPENDIX
Axiomatic foundation for metrics on preference orderings
In the paper we define the metrics on Π as probabities of disagreement at a

randomly chosen A ∈ X . In this appendix we give a set of axioms that give rise
to these metrics, without having to mention random feasible sets or to be specific
about their distribution. Our axioms are very much like those of Kemeny and
Snell (1962) and thus we will be brief. There is one key modification of the
Kemeny-Snell axioms. It is this modification that allows for all the metrics in
our family other than Kendall’s tau.

We are concerned with a function

f : Π×Π → R

Axiom 1 f is a semi-metric

That is, f is a non-negative, symmetric function satisfying the triangle in-
equality f(π,π′) + f(π′,π′′) " f(π′′,π)

Axiom 2 f is order-preserving under permutations

If f(π,π′) " f(π,π′′) then for all permutations ρ, f(ρ◦π, ρ◦π′) " f(ρ◦π, ρ◦π′′)

Axiom 3 If πi and πj are obtained from e by a single adjacent tranposition at
positions i and j respectively, then i < j implies f(πi, e) " f(πj , e)

Axiom 4 If (ρ0, ρ1, ...ρM ) is a minimal path from π to π′ then
M∑

k=1

f(ρk−1ρk) =

f( π,π′).

Theorem 6 Let x(π) be the RBS signature of π and assume that f satisfies
Axioms 1-4. There exists a non-increasing set of non-negative numbers dk for
k = 2, ..., n such that

f(π, e) =
n∑

k=2

xk(π)dk

The proof of this Theorem is exactly like the proof in Kemeny and Snell
except that, because of the weakening of Axiom 4 to minimal paths instead of
all paths (which Kemeny and Snell called ”lines”), we can construct the distance
from π to e only along minimal paths. By Theorem 6 above, all minimal
paths have the same RBS signature. Thus, we need only specify the distances
between two permutations that differ in a single transposition at i for all values
of i. These can be any non-increasing numbers, according to Axiom 3. Then
our Axiom 4 gives us the values of f as linear combinations of these distances.
Because all minimal paths generate the same distance, f is well-defined.
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Obviously Kendall’s tau corresponds to dk = 1 for all k. If dm = 0 for any
m then f will be a semi-metric but not a metric, as f(π,π′) can be zero for
π #= π′. When all dm > 0 f will be a metric.

If (ρ0, ρ1, ...ρM ) is a path from π to π′ but not a minimal path, as required

by Axiom 4, then
M∑

k=1

f(ρk−1ρk) " f( π,π′). To see this in an example, let us

reconsider Example 1. There are two paths from (a3a2a1) to e given in this
example: One is (a3a2a1), (a3a1a2), (a1a3a2), (a1a2a3). The other is (a3a2a1),
(a2a3a1), (a2a1a3), (a1a2a3). The former is minimal while the latter is not.
Calculating the distances along these paths, the former sums to d2 + 2d3 but
the latter sums to 2d2 + d3. Clearly these are equal in the case of the Kemeny
metric and the triangle inequality holds strictly in all other cases. The minimal
path defines the distance f((a3a2a1), e).

To find the exchangeable distribution on X corresponding to a given non-
increasing vector (d2, ..., dn) we can solve the system of equations derived from
the formula in Theorem 4 for µ.

For each i = 2, ..., n:

di =
n∑

k=2

µk(n
k

)
(
n− i

k − 2

)
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Proofs of Theorems
Proof of Theorem 1
Let π ∈ Π and let ρ be the path generated by RBS as it sorts π into e.

Assume π #= e and that cπ(A) #= ce(A). Then cπ(A) precedes ce(A) in the
ordering π.

Each step in each pass of RBS involves a transposition of alternatives. We
will say that y is promoted beyond x if the alternatives x and y are transposed
at a step and x initially precedes y. As a pass of RBS proceeds, the alternatives
that are promoted are continually better according to e. Thus in each pass of
RBS there are three possibilities:

(i) There is some step in the pass where ce(A) is promoted and it continues
to be promoted until it is promoted beyond cπ(A).

(ii) There is some step where ce(A) is promoted but some x /∈ A becomes its
immediate predecessor, x < ce(A), and cπ(A) is a predecessor of x at this step.
In this case ce(A) is no longer promoted during this pass. The next alternative
to be promoted is then x or something better than x according to e. The pass
will not end when ce(A) reaches x because something will be promoted beyond
cπ(A) on this pass. No member of A can be promoted beyond cπ(A) in this
pass.

(iii) There is no step where ce(A) is promoted. In this case there is some x
that is promoted beyond ce(A). This x or something better than x according
to e will be promoted beyond cπ(A). No member of A can be promoted beyond
cπ(A) in this pass.

In case (i), at the step where ce(A) and cπ(A) are transposed, the choice
from A will change. By the definition of ce(A) it can never change again at any
later step of the algorithm.

In cases (ii) and (iii) cπ(A) will remain the highest-ranked member of A at
all steps of this pass.

Thus on the first pass such that case (i) obtains there will be a change in
the choice from A. At all future passes ce(A) is the highest ranking alternative
among those in A and these passes will be in either case (ii) or case (iii). Thus
the path generated by RBS is minimal. #

Proof of Theorem 2
Let ρ and ρ′ be two paths from π to e with RBS signatures x and x′,

respectively. Let k be the lowest index such that xk #= x′
k. The number of A ∈

X with cardinality n − k + 2 at which the choice from A changes along these
paths is determined by (x2, ..., xk) and (x′

2, ..., x
′
k) because all transpositions at

position k + 1 and higher affect only sets of cardinality n − k + 1 and smaller.
Since xi = x′

i for all i < k, by the definition of k, these two paths cannot make
the same number of changes at sets with cardinality n−k+2. Since both of these
paths transform π into e, one of the paths must change one set of cardinality
n− k + 2 more than once. #

Proof of Theorem 3
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We need only verify the triangle inequality. This follows from the fact that
the concatenation of minimal paths, one from π to π′ and the other from π′ to
π′′ may or may not be a minimal path from π to π′′. If it is not minimal, strict
inequality in the triangle inequality will hold.

As to the assertion that F is a metric whenever µ2 #= 0, note that in this
case there is a positive probability that A will be any particular pair. Thus
if π and π′ rank any pair differently, that pair could be the available set and
the distance between these two orderings will be non-zero. (When µ2 = 0 then
two orderings that differ only in their two lowest ranked alternatives will never
disagree because some better alternative will be available and will be the choice
of both.)#

Proof of Theorem 5
Define α(π,λ, A) to be the fraction of the population λ such that their most

preferred element in A coincides with cπ(A), the choice that would be made by
the preference π. Consider the vector of 2n − 1 numbers α(π,λ, ·). If α(π,λ, ·)
dominates each of the vectors α(π′,λ, ·) for every π′ ∈ Π, π′ = π, then π
will clearly be the assent-maximizing ordering. There is no tension in this case
between assent-maximization and the requirment that social choice be generated
by an ordering. On the other hand, if α(π,λ, A) < α(π′,λ, A) at any A ∈ X ,
then if ν(A) is sufficiently large, π′ will have a larger average assent than π.#
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