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Abstract

The paper models an individual who may not foresee all relevant
aspects of an uncertain environment. The model is axiomatic and
provides a novel choice-theoretic characterization of the subalgebra
of foreseen events. It is proved that all recursive, consequentialist
models imply perfect foresight and thus cannot accommodate unfore-
seen contingencies. In particular, the model is observationally distinct
from recursive models of ambiguity. The process of learning implied
by dynamic behavior generalizes the Bayesian model and permits the
subalgebra of foreseen events to expand over time.
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1 Introduction

1.1 Objectives

Contingencies arise that were not foreseen at earlier dates. Individuals adapt
their strategies and behavior often re�ects the awareness that other, yet
unanticipated changes may occur. How does one model such behavior?

The standard approach to dynamic choice postulates an idealized individ-
ual who comprehends fully the uncertainty describing her environment. She
foresees each contingency that may eventuate and knows the outcomes in-
duced by each action in each state of the world. Plans re�ect this knowledge
and are consistently implemented over time. In e¤ect, dynamic behavior is
reduced to the static choice of an optimal strategy.

This paper develops an axiomatic model of dynamic choice in which the
individual may not foresee all relevant aspects of an uncertain environment.
Two properties characterize the model.

First, the individual is self-aware and knows that her perception of the
environment may be incomplete. The paper provides a choice-theoretic char-
acterization of the subalgebra of foreseen events and shows that awareness
induces a nonsingleton set of beliefs over this collection. The multiplicity of
priors re�ects a preference for robustness or hedging against unanticipated
events.

Second, the paper models a forward-looking individual who plans ahead
but also adapts to unforeseen contingencies. As time unfolds, her percep-
tion of the environment improves and the individual revises her strategy. A
novel axiom, Weak Dynamic Consistency, assumes that adaptations arise
only when unanticipated events alter the individual�s perception. The axiom
characterizes a process of learning which generalizes the Bayesian model and
permits the subalgebra of foreseen events to expand over time.

The key to developing the model comes from answering the question:
At any point in time, what behavior would reveal the collection of events
foreseen by the individual? In atemporal settings, Epstein, Marinacci, and
Seo [4] and Gilboa and Schmeidler [10] show that models of limited foresight
are observationally equivalent to ambiguity averse behavior. Since ambiguity
aversion is conceptually distinct from limited foresight, the atemporal setting
provides no behaviorally meaningful way to de�ne unforeseen events.
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Figure 1: State-contingent payo¤s of the actions L (left) and R (right).

This paper provides a choice-theoretic characterization when outcomes
unfold over time. The characterization is illustrated in the following example
which exhibits the static and dynamic implications of limited foresight and
shows how the temporal domain of choice permits the behavioral separation
of limited foresight from existing models of uncertainty.

1.2 Motivating Examples

1.2.1 Static Behavior

The individual chooses between two actions L and R whose payo¤s unfold
over a four-period horizon. A sequence of binary shocks a¤ect outcomes as
depicted in Figure 1. For simplicity, consider an individual who is risk-neutral
and does not discount the future.1 Her objective is to maximize cumulative
wealth.

The individual who foresees all contingencies and knows the correspond-
ing outcomes deduces correctly that both actions L and R are e¤ectively
certain: the cumulative payo¤ of either action is $10 across all states of the
world. Irrespective of her beliefs, she is then indi¤erent between L and R

1The assumption of no discounting is relaxed in the formal model. For ease of exposi-
tion, risk neutrality is maintained throughtout but can be similarly generalized.
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and the action which pays $10 at the time of choice:

L �0 10 and R �0 10 (1.1)

To understand the implications of limited foresight, consider the rankings:

L �0 10 and R �0 10 (1.2)

How does one interpret such behavior? The e¤ectively certain action R
entails a ten-dollar bet on the event H1 paying at period t = 2 and an
analogous bet on the event T1 paying at period t = 3. The indi¤erence R �0
10 suggests that the individual understands the immediate contingencies H1

and T1 and sees correctly that the two bets o¤set one another. If similar
indi¤erence holds for all other e¤ectively certain bets on H1 and T1, the
paper concludes that the events are subjectively foreseen.

The outcomes of action L depend, in contrast, on contingencies that re-
solve in the more distant future. An individual with limited foresight may
not see that these distant payo¤s o¤set the more imminent, short-run uncer-
tainty she faces. Thus, she requires a premium captured by the preference
L �0 10.
The latter ranking cannot be attributed to uncertainty about likelihoods

when all events are foreseen. If the individual foresees the possible con-
tingencies and knows the corresponding outcomes, she necessarily exhibits
the rankings in (1.1). These hold independently of beliefs, and thus their
negation reveals limited foresight.

This possibility to test knowledge of the environment independently of
beliefs is speci�c to the temporal domain of choice and the existence of non-
trivial e¤ectively certain actions. If all uncertainty resolves in a single period,
the only e¤ectively certain actions are constant acts whose ranking reveals
no information about the perception of events. Conversely, any nontrivial
act is uncertain and its evaluation requires an assessment of beliefs. Thus,
the atemporal domain is too �small�to separate ambiguity aversion from lim-
ited foresight. This conclusion is con�rmed by Epstein, Marinacci, and Seo
[4], Ghirardato [8], Gilboa and Schmeidler [10] and Mukerji [16].

1.2.2 Dynamic Behavior

To illustrate the implications of limited foresight for dynamic behavior, con-
sider the simple example of an individual whose foresight at time t = 0 is
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limited but who understands the environment perfectly at time t = 1. The
choices below contrast her posterior and prior valuations of L and R:

L �1;H1 10, L �1;T1 10 and L �0 10 (1.3)

R �1;H1 10, R �1;T1 10 and R �0 10 (1.4)

The rankings in (1.3) and (1.4) reveal two important characteristics of dy-
namic choice under limited foresight.

The premium required for distant, poorly foreseen bets disappears as time
unfolds and the perception of the individual improves. The corresponding
rankings (1.3) imply a violation of dynamic consistency and are precluded
by the standard approach to dynamic choice. This violation arises as the
individual learns aspects of the environment she did not anticipate and could
not take into account ex ante.

In (1.4), the indi¤erence R �0 10 reveals that the individual understands
the immediate contingencies H1 and T1. Then, the conditional preferences
indicate that she evaluates the action consistently over time.

These examples illustrate the general approach to modeling coherent dy-
namic behavior when some contingencies are unforeseen: the individual is
forward-looking and revises her plans only when unanticipated circumstances
contradict her perception.

1.2.3 Foresight and Dynamic Consistency

The general approach to modeling dynamic choice assumes that foresight im-
plies intertemporal consistency: an individual who foresees all contingencies,
anticipates future behavior and plans ahead. The paper proves that fore-
sight is furthermore necessary: dynamically consistent, consequentialist and
state-independent models of behavior imply perfect foresight where the latter
is de�ned by the ranking of e¤ectively certain acts.

This result has two important implications. First, recursive models of
dynamic behavior in general preclude the ex ante rankings in (1.2) that
motivate this paper. Importantly, the premium on R cannot be interpreted
as preference for early resolution of uncertainty studied by Kreps and Porteus
[15] and Epstein and Zin [6]. Recursive, intertemporal models of ambiguity
as in Epstein and Schneider [5] and Klibano¤, Marinacci, and Mukerji [11]
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similarly preclude such a premium, proving formally that limited foresight
and ambiguity aversion are observationally distinct in a temporal domain of
choice.

Second, a corollary of this result provides an alternative and equivalent
characterization of the collection of foreseen events. In example (1.2), the
contingencies H1 and T1 foreseen by the individual are revealed by the static
ranking of e¤ectively certain acts. The paper shows that the intertemporal
consistency of behavior leads to an alternative characterization. The latter
con�rms a conjecture by Kreps [13, p.278] that dynamic behavior may reveal
the collection of foreseen events and provide a foundation for separating
limited foresight from existing models of uncertainty.

1.3 Related Literature

Kreps [13] is the �rst to model unforeseen contingencies. He takes as prim-
itive a state space S depicting the individual�s incomplete perception of the
environment. By modeling the preference for �exibility, Kreps derives an ex-
tended state space 
 := S � � and interprets the endogenous contingencies
� as completing the individual�s perception.

Both Kreps [13] and Dekel, Lipman, and Rustichini [3] observe that the
model is observationally equivalent to a standard model with an extended
state space S � �. In that interpretation, all events are foreseen but some
contingencies, namely �, are unveri�able by an outside observer.

Gilboa and Schmeidler [10] reinterpret nonadditive models of ambiguity
aversion as models of unforeseen contingencies. Like Kreps [13], they de-
rive an extended state space 
 which completes the individual�s perception
captured by the exogenous state space S. The nonadditivity of their model
re�ects the behavior of a self-aware person who tries to hedge against unan-
ticipated contingencies.

Epstein, Marinacci, and Seo [4] argue against modeling the individual�s
perception as an observable primitive. Modifying Kreps�[12] framework of
preference for �exibility, they endogenize both the coarse state space S and
its completion 
. However, their model retains the observational equivalence
with ambiguity aversion.

This paper takes as primitive a state space 
 describing an uncertain
objective environment and derives a coarse state space S describing the in-
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dividual�s subjective perception. In a temporal setting, the paper exhibits
behavior that is inconsistent with knowledge of all contingencies within the
primitive state space 
, and thus separates limited foresight from ambiguity
aversion.

The identi�cation of foreseen events within a primitive objective environ-
ment permits the analysis of dynamic choice and adaptation over time. Kreps
[14] advocates the study of adaptive behavior and provides an overview of
statistical learning models common in macroeconomics. The latter assume
that static choice conforms to expected utility while positing a non-Bayesian
updating rule. Kreps [14] and Cogley and Sargent [2] point out the juxtapo-
sition of static rationality and dynamic inconsistency: the individual contin-
ually adapts her behavior as if she did not anticipate the states of the world
when adaptation occurs, yet static behavior conforms to the standard model
of perfect foresight. Dynamic choice in this paper di¤ers in two important
aspects. First, intertemporal consistency is related directly to properties of
static behavior. The individual who foresees all contingencies plans ahead
and anticipates future behavior. Thus, perfect foresight implies dynamic
consistency. Conversely, adaptation reveals that some contingencies are un-
foreseen. This brings forth a second di¤erence. The self-aware individual in
this paper knows that her perception of the environment is incomplete and
exhibits a preference for robustness, thus departing further from the standard
model of choice.

2 Static Model

2.1 Domain

The objective environment is described by a state space 
 and a �ltration
F := fFtg where time varies over a �nite horizon T = f0; 1; :::; Tg. An
action taken by the individual induces a real-valued, fFtg-adapted process
of outcomes lying in some compact interval M . Call any such process an act
and denote generic acts by h; h0.

The distinction between acts and actions is important in a model of lim-
ited foresight. Actions, such as the purchase of a dividend-paying stock,
comprise the individual�s domain of choice. Acts are the mathematical rep-
resentation of actions: they map states of the world into outcomes. The
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paper assumes that the modeler observes the choice of action and knows the
corresponding objective acts. Under the standard assumption that each act
is induced by a unique action, the observable choice over actions induces a
unique preference over acts. The latter is adopted as a primitive of the model.
The objective is to infer the individual�s perception of the environment as a
component of the representation.

Thus, let � denote a preference relation over the set of objective acts H.
For any act h, let F(h) denote the �ltration induced by h. Conversely, for
any sub�ltration G, let HG denote the set of G-adapted acts. For any t, �Gt
denotes the partition generating the algebra Gt and, for any !, Gt(!) is the
atom in �Gt containing !. It is assumed that each Ft is �nitely generated,
so the corresponding partition is well-de�ned. A �nal assumption on the
objective environment is that FT = FT�1. Thus, the individual lives for
another period after she learns all relevant information. The assumption
implies that the subset of e¤ectively certain acts is rich. In particular, it
generates the objective �ltration F .2

Generic outcomes in M are denoted by x; x0; y. The deterministic act
paying x in each period and each state of the world is denoted by x. For any
act h and state !, h(!) denotes the deterministic act which pays ht(!) in
period t.

2.2 Axiomatic Framework

This section adopts a set of axioms about the preference ordering � de�ned
on the space H of objective acts. Some axioms have a standard interpreta-
tion if the individual has perfect knowledge of the environment. In this case,
the subjective perception of the individual and the primitive objective envi-
ronment coincide. However, if perception is coarse, the axioms make implicit
assumptions about how this perception di¤ers from and approximates the
objective world. The �rst two axioms fall in this category and their content
is reinterpreted accordingly.

Axiom 1 (Basic) The preference � is complete and transitive, mixture-
continuous and monotone.

2The assumption is redundant in an in�nite-horizon model. An extension is currently
in progress.
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The assumption of complete and transitive preferences models an individ-
ual who knows the grand set of actions and understands any choice problem
she may face. It is an important aspect of bounded rationality that indi-
viduals do not always conceive of all alternatives at their disposal and may
consequently exhibit cyclical choices. While interesting, the problem is con-
ceptually distinct from the problem of unforeseen contingencies. To focus on
the perception of uncertainty of an otherwise rational individual, the paper
maintains the standard assumption of complete and transitive preferences.

Monotonicity is arguably the least contentious axiom of the standard
model. It requires that an act h is preferred to h0 whenever the outcomes
of the former exceed the outcomes of h0 in every period and every state of
the world. Monotonicity remains compelling even if the individual has an
incomplete perception of the objective environment. To take an extreme
example, imagine the individual whose perception of the world is trivial: she
knows only that �something�may happen. For any given action, she foresees
the worst possible outcome and ranks actions accordingly. Such behavior
is (weakly) monotone. Intuitively, the individual may have an incomplete
perception of the environment but need not be delusional and prefer an act
h0 to another act that dominates it.

Axiom 2 (Convexity) For all h; h0 2 H, h � h0 implies �h+ (1� �)h0 � h.

To understand Convexity, it is useful to imagine a hypothetical, auxiliary
step in which the individual is asked to compare the subjective mixture of h
and h0 to either action. That is, the individual can mix the outcomes of h
and h0 as she perceives them. The subjective mixture �smooths�outcomes
across states foreseen by the individual. Aware that her perception may
be incomplete, the individual prefers the mixture. The latter hedges her
exposure to contingencies that she fears might be only a coarse approximation
to the world. Next, Convexity requires that the actual objective mixture
�h+(1��)h0 be preferred to the subjective one. This is because the objective
mixture smooths the uncertainty within as well as across any of the foreseen
events.

To state the next axioms, it is necessary to formalize the characterization
of foreseen events suggested by the introductory examples. As Section 1.2.1
describes, the key is provided by the subset of e¤ectively certain acts.
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De�nition 1 An act h 2 H is e¤ectively certain if h(!) � h(!0) for all
states of the world !; !0 2 
:

Section 3.3 proves that for all recursive, consequentialist and state-indepen-
dent models of choice, an e¤ectively certain act h is necessarily indi¤erent to
the constant stream of outcomes h(!). Such indi¤erence is intuitive if the
individual has perfect foresight. However, as the rankings in (1.2) suggest, it
is intuitive only if the individual has perfect foresight. In this sense, existing
models of dynamic choice implicitly assume perfect foresight. This paper
does not impose such indi¤erence for all e¤ectively certain acts, but rather
takes the subset of acts when indi¤erence holds as revealing the collection of
foreseen events. This subset is de�ned next.

De�nition 2 An e¤ectively certain act h 2 H is subjectively certain if
for all e¤ectively certain, F(h)-adapted acts h0, h0 � h0(!) for all ! 2 
.

The subjective certainty of an act h requires not only that the act be
indi¤erent to h(!), but that similar indi¤erence holds for all other F(h)-
adapted, e¤ectively certain acts. This �robustness�check ensures that sub-
jective certainty is a property of the events in F(h) and does not depend on
the speci�c outcomes of h. Following the intuition suggested by the introduc-
tory examples, let G denotes the algebra on 
�T induced by all subjectively
certain acts and interpret G as the collection of foreseen events, or simply,
the subjective �ltration. Similarly, refer to any G-adapted act as subjectively
measurable.3

Axiom 3 (Strong Certainty Independence) For all acts h; h0 2 H and e¤ec-
tively certain, subjectively measurable acts g:

h � h0 if and only if �h+ (1� �)g � �h0 + (1� �)g.

To understand Strong Certainty Independence, imagine the mixture of
the action L and the subjectively certain action R in example (1.1-1.2).
Since R is subjectively measurable, it is constant within the events H1 and
T1 foreseen by the individual. Hence, it cannot hedge the poorly understood
uncertainty within these events. Since the action is e¤ectively certain, it also

3Lemma 10 in the Appendix shows that G is necessarily a �ltration.
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provides no hedging across the collection of foreseen events. The conjunction
of these arguments motivates Strong Certainty Independence.

To illustrate the next axiom, consider the subjectively measurable act R
in the introductory example and the corresponding ranking R � 10. The
action R entails a ten-dollar bet on the event H1 paying in period t = 2 and
an analogous bet on the event T1 paying in period t = 3. Suppose one were to
delay the payment of these bets by one period. The new act entails bets on
the same events H1 and T1 but pays in periods t = 3 and t = 4, respectively.
Since both events are foreseen and do not change, Stationarity requires that
the ranking remains the same.

Axiom 4 (Stationarity) For all acts h; h0 2 H and for all outcomes x 2M ,

(h0; :::; hT�1; x) � (h00; :::; h0T�1; x) if and only if
(x; h0; :::; hT�1) � (x; h00; :::; h

0
T�1),

whenever the acts on the left (right) are subjectively measurable.

Events in the subjective �ltration [t�Gt correspond to states of the world
as perceived by the individual. The next axiom is the subjective analogue
of the standard monotonicity or state-independence assumption applied to
these subjective states.

Axiom 5 (Subjective Monotonicity) For all acts h; h0 2 H and for all out-
comes x 2M ,

hAx � h0Ax for all A 2 [t�Gt implies h � h0.

Consider an act h whose continuation at some node Ft(!) is nonconstant:
h� (!

0) 6= h� (!
00) for some � > t and !0; !00 2 Ft(!). Say that h0 simpli�es

h if h0 has a constant continuation at Ft(!) and equals h elsewhere. By
construction, h0 depends on events that are strictly closer in time. The next
axiom requires that h0 is subjectively measurable whenever h is. Thus, events
closer in time are easier to foresee.

Axiom 6 (Sequentiality) If g0 simpli�es a subjectively measurable act g, then
g0 is subjectively measurable.
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De�ne nullity in the usual way: the event A 2 FT is�-null if h(!) = h0(!)
for all ! 2 Ac implies h � h0.

Axiom 7 (Nonnullity) Every nonempty subjectively measurable event is non-
null.

2.3 Representation

2.3.1 Subjective Filtration

The section introduces the class of �ltrations used to model the individual�s
perception of the objective environment (
; fFtg).

De�nition 3 A sub�ltration fGtg of fFtg is sequentially connected if

�Gtn�Ft � �Gt+1 for all t < T:

To understand the de�nition, consider the disjoint events A1 and A2, either of
which may be realized in period t. The individual foresees their union A1[A2
but does not foresee the �ner contingencies A1 and A2. Thus, A1 [ A2 2
�Gtn�Ft. The de�nition of a sequentially connected �ltration requires that if
the individual�s perception of period t is coarse, she does not foresee any of
themore distant contingencies within A1[A2. In particular, A1[A2 2 �Gt+1.
This captures the intuitive requirement that events more distant in time are
more di¢ cult to foresee.

It is not di¢ cult to see that any sequentially connected �ltration fGtg is
fully determined by the algebra GT :

Gt = Ft \ GT for all t 2 T . (2.1)

De�ne an algebra to be sequentially connected, if it induces a sequentially
connected �ltration via (2.1). The rest of the paper uses G interchangeably
to denote the �ltration and the algebra which generates it.

Sequentially connected �ltrations include a number of common and intu-
itive speci�cations.

Example 1 (Fixed Horizon) The individual foresees all events up to some
period k:

Gt = Ft for all t � k and Gt = Fk for t > k.
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More generally, the individual may not foresee the contingencies describ-
ing an unlikely event A, but have a better understanding of its complement.
Her depth of foresight is then a random variable and the corresponding se-
quentially connected algebra may be modeled as a stopping time.

Example 2 (Random Horizon) The individual foresees all events up to a
stopping time � , where

� : 
! T such that [� = k] 2 Fk for all k 2 T .

The �ltration fGtg induced by the stopping time �

Gt := fA 2 Ft : A \ [� = k] 2 Fk for all k 2 T g for t 2 T

is sequentially connected. Appendix 4.6 shows that sequentially connected �l-
trations inherit the lattice structure of stopping times. Speci�cally, the supre-
mum (in�mum) of sequentially connected �ltrations is sequentially connected.

Sequentially connected �ltrations arise as the outcome of a satis�cing
procedure for simplifying decision trees proposed by Gabaix and Laibson [7]
in a setting of objective uncertainty.

Example 3 (Satis�cing) The individual ignores branches of the decision tree
whose probability is lower than some threshold � 2 [0; 1].4

The Gabaix and Laibson [7] procedure leads to a parsimonious para-
metrization of sequentially connected �ltrations using the single threshold
parameter �.

The class of sequentially connected �ltrations excludes the following sub-
�ltration:

G = fF0;F0; :::;F0;FTg
In this example, the individual foresees all possible contingencies (GT = FT )
but delays the resolution of uncertainty: she believes erroneously that all
information is revealed at the terminal node. This �ltration does not capture
a coarse perception of the environment and is precluded by De�nition 3.

4Appendix 4.6 provides a detailed translation of the Gabaix-Laibson de�nition into the
setting of this paper.
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2.3.2 Subjective Perception of Acts

If the individual has a coarse perception of the state space, the outcomes
of many actions depend on contingencies the individual does not foresee.
This section introduces a class of mappings which model the individual�s
perception of such �nonmeasurable�actions. A function � in the class maps
each objective act h into a perceived, subjectively measurable act �(h).

De�nition 4 A continuous, monotone and concave function � : H ! HG is
a G-approximation mapping if:

(i) � is G-additive: �(�h+ g) = ��(h) + g, for all h 2 H and g 2 HG,

(ii) � is separable: htjA = h0tjA implies (�h)tjA = (�h0)tjA,

for all t and A 2 Gt.

Approximation from below provides a simple example of a G-approximation
mapping.

Example 4 (Approximation From Below) For every h 2 H and t 2 T , let
(�h)t be the lower Gt-measurable envelope of h:

(�h)tjA = min!2A ht(!) for every t and A 2 �Gt.
Then, � is a G-approximation mapping.

More generally, the subjective act (�h)t is bounded by the lower and
upper Gt-measurable envelopes of the objective act:

min!2A ht(!) � (�h)tjA � max!2A ht(!)
for every act h, period t and eventA 2 �Gt. Two properties of G-approximation
mappings stand out. Concavity models an individual whose perception of
nonmeasurable acts is conservative. In particular, the upper envelope is not
a G-approximation mapping. Separability requires that the perception of
an act within any subjective event A does not depend on the perception
of the act outside of A. In conjunction with concavity, separability implies
that the mapping � captures aversion to uncertainty within the events of the
subjective �ltration.

The properties of � imply the following convenient parametrization. The
result is a corollary of Gilboa and Schmeidler [9, Theorem 1].
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Lemma 1 � is a G-approximation mapping if and only if for every t and
every A 2 �Gt there exist a nonempty, closed, convex subset CA of �(A;Ft)
such that:

(�h)tjA = min
p2CA

Z
A

ht dp. (2.2)

2.3.3 Representation Theorem

The static model of limited foresight is de�ned next.

De�nition 5 A preference relation � on H has a limited foresight rep-
resentation (G;�; C) if it admits a utility function of the form:

V (h) = min
p2C

Z



P
t �

t(�h)t dp, (2.3)

where the subjective �ltration G is sequentially connected, � is a G-approxima-
tion mapping and C is a closed, convex subset of ��(
;GT ).5

The �ltration G and the mapping � characterize the individual�s percep-
tion of the environment: the contingencies she foresees and her subjective
perception of acts. The nonsingleton set of priors C re�ects her awareness
that this perception may be incomplete.

Theorem 2 The preference � satis�es Basic, Convexity, Strong Certainty
Independence, Stationarity, Sequentiality and Nonnullity if and only if it has
a limited foresight representation (G;�; C). Moreover, the latter is unique.

To apply the model, it is necessary to specify the components of the utility
function in (2.3). A di¢ culty is that the de�nition of a limited foresight model
requires that G is the subjective �ltration of the induced preference. This is
not easily veri�able. Therefore, the next lemma provides su¢ cient conditions
on the mapping � which guarantee that G is indeed the subjective �ltration.
Recall that by Lemma 1, a G-approximation mapping � may be identi�ed
with a collection fCAg where CA is a set of priors and the event A varies over
cells of the �ltration G.

5For any algebra G, ��(
;G) denotes the subset of probability measures p in �(
;G)
such that p(A) > 0 for all A 2 G.
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Lemma 3 If G is sequentially connected and CA has nonempty interior in
�(A;Ft) for every t and every A in �Gt, then (G; fCAg; C) is a limited fore-
sight model.

The next examples provide some tractable speci�cations of � which sat-
isfy the su¢ cient conditions.

Example 5 (Approximation From Below) (�h)t is the lower Gt-measurable
envelope of ht for every t. Then (G;�; C) is a limited foresight model.

An important feature of Example 5 is that the model is fully speci�ed by
the �ltration G and the set of priors C. A drawback is the �coarseness�of the
approximation mapping. In terms of the representation derived in Lemma
1, each set CA in the construction of � equals the entire simplex �(A). To
provide a less extreme approximation, one may take the set CA to be an
�-contraction of the simplex around a focal measure p�:

CA := f�p+ (1� �)p� : p 2 �(A)g

The corresponding mapping �� is determined by the �ltration G and the
single parameter 0 < � < 1.

Example 6 (�-Contamination) For every t 2 T and every A 2 �Gt, let
CA be an �-contraction of the simplex. Then (G;��; C) is a limited foresight
model.

3 Dynamic Model

3.1 Axiomatic Framework

This section develops the dynamic model of limited foresight. The primitive is
an F-adapted process of conditional preferences f�t;!g where �t;! describes
the ranking of acts in state ! at time t.

To emphasize learning, the �rst axiom postulates that the individual
knows the realized history of events. That is, she observes and becomes
aware of any contingency that takes place.
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Axiom 8 (Consequentialism) For each t and ! and all acts h; h0,

h� (!
0) = h0� (!

0) for all � � t and !0 2 Ft(!) implies h �t;! h0.

Consequentialism restricts the scope of limited foresight modeled in this
paper. The stated indi¤erence requires that any acts whose possible contin-
uations are objectively identical are also perceived as identical. Intuitively,
perception may be incomplete, but not delusional. The individual does not
imagine di¤erences when there are none.

The next axiom requires that tastes do not depend on time and the
state of the world. As in the static model, limited foresight pertains to
the perception of uncertainty and has no implications for the evaluation of
deterministic acts.

Axiom 9 (State Independence) For each t and !,

(x0; :::; xt�1; yt; :::; yT ) �t;! (x0; :::; xt�1; y0t; :::; y0T ) if and only if

(x0; :::; xt�1; yt; :::; yT ) �0 (x0; :::; xt�1; y0t; :::; y0T ).

To understand the next axiom, consider a simple example when one of
three events A1, A2 and A3 can be realized tomorrow. An individual with
perfect foresight evaluates all acts consistently:

h �1;Ai h0 for all i implies h �0 h0. (3.1)

If she were to learn A1 [A2 at some hypothetical intermediate stage � , then
intertemporal consistency would similarly imply:

h �1;A1 h0 and h �1;A2 h0 implies h ��;A1[A2 h0. (3.2)

Preferences (3.1) and (3.2) re�ect an individual who plans consistently. She
knows all possible contingencies and anticipates accurately the future choices
she is going to make. This knowledge is incorporated in her behavior in the
initial period t = 0.

To see the implications of limited foresight, consider an individual who
initially foresees the events A1 [A2 and A3 only. Thinking of the future, she
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contemplates behavior conditional on the events A1 [ A2 and A3 that she
foresees. If �a1;A1[A2 and �

a
1;A3

represent these anticipated preferences, then:

h �a1;A1[A2 h0 and h �a1;A3 h0 implies h �0 h0. (3.3)

As in (3.1) and (3.2), preferences (3.3) describe an individual who is forward-
looking and plans ahead. However, the anticipated preferences in (3.3) re-
�ect prior foresight and may di¤er from actual future behavior. Speci�cally,
�a1;A1[A2 represents behavior if the individual were to learn the event A1[A2
and perceive the world as she does at t = 0. In contrast, the preference
��;A1[A2 in (3.2) represents behavior if she learnt A1 [A2 and perceived the
world as she does at t = 1.

These perceptions necessarily coincide only when the acts h and h0 are
subjectively measurable at t = 0. Then (3.2) and (3.3) imply:

h �1;Ai h0 for all i ) h ��;A1[A2 h0 and h ��;A3 h0

) h �a1;A1[A2 h
0 and h �a1;A3 h

0

) h �0 h0.

This implication motivates the next axiom. It formalizes the general ap-
proach to modeling sophisticated dynamic behavior when some contingencies
are unforeseen: the individual is forward-looking and revises her plans only
when unanticipated circumstances contradict her perception. The axiom is
illustrated in the introductory example.

Axiom 10 (Weak Dynamic Consistency) For each t and ! and for all acts
g; g0 in HGt;! such that g� = g0� for all � � t,

g �t+1;!0 g0 for all !0 implies g �t;! g0.

3.2 Representation

Assuming that each conditional preference �t;! has a limited foresight rep-
resentation (Gt;!;�t;!; Ct;!), this section derives the process of learning over
time implied by Consequentialism, State Independence and Weak Dynamic
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Consistency. The objective is to characterize how the individual�s perception
of the environment and her beliefs evolve over time.

The �rst implication captures a notion of expanding foresight. Thus, for
every t and !, the posterior �ltration Gt+1;! or �perception tomorrow�re�nes
the prior �ltration Gt;! or �perception today�. To state this formally, let
Gt;! \Ft+1(!) denote the restriction of the prior �ltration Gt;! to the subtree
emanating from the event Ft+1(!). The latter event is realized and thus
known by the individual at period t+ 1 and state !.6

De�nition 6 A process of �ltrations fGt;!g is re�ning if Gt+1;! re�nes
Gt;! \ Ft+1(!) for all t and !.

The next implication characterizes the evolution of conditional beliefs
fCt;!g. Some preliminary de�nitions are necessary. For a set of priors C on
the objective algebra FT , de�ne the set of Bayesian updates by

Ct(!) := fp(� p Ft(!)) : p 2 Cg

and de�ne the set of conditional one-step-ahead measures by

C+1t (!) := fmargFt+1p : p 2 Ct(!)g.

The following de�nition generalizes the familiar decomposition of a measure
in terms of its conditionals and marginals to the decomposition of a set
of measures C. The requirement is studied in Epstein and Schneider [5]
who discuss its role for modeling dynamically consistent behavior when the
individual has more than a single prior.

De�nition 7 A set C is fFtg-rectangular if for all t and !,

Ct(!) = f
Z



pt+1(!
0) dm : pt+1(!

0) 2 Ct+1(!0) for all !0 and m 2 C+1t (!)g.

The main feature of De�nition 7 is that the decomposition on the right
combines a marginal from C+1t (!) with any measurable selection of condi-
tionals. This will typically involve �foreign�conditionals. If the set C is a

6For every subset A of 
, an algebra G on 
 induces the algebra G\A := fB\A : B 2 Gg
on A. A �ltration fGtg induces the �ltration fGtg \A := fGt \Ag on A.
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singleton, there are no foreign conditionals and the de�nition of rectangular-
ity reduces to the standard decomposition of a probability measure.

The next property completes the description of learning under limited
foresight. To understand the de�nition, consider the case when all conditional
beliefs Ct;! are singleton sets. The de�nition posits the existence of a �shadow�
probability measure C de�ned on the objective algebra FT . For every t and
!, the conditional belief Ct;! is the Bayesian update of the shadow measure,
restricted to the respective collection of foreseen events Gt;!.

De�nition 8 A process fCt;!;Gt;!g admits a consistent extension if
there exists an fFtg-rectangular, closed and convex subset C of ��(
;FT )
such that

Ct;! = fmargGt;!p : p 2 Ct(!)g for each t and !:

The next theorem shows that Consequentialism, State Independence and
Weak Dynamic Consistency are necessary and su¢ cient for the process of
learning described by De�nitions 6 and 8.

Theorem 4 A family f�t;!g of limited foresight preferences satis�es Conse-
quentialism, State Independence and Weak Dynamic Consistency if and only
if fGt;!g is re�ning and fCt;!;Gt;!g admits a consistent extension C.

The axioms characterizing the dynamic model describe an individual who
plans ahead but also adapts to unforeseen contingencies. These properties of
behavior are complementary: planning ahead �leads�to intertemporal con-
sistency while adaptation negates it. Both have a respective representation
in the process of learning characterized by Theorem 4.

Intertemporal consistency is re�ected in the existence of the extension C
that consists of beliefs de�ned on the objective algebra. The rectangularity of
the set implies that the corresponding process of Bayesian updates fCt(!)g
de�nes a �shadow�dynamically consistent model. Beliefs fCt;!g in the limited
foresight model are marginals of the latter and inherit many of the properties
of the shadow model. This permits the application of a wide range of results
from (robust) Bayesian inference to the process fCt;!g.
Adaptation is re�ected in the process of �ltrations fGt;!g and the cor-

responding mappings f�t;!g. Changes in these components describe the
expanding foresight of the individual and augment the dynamics of Bayesian
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learning captured by the process of beliefs fCt;!g. This new source of dy-
namics may be particularly useful in applications.

To complete the description of the dynamic model, the next theorem
proves that the consistent extension C is unique whenever the individual
foresees all one-step-ahead contingencies.

Theorem 5 If Ft+1(!) 2 Gt;! for all t and !, the consistent extension C
provided by Theorem 4 is unique.

3.3 Foresight and Dynamic Consistency

Kreps [13, p.278] conjectured that dynamic behavior may reveal the collection
of foreseen events and provide a foundation for separating limited foresight
from existing models of uncertainty. The next theorem establishes a close
connection between the intertemporal consistency of behavior and the static
ranking of e¤ectively certain acts. As a corollary, this section shows that
dynamic behavior provides an equivalent and alternative characterization of
the process of subjective �ltrations fGt;!g.

Theorem 6 If a family of preferences f�t;!g satis�es Consequentialism,
State Independence and Dynamic Consistency, then

h(!) �0 h(!0) for all !; !0 2 
 implies h �0 h(!). (3.4)

Theorem 6 proves that recursive models imply perfect foresight as de�ned
by the ranking of e¤ectively certain acts. To gain some intuition for this re-
sult, imagine that you observe conditional preferences at every node and �nd
that behavior is dynamically consistent. If the latter is also consequentialist,
you know that the individual observes and recognizes events that transpire.
The consistency of her behavior then �reveals�that the individual has fore-
seen all possible changes of the environment and incorporated them into her
plans. This implication is captured formally in Theorem 6 where dynamic
consistency implies foresight as de�ned by the ranking of e¤ectively certain
acts.

To extend this result to the dynamic model of limited foresight, a de�ni-
tion is necessary. Below, fbGt;!g denotes an F-adapted process of �ltrations.
The class of such processes are ordered pointwise.
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De�nition 9 A family of posterior preferences is dynamically consistent
relative to fbGt;!g if for each t and ! and all bGt;!-adapted acts g; g0:

g �t+1;!0 g0 for all !0 2 Ft(!) implies g �t;! g0.

The next corollary proves that the process of subjective �ltrations fGt;!g
is the largest re�ning, regular process relative to which a limited foresight
model f�t;!g is dynamically consistent.7 The result provides an alterna-
tive characterization of the collection of foreseen events based solely on the
intertemporal consistency of dynamic behavior.

Corollary 7 If {�t;!} is a dynamic model of limited foresight, then the
process of subjective �ltrations fGt;!g is the largest re�ning, regular process
relative to which {�t;!} is dynamically consistent.

The equivalence of the static and dynamic characterizations implies that
the key to identifying the collection of foreseen events is provided the tempo-
ral domain of choice. Within this domain, static and dynamic properties of
behavior are linked by Theorem 6 and lead to equivalent characterizations.

4 Appendix

A �ltration G on 
 is identi�ed with the algebra on 
�T generated by sets
of the form A � ftg for A 2 Gt and t 2 T . Under this identi�cation, an act
h is G-adapted if and only if it is G-measurable as a mapping from 
�T to
the set of real numbers R.

4.1 Proof of Theorem 2

Adopt the arguments in Epstein and Schneider [5, Lemma A.1] to deduce
that � has a representation:

U(h) = minq2Q
P

t �
t hqt; hti . (4.1)

7A sub�ltration bG is regular if bGT = bGT�1. A process is regular if each sub�ltration is
regular. By the richness assumption FT = FT�1, all sequentially connected sub�ltrations
are regular.
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Above, Q is a closed, convex subset of �t2T�(
;Ft). Denote a generic
element in Q by q := (qt)t2T . For every subset T 0 � T , projT 0(q) denotes
the vector (qt)t2T 0. Without loss of generality, set � = 1 and de�ne hq; hi :=P

t hqt; hti.

A sub�ltration G of F de�nes a subspace of �t2T ba(
;Ft):

diag(G) := fq 2 �t2T ba(
;Ft) : margGtqt+1 = margGtqt for all t < Tg

Note that diag(G) 6= diag(G 0) whenever Gt 6= G 0t for some t < T . Equivalently,
there exists a bijection between the diagonals of �t2T ba(
;Ft) and the set
of sub�ltrations G such that GT = GT�1. Call such sub�ltrations regular.
For a regular sub�ltration G, the following lemma establishes a basic duality
between the diagonal diag(G) and the set of e¤ectively certain acts in HG.
In view of (4.1), it is convenient to normalize the set of certain acts:

Hc := fh 2 H :
P

t ht(!) = 0 for all ! 2 
g

Lemma 8 q 2 diag(G) if and only if hq; hi = 0 for all h 2 HG \Hc.

Proof: To prove necessity observe that for any h 2 HG and q 2 diag(G),

hq; hi =
P

t hqt; hti =
P

t hqT ; hti = hqT ;
P

t hti . (4.2)

If h 2 HG \Hc, then
P

t ht(!) = 0 for all ! and hq; hi = hqT ;
P

t hti = 0 for
all q 2 diag(G).
To establish su¢ ciency, �rst prove that for any h 2 HG

h 2 Hc if and only if hq; hi = 0 for all q 2 diag(G). (4.3)

Su¢ ciency of (4.3) follows (4.2). To see the reverse implication, �x some
h 2 HGnHc and without loss of generality suppose that

P
t ht(!) > 0 for

some !. Let qT be a measure in �(
;GT ) such that qT (GT (!)) = 1. Since
h 2 HG, hqT ;

P
t hti is well-de�ned and strictly positive. Extend qT to a vector

q 2 diag(G) and note that hq; hi = hqT ;
P

t hti > 0 proving the necessity of
(4.3).

To complete the proof of the lemma, �x some q0 =2 diag(G). It su¢ ces to
�nd an act h0 2 HG \ Hc such that hq0; h0i 6= 0. Since diag(G) is a subspace
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of �t2T ba(
;Gt) and any subspace is the intersection of the hyperplanes that
contain it, there exists an act h0 2 HG such that

hq0; h0i 6= 0 and hq; h0i = 0 for all q 2 diag(G).

By (4.3), the act h0 lies in HG \Hc, as desired.�

Lemma 9 For every closed set Q � �t2T�(
;Gt),

Q � diag(G) if and only if minq2Q hq; hi = 0 for all h 2 HG \Hc:

Proof: Su¢ ciency follows directly from Lemma 8. To see necessity, suppose
there exists some q0 2 Qndiag(G). By Lemma 8, there exists h0 2 HG \ Hc

such that hq0; h0i 6= 0. Since

h0 2 HG \Hc if and only if � h0 2 HG \Hc,

one can choose h0 such that minq2Q hq; h0i � hq0; h0i < 0. This establishes a
contradiction.�

For any set Q in �t2T�(
;Ft), there exists a collection � of maximal
�ltrations G 0 such that G 0T = G 0T�1 and Q � diag(G 0). In contrast, there may
not exist a largest �ltration containing Q since diag(_G02�G 0) is in general a
proper subset of \G02�diag(G 0). The next lemmas show that under Strong
Certainty Independence and Stationarity:

Q � diag(_G02�G 0) = \G02�diag(G 0).

Recall that

H� = fh 2 Hc : h0 � h0(!) for all ! 2 
 and all h0 2 Hc \HF(h)g,

and G� is the algebra on 
� T induced by H�.

Lemma 10 The algebra G� on 
� T is a regular �ltration on 
.

Proof: First prove that for every h 2 Hc, the �ltration F(h) is the small-
est algebra on 
 � T induced by Hc \ HF(h). For every t < T , the act
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(0�t;�(t+1);1
;�1
) 2 Hc \ HF(h) implying that the smallest algebra con-
tains the set 
� ftg for every t 2 T . Also,

h 2 Hc ) hT = �
P

�<T h� 2 _��T�1�(h� ))
�(hT ) � _��T�1�(h� ).

But then

F(h)T = _��T�(h� ) = [_��T�1�(h� )] _ �(hT ) = _��T�1�(h� ) = F(h)T�1.

Conclude that F(h) is regular and for all events A 2 F(h)T and payo¤s
x 2M (in particular x 6= 0):

(0�(T�1);�T ; xA
c(�x); xA(�x)) 2 Hc \HF(h),

and, since F(h) is a �ltration, for all t < T and A 2 F(h)t,

(0�t;�(t+1); xA
c(�x); xA(�x)) 2 Hc \HF(h):

The above inclusions imply that F(h) is the smallest algebra induced by
Hc \HF(h).

Finally, �x h 2 H�, h0 2 Hc \ HF(h), and h00 2 Hc \ HF(h0). Since
F(h0) � F(h), h00 2 Hc \ HF(h). By the choice of h, the latter implies
h00 � h00(!) for all !. Conclude that h0 2 H�. But then

H� = [h2H� [Hc \HF(h)])
G� = _h2H�F(h)

Since the supremum of regular �ltrations is a regular �ltration, the lemma is
proved.�

Lemma 11 Q \ diag(G�) 6= ?.

Proof: Let Q0 = f(margG�t qt)t2T : (qt)t2T 2 Qg and de�ne the linear func-
tional

� : (qt)t>0 7�! (margG�t�1qt)t>0:

Consider the following subdomains of acts

DT nfTg : = f(h0; :::; hT�1; x0) 2 HG�g,
DT nf0g : = f(x0; h0; :::; hT�1) : (h0; :::; hT�1; x0) 2 HG�g
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Under the obvious identi�cation, DT nfTg = DT nf0g. The restrictions of �
to DT nfTg and DT nf0g, respectively, are represented by the following utility
functions:

UDT nfTg = min
q2projT nfTgQ0

P
t<T hqt; hti

UDT nf0g = min
q2��projT nf0gQ0

P
t>0 hqt; hti

By Stationarity, UDT nfTg and UDT nf0g represent the same preference relation.
[9, Theorem 1] implies that

projT nfTgQ
0 = � � projT nf0gQ0 =: K

De�ne the correspondence

 := � � projT nf0g �
�
Q0 \ proj�1T nfTg

�
: K � K

Since Q0 is closed,  is the composition of a continuous function and an upper
hemicontinuous correspondence. Thus  is upper hemicontinuous. Since Q0

is convex,  is also convex-valued. By the Kakutani �xed point theorem [1,
Corollary 16.51],  has a �xed point q 2  (q). Equivalently, there exists a
point (q0; q1; :::; qT�1; qT ) 2 Q0 such that

�(q1; :::; qT ) = (q0; q1; :::; qT�1)

,
margG�t�1qt = qt�1;8t > 1.�

Lemma 12 Hc \ HG� = H� and G� is the largest regular �ltration G such
that Q � diag(G).

Proof: By construction, H� � Hc \ HG�. To see the reverse inclusion, �x
h 2 Hc\HG� and let x � (�h). Strong Certainty Independence implies that
1
2
x+ 1

2
h � 1

2
(�h) + 1

2
h. The two indi¤erences imply

x = � 1

T + 1
max
q2Q

P
t hqt; hti ,

x = � 1

T + 1
min
q2Q

P
t hqt; hti .
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Conclude that for every h 2 Hc \ HG�, hq; hi = hq0; hi for every q; q0 2 Q.
By Lemma 11, there exists a q 2 Q \ diag(G�). It follows that hq; hi = 0 for
every q 2 Q and so Hc \HG� � H�. Also by Lemma 9, Q � diag(G�).
If G is any �ltration such that GT = GT�1 and Q � diag(G), Lemma 9

implies that
Hc \HG � H� = Hc \HG�

Conclude that G � G�.�

4.1.1 Properties of the Filtration G�

Lemma 13 G� is connected.

Proof: By Lemma 10, G� is a �ltration. Thus, G�t � G�T \ Ft for all t.
Conversely, �x an event A 2 G�T \ Ft for some t 2 T . Since G� is regular
by Lemma 10, G�T�1 = G�T 3 A for t = T � 1. For t < T � 1, it su¢ ces
to show that (0�t;�(t+1); xAy; (�x)A(�y) � 0 for all x; y 2 M . By the
regularity of G�, (0�(T�1);�T ; xAy; (�x)A(�y) 2 Hc \ HG�, which implies
that (0�(T�1);�T ; xAy; (�x)A(�y) � 0. Applying Stationarity repeatedly,
conclude that (0�t;�(t+1); xAy; (�x)A(�y) � 0.�

Lemma 14 G� is sequentially connected.

Proof: Fix an event A 2 �Gtn�Ft for some t < T . By way of contradiction,
suppose there exists a set ? 6= B 2 Gt+1 such that B ( A. First, suppose
B � C ( A for some C 2 �Ft. Since G is connected, conclude that B ( C.
Otherwise, B = C 2 Gt+1\�Ft implies that C 2 �Gt contradicting the choice
of A. Now take the acts g = (0�t;�(t+1);1A;1B) and g0 = (0�t;�(t+1);1A;1C).
By construction, g 2 HG and g0 simpli�es g at C 2 �Ft. By Sequential
Thinking, g0 2 HG and so C 2 Gt+1 \ �Ft. Since G is connected, C 2 �Gt
contradicting C ( A 2 �Gt.
Conversely, suppose B \C 6= ? and B \Cc 6= ? for some C 2 �Ft. The

acts g = (0�t;�(t+1);1A;1B) is G�-measurable and g0 = (0�t;�(t+1);1A;1B[C)
simpli�es g at C 2 �Ft. By Sequential Thinking, B[C 2 Gt+1. But B[C 2
Gt+1 and B 2 Gt+1 imply CnB = B [ CnB 2 Gt+1 and, by construction,
? 6= CnB ( C ( A and C 2 �Ft. But then g0 = (0�t;�(t+1);1A;1C)
simpli�es g = (0�t;�(t+1);1A;1CnB) 2 HG at C 2 �Ft. As before, conclude
that C 2 �Gt contradicting C ( A 2 �Gt.�
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4.1.2 Construction of the Approximation Mapping �

Lemma 15 For all acts h; h0, payo¤s x and y and events A 2 �G�,

hAx � h0Ax if and only if hAy � h0Ay

Proof: Suppose hAx � h0Ax and note that (hAy)Ax = hAx and (h0Ay)Ax =
h0Ax. Conclude that (hAy)Ax � (h0Ay)Ax. For any A0 2 �G� and A0 6= A,

(hAy)A0x = (h0Ay)A0x = yA0x.

Conclude that
(hAy)A0x � (h0Ay)A0x.

Thus, (hAy)A0x � (h0Ay)A0x for all A0 2 �G�. By Subjective Monotonicity,
hAy � h0Ay as desired.�

For every A 2 �G�, de�ne the preference �A as

h �A h
0
if and only if hAx0 � h0Ax0.

By the above lemma, the �conditional�preference �A is independent of the
choice of x0. By construction, �A inherits convexity, monotonicity and
mixture-continuity. By Nonnullity, the preference is also nontrivial. By
Strong Certainty Independence and by Lemma 15 in turn,

hAx0 � h0Ax0 )
[�h+ (1� �)x]A[�x0 + (1� �)x] � [�h0 + (1� �)x]A[�x0 + (1� �)x])

[�h+ (1� �)x]Ax0 � [�h0 + (1� �)x]Ax0

Conclude that for all A 2 �G�, �A is a multiple prior preference. For any
tuple (!; t) 2 
 � T , let A!;t be the event in �G�t containing !. By [9,
Theorem 1], there exists a set CA!;t � �(A!;t;Ft) such that

h �A!;t h0 if and only if minq2CA!;t hq; hti � minq2CA!;t hq; h
0
ti . (4.4)

De�ne the mapping � : H ! H

(�h)t(!) = minq2CA!;t hq; hti .
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By construction,

�(hAx0) = �(h)Ax0 � hAx0 for all A 2 �G�.

By Subjective Monotonicity, �(h) � h for all h 2 H. It is evident that �
is an approximation mapping. To conclude the proof of the theorem, for all
h 2 H, de�ne

V (h) = U � �(h)
= minq2Q

P
t hqt;�(h)ti

= minq2Q
P

t hqT ;�(h)ti
= minq2Q hqT ;

P
t�(h)ti .

The third equality follows from Lemma 12. Finally set

C := margG�T � projfTgQ:

The claim that C is a subset of ��(
;G�T ) follows from the following property
of multiple-prior preferences.

Lemma 16 Let � be a multiple-prior preference on B(
;FT ) and C be the
set of measures in the representation of �. Let � be any partition such that
� � �FT . If every event A 2 � is nonnull and if for all payo¤s x 2M :

hAx � h0Ax for all A 2 � implies h � h0

then p(A) > 0 for all A 2 � and p 2 C.

Proof: Suppose by way of contradiction, that p(A) = 0 for some A 2 �.
Since A is nonnull, maxq2C q(A) > p(A) = 0. Fix some payo¤s y; y0 such that
1 > y > y0 > 0 and note that:

U(yA0) = minq2C [q(A)y] = yminq2C q(A) = 0 = U(y0A0),

U(yA1) = minq2C [(y � 1)q(A) + 1] = 1� (1� y)maxq2C q(A) >

> 1� (1� y0)maxq2C q(A) = U(yA1).

Conclude that yA0 � y0A0 and yA1 � y0A1 in contradiction of Lemma 15.�
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4.1.3 Uniqueness

Uniqueness of the set C follows from familiar arguments. To prove the unique-
ness of the G�-approximation mapping, take two such mappings �, b�. By
separability, for all A 2 �G�, h0 and x:b�(h0Ax) = b�((h0Ax)Ax)Ab�((h0Ax)Acx)

= b�(h0Ax)Ab�(x)
= b�(h0Ax)Ax

The last equality follows from the fact that b� must be identity on G�-
measurable acts. Since A 2 �G� and �(h0Ax), b�(h0Ax) 2 HG�, there exist
payo¤s y�, yb� such that b�(h0Ax) = yb�Ax

�(h0Ax) = y�Ax

Since b�(h0Ax) � �(h0Ax) and � is strictly increasing on HG�, it must be the
case that y� = yb�. The proof is completed by induction on the number of
events A 2 �G� such that an act h0 2 H is nonconstant.

4.2 An Alternative Formulation

This section describes an alternative formulation of the static model. It shows
that the subjective �ltration de�ned by the ranking of e¤ectively certain
e¤ects is canonical in the sense of being largest than any alternative de�nition
of foreseen events. Some preliminary de�nitions are necessary.

De�nition 10 A preference relation � on H has a regular representa-
tion (G;�; C) if it admits a utility function V of the form (2.3) where G is
regular, the mapping � is identity on HG and C is a closed, convex subset of
��(
;GT ).

De�nition 11 A preference relation � on H has a largest representa-
tion (G;�; C) if it admits a utility function V of the form (2.3) where G
is sequentially connected, � is a G-approximation mapping, C is a closed,
convex subset of ��(
;GT ) and G is the largest �ltration for which a regular
representation exists.
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Theorem 17 (G;�; C) is a limited foresight representation if and only if it
is a largest representation.

Proof: If (G;�; C) is a regular representation for �, then Hc \ HG � H�

and so G � G�. Thus, the limited foresight model is su¢ cient for a largest
representation. Conversely, if a largest representation (G�;�; C) exists, then

G� = _Q�diag(G0)G 0 )
Hc \HG� = [fG0:Q�diag(G0)gHc \HG0

At the same time,
H� = [fG0:Q�diag(G0)gHc \HG0.

To see this note that, [fG0:Q�diag(G0)gHc \ HG0 � H�. If h 2 H�, then for all
h0 2 Hc \HF(h), h0 � 0. From Lemma 9, conclude that Q � diag(F(h)) and
so h 2 [G0:Q�diag(G0)Hc \ HG0. Thus H� = Hc \ HG� and so G� = F(H�) as
desired.�

4.3 Proof of Lemma 3

Suppose � has a representation (G; fCAg; C) such that CA has nonempty
interior in�(A;Ft) for all t 2 T and A 2 �Gt. LetQ be the set in�t�(
;Ft)
that represents � as in (4.1). It su¢ ces to show that for all �ltrations G 0
such that G 0T�1 = G 0T :

Q � diag(G 0) implies G 0 � G.

Equivalently,

8t < T; 8B =2 Gt; 9q 2 Q such that qt(B) 6= qt+1(B).

For all t 2 T and A 2 �Gt, de�ne �A as in (4.4). The family of preferences
f�Ag and � satisfy the conditions of [5, Theorem 3.2]. Conclude that:

Q = [�2Cf(qt) : qt =
Z
pAd� for some selection fpAgA2�Gt s.t. pA 2 CAg.

Fix t < T and B =2 Gt and any � 2 C. By the above decomposition of Q, it
su¢ ces to �nd two selections fpAgA2�Gt and fp

0
AgA2�Gt such that:Z

pA(B)d� 6=
Z
p0A(B)d�.
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Since B =2 Gt, there exists A� 2 �Gt such that A� 6= B \ A� 6= ?. Since CA�
has nonempty interior, there exist pA� and p0A� such that pA�(B) 6= p0A�(B).
Choose any pA = p0A for all A 6= A� and A 2 �Gt to complete the proof of
the theorem.

4.4 Proof of Theorem 4

Necessity is standard. To prove su¢ ciency, �rst show that fGt;!g is re�ning.
For t, ! such that Ft+1(!) =2 Gt;!, the fact that Gt;! is sequentially connected
implies that

fB \ Ft+1(!) : B 2 Gt;!g = f?;Ft+1(!)g
Thus, Gt+1;! re�nes the trivial �ltration Gt;!\Ft+1(!). If Ft+1(!) 2 Gt;!, take
an act h 2 HGt;! \Hc such that ht0(!0) = 0 whenever t0 < t or !0 =2 Ft+1(!).
By Consequentialism, it su¢ ces to show that h is indi¤erent to the constant
act 0. By construction, h �t+1;!0 0 for all !0 =2 Ft+1(!). Since h;0 2 HGt;! ,
Weak Dynamic Consistency and Lemma 15 imply that:

h �t+1;! 0 if and only if h �t;! 0.
The latter is true by the choice of h 2 HGt;! \Hc.

To prove that fCt;!g admits a consistent extension, construct the set C
recursively. For all ! and t � T � 1, set bCt;! := Ct;!. Fix ! and t <
T � 1 and suppose bCt+1;!0 has been de�ned for all !0. For each !0 such that
Ft+1(!0) =2 Gt;!, or equivalently, such that Ft+1(!0) ( Gt;!(!0), �x a measure
�!0 2 ��(Gt;!(!0);Ft+1) such that �!00 = �!0 for all !00 2 Gt;!(!0). For each
� 2 Ct;! de�ne the measure b� = R



b�!0dm in ��(Ft(!);Ft+1) where

m = margGt;!t+1� and
b�!0 = f �!0 if Ft+1(!0) =2 Gt;!�!0 if Ft+1(!0) 2 Gt;!

. (4.5)

In e¤ect, the constructed measures b� extend the individual�s one-step ahead
beliefs at t; ! from the subjectively foreseen events Gt;!t+1 to allFt+1-measurable
subsets of Ft(!). The construction ensures that this set of extensionsM t;! :=
fb� : � 2 Ct;!g � ��(Ft(!);Ft+1) is closed and convex.

Next, let p denote a generic, Ft+1-measurable selection from !0 7�! bCt+1;!0
and de�nebCt;! = fZ




p!0db�(!0) : b� 2M t;! and p!0 2 bCt+1;!0 for all !0g. (4.6)
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From [5, Theorem 3.2], conclude that bCt;! is a closed and convex subset of
��(Ft(!);FT ) and C := bC0 is fFtg-rectangular. In particular,

f�(� p Ft(!)) : � 2 Cg = bCt;! for all t and !.
To complete the proof, it remains to show that

margGt;! bCt;! := fmargGt;!� : � 2 bCt;!g = Ct;! for all t and !. (4.7)

The next lemmas show that both margGt;! bCt;! and Ct;! admit decompositions
similar to (4.6).

Lemma 18 For all t and !, the set margGt;! bCt;! admits the decomposition
margGt;! bCt;! = fZ




p!0d� : � 2 margGt;!t+1M
t;! and p!0 2 margGt;! bCt+1;!0g.

Proof: By (4.6), all measures in bCt;! are of the form R


p!0db� where b� 2

M t;! and p is an Ft+1-measurable selection from !0 7�! bCt+1;!0. Since
Gt;! is sequentially connected, margGt;!p is a Gt;!t+1-measurable selection from
!0 7�!margGt;! bCt+1;!0. Conclude that

margGt;!
Z



p!0db� = Z



margGt;!p!0 d
�
margGt;!t+1b�� .�

Lemma 19 For all t and !, the set Ct;! admits the decomposition

Ct;! = f
Z
p!0dm : m 2 margGt;!t+1C

t;! and p!0 2 margGt;!Ct+1;!
0
for all !0g.

Proof: For each !0 2 Ft(!), let �at+1;!0 and �at;! denote the respective
restrictions of �t+1;!0 and �t;! to HGt;! . Since HGt+1;!0 re�nes HGt;! for each
!0 2 Ft(!), the corresponding preference �at+1;!0 has a representation

U t+1;!
0
(h) = min�2margGt;!Ct+1;!

0

Z P
��t0 �

��t�1h�d�

Since Gt;! is sequentially connected, the mapping !0 7�! �at+1;!0 is G
t;!
t+1-

measurable. Thus the collection of preferences �at;!;�at+1;!0 for !0 2 Ft(!)
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satis�es Consequentialism with respect to the �ltration Gt;!. By State In-
dependence and Lemma 15, the collection of preferences is also dynamically
consistent. The claim of the lemma follows from [5, Theorem 3.2].�

Complete the proof of (4.7) by induction. The claim holds trivially for
! and t � T � 1. Fix some ! and t < T � 1 and suppose the claim has
been established for t + 1. Applying Lemma 19, the induction hypothesis
and Lemma 18 in turn, conclude that

f�(� p Ft+1(!0)) : � 2 Ct;!g = margGt;!Ct+1;!
0

(4.8)

= margGt;! bCt+1;!0
= margGt;!f�(� p Ft+1(!0)) : � 2 bCt;!g

Also, by construction,

margGt;!t+1C
t;! = margGt;!t+1M

t;!. (4.9)

Properties (4.8) and (4.9) show that margGt;! bCt;! and Ct;! induce the same
sets of conditionals and one-step-ahead marginals. By Lemmas 18 and 19,
the sets margGt;! bCt;! and Ct;! are uniquely determined by the respective sets
of conditionals and marginals. Conclude that margGt;! bCt;! = Ct;!.
4.4.1 Uniqueness

Let C be an fFtg-rectangular subset of��(
;FT ) and for each t; !, let Gt;! be
a sequentially connected algebra such that Ft+1(!0) 2 Gt;! for all !0 2 Ft(!).

Lemma 20 A measure � in ��(
;FT ) belongs to C if and only if

margGt;!�(� p Ft(!)) 2 fmargGt;!�0(� p Ft(!)) : �0 2 Cg for all t and !:

Proof: Su¢ ciency is immediate. To prove necessity, note the recursive
construction of the fFtg-rectangular set in the proof of Theorem 4. An
fFtg-rectangular subset contains all measures b� and only the measures b�
such that

b�(� p FT (!)) 2 f�0(� p FT (!)) : �0 2 Cg for ! 2 
, and
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b�(� p Ft(!)) 2 fmargFt+1�0(� p Ft(!)) : �0 2 Cg for ! 2 
 and t < T .

By construction, the restriction of FT to FT (!) equals fFT (!);?g which
equals GT;! for each ! 2 
. By hypothesis, the restriction of Ft+1 to Ft(!)
is re�ned by Gt;! for each t and !. Conclude that � 2 C.�

Fix a closed and convex subset C of �(
;FT ) such that
clconvfmargGt;!�(� p Ft(!)) : � 2 C 0 s.t. �(Ft(!)) > 0g = Ct;!. (4.10)

Note that C must be a subset of ��(
;FT ). Suppose by way of contradiction
that there exists a measure �0 2 C such that �0(Ft(!)) = 0 for some t
and !. Since for all !0, �0(F0(!0)) = �0(
) = 1, conclude that t > 0.
Let t� be the largest t0 such that �0(Ft�(!)) > 0. The time t� exists since
�0(F0(!)) > 0. By the de�nition of t�, �0(� p Ft�(!)) is well-de�ned and
�0(Ft�+1(!) p Ft�(!)) = 0. The latter is impossible since Ft�+1(!) 2 Gt

�;!

and by property (4.10) above

margGt�;!�
0(� p Ft�(!)) 2 Ct

�;! � ��(Ft�(!);Gt
�;!).

Apply Lemma 20 to conclude that C must be a subset of the closed,
convex fFtg-rectangular subset generated by the sets Ct;! for ! 2 
; t 2 T :
From Lemma 20 again, the latter is well-de�ned and unique.

4.5 Proof of Theorem 6

To prove Theorem 6, take an act h such that h(!) �0 h(!0) for all !; !0 2 
.
By Consequentialism,

h �T;! h(!) for all ! 2 
. (4.11)

Fix some ! and note that:

h� (!
0) = h� (!

00) for all !0; !00 2 FT�1(!) and � � T � 1.
By State Independence,

h(!0) �T;! h(!00) for all !0; !00 2 FT�1(!). (4.12)

But then (4.11) and (4.12) imply that for all !0 2 FT�1(!):
h �T;!0 h(!0) �T;!0 h(!).

By Dynamic Consistency, h �T�1;! h(!). Proceeding inductively, conclude
that h �0 h(!).
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4.6 Sequentially Connected Filtrations

Say that a �ltration fGtg is connected if

Gt = Ft \ GT for all t 2 T .

Proposition 21 A sequentially connected �ltration fGtg is connected.

Let fGtg be sequentially connected. It is evident that Gt � GT \Ft for all
t 2 T . To prove the opposite inclusion, take an event A 2 GT \Ft. If A =2 Gt,
then there exists a set B 2 �Gt such that ? 6= B \ A 6= B. Then A 2 Ft
implies B =2 �Ft. Conclude that B 2 �Gtn�Ft and since fGtg is connected,
B 2 �GT . But then ? 6= B \ A 6= B contradicts the fact that A 2 GT .�

The following proposition shows that sequentially connected �ltrations
inherit the lattice properties of stopping-times.

Proposition 22 The class of sequentially connected �ltrations is a lattice.
It is lattice-isomorphic to the class of sequentially connected algebras.

First, establish the following distributive law.

Lemma 23 If G and G 0 are sequentially connected algebras, then

�G\Ft _ �G0\Ft = �G_G0 ^ �Ft for all t 2 T .

Proof: For any partitions � and �0, � � �0 if and only if � = �0. Thus, it
su¢ ces to show that

�G\Ft _ �G0\Ft � �G_G0 ^ �Ft for all t 2 T :

Fix some t 2 T and an event A 2 �G\Ft _ �G0\Ft. By de�nition of the
supremum, A = B \ B0 for some sets B 2 �G\Ft and B0 2 �G0\Ft . Since G
is connected, �G\Ftn�Ft � �G\FT = �G. Equivalently,

�G\Ft � �G [ �Ft : (4.13)

An analogous argument holds for G 0. By (4.13), there are two cases to con-
sider:
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If B 2 �G and B0 2 �G0, then

B \B0 2 (�G _ �G0) \ Ft = �G_G0 \ Ft � �G_G0 ^ �Ft.

If B 2 �Ft (or B0 2 �Ft), then B \ B0 2 �G\Ft _ �G0\Ft � �Ft implies
that B = B \B0. But then

B \B0 = B 2 �Ft \ G ��Ft \ (G _ G 0) � �Ft ^ �G_G0.�

By Lemma 23, it is enough to prove that the class of connected algebras is
a lattice. Take the supremum G _ G 0 of two sequentially connected algebras
G and G 0 and an event A 2 �(G_G0)\Ftn�Ft. By Lemma 23,

�(G_G0)\Ft = �G_G0 ^ �Ft
= �G\Ft _ �G0\Ft

Thus there exist sets B 2 �G\Ft and B0 2 �G0\Ft such that A = B \ B0. If
B 2 �Ft, then B0 2 Ft implies A = B \ B0 = B 2 �Ft contradicting the
choice of A =2 �Ft. A symmetric argument implies B0 2 �G0\Ftn�Ft. Since G
and G 0 are sequentially connected, B 2 �G\F� and B0 2 �G0\F� for all � � t.
Conclude that A = B \B0 2 �G\F� _�G0\F� = �G_G0 ^�F� = �(G_G0)\F� for
all � � t.

To show that G ^ G 0 is sequentially connected, take A 2 �G\G0\Ftn�Ft.
Notice that

�G\G0\Ft = �(G\F)t^(G0\Ft) =

= �G\Ft ^ �G0\Ft.

But A 2 �G\Ft ^�G0\Ft if and only if for all B0 2 �G\Ft [�G0\Ft such that
B0 � A:

A = [fB0;B1;:::;Bkg [B2fB0;B1;:::;Bkg B,

where the union is taken over all sequences fB0; B1; :::; Bkg of subsets of A
such that consecutive elements intersect and belong alternatively to �G\Ft
and �G0\Ft.

Since A 2 (�G\Ft ^ �G0\Ft)n�Ft, there exists a set B0 2 (�G\Ft [
�G0\Ft)n�Ft such that B0 � A. Fix such a set B0 and consider a sequence
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fB0; B1; :::; Bkg satisfying the conditions above. For i < k, each Bi inter-
sects two disjoint subsets of Ft and so Bi =2 �Ft. Moreover, if Bk 2 �Ft then
Bk \ Bk�1 6= ? implies that Bk � Bk�1. Conclude that A can be written
as the union over sequences fB0; B1; :::; Bkg in (�G\Ft [ �G0\Ft)n�Ft. Since
G and G 0 are sequentially connected, A can be written as the union over
sequences fB0; B1; :::; Bkg in �G\F� [ �G0\F� for all � � t. Conclude that A
must be a subset of some element in�G\F�^�G0\F� . But since �G\F�^�G0\F�
is �ner than �G\Ft ^ �G0\Ft and A 2 �G\Ft ^ �G0\Ft, it must be that A 2
�G\F� ^ �G0\F� for all � � t.�

Proposition 24 A stopping time g induces a sequentially connected algebra.

A stopping time is a function g : 
 ! T such that [g = t] 2 Ft for all
t 2 T . The stopping time g is induces the algebra G:

G := fA 2 FT : A \ [g = t] 2 Ft;8t 2 T g:

To see that G is sequentially connected, �rst prove that
fA 2 �Ft : A � [g = t]g � �G, 8t 2 T (4.14)

Fix t 2 T and A 2 �Ft such that A � [g = t]. Since A \ [g = t] = A 2 Ft
and A \ [g = t0] = ? 2 Ft for all t0 6= t, the de�nition of G implies A 2 G. If
B ( A 2 �Ft, then B \ [g = t] = B =2 Ft and thus B =2 G. Conclude that
A 2 �G.
Next �x t < T and take A 2 �G\Ftn�Ft. If A \ [g � t] 6= ?, then there

exists A0 ( A such that A0 2 �Ft and A0 \ [g � t] 6= ?. But [g � t] =
[g < t]c 2 Ft and A0 2 �Ft imply that A0 � [g � t] and so A0 2 G. In turn,
A0 2 G\�Ft implies A0 2 �G\Ft contradicting the choice of A. Conclude that
A � [g < t].

Fix some t0 < t such that A \ [g = t0] 6= ?. Since [g = t0] 2 G \ F t and
A 2 �G\Ft, it must be the case that A � [g = t0]. This implies A 2 Ft0, for
otherwise, A \ [g = t0] = A =2 Ft0 contradicts A 2 G. For any A0 2 �Ft0 and
A0 � A � [g = t0], equation (4.14) implies that A0 2 �G and so A0 2 �G\Ft.
Since A 2 �G\Ft, it must be the case that A = A0 2 �G. But then A 2
�G \ Ft+1 � �G\Ft+1 as desired.�

The next example translates the Gabaix and Laibson [7] procedure for
simplifying decision trees in the setting of this paper and shows that it induces
a sequentially connected �ltration.

38



Example 7 (Satis�cing) "Start from the initial node and follow all branches
whose probability is greater than or equal to some threshold level �. Continue
in this way down the tree. If a branch has a probability less than �, consider
the node it leads to, but do not advance beyond that node."

Thus, let � be a measure on (
;FT ) and � 2 [0; 1] be a threshold level. For
each event A and algebra F , de�ne rF(A) to be the smallest F-measurable
superset of A. The collection of events fAtg is a satis�cing procedure if:

A0 = f�F0g, and for all t > 0
At = fA 2 �Ft : rFt�1(A) 2 Gt�1 and �(rFt�1(A) p rFt�2(A)) � �g.

It is not di¢ cult to see that fAtg generates a sequentially connected �ltration.
In fact, the �ltration is induced by the stopping time:

[� = 0] = ?, and for all t > 0
[� = t] = [

�
A 2 �Ft : �(A p rFt�1(A)) < � and �(rFt�1(A) p rF�2(A)) � �

	
.
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