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Abstract

We study two-player games played by two communities in an infinitely repeated

anonymous random matching setting. It is well-known that despite the informational

restrictions of this setting, for the prisoner’s dilemma, cooperation can be sustained

in equilibrium through grim trigger strategies also called“contagion” or “community

enforcement” in this context. But, little is known beyond the prisoner’s dilemma when

information transmission is minimal. In this paper we show that the ideas of commu-

nity enforcement can indeed be applied far more generally.

∗Acknowledgements. The authors would like to thank Johannes Hörner for many insightful discussions
and comments. We also thank seminar participants at GAMES 2008, Northwestern University, New York
University, the Repeated Games workshop at SUNY StonyBrookand the SED Meetings in Instanbul for many
suggestions. The second author gratefully acknowledges the support from the Sixth Framework Programme
of the European Commission through a Marie Curie fellowship, the Ministerio de Ciencia e Innovacion
through a Ramon y Cajal fellowship and through project ECO2008-03484-C02-02. Support from Xunta de
Galicia through project INCITE09-207-064-PR is also acknowledged.

†Email: joyee.deb@nyu.edu
‡Email: julio.gonzalez@usc.es

1



1 Introduction

We study infinitely repeated matching games where, in every period, players from two com-

munities are randomly and anonymously matched to each otherto play a two-player game.

A common interpretation of such a setting is a large market where people are matched

with strangers to engage in bilateral trades in which they may act in good faith or cheat.

An interesting question is whether players can achieve cooperative outcomes in anonymous

transactions. What payoffs of the stage-game can be achieved in equilibrium in the repeated

random matching game?

The seminal papers by Kandori (1992) and Ellison (1994) showed that in this setting,

for the Prisoner’s Dilemma (PD), cooperation can be sustained by grim trigger strategies,

also known as “community enforcement” or “contagion”. In the PD, if a player ever faces a

defection, she punishes all future rivals by switching to defection forever. By starting to de-

fect, she spreads the information that someone has defected. The defection action spreads

throughout the population, and cooperation eventually breaks down completely. The cred-

ible threat of such a breakdown of cooperation can deter players from defecting in the first

place. However, these arguments rely critically on properties of the PD, in particular on

the existence of a Nash equilibrium in strictly dominant strategies. The argument does

not work in general. In an arbitrary game, on facing a deviation for the first time, players

may not have the incentive to punish, because punishing can both lower future continua-

tion payoffs and entail a short-term loss in that period. In the PD, the punishment action is

dominant and so gives a current gain even if it lowers continuation payoffs.

A natural question is whether cooperation can be sustained in this setting for games

other than the PD, with minimal transmission of information. This is the central question

of this paper. In particular, we investigate whether the idea of community enforcement can

still be used. As trigger strategies are simple, we think that community enforcement is a

plausible description of behavior in large communities. Weshow that it is indeed possible

to sustain cooperation in the random matching setting in a wide range of games beyond the

PD using the idea of community enforcement, provided the communities are large enough

and all players are sufficiently patient.

To the best of our knowledge, this is the first paper to sustaincooperation in a non-

PD random matching game, without adding any extra information. Some papers that go

beyond the PD introduce verifiable information about past play to sustain cooperation.

For instance, Kandori (1992) assumes the existence of a mechanism that assigns labels to
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players based on their history of play. Players who have deviated or have seen a deviation

can be distinguished from those who have not, by their labels. This naturally enables

transmission of information and cooperation can be sustained in a specific class of games.1

More recently, Deb (2008) obtains a general folk theorem forany game by just adding

unverifiable information (cheap talk).

For ease of exposition, for most of the paper, we restrict attention to a particular stage-

game, called the product-choice game. This game has a uniquepure strategy Nash equilib-

rium that is inefficient. Unlike in the PD, the Nash equilibrium is not in dominant strategies.

We show that the efficient outcome can still be approximated in equilibrium, using com-

munity enforcement. More generally, we provide sufficient conditions to describe the class

of games and the set of achievable payoffs that our construction applies to.

An important feature of our construction is that our strategies are quite simple. Un-

like the recent literature in repeated games with imperfectprivate monitoring (Ely and

Välimäki, 2002; Piccione, 2002; Ely et al., 2005; Hörnerand Olszewski, 2006) and, more

specifically, in repeated random matching games (Takahashi, 2007; Deb, 2008), our equi-

librium does not rely on belief-free ideas. In particular, players have strict incentives on

and off the equilibrium path. It is also important to note that, unlike most of the existing

literature, our strategies are robust to changes in the discount factor.

Further, our methodological contribution lies in that we work explicitly with players’

beliefs. We hope that the methods we use to study the evolution of beliefs will be of

independent interest, and can be applied elsewhere.

The rest of the paper is organized as follows. In the next section, we describe the

model. In Section 3, we present the main result, and the intuition behind the proof. Section

4 contains the formal equilibrium construction and proof. In section 5, we discuss the

generality of the result, limitations and potential extensions.

2 Model

We have2M players, divided in two communities, each withM players. We useJS :=

{1, . . . , M} andJB := {1, . . . , M} to denote the communities of (male) sellers and (fe-

male) buyers respectively. In each periodt ∈ {1, 2, . . .}, the players are randomly matched

into pairs with each seller facing a buyer. The matching is independent and uniform over

1For related approaches see Okuno-Fujiwara and Postlewaite(1995), Takahashi (2007), Dal Bó (2007),
and Hasker (2007).
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time.2 After being matched, each pair of players plays the product-choice game below (see

Figure 1), whereg > 0, c > 0, andl > 0.3

Buyer
BH BL

Seller QH 1, 1 −l, 1 − c
QL 1 + g,−l 0, 0

Figure 1: The product-choice game.

The seller can exert either high effort (QH ) or low effort (QL) in the production of his

output. The buyer, without observing the choice of the seller, can either buy a high-priced

product (BH) or a low-price product (BL). The buyer prefers the high-priced product if

the seller has exerted high effort and prefers the low-priced product if the seller has not.

For the seller, exerting low effort is a dominant action. Theefficient outcome of this game

is the seller exerting high effort and the buyer buying the high-priced product, while the

Nash equilibrium is(QL, BL). We denote a product-choice game byΓ(g, l, c). We choose

this as the benchmark game as it represents a minimal departure from the PD. Indeed, if we

replace the payoff1−c with 1+g we get the standard PD. For most of the paper we restrict

attention to this game. Section 5 discusses how our results generalize to other two-player

games.

Players can observe only the transactions they are personally engaged in,i.e., each

player knows the history of action profiles played in each of her/his past stage-games.

A player gets no information about how other players have been matched or about the

actions chosen by any other pair of players. All players havediscount factorδ ∈ (0, 1)

and their payoffs are the normalized sum of the discounted payoffs from the stage-games.

The infinitely repeated random matching game associated with the product-choice game

Γ(g, l, c), with discount parameterδ and communities of sizeM is denoted byΓM
δ (g, l, c).

No public randomization device is assumed (refer to Section5 for a discussion of what can

be gained if such a device is available).

We ask whether some degree of cooperation can be sustained inequilibrium.

2Although the assumption of uniform matching greatly simplifies the calculations, we expect our results
to hold for all other matching technologies sufficiently close to the uniform one.

3A more detailed discussion of this game within the context ofrepeated games can be found in Mailath
and Samuelson (2006).
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2.1 A negative result

The main difficulty in sustaining cooperation in the product-choice game through standard

community enforcement is that it is hard to provide buyers with the incentives to punish

deviations. Indeed, the next result shows that a straightforward adaptation of the strategies

used in Ellison (1994) to support cooperation in the PD does not work in our setting.

Proposition 1. Let Γ(g, l, c) be a product-choice game withc ≤ 1. Then, there is
¯
M ∈ N

such that, for eachM ≥
¯
M , regardless of the discount factorδ, the repeated random

matching gameΓM
δ (g, l, c) has no sequential equilibrium in which(QH , BH) is played in

every period on the equilibrium path, and in which players play the Nash action off the

equilibrium path.

Proof. Suppose a seller decides to deviate in period 1. We argue below that for a buyer

who observes this deviation, it will not be optimal to switchto the Nash action permanently

from period 2. In particular, we show that playingBH in period 2 followed by switching

to BL from period 3 onwards gives the buyer a higher payoff. The buyer who observes the

deviation knows that, in period 2, with probabilityM−1
M

she will face a different seller who

will play QH . Consider the short-run and long-run incentives of this buyer:

Short-run: The buyer’s payoff in period 2 from playingBH is 1
M

(−l) + M−1
M

. Her payoff

if she switches toBL is M−1
M

(1−c). Hence, ifM is large enough, she has no short-run

incentive to switch to the Nash action.

Long-run: With probability 1
M

, the buyer will meet the deviant seller (who is already

playing QL) in period 2. In this case, her action will not affect this seller’s future

behavior, and therefore her continuation payoff will be thesame regardless of her

action.

With probability M−1
M

, the buyer will meet a different seller. Note that, since1− c ≥
0, a buyer always prefers to face a seller playingQH . So, regardless of the buyer’s

strategy, the larger is the number of sellers who have already switched toQL, the

lower is her continuation payoff. Hence, playingBL in period 2 will give her a

lower continuation payoff than playingBH , because actionBL will make a new

seller switch permanently toQL.
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3 The Main Result

The main result of this paper says that in a product-choice game, it is indeed possible for

players to achieve payoffs arbitrarily close to the efficient payoff, if the communities are

large enough and players are sufficiently patient.

Theorem 1. Let Γ(g, l, c) be a product-choice game. Then, there is
¯
M ∈ N such that,

givenε > 0, there is
¯
δ ∈ (0, 1) such that, for eachM ≥

¯
M , there exists a strategy profile

in the repeated random matching gameΓM
δ (g, l, c) that, for eachδ ∈ [

¯
δ, 1), constitutes a

sequential equilibrium with payoff withinε of (1, 1).

A noteworthy feature of our strategies is that they are robust to changes in the discount

factor. In other words, if our strategies constitute an equilibrium for a given discount fac-

tor, they do so for any higher discount factor as well. This isin contrast with existing

literature. In games with private monitoring, strategies have to be fine-tuned based on the

discount factor. In Ellison (1994), the severity of punishments depends on the discount

factor. Moreover, unlike Ellison (1994), we do not need a common discount factor. We just

need all players to be sufficiently patient.

Another feature of our equilibrium strategies is that the continuation payoff is within

ε of (1, 1) not just in the initial period, but throughout the game on theequilibrium path;

in this sense, we sustain cooperation as a durable phenomenon, which constrasts with the

results for reputation models where, for everyδ, there exists a time after which cooperation

collapses (see Cripps et al. (2004)).

It is worthwhile to explain the role of the community sizes inTheorem 1. Contrary to

the existing literature, having a large population is helpful in our construction. However,

the result should not be viewed as a limiting result inM ; it turns out that in most games,

fairly small community sizes suffice to sustain cooperation.

We present now the strategies that enable cooperation in equilibrium. We divide the

game into three phases (see Figure 2). Phases I and II aretrust-buildingphases and phase III

is thetarget payoffphase.

1 Ṫ

Phase I
Ṫ + Ṫ

Phase II

· · ·∞
Phase III

︸ ︷︷ ︸

Ṫ

︸ ︷︷ ︸

T̈

Figure 2: Different phases of the strategy profiles.
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Equilibrium play: Phase I: During the firstṪ periods, the players play(QH , BH). In

every period in this phase, sellers have a short-run incentive to deviate, but buyers

do not. Phase II: During the nextT̈ periods, the players play(QL, BH). In every

period in this phase, buyers have a short-run incentive to deviate while sellers do

not. Phase III: For the rest of the game, the players play the efficient actionprofile

(QH , BH).

Off Equilibrium play: A player can be in one of two moods:uninfectedand infected,

with the latter mood being irreversible. At the beginning ofthe game all players are

uninfected. We classify off equilibrium play into two typesof actions. ActionBL in

Phase I and actionQH in Phase II arenon-triggeringactions. Any other action that is

off equilibrium is atriggeringaction. A player who has observed a triggering action

is in the infected mood. Now, we specify off-path behavior. An uninfected player

continues to play as if on-path. An infected player acts as follows.

• A player who gets infected after facing a triggering action switches to his Nash

action forever either from the end of Phase I or immediately from the next

period, whichever is later. In other words, a buyer who facesa triggering action

in Phase I switches to her Nash action forever at the end of Phase I, playing as if

on-path in the meantime. A player facing a triggering actionat any other stage

of the game will immediately switch to the Nash action forever.

• A player who gets infected by playing a triggering action himself henceforth

best responds to the strategies of the other players (this will imply that, for

large enoughṪ , a seller who deviates in the first period by playingQL will

continue to playQL forever).

Note that a profitable deviation by a player is punished (ultimately) by the whole com-

munity of players, with the punishment action spreading like an epidemic. We refer to the

spread of punishments as contagion.

The difference between the our strategies and standard contagion (e.g., Ellison (1994)

and Kandori (1992)) is that here, the game starts with two trust-building phases. In Phase I,

sellers build credibility by not deviating even though theyhave a short-run incentive to

do so. The situation is reversed in Phase II, where buyers build credibility (and reward

sellers for not deviating in Phase I), by not playingBL even though they have a short-run
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incentive to do so. A deviation by a seller in Phase I is not punished in the seller’s trust-

building phase, but is punished as soon as the phase is over. Similarly, if a buyer deviates

in her trust-building phase, she effectively faces punishment once the trust-building phase

is over. Unlike the results for the PD, where the equilibria are based on trigger strategies,

here we have delayed trigger strategies. In Phase III, deviations immediately trigger Nash

reversion.

Clearly, the payoff from the strategy profile described above will be arbitrarily close to

the efficient payoff(1, 1) for δ large enough. We now need to establish that the strategy pro-

file constitutes a sequential equilibrium of the repeated random matching gameΓM
δ (g, l, c)

whenM is large enough,̇T and T̈ are appropriately chosen, andδ is close enough to 1.

Below, we provide some intuition for the result by examiningthe incentives of players after

key histories. We present the formal proof in Section 4.

3.1 Intuition for the Main Result

The incentives on-path are quite straightforward. Any short-run profitable deviation will

eventually trigger Nash reversion that will spread and reduce continuation payoffs. Hence,

givenM , Ṫ , andT̈ , for sufficiently patient players, the future loss in continuation payoff

will outweigh any current gain from deviation.

Establishing sequential rationality of the strategies off-path is the main challenge. Be-

low, we consider some histories that may arise and argue why the strategies are optimal

after these histories. We start with two observations.

First, a seller who deviates to make a short-term gain at the beginning of the game will

find it optimal to revert to the Nash action immediately. A seller who deviates in period 1,

knows that, regardless of his choice of actions, from periodṪ on, at least one buyer will

start playing Nash and then, from periodṪ + T̈ on, contagion will spread exponentially

fast. Thus, his continuation payoff afterṪ + T̈ will be quite low regardless of what he

does in the remainder of Phase I. Therefore, ifṪ is large enough, no matter how patient

this seller is, the best thing he can do after deviating in period 1 is to play the Nash action

forever.4

Second, the optimal action of a player after he observes a triggering action depends on

the beliefs that he has about how the contagion has spread already. To see why, think of a

buyer who observes a triggering action during, say, Phase III. Is Nash reversion optimal for

4Clearly, the best thing he can do in Phase II is to play the Nashaction, as he was supposed to do on-path.
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her? If she believes that there are few people infected, thenplaying the Nash action may

not be optimal. With high probability she will face a seller playing QH and playing the

Nash action will entail a loss in that period. Moreover, she is likely to infect her opponent,

hastening the contagion and lowering her own continuation payoff. The situation is differ-

ent if she believes that almost everybody is infected (so, already playing Nash). Then, there

is a short-run gain by playing the Nash action in this period.Moreover, the effect on the

contagion process and the continuation payoff will be negligible. Since the optimal action

for a player after observing a triggering action depends on the beliefs he has about “how

spread the contagion is”, we need to define a system of beliefsand check if Nash reversion

is optimal after getting infected, given these beliefs.

We define beliefs as follows. If a player observes a triggering action, he thinks that

some seller deviated in period 1 and contagion has been spreading since then (if an unin-

fected player observes a non-triggering action, then he just thinks that the opponent made

a mistake and that no one is infected).

These beliefs, along with the fact that a deviant seller willplay the Nash action forever,

imply that any player who observes a triggering action thinks that, since contagion has been

spreading from the start of the game, almost everybody must have got infected by the end

of Phase I. This makes Nash reversion optimal for him after the end of Phase I. To gain

some insight, consider the following histories.

• Suppose I am a buyer who gets infected in Phase I.I think that a seller deviated

in the first period and that he will continue infecting buyersthroughout Phase I. IfM

is large, in each of the remaining periods of Phase I, the probability of meeting the

same seller again is low; so I prefer to playQH during Phase I (since other sellers

are playingQH). Yet, if Ṫ is large enough, once Phase I is over I will think that,

with high probability, every buyer is already infected. Nash reversion thereafter is

optimal.

It may be the case that after I get infected, I observeQL in most (possibly all) periods

of Phase I. Then, I will think that I met the deviant seller repeatedly, and so not all

buyers are infected. However, it turns out that ifT̈ is large enough I will still revert

to Nash play. Since I expect my continuation payoff to drop after Ṫ + T̈ anyway, for

T̈ large enough I prefer to play the myopic best response duringPhase II, to make

some short-term gains (similar to the argument made for the best reply of a seller

who deviates in period 1).
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• Suppose I am a buyer who facesQH in Phase II or a seller who facesBL in

Phase I.(Non-triggering actions) Since such actions are never profitable (on-path or

off-path), after observing such an action I will think it wasa mistake and that no one

is infected. Then, it is optimal to ignore it. The deviating player knows this, and so

it is also optimal for him to ignore it.

• Suppose I am a player who gets infected shortly after periodṪ + T̈ or a seller

who gets infected in Phase II.I know that contagion has been spreading since the

first period. However, the fact that I was uninfected so far indicates that possibly not

so many people were infected. We show that ifṪ is large enough anḋT ≫ T̈ , I will

still think that, with very high probability, I was just lucky not to have been infected

so far, but that everybody is infected now. This makes Nash reversion optimal.

• Suppose I get infected late in the game, at period̄t ≫ Ṫ + T̈ . If t̄ ≫ Ṫ + T̈ ,

we can not rely any more on how largėT is to characterize my beliefs. I can no

longer assign high probability to the event that everybody is infected now, and yet I

was uninfected so far. However, for this and other related histories late in the game,

it turns out that I still believe that “enough” people are infected and already playing

the Nash action, so that playing the Nash action is also optimal for me.

3.2 Choosing
¯
M , T̈ , Ṫ , and

¯
δ

It is useful to clarify how the different parameters are chosen to construct the equilibrium.

First, given a game, we find
¯
M so that i) a buyer who is infected in Phase I does not revert

to the Nash action before Phase II and ii) players who are infected very late in the game

believe that almost everybody is infected. Then, we chooseT̈ so that, in Phase II, any

infected buyer will find it optimal to revert the Nash action (even if she observedQL in all

periods of Phase I). Then, we pick̇T , with Ṫ ≫ T̈ , so that the players infected in Phase II

or early in Phase III believe that almost everybody is infected. FurtherṪ must be large

enough so that a seller who deviates in period 1 plays the Nashaction ever after. Finally,

we pick
¯
δ large enough so that players do not deviate on the equilibrium path5.

The role of the discount factorδ requires further explanation. Clearly, a highδ deters

players from deviating from cooperation. However, a highδ also makes players want to

slow down the contagion. Then why is it that even extremely patient players are willing to

5Note that
¯
δ must also be large enough so that the payoff achieved in equilibrium is close enough to(1, 1).
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spread the contagion after getting infected? A key observation is the following. Suppose

M is fixed and consider a perfectly patient player (δ = 1). Once this player gets infected he

knows that, at some point, the contagion will start spreading exponentially and the expected

payoffs in future stages will converge to0 exponentially fast;i.e., because of the contagion

process this player acts as if he were indeed impatient. Put differently, the undiscounted

sum of future payoffs is bounded and so is the gain any player can make by slowing down

the contagion once it has started. Think of an infected player who is thinking whether to

revert to the Nash action or not when the strategy asks to do so. In our construction, two

things can happen. First, this player believes that so many people are already infected that,

regardless of his action, his continuation payoff is already guaranteed to be very low. In this

case, he is willing to play the Nash action and at least avoid ashort-run loss. Second, if this

player does not believe that many people are infected, then he still knows that in Phase III

his continuation payoff will drop exponentially fast and, in our construction, there will

be enough periods in the immediate future when playing the Nash action will give him a

short-run gain. In this case, he is willing to play the Nash, as the immediate short-run gain

outweighs the future loss in continuation payoff.

In the next section, we formalize the intuition just presented. Some readers may prefer

to skip the formal proof and go to Section 5, where we discuss the generality and robustness

of our main result.

4 Optimality of the Equilibrium Strategies

4.1 Incentives on-path

The incentives on-path are relatively straightforward, and so we omit the formal proof. The

main idea is that if players are sufficiently patient, on-path deviations can be deterred by

the threat of eventual Nash reversion. It is easy to see that,if Ṫ is large enough, the most

“profitable” on-path deviation is that of a seller in period 1. GivenM , Ṫ andT̈ , the discount

factor
¯
δ can be chosen close enough to1 to deter sellers from such deviations.

4.2 System of beliefs

We make the following assumptions on the system of beliefs ofplayers. Beliefs are updated

as usual using Bayes rule.
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i) Assumption1: If a player observes a triggering action, then this player believes that

some seller deviated in the first period of the game, and afterthat, play has proceeded

as prescribed by the strategies.

This requirement on beliefs may seem too extreme. However, the essential assump-

tion is that players regard earlier deviations as more likely. Please refer to Section 5.4

for a detailed discussion on this point.

ii) Assumption 2: If a player observes a history that is not consistent with theabove

beliefs (erroneous history), he will think that some player in the other community

has made a mistake in a match where they faced each other; indeed, this player will

think that there have been as many mistakes by the players in the other community

as needed to explain the history at hand.6 Erroneous histories include the following:

• A player (infected or not) who observes a non-triggering action.

• A player who, after being certain that all the players in the other community are

infected, faces an opponent who does not play the Nash action(this can only

happen in Phase III).

We refer the reader to the Appendix for the proof of the consistency of these beliefs.

4.2.1 Modeling Beliefs with Contagion Matrices

So far, we have not formally described the structure of a player’s beliefs. The payoff rele-

vant feature of a player’s beliefs is the number of people he believes is currently infected.

Accordingly, we let a vectorxt ∈ R
M denote the beliefs of playeri about the number of

infected people in the other community at the end of periodt, wherext
k denotes the prob-

ability he assigns to exactlyk people being infected in the other community. To illustrate,

when playeri observes the first triggering action, Assumption1 impliesx1 = (1, 0, . . . , 0).

In some abuse of notation, when it is known that a player assigns 0 probability to more

thank opponents being infected, we work withxt ∈ R
k. We say a beliefxt ∈ R

k first-

order stochastically dominatesa beliefyt if xt assigns higher probability to more people

being infected;i.e., for eachl ∈ {1, . . . , k},
∑k

i=l x
t
i ≥

∑k

i=l y
t
i . Let It denote the random

6For the formation of a player’s beliefs after erroneous histories, we assume that mistakes are infinitely
less likely than and independent from the event that a sellerdeviated in period 1. Hence, if a player observes
an erroneous history, he will still think that a seller deviated in period 1 and moreover other players have
made mistakes.
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variable representing the number of infected people in the other community at the end of

periodt. Let kt denote the event “k people in the other community are infected by the end

of periodt”, i.e., kt andIt = k denote the same event.

As we will see below, the beliefs of players after different histories evolve according

to simple Markov processes, and so can be studied using an appropriate transition matrix

and an initial belief. We define below a useful class of matrices: contagion matrices.

Given a population sizeM , a contagion matrixC is anM × M matrix that represents the

transitions between beliefs after a given history. The element cij of a contagion matrix

C denotes the probability that the state “i rivals infected” transitions to the state “j rivals

infected”. Formally, if we letMk denote the set ofk× k matrices with real entries, we say

that a matrixC ∈ Mk is a contagion matrix if it has the following properties:

i) All the entries ofC belong to[0, 1] (represent probabilities).

ii) C is upper triangular (being infected is irreversible).

iii) All diagonal entries are strictly positive (with some probability, infected people meet

other infected people and contagion does not spread in the current period).

iv) For eachi > 1, ci−1,i is strictly positive (unless everybody is already infected, with

some probability, exactly one person gets infected in the given community in the

current period).

A useful technical property is that, since contagion matrices are upper triangular, their

eigenvalues correspond to the diagonal entries. Givenx ∈ R
k, let ‖x‖ :=

∑

i∈{1,...,k} xi.

We will often be interested in the limit behavior ofxCt

‖xCt‖ , whereC is a contagion matrix and

x is a probability vector. Given a matrixC, let Cl⌋ denote the matrix derived by removing

the lastl rows and columns fromC. Similarly, C⌈k is the matrix derived by removing the

first k rows and columns andC⌈k,l⌋ by doing both operations simultaneously.

4.3 Incentives off-path

In order to prove sequential rationality we need to examine incentives of players after all

possible off-path histories, given the beliefs. This is theheart of the proof and the exposition

proceeds as follows. We classify all possible off-path histories of a playeri based on when

playeri observed off-path behavior for the first time.
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• Given the beliefs described above, it will be important to first characterize the best

response of a seller who deviates in the first period of the game.

• Next, we consider histories where playeri observes a triggering action (gets infected)

for the first time in the Target Play Phase (Phase III).

• We then consider histories where playeri observes a triggering action for the first

time during one of the two Trust-Building Phases.

• Finally, we discuss non-triggering actions.

We need some extra notation. Denote at-period private history for a playeri by ht. At

any time period, we denote byg (good) the action an uninfected player would choose and

by b (bad) the action an infected player would choose. For example, if playeri observes a

t-period historyht followed by three periods of good behavior and then one period of bad

behavior, we represent this byhtgggb. In an abuse of notation, the history of a player is

written omitting his own actions. In most of the paper, we discuss beliefs from the point of

view of a fixed playeri, and so often refer to playeri in the first person. For example, from

i’s point of view,gt denotes the event “I observedg in periodt”. Similarly, for playeri, U t

denotes the event “I am uninfected at the end of periodt”.

4.3.1 Computing off-path beliefs

Since we work with off-path beliefs of players, it is useful to clarify at the outset, our

approach to computing beliefs. As an example, consider the following history. I am on-

path until periodt̄ ≫ Ṫ + T̈ , when I observe a triggering action followed by on-path

behavior at period̄t + 1, i.e., ht̄ = gg . . . gbg. It is easy to see that, after periodṪ + T̈ + 2,

the number of infected people will be the same in both communities. So it suffices to

compute beliefs about the number of people infected in the rival community. These beliefs

are represented byxt̄+1 ∈ R
M , wherext̄+1

k is the probability of exactlyk people being

infected after period̄t + 1, and must be computed using Baye’s rule and conditioning on

my private history. What is the information I have after history ht̄? I know a seller deviated

at period 1, sox1 = (1, 0, . . . , 0). I also know that, after any periodt < t̄, I was not infected

(U t). Moreover, since I got infected at periodt̄, at least one player in the rival community

got infected in the same period. Finally, since I faced an uninfected player at̄t + 1, at most

M − 2 people were infected after any periodt < t̄ (It ≤ M − 2).
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To computext̄+1 we compute a series of intermediate beliefsxt, for t < t̄ + 1. We

computex2 from x1 by conditioning onU2 andI2 ≤ M − 2, then we computex3 from

x2 and so on. Note that, to computex2, we do not use the information that “I did not

get infected at any period2 < t < t̄”. So, at eacht < t̄, xt represents my beliefs when

I condition on the fact that the contagion started at period 1and that no matching that

leads to more thanM − 2 people being infected could have been realized.7 Put differently,

at each period, I compute my beliefs by eliminating (assigning zero probability to) the

matchings I know could not have taken place. As we said above,at a given periodτ < t̄,

the information that “I did not get infected at any periodt, with τ < t < t̄” is not used. This

extra information is added period by period,i.e., only at periodt we add the information

coming from the fact that “I was not infected at periodt”. In Section A.2 in the Appendix

we show that this method of computingxt̄+1 generates the required beliefsi.e., my beliefs

at periodt̄ + 1 conditioning on the entire history I have observed. Now we are equipped to

check the optimality of the equilibrium strategies.

4.3.2 A seller deviates at beginning of the game

The strategies specify that a player who gets infected by deviating to a triggering action

himself will henceforth play his best response to the strategies of the other players. As we

argued in Section 3.1, it is easy to show that for a givenM , if Ṫ is large enough, a seller

who deviates in period 1 will find it optimal to play the Nash action (dominant action) for

the rest of the game. In particular, a seller who deviates att = 1 will play QL forever.

4.3.3 A player gets infected in Phase III

Case 1: Infection at the start of Phase III.Let hṪ+T̈+1 denote a history in which I am a

player who gets infected in perioḋT + T̈ + 1. The equilibrium strategies prescribe that I

switch to the Nash action forever. For this to be optimal, I must believe that enough players

in the other community are already infected.

In order to compute my beliefs, I need to know how the contagion spreads during

Phase I after a seller deviates in period 1. In Phase I, only one deviant seller is infecting buy-

ers. The contagion in this phase is a simple Markov process with state space{1, . . . , M},

where a state represents the number of infected buyers. The corresponding transition ma-

7The updating after period̄t is different, since I know that I was infected att̄ and that no more thanM −1
people could possibly be infected in the other community at the end of period̄t.
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trix is SM ∈ MM , where a statek transits tok +1 if the deviant seller meets an uninfected

buyer, which has probabilityM−k
M

. With the remaining probability,i.e., k
M

, statek remains

at statek. To save notation, we may omit the subscriptM in matrixSM when no confusion

arises. Letskl denote the probability that statei transitions to statej. We present matrix

SM below.

SM =














1
M

M−1
M

0 0 . . . 0

0 2
M

M−2
M

0 . . . 0
...

...
. . . . . .

...

0 0 0 M−2
M

2
M

0

0 0 0 0 M−1
M

1
M

0 0 0 0 0 1














.

The above transitions represent how the contagion was originally expected to spread.

To compute my current beliefs, I must also condition on the information I have about how

it has really spread. Consider any periodt < Ṫ . After observing historyhṪ+T̈+1 = g . . . gb,

I know that at the end of periodt + 1 at mostM − 1 buyers were infected and I was not

infected. Therefore, to computext+1, my intermediate beliefs about the number of buyers

infected at the end of periodt + 1 (i.e., aboutIt+1), I need to condition on the following:

i) My beliefs aboutIt: xt.

ii) I was uninfected at the end oft + 1: the eventU t+1 (this is irrelevant if I am a seller,

since no seller can get infected in Phase I).

iii) At most M − 1 buyers were infected by the end of periodt + 1: It+1 ≤ M − 1

(otherwise I could not have been uninfected at the start of Phase III).

Therefore, givenl < M , if I am a buyer, the probability that exactlyl buyers are

infected after periodt + 1, conditional on the above information, is given by:

P(lt+1 |xt ∩ U t+1 ∩ It+1 ≤ M − 1) =
P(lt+1 ∩ U t+1 ∩ It+1 ≤ M − 1 |xt)

P(U t+1 ∩ It+1 ≤ M − 1 |xt)

=
xt

l−1sl−1,l
M−l

M−l+1
+ xt

lsl,l
∑M−1

l=1

(
xt

l−1sl−1,l
M−l

M−l+1
+ xt

lsl,l

) .

The expression for a seller would be analogous, but without the M−l
M−l+1

factors. Notice

that we can express the transition fromxt to xt+1 using what we call theconditional tran-

sition matrix. Since we already know thatxt
M = xt+1

M = 0, we can just work inRM−1.
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Let C ∈ MM be defined, for each pairk, l ∈ {1, . . . , M − 1}, by ckl := skl
M−l
M−k

; with the

remaining entries being0.

Recall thatC1⌋ andS1⌋ denote the matrices obtained fromC andS by removing the

last row and the last column of each. So, the truncated matrixof conditional transitional

probabilitiesC1⌋ is as follows:

C1⌋ =












1
M

M−1
M

M−2
M−1

0 0 . . . 0

0 2
M

M−2
M

M−3
M−2

0 . . . 0
...

...
. . . . . .

...

0 0 0 0 M−2
M

2
M

1
2

0 0 0 0 0 M−1
M












.

Recall that my beliefs are such thatx1 = (1, . . . , 0), since the deviant seller infected

one buyer at period 1. Then, if I am a buyer,xt+1 can be computed as

xt+1 =
xt C1⌋

‖xt C1⌋‖
=

x1 Ct
1⌋

‖x1 Ct
1⌋‖

.

The expression for a seller would be analogous, withS1⌋ instead ofC1⌋. Hence, I can

compute my beliefs about the situation at the end of Phase I by

xṪ =







x1CṪ−1
1⌋

‖x1CṪ−1
1⌋

‖
if I am a buyer,

x1SṪ−1
1⌋

‖x1SṪ−1
1⌋

‖
if I am a seller.

Lemma 1. Fix M . Then,limṪ→∞ xṪ = (0, . . . , 0, 1).

The intuition for the above lemma is as follows. Note that thelargest diagonal entry in

the matrixC1⌋ (or S1⌋) is the last one. This means that the stateM − 1 is more stable than

any other state. Consequently, as more periods of contagionelapse in Phase I, stateM − 1

becomes more and more likely. The formal proof is a straightforward consequence of some

of the properties of contagion matrices (see Proposition A.1 in the Appendix).

Proposition 2. Fix T̈ andM . If I observe historyhṪ+T̈+1 = g . . . gb andṪ is large enough,

then it is sequentially rational for me to play the Nash action at periodṪ + T̈ + 2.
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Proof. Suppose I am a buyer. Since sellers always play the Nash action in Phase II, I cannot

learn anything from play in Phase II. By Lemma 1, ifṪ is large enough, I assign very high

probability toM − 1 buyers being infected at the end of Phase I. Then, at least as many

sellers were infected during Phase II. If exactlyM − 1 sellers were infected by the end

of Phase II, then the only uninfected seller must have got infected in periodṪ + T̈ + 1,

since in this period I was the only uninfected buyer and I met an infected seller. So I assign

arbitrarily high probability to all sellers being infectedby the end ofṪ + T̈ + 1, and hence

it is optimal to playBL.

Next, suppose I am a seller. In this case, the fact that no buyer infected me in Phase II

will make me update my beliefs about how contagion has spread. However, ifṪ is large

enough relative töT , even if I factor in the information that I was not infected inPhase II,

the probability I assign toM − 1 buyers being infected by the end of Phase I is arbitrarily

higher than the probability I assign tok buyers being infected for anyk < M − 1. By the

same argument as above, playing Nash is optimal.

Next, we consider those(Ṫ + T̈ + 1 + α)-period histories of the formhṪ+T̈+1+α =

g . . . gbg α. . . g, with 1 ≤ α ≤ M − 2, i.e., these are histories where I was infected at period

Ṫ + T̈ + 1 and then I observedα periods of good behavior while I was playing the Nash

action. For the sake of exposition, assume that I am a buyer (the arguments for a seller

are analogous). Why are these histories significant? Noticethat if I get infected in period

Ṫ + T̈ + 1, I can believe that all other buyers are infected. However, if after that, I observe

QH , I have to revise my beliefs, since it is not possible that allthe buyers were infected

after periodṪ + T̈ + 1. Can this alter my incentives to play the Nash action?

Supposeα = 1. After historyhṪ+T̈+2 = g . . . gbg, I know that at mostM − 2 buyers

were infected by the end of Phase I. Therefore, for eacht ≤ Ṫ , xt
M = xt

M−1 = 0. My

beliefs are no longer computed usingC1⌋, but rather withC2⌋. By a similar argument as

Lemma 1, we can show that nowxṪ ∈ R
M−2 converges to(0, 0, . . . , 1). In other words,

the stateM − 2 is the most stable and, foṙT large enough, I assign very high probability to

M − 2 buyers being infected at the end of Phase I. Consequently, atleast as many sellers

were infected during Phase II. This in turn implies (just as in Proposition 2) that I believe

that, with high probability, all players are infected by now(at t = Ṫ + T̈ + 2). To see why,

note that in the worst case, exactlyM − 2 sellers were infected during Phase II. In that

case, one of the uninfected sellers met an infected buyer at periodṪ + T̈ + 1 and I infected

the last one in the last period. Therefore, I assign very highprobability to everyone being
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infected by now, and it is optimal for me to play the Nash action. An analogous argument

holds for(Ṫ + T̈ + 1 + α)-period histories withα ∈ {1, . . . , M − 1}.

We need not check incentives for Nash reversion after histories where I observe more

thanM − 2 periods ofg after being infected. These are erroneous histories and cannot be

explained by a single deviation in period 1. Here, I will believe that there have been as

many mistakes by players as needed to be consistent with the observed history.

Finally, consider histories such that, after getting infected, I observe a sequence of

actions that includes bothg and b, i.e., histories starting withhṪ+T̈+1 = g . . . gb and in

which I have observedb in one of more periods after getting infected. After such histories,

I will assign higher probability to more people being infected compared to histories where

I only observedg after getting infected. Intuitively speaking, observingb reconfirms my

belief that the contagion is widely spread. It is again optimal for me to play the Nash action

after any such history.

We have thus shown that a player who observes a triggering action for the first time at

the start of Phase III will find it optimal to revert permanently to the Nash action.

Case 2: Infection late in Phase III.Next, suppose I get infected after observing history

ht̄+1 = g . . . gb, with t̄ ≫ Ṫ + T̈ . Now we need to study how the contagion spreads during

Phase III. As we noted earlier, from perioḋT + T̈ + 2 on, the same number of people is

infected in both communities. The contagion can again be studied as a Markov process with

state space{1, . . . , M}. In contrast to Phase I, all infected players spread the contagion in

Phase III. The new transition matrix iŝS ∈ MM . For each pairk, l ∈ {1, . . . , M}, if k > l

or l > 2k, ŝkl = 0; otherwise,i.e., if k ≤ l ≤ 2k, (see Figure 3)

ŝkl =

((
k

l−k

)(
M−k

l−k

)
(l − k)!

)2

(2k − l)!(M − l)!

M !
=

(k!)2((M − k)!)2

((l − k)!)2(2k − l)!(M − l)!M !
.

Consider anyt such thatṪ +T̈ < t < t̄. If I observe historyht̄+1 = g . . . gb, I know that

“at mostM −1 people could have been infected in the rival community at theend of period

t” (It+1 ≤ M − 1) and “I was not infected” (U t). As before, let̂xt be my intermediate

beliefs after periodt. We are interested in the beliefx̂t̄+1, but first we studŷxt̄ ast̄ → ∞.

Our limit results will not depend on the specific beliefs at the end of Phase II (as long as

x̂Ṫ+T̈+1
1 > 0, which is always true). Since, for eacht ≤ t̄, x̂t

M = 0, we can just work

with x̂t ∈ R
M−1. As before, we want to computeP(lt+1 |x̂t ∩ U t+1 ∩ It+1 ≤ M − 1) for
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Figure 3:Spread of Contagion in Phase III. There areM ! possible matchings. For statek to transit
to statel, exactly(l−k) infected people from each community must meet(l−k) uninfected people
from the other community. The number of ways of choosing exactly (l− k) buyers fromk infected
ones who will spread the contagion is

(
k

l−k

)
. The number of ways of choosing the corresponding

(l−k) uninfected sellers who will get infected is
(
M−k
l−k

)
, and the number of ways in which these sets

of (l − k) people can be matched is the total number of permutations ofl − k people,i.e., (l − k)!.
Analogously, we choose the(l − k) infected sellers who will be matched to(l − k) uninfected
buyers. The number of ways in which the remaining infected buyers and sellers get matched to each
other is(2k − l)!, and the uninfected ones is is(M − l)!.

l ∈ {1, . . . , M − 1}.

P(lt+1 |x̂t ∩ U t+1 ∩ It+1 ≤ M − 1) =
P(lt+1 ∩ U t+1 ∩ It+1 ≤ M − 1) |x̂t)

P(U t+1 ∩ It+1 ≤ M − 1) |x̂t)

=

∑

k∈{1,...,M} xt
kŝkl

M−l
M−k

∑

l∈{1,...,M−2}
(∑

k∈{1,...,M} xt
kŝkl

M−l
M−k

) .

These conditional transition probabilities can be expressed in matrix form. LetĈ ∈
MM be defined, for each pairk, l ∈ {1, . . . , M −1}, by ĉkl := ŝkl

M−l
M−k

; with the remaining

entries being0. Then, my intermediate beliefs att + 1 are given by

x̂t+1 =
x̂t Ĉ1⌋

‖x̂t Ĉ1⌋‖
.

We show next that a result similar to Lemma 1 holds.

Lemma 2. Fix Ṫ ∈ N, T̈ ∈ N, andM ∈ N. Then,limt̄→∞ x̂t̄ = (0, 0, . . . , 0, 1) ∈ R
M−1.

The above lemma follows from properties of contagion matrices (see Proposition A.1

in the Appendix). We present now an informal argument. Note that the largest diagonal
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entries of the matrixĈ1⌋ are the first and last ones (ĉ11 and ĉM−1,M−1), which are equal.

Unlike in the Phase I transition matrix, stateM − 1 is not the unique most stable state.

Here, states1 andM − 1 are equally stable, and more stable than any other state. Whydo

beliefs then converge to(0, 0, . . . , 0, 1)? In each period, many states transit toM − 1 with

positive probability, while no state transits to state 1, and so the ratio
x̂t

M−1

x̂t
1

goes to∞ ast

increases. So, late in the game, I assign arbitrarily high probability to stateM − 1.

Proposition 3. Fix Ṫ ∈ N, T̈ ∈ N, andM ∈ N. If I observe historyht̄+1 = g . . . gb and

t̄ is large enough, then it is sequentially rational for me to play the Nash action at period

t̄ + 2.

Proof. By Lemma 2, if t̄ is large enough,̂xt̄ is such that I assign very high probability

to M − 1 players in the other community being infected by the end of period t̄. Now, to

computêxt̄+1 from x̂t̄, I add the information that I got infected att̄ + 1 and hence, the only

uninfected person in the other community got infected too. So, now I assign very high

probability to everyone being infected. Then, Nash reversion is optimal.

Suppose now that I observeht̄+2 = g . . . gbg and that I played the Nash action at period

t̄ + 2. Then, I will know that less than(M − 1) people were infected at the end of period

t̄ since, otherwise, I could not have facedg in period t̄ + 2. In other words, I have to

recompute my beliefs using the information that, for eacht ≤ t̄, It ≤ M − 2. I should

now use the truncated transition matrixĈ2⌋. Since, for each anyt ≤ t̄, x̂t
M = x̂t

M−1 = 0, to

obtainx̂t̄ we just work withx̂t ∈ R
M−2. Now we have

x̂t+1 =
x̂t Ĉ2⌋

‖x̂t Ĉ2⌋‖
.

As before, we will study the limit behavior of̂xt̄ ast̄ goes to∞, and then usêxt̄ to compute

my beliefs at̄t + 2. First, we establish that̂xt̄ indeed converges (again, see Proposition A.1

in the Appendix).

Lemma 3. For eachṪ ∈ N, eachT̈ ∈ N, and eachM ∈ N, limt̄→∞ x̂t̄ = x̄, wherex̄ is

the unique left eigenvector associated with the largest eigenvalue ofĈ2⌋ such that‖x̄‖ = 1.

That is,x̄Ĉ2⌋ = x̄
M

.

Note that in matrixĈ2⌋, the largest diagonal entry is the first one. This implies that a

result similar to Lemma 1 does not hold any more,i.e., x̄ 6= (0, . . . , 0, 1). However, we

21



show below that I will still believe that “enough” people areinfected with “high enough

probability”.

Lemma 4. Let x̄ = limt̄→∞ x̂t̄, wherex̂t̄ denotes a player’s beliefs at the end of periodt̄

after he observes historyht̄+2 = g . . . gbg. Let r ∈ (0, 1). Then, for eachε > 0, there is

¯
M ∈ N such that, for eachM ≥

¯
M ,

M−2∑

j=⌈rM⌉
x̄j > 1 − ε,

where⌈z⌉ is the ceiling function and is defined as the smallest integernot smaller thanz.

Indeed, for eachm ∈ N, there is
¯
M ∈ N such that, for eachM ≥

¯
M ,

M−2∑

j=⌈rM⌉
x̄j > 1 − 1

Mm
.

This result can be interpreted as follows. Think ofr as a proportion of people, say0.9.

Provided the population size is large enough, after observing historyht̄+2 = g . . . gbg, my

limiting belief x̄ will be such that I will assign probability at least(1− ε) to at least90% of

the population being already infected. Now we can chooser close enough to1 andε small

enough and then find anM ∈ N large enough so that I believe that the contagion is spread

enough that playing Nash action is optimal.

Figure 4 below represents the probabilities
∑M−2

j=⌈rM⌉ x̄i for different values ofr andM .

In particular, it shows that they go to one very fast withM . From the rest of the results

in this section it will follow that, after any history in which I have been infected late in

Phase III, my beliefs will be that the contagion is at least asspread as̄x indicates. Then,

take for instanceM = 20. Now x̄ is such that at least90% of the people are infected with

probability at least0.75; which should be enough to induce the right incentives for most

games. So, quite generally, the incentives will hold even for fairly small population sizes.8

In order to prove Lemma 4, we need to study more carefully the transitions between

states and their probabilities. The main idea of the proof isas follows. There are two

opposing forces that affect how my beliefs evolve after I observe g . . . gbg. First, each

observation ofg is a signal that not too many people are infected, making me step back

8The non-monotonicity in the graphs in Figure 4 may be surprising. To the best of our understanding, this
can be essentially attributed to the fact that the states that are powers of 2 tend to be more likely and their
distribution within the topM − ⌈rM⌉ states varies in a non-monotone way.
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Figure 4: Illustration of Lemma 4.

in my beliefs and assign higher weight to lower states. On theother hand, since I believe

that the contagion started att = 1 and that it has been spreading exponentially during

Phase III, every elapsed period makes me assign more weight to higher states (believe that

more people are infected). What we need to do is to compare themagnitudes of these two

effects. Two main observations drive the proof. First, eachtime I observeg, my beliefs get

updated with more weight assigned to lower states and, roughly speaking, this step back in

beliefs turns out to be of the order ofM . Second, we identify the the most likely transition

from any given statek, sayk′, and it turns out that the statek′ is about
√

M times as likely

as the statek. Similarly, if we consider the most likely transition fromk′, sayk′′, we get

thatk′′ is
√

M times as likely as the statek′. Hence, given a proportion of peopler ∈ (0, 1),

it is easy to see that, ifM is large enough, for each statek < rM , we can find another state

k̄ that is at leastM2 times more likely than statek. So the second effect on the beliefs is of

an order ofM2, which dominates the first one.

We need some preliminaries before we prove Lemma 4. Recall that

(ĉ2⌋)k,k+j = ŝk,k+j

M − k

M − k − j
=

(k!)2((M − k)!)2

(j!)2(k − j)!(M − k − j)!M !

M − k − j

M − k
.

Given a statek ∈ {1, . . . , M − 2}, consider the transition fromk to state tr(k) := k +

⌊k(M−k)
M

⌋, where⌊z⌋ is the floor function; defined as the largest integer not larger thanz. It

turns out that, for largeM , this is a good approximation of the most likely transition from

statek.

For analytical ease, we temporarily assume that there is a continuum of states,i.e.,

we let the set of states be the interval[0, M ]. We analyze the transitions between states

in this environment and then show that the results also hold in the finite setting. In the
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continuous setting, a statez ∈ [0, M ], can be representedz asrM ; wherer = z/M can

be interpreted as the proportion of infected people at statez. Let α ∈ R. We define the

functionfα : [0, 1] → R as

fα(r) :=
rM(M − rM)

M
+ α = (r − r2)M + α.

Note thatfα is continuous and further thatrM + f0(r) would just be the extension of the

function tr(k) to the continuous case; we want to know how likely it is the transition from

stater to r + f0(r). Also, we define the functiong : [0, 1] → [0, 1] as

g(r) := 2r − r2.

The functiong is continuous and strictly increasing. Note that, givenr ∈ [0, 1], g(r)

represents the proportion of infected people if, at staterM , f0(r) people get infected; just

note thatrM + f0(r) = rM + (r − r2)M = (2r − r2)M . Let g2(r) := g(g(r)) and define

analogously any other power ofg. Hence, for eachr ∈ [0, 1], gn(r) represents the fraction

of people infected aftern steps starting atrM when transitions are made according tof0(·).

Claim 1. LetM ∈ N anda, b ∈ [0, 1], with a > b > 0. Then,aM + f0(a) > bM + f0(b).

Proof. Note thataM + f0(a) − bM − f0(b) = aM + aM(M−aM)
M

− bM − bM(M−bM)
M

=

2aM − a2M − 2bM + b2M = (g(a) − g(b))M . Sinceg(·) is strictly increasing in(0, 1),

the result follows.

Now we define one last function functionhM
α : (0, 1) → (0,∞) as

hM
α (r) :=

(rM !)2((M − rM)!)2

(fα(r)!)2(rM − fα(r))!(M − rM − fα(r))!M !

M − rM − fα(r)

M − rM
.

The above function represents the continuous version of thetransitions given by the matrix

Ĉ2⌋. In particular, givenα ∈ R andr ∈ [0, 1] the functionhM
α (r) represents the conditional

probability of transition from staterM to staterM + fα(r). Note that, in some abuse of

notation, we apply the factorial function to non-integer real numbers. In such cases, the

factorial can be interpreted as the corresponding Gamma function, i.e., a! = Γ(a + 1).

Claim 2. Letα ∈ R andr ∈ (0, 1). Then,limM→∞ MhM
α (r) = ∞. More precisely,

lim
M→∞

MhM
α (r)√
M

=
1

r
√

2π
.
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Proof. We prove the above claim in two steps.Step 1: α = 0. We know from Stirling’s

formula thatlimn→∞(e−nnn+ 1
2

√
2π)/n! = 1. Hence, givenr ∈ (0, 1), to studyhM

α (r) in

the limit, we can use the approximation thatn! = e−nnn+ 1
2

√
2π. Making the appropriate

substitution and simplifying, we get the following:

MhM
0 (r) = M

((rM)!)2(((1 − r)M)!)2

M !(r2M)!(((r − r2)M)!)2((1 − r)2M)!
(1 − r)

=
M(rM)1+2rM ((1 − r)M)1+2(1−r)M (1 − r)√

2πM
1
2
+M((1 − r)2M)1+2(1−r)2M((r − r2)M)

1
2
+(r−r2)M (r2M)

1
2
+r2M

=

√
M

r
√

2π
.

Step 2: Letα ∈ R and r ∈ (0, 1). Now,

hM
0 (r)

hM
α (r)

=
(r2M − α)!(((r − r2)M + α)!)2((1 − r)2M − α)!

(r2M)!(((r − r2)M)!)2((1 − r)2M)!

(1 − r)2M

(1 − r)2M − α
.

Applying again Stirling’s formula we get

(r2M−α)
1
2 +r2M−α

(r2M)
1
2 +r2M

((r−r2)M+α)1+2(r−r2)M+2α

((r−r2)M)1+2(r−r2)M

((1−r)2M−α)
1
2+(1−r)2M−α

((1−r)2M)
1
2 +(1−r)2M

(1−r)2M

(1−r)2M−α
. (1)

To compute the limit of the above expression asM → ∞, we analyze the four fractions

above separately. Clearly,((1− r)2M)/((1− r)2M −α) → 1 asM → ∞. So, we restrict

attention to the first three fractions. Take the first one:

(r2M − α)
1
2
+r2M−α

(r2M)
1
2
+r2M

= (1 − α

r2M
)

1
2 · (1 − α

r2M
)r2M · (r2M − α)−α = A1 · A2 · A3,

wherelimM→∞ A1 = 1 andlimM→∞ A2 = e−α. Similarly, the second fraction decomposes

asB1 ·B2 ·B3, wherelimM→∞ B1 = 1, limM→∞ B2 = e2α andB3 = ((r − r2)M + α)2α.

Finally, the third fraction can be decomposed asC1 · C2 · C3, where limM→∞ C1 = 1,

limM→∞ C2 = e−α andC3 = ((1 − r)2M − α)−α. Therefore, the limit of the above

expression reduces to

lim
M→∞

(1) = lim
M→∞

( ((r − r2)M + α)2

(r2M − α)((1 − r)2M − α)

)α

= 1.

We are now ready to prove Lemma 4.
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Proof of Lemma 4.Fix r ∈ (0, 1) andε > 0. We show that there is
¯
M such that, for each

M ≥
¯
M and each statek < ⌈rM⌉, there is a statēk ∈ {⌈rM⌉, . . . , M − 2} such that

x̄k̄ > M2x̄k. We show this first for statek0 = ⌈rM⌉ − 1. Consider the staterM and

let r̄ := g5(r). Recall that̄r is the state reached (proportion of people that are infected)

from initial staterM after 5 steps according to the functionf0. Recall that functionsf0

andg are such that,r < r̄ < 1. Moreover, supposeM is large so that̄rM ≤ M − 2.

Consider now the statek0 and letk̄ be the number of infected people after giving 5 steps

according to function tr(·). Clearly, for each of these steps, there isαj ∈ (−1, 0], with

j ∈ {1, . . . , 5}, such that the step corresponds with that of functionfαj
. By Claim 1, since

k0 < rM , k̄ < M − 2. Moreover, it is trivial to see that̄k > ⌈rM⌉. Let k1 be the

state that is reached after the first step fromk0 according to function tr(·). By Lemma 3,

x̄ = Mx̄Ĉ2⌋. Then,x̄k1 = M
∑M−2

k=1 x̄k(Ĉ2⌋)kk1 > Mx̄k0(Ĉ2⌋)k0k1 = x̄k0MhM
α1

(r), which,

if M is large enough, can be approximated byx̄k0

√
M

r
√

2π
. Repeating the same argument

for the other intermediate states that are reached in each ofthe five steps, we get that,

if M is large enough,̄xk̄ > M2x̄k0 . The proof for an arbitrary statek < ⌈rM⌉ − 1 is

very similar, with the only difference that more steps mightbe needed to get to a state

k̄ ∈ {⌈rM⌉, . . . , M − 2}; yet, the extra number of steps makes the difference betweenx̄k

andx̄k̄ even bigger.9

Let k̄ ∈ {⌈rM⌉, . . . , M−2} be a state such thatx̄k̄ > M2 max{x̄k : k ∈ {1, . . . , ⌈rM⌉−
1}. Then,

∑⌈rM⌉−1
k=1 x̄k < rM

x̄k̄

M2 < 1
M

. Therefore, ifM is big enough,1
M

< ε and we get

that
∑M−2

i=⌈rM⌉ xi > 1 − ε.

The second part of the statement is now straightforward. Just taker̄ := g2m+3(r) and

repeat the argument above.

Proposition 4. Fix a gameΓ(g, l, c). Fix Ṫ ∈ N and T̈ ∈ N and lett̄ ≫ T̈ + Ṫ . Suppose

that I observe historyht̄+2 = g . . . gbg. Then, ifM is large enough, it is sequentially

rational for me to play the Nash action at periodt̄ + 3.

Proof. First, consider my beliefŝxt̄ computed conditioning only the information that at

mostM −2 people were infected after periodt̄ and that I was uninfected until period̄t+1.

From Lemma 3, if̄t is large enough,̂xt̄ is very close tōx. In particular, I believe that, with

probability at least1 − ε, at leastrM people are infected. We can usex̂t̄ to compute my

beliefs at period̄t + 2.

9It is worth noting that we can do this argument uniformly for the different states and the corresponding
α’s because we know that all of them lie inside[−1, 0], a bounded interval; that is, we can take oneM big
enough so as to ensure that we can use the approximation givenby Lemma 2 for anyα in [−1, 0].
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• After period t̄ + 1: I computex̂t̄+1 by updatingx̂t̄, conditioning oni) I observedb

in periodt̄ + 1 andii) at mostM − 1 people were infected after̄t + 1 (I observedg

at t̄ + 2). Now, comparêxt̄+1 with x̃t̄+1, computed from̂xt̄ by conditioning instead

on i) I observedg and ii) at mostM − 2 people are infected. Clearly,x̂t̄+1 first order

stochastically dominates̃xt̄+1, in the sense of placing higher probability on more

people being infected. Now, recall that the beliefsx̂t̄ are very close tōx and, by

definition, the beliefs̃xt̄+2 are even closer tōx.

• After period t̄ + 2: I computext̄+2 based onxt̄+1 and conditioning on i) I observed

g, ii) I infected my current opponent (I played the Nash actionat t̄ + 2), and iii) at

mostM have been infected aftert̄ + 2. Again, this updating leads to beliefs that first

order stochastically dominate beliefs we would obtain if weinstead conditioned on

i) I observedg and ii) at mostM − 2 people were infected after̄t + 2. Again, the

beliefsx̃t̄+2 would be very close tōx.

Hence, if it is optimal for me to play the Nash action when my beliefs are given bȳx, it is

also optimal to do so after observing the historyht̄+2 = g . . . gbg (provided that̄t is large

enough). But Lemma 4 ensures that, ifM is large enough, the beliefs̄x can be made as

extreme as desired (in the sense of many people being infected), ensuring that the players

have the right incentives.

As we did in Case 1, histories of the formht̄+1+α = g . . . gbg α. . . g also have to be

accounted for. The key idea for the incentives after these histories is the following. Ifα is

small, then I will still think that a lot of players were already infected when I got infected;

the argument being similar to the one in Proposition 4. On theother hand, ifα is large,

I may learn that there were not so many players infected when Igot infected. However,

the number of players I my have infected since then, togetherwith the exponential spread

of the contagion, will be enough to convince me that, at the present period, contagion is

widely spread anyway.

To formalize the above intuition, we need the following strengthening of Lemma 4. We

omit the proof, as it involves a minor elaboration of the arguments in Lemma 4.

Lemma 5. Let r ∈ (0, 1). Then, for eachε > 0, there arer̂ ∈ (r, 1) and
¯
M ∈ N such that,

for eachM ≥
¯
M ,

∑⌊M−r̂M⌋
j=⌈rM⌉ xj

1 −
∑M

j=⌊M−r̂M⌋+1 xj

> 1 − ε
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Indeed, for eachm ∈ N, there is
¯
M ∈ N such that, for eachM ≥

¯
M ,

∑⌊M−r̂M⌋
j=⌈rM⌉ xj

1 −
∑M

j=⌊M−r̂M⌋+1 xj

> 1 − 1

Mm
.

Proposition 5. Fix a gameΓ(g, l, c). Fix Ṫ ∈ N andT̈ ∈ N and lett̄ ≫ T̈ + Ṫ . Letα ≥ 1.

Suppose that I observe historyht̄+1+α = g . . . gbg α. . . g. Then, ifM is large enough, it is

sequentially rational for me to play the Nash action at period t̄ + 2 + α.

Proof. The idea of the proof is similar to that of Proposition 4. First, I know that at most

M − α − 1 people were infected after period̄t. Hence, the new limit vector̃x ∈ R
M−α−1

must be computed using matrix̂C(α+1)⌋. However, if we definey := (x̄1, . . . , x̄M−α−1), it

is easy to see that̃x = y

‖y‖ .

Second, consider the following scenario. Suppose that, late in Phase III, an infected

player believes that exactly two people were infected in each community, and then he

played the Nash action for a series of periods while observing only g. In each period

he infected a new person and he knows that the contagion was spreading exponentially.

Clearly, once the number of periods during which this playerhas been infecting people

is large enough, Nash reversion would be the best reply, irrespective of what this player

observes in the meantime (because the player would have infected enough people himself).

Let φ(M) denote this number of periods. Since the contagion spreads exponentially, the

thresholdφ(M) is some logarithmic function ofM . Hence, for eacĥr ∈ (0, 1), there isM̂

such that forM > M̂ , r̂M > φ(M). Now, givenε > 0, we can findr̂ and
¯
M such that

Lemma 5 holds. For the rest of the proof we work withM > max{M̂,
¯
M}. There are two

cases.

α < φ(M): In this case, we can repeat the arguments in the proof of Proposition 4

to show that my beliefŝxt̄+1+α first order stochastically dominate those given byx̃. Since

r̂M > φ(M), ⌊M − r̂M⌋ < M − φ(M) and we can rely on Lemma 5 to get the desired

result.

α ≥ φ(M): In this case I played the Nash action forα periods. By definition of

φ(M), playing Nash is the unique best reply after observinght̄+1+α.

Finally, we consider histories in which after getting infected, I observe actions that in-

clude bothg andb, i.e., histories starting withht̄+1 = g . . . gb and in which I have observed

b in one or more periods after getting infected. The reasoningis the same as Case 1. After
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such histories, I will assign higher probability to more people being infected compared to

histories where I only observedg after getting infected.

Case 3: Infection in other periods of Phase III (“Monotonicity” of Beliefs). We already

know that when a player is infected early in Phase III, he thinks that he was the last player

in being infected and that everybody is infected. Also, although a player infected late in

Phase III may not think that he was the last one, he will still think that enough players are

already infected (for him to be sequentially rational to play the Nash action), with this limit

belief being given bȳx. In the result below we show that the belief of a player infected

not very late in Phase III will be somewhere in between. The earlier a player gets infected

in Phase III, the closer his belief will be to(0, . . . , 0, 1) and, the later he gets infected, the

closer his belief will be tōx.

Proposition 6. Fix a gameΓ(g, l, c). Fix T̈ ∈ N. There is
¯
M ∈ N such that, for each

M >
¯
M , if Ṫ is large enough, then it is sequentially rational for me to play the Nash

action after any history in which I get infected in Phase III.

Proof. In Cases 1 and 2 we showed that if I get infected at the start of Phase III (atṪ+T̈+1)

or late in Phase III (at̄t ≫ Ṫ + T̈ ), I will switch to the Nash action. What remains to be

shown is that the same is true if I get infected at some intermediate period in Phase III. We

prove this for histories in Phase III of the formht̃+2 = g . . . gbg. The proof can be extended

to include other histories just as in Cases 1 and 2. Recall that x̄ denotes the limit belief

whent̃ goes to infinity.

We want to compute my belief̂xt̃+2 after historyht̃+2 = g . . . gbg. We first compute

intermediate belief̂xt, for t ≤ t̃. Take
¯
M such that Proposition 4 holds for allM >

¯
M .

During Phase I, beliefs are computed using matrixC2⌋, and from Phase III on, matrix

Ĉ2⌋ is used. We know (from Case 1) that forṪ large enough,̂xṪ+T̈ ∈ R
M−1 is close to

(0, . . . , 0, 1). Moreover, by takingṪ large enough, we also get thatx̂Ṫ+T̈+1
k ≫ x̂Ṫ+T̈+1

k−1 ≫
. . . ≫ x̂Ṫ+T̈+1

1 > 0 and, for eachi > j, x̂Ṫ+T̈+1
i /x̂Ṫ+T̈+1

j > x̄i/x̄j . Using the properties of

the contagion matrix̂C2⌋, we can show that if we start Phase III with such a beliefx̂Ṫ+T̈+1

we also get that, for eachi > j, x̂t̃
i/x̂

t̃
j > x̄i/x̄j (see Proposition A.2 in the Appendix).

This means also that̂xt̃ first order stochastically dominatesx̄, in the sense of placing higher

probability on more people being infected. Now, my beliefs need to be updated from̂xt̃

to x̂t̃+1 and then from̂xt̃+1 to x̂t̃+2. We can use similar arguments as in Proposition 4 to

show thatx̂t̃+2 first order stochastically dominatesx̄. In other words,̂xt̃+2 assigns higher

probability to more people being infected thanx̄. Hence, if it is sequentially rational for
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me to play the Nash action when my beliefs arex̄, it is also sequentially rational to do so

when my belief iŝxt̃+2.

Hence, we have established that if a player observes a triggering action any time during

Phase III, it is sequentially rational for him to revert to the Nash action.

4.3.4 A player observes a triggering action in Phases I or II

It remains to check the incentives for a player who is infected during the initial Trust-

Building Phases. We argued informally in Section 3.1 why players would find it optimal to

switch to the Nash action. We omit the formal proofs, as the arguments are very similar to

those used for Case 1 above.

4.3.5 A player observes a non-triggering action

An uninfected player who observes a non-triggering action knows that his opponent will

not get infected, and will continue to play as if on-path. Since he knows that contagion will

not start, clearly, the best thing to do is also to ignore thisoff-path behavior.

4.4 Choosing
¯
M , T̈ , Ṫ , and

¯
δ

We have shown that if
¯
M , T̈ , Ṫ , and

¯
δ are chosen appropriately, the prescribed strategies

are sequentially rational. We show now that, given any product-choice gameΓ(g, l, c), it is

possible to choose these parameters to satisfy all incentive constraints simultaneously.

Fix a gameΓ(g, l, c). The first step is to choose
¯
M large enough so that the incentive

constraints in Phase III are satisfied,i.e., a player who observes a triggering action late in

Phase III believes that enough people are already infected so that Nash reversion is optimal.

Here there is one subtle issue. Once
¯
M , T̈ , andṪ are chosen, we need players to be

patient enough (δ large) to prevent deviations on-path. Then, we need to checkthat, once

the contagion has started, not even an extremely patient player wants to slow it down. We

do this below. The essence of the argument is in observing that, for a fixed population size,

once the contagion has started the expected stage payoffs inthe future go to0 exponen-

tially fast. That is, even the undiscounted sum of future payoffs is bounded. Thus, even a

perfectly patient player becomes effectively impatient.

Let m̄ be the maximum possible gain any player can make from a unilateral deviation

from any action profile of the stage-game. Suppose that we arein Phase III and take a
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player who knows that the contagion has started. Then, letv(M) denote his (expected)

undiscounted sum of future payoffs. Similarly, define, for eachr ∈ (0, 1], v(r, M) to be

the (expected) undiscounted sum of future payoffs of a player who in Phase III knows that

at leastrM people are infected in each community.

It is easy to see thatv(M) is finite. The player knows that contagion is spreading

exponentially and, hence, payoffs will drop to zero in the long run. In fact, althoughv(M)

increases withM , since contagion spreads exponentially fast,v(M) grows at a slower rate

thanM . Moreover, we show below thatlimr→1 v(r, M) is uniformly bounded onM .

Lemma 6. Fix a product-choice gameΓ(g, l, c). Letr ≥ 1
2

andM ∈ N. Then,v(r, M) ≤
1 + g.

Proof. Let r = 1
2
. If k people are infected in each community at periodt, the expected

number of additional people who will get infected during period t + 1 is given by

k∑

j=0

[k!(M − k)!]2

(j!)2(k − j)!(M − k − j)!M !
j.

In particular, ifr = 1
2

(i.e., k = M
2

), the above expression simplifies toM−k
2

= M
4

. This

implies that, if at least half of the population is infected today, the expected number of

people to get infected during the next period is, at least, half of the remaining uninfected

people. Therefore, givenΓ(g, l, c),

v(
1

2
, M) ≤ 1

2
(1 + g) +

1

4
(1 + g) +

1

8
(1 + g) + . . . =

∞∑

t=1

1

2t
(1 + g) = 1 + g.

Clearly, for r > 1
2
, v(r, M) ≤ v(1

2
, M). Hence, for eachr ≥ 1

2
and eachM ∈ N,

v(r, M) ≤ 1 + g.

Proposition 7. Fix a product-choice gameΓ(g, l, c). Then, there arēr ∈ (0, 1) and
¯
M ∈ N

such that, for eachr ≥ r̄ and eachM ≥
¯
M , a player who gets infected very late in the

game will not slow down the contagion, irrespective of how patient he is.

Proof. By Proposition 4, ifM is big enough, a player who gets infected late in Phase III

believes that “with probability at least1 − 1
M2 at leastrM people in each community are

infected”. Suppose he deviates and does not play the Nash action. Then:
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i) With probability1− 1
M2 at leastrM people are infected. So, with probability at least

r he meets an infected player, makes a loss ofl by not playing Nash, and does not

slow down the contagion. With probability1 − r he gains, at most,̄m in the current

period andv(M, r) in the future.

ii) With probability 1
M2 , less thanrM people are infected, and the player’s continuation

payoff is, at most,v(M).

Hence, the gain from not playing the Nash action instead of doing so is bounded above by:

v(M)

M2
+(1− 1

M2
)
(
−rl+(1−r)(m̄+v(M, r)) <

M

M2
+(1− 1

M2
)
(
−rl+(1−r)(m̄+1+g)

)
.

The inequality follows from the facts thatv(M) increases slower than the rate ofM and

that 1 + g is a uniform bound forv(r, M). Now, if M is large enough andr is close

to 1, the above expression becomes negative. So there is no incentive to slow down the

contagion.

Once
¯
M is chosen, we pick̈T . T̈ is chosen large enough so that a buyer who is infected

in Phase I and knows that not all buyers were infected by the end of Phase I still has an

incentive to playBL in Phase II. This buyer knows that contagion will spread fromPhase

III anyway, and playingBL gives him a short-term gain in Phase II. So, ifT̈ is long enough,

she will want to playBL in Phase II. Because of the finiteness ofv(M), we can pickT̈ such

that the incentive constraint holds even for a perfectly patient buyer.

Next, we choosėT . Ṫ must be chosen large enough so that i) a buyer infected in Phase I

who has observedQH in most periods of Phase I believes that with high probability all

buyers were infected during Phase I, ii) a seller infected inPhase II believes that with high

probability at leastM − 1 buyers were infected during Phase I, iii) a seller who deviates in

Phase I believes that, with high probability, he met all the buyers in Phase I, and iv) players

infected in Phase III believe with high probability that “enough” people were infected by

the end of Phases I and II.

Finally, once
¯
M , T̈ , and Ṫ have been chosen, we find the threshold

¯
δ such that for

discount factorsδ >
¯
δ, players will not deviate on-path.

32



5 Discussion and Extensions

The main contribution of this paper lies in showing that community enforcement in random

matching games can be applied far beyond the PD to support a wide range of payoffs. The

main goal of this section is to discuss the versatility of thetrust-building ideas we have

used here to sustain cooperation in the product-choice game. In particular we show how far

we can get with a straightforward adaptation of the main results of this paper. Moreover,

we provide intuition for the way in which our approach might be used to get more general

results such as a Nash-threats folk theorem, or similar results when the role of each player

is randomly assigned in each period (“interchangeable populations”). We present these as

conjectures, as the formal proofs would require technical analysis similar to what we have

already developed without adding new insights.

Note that throughout the paper we use symmetric strategies,and so get symmetric pay-

offs for players within a community. In the discussion below, whenever we talk about

the set of equilibrium payoffs, we restrict attention to such symmetric payoffs. In other

words, we do not consider feasible payoff vectors where players of the same community

get different payoffs.

5.1 Games Beyond the Product-Choice Game

For ease of exposition, we restricted attention to the product-choice game, and showed that

payoffs arbitrarily close to the efficient payoff profile canbe achieved. More generally, in

what classes of games does this result apply? What is the set of payoffs that can be achieved

in equilibrium in these games?

Take a two player game with action setA and let(a∗
1, a

∗
2) be a Nash equilibrium.

A1. One-sided Incentives:There are action profiles(a1, a2) and(ā1, ā2) ∈ A such that:

• In each of the two action profiles, exactly one player has an incentive to deviate,

with player1 wanting to deviate in(a1, a2) and player2 wanting to deviate in

(ā1, ā2).

• In one of the two action profiles, the player with no incentiveto deviate is

playing an action in the support of(a∗
1, a

∗
2).

Let Ã := {(a′
1, a

′
2) ∈ A : either i)(a′

1, a
′
2) = (a∗

1, a
∗
2) or ii) a′

1 = a∗
1 anda′

1 = a∗
1}. Then,

any payoffv ∈ conv({u(a) : a ∈ Ã}) that Pareto dominates the payoff of(a∗
1, a

∗
2) can
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be approximated adapting the strategies in this paper.10 The action profiles in A1 are used

to define the trust-building phases and the payoffv is approximated in the target payoff

phase.11 It may be worthwhile to note that conditionA1 is generic in the class of2 × 2

games with a unique pure strategy Nash equilibrium.

5.2 Can we get a Folk Theorem?

Note that, in the product-choice game,Ã does not include action profiles(QL, BH) and

(QH , BL). Since we cannot achieve payoffs close to(1+g,−l) or (−l, 1−c), our strategies

do not suffice to get a folk theorem for all games satisfying A1. However, we believe that

the idea of trust-building that we develop in this paper is powerful enough to take us farther.

We conjecture that it may be possible to obtain a Nash threatsfolk theorem for two-player

games by modifying our strategies with the addition of further trust-building phases. We

do not attempt to prove a folk theorem here, but we hope that the informal argument below

will illustrate how the idea of trust-building might lead toa folk theorem.

To fix ideas, consider a feasible target equilibrium payoff that can be achieved by play-

ing short sequences of(QH , BH) (10% of the time) alternating with longer sequences of

(QH , BL) (90% of the time). It is not possible to sustain this payoff in Phase III with our

strategies. To see why not, consider a long time window in Phase III where the prescribed

action profile is(QH , BL). Suppose a buyer facesQL for the first time in a period of this

phase followed by many periods ofQH . Notice that since the action for a buyer isBL in

this time window, she cannot infect any sellers herself. So,with more and more observa-

tions ofQH , she will ultimately get convinced that few people are infected. So, it may not

be optimal to revert to Nash any more. Contrast this with the original situation where the

target action is(QH , BH). In that case, a player who gets infected starts infecting players

himself and so at most, afterM − 1 periods of infecting opponents, he is convinced that

everyone is infected.

What modification to our strategies might enable us to attainthese payoffs? We will

use additional trust-building phases to recover incentives. Say, the target payoff involves

alternating sequences of(QH , BL) for T1 periods and(QH , BH) for T2 = 1
9
T1 periods. In

10The results and proofs are straightforward adaptations of the ones presented for the product-choice game.
11Note that if the game has more than two actions, we need to specify how players behave after observing

an action that is neither on-path nor the punishment action.To ensure that incentives are satisfied, we require
an additional assumption on beliefs. It suffices to assume that such deviations are more likely to be made by
infected players than uninfected ones. This implies that such actions are triggering actions.
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the modified equilibrium strategies, in Phase III, the windows of (QH , BL) and(QH , BH)

will be separated by trust-building phases. To illustrate,we start the game as before, with

two phases:Ṫ periods of(QH , BH) andT̈ periods of(QL, BH). In Phase III, players play

the action profile(QH , BL) for T1 periods, followed by a new trust-building phase ofT ′

periods during which(QL, BH) is played. Then players switch to playing the sequence of

(QH , BH) for T2 periods. The new phase is chosen to be short enough (i.e., T ′ ≪ T1) to

have no significant payoff consequences. Yet, it is chosen long enough so that a player who

is infected during theT1 period window but thinks that very few people are infected, will

still want to revert to Nash punishments to make short-term gains during the new phase.12

We believe that adding appropriate trust-building phases in the target payoff phase in this

way can guarantee that players have the incentive to revert to Nash punishments off-path

for any beliefs they may have about the number of people infected.

5.3 Interchangeable Populations

So far in this paper we have assumed that the random matching game is played by two

independent communities;i.e., each player is either a seller or a buyer. Alternatively, we

could have assumed that there is one population whose members are matched in pairs in

every period and, in each match, the roles of players are randomly assigned. Then, at the

start of every period, each player has a fifty percent chance of playing in each role.

A first implication of this alternative modeling is that a negative result like that of Propo-

sition 1 may not be true any more.13 However, we conjecture that the trust-building ideas

that underlie the results in this paper are flexible enough tobe adapted to this new setting.

Suppose that we want to get cooperation in the repeated product-choice game when

roles are randomly assigned at the start of each period. We conjecture that the following

simplification of our trust-building strategies can be usedto get as close as desired to the

efficient payoff(1, 1). There are two phases. Phase I is the trust-building phase: sellers play

QL and buyers playBH ; the important features of this profile being that i) only buyers have

12For example, think of a buyer who observes a triggering action for the first time in Phase III (while
playing(QH , BL)) and then observes only good behavior for a long time while continuing to play(QH , BL).
Even if this buyer is convinced that very few people are infected, she knows that the contagion has begun,
and ultimately her continuation payoff will become very low. So, if there is a long enough phase of playing
(QL, BH) ahead, she will choose to revert to Nash because this is the myopic best response, and would give
her at least some short-term gains.

13A buyer infected in period 1 might become a seller in period 2 and he might indeed have the right
incentives to punish.
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an incentive to deviate and ii) sellers are playing a Nash action. Phase II is the target payoff

phase and(QH , BH) is played. Deviations are punished through Nash reversion;there is

no delay in the punishment now. The main difference with respect to the old strategies is

that contagion also takes place in Phase I; whenever an “infected” player is in the role of a

buyer he will playBL and spread the contagion, so we do not have a single player infecting

people in this phase. This implies that we do not need a secondtrust-building phase, since

its primary goal was to give the infected buyers the right incentives to “tell” the sellers that

there had been a deviation.

The arguments for the incentives in this case would be very similar to those used in

the setting with independent populations. After getting infected, a player would form his

beliefs based on the fact that a buyer deviated in period one and that punishments have

been going on ever since. Proving formally that players havethe right incentives after all

histories is a hard exercise for which we cannot rely on the analysis of the independent

populations case. The fact that players’ roles are not fixed has two main consequences for

the analysis. First, the contagion is not the same and a slightly different mathematical object

would be needed to model it. Second, the set of histories a player may have observed would

depend on the roles he played in the past periods, so it is harder to characterize all possible

histories. We think that this exercise would not add new insights to the main message of

the paper and rather leave it as a plausible conjecture.

5.4 Alternative Systems of Beliefs

We assume that a player who observes a triggering action believes that some seller deviated

in the first period of the game. This ensures that an infected player thinks that the contagion

has been spreading long enough that, after Phase I, almost everybody is infected. It is easy

to see that alternate (less extreme) assumptions on beliefswould still have delivered this

property. We work with this case mainly for tractability. Also, since our equilibrium is

based on communities building trust in the initial phases ofthe game, it is plausible that

players regard deviations to be more likely earlier rather than later.

Further, the assumption we make is a limiting one in the sensethat it yields the weakest

bound onM . With other assumptions, for a given product quality choicegame and given

Ṫ andT̈ , the threshold population size
¯
M required to sustain cooperation would be weakly

greater than the threshold we obtain. Why is this so? On observing a triggering action,

my belief about the number of infected people is determined by two factors: my belief
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about when the first deviation took place and the subsequent contagion process (described

by the matrices of transition probabilities). Formally, ongetting infected at periodt, my

beliefxt can be expressedxt =
∑t

τ=1 µ(τ)yt(τ), whereµ(τ) is the probability I assign to

the first deviation having occurred at periodτ andyt(τ) is my belief about the number of

people infected if I know that the first deviation took place at periodτ . Since contagion

is not reversible, every elapsed period of contagion results in a weakly greater number of

infected people. Thus, my belief if I think the first infection occurred att = 1, first order

stochastically dominates my belief if I think the first infection happened later, at anyt > 1,

i.e., For eachτ, for eachk ∈ {1, . . . , M}, ∑M

i=k yt
i(τ) ≥ ∑M

i=k yt
i(1). Now consider any

beliefx̃t that I might have had, with alternate assumptions on when I think the first deviation

occurred. This belief will be some convex combination ofyt(τ), for τ = 1, . . . , t. Since

we know thatyt(1) first order stochastically dominatesyt(τ) for any τ > 1, it follows

that yt(1) will also first order stochastically dominatẽxt. This in turn implies that with

most alternate belief assumptions, we would have needed, atleast, the population size to

be larger in order to ensure that my limit beliefs in Phase IIIassigned enough weight to a

large number of people being infected.

5.5 Stability and Robustness to Introduction of Noise

A desirable feature of an equilibrium could be global stabiliy. A globally stable equilib-

rium is one where after any finite history, play finally reverts to cooperative play (Kandori

(1992)). The notion is appealing because it implies that a single mistake does not entail

permanent reversion to punishments. The equilibrium here fails to satisfy this property.

However, global stability can be obtained if a public randomization device is introduced.

This is similar to Ellison (1994). The role of the randomization device would be to allow

for the possibility of restarting the game in any period, with a low but positive probability.

A related question is to see if the equilibrium can be sustained in a model with some

noise. First note that since players have strict incentivesin equilibrium, our strategies

are robust to the introduction of some noise in the parameters g, l, andc. However, if

we consider a setting where players make mistakes, or there is noisy observation of one’s

opponents’ actions, our equilibrium is no longer robust. Consider a setting where players

are constrained to play the noncooperative action with probability at leastε > 0 at every

possible history. We can ask if the equilibrium survives forsmallε. Our construction is not

robust to this modification. The incentive compatibility ofour strategies crucially relies on
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the fact that players believe that early deviations are morelikely. If players make mistakes

with positive and equal probability in all periods, this property is lost. To see a particularly

problematic case, consider the following situation in the setting with noise. If a buyer

makes a mistake late in Phase II, no matter what she does afterthat, she will start phase III

knowing that not many people are already infected. Hence, ifshe is very patient, it may

be optimal for her to play the cooperative action and slow down the contagion. Suppose a

seller observes a triggering action in the last period of Phase II. This seller will think that,

it is very likely that his opponent was uninfected and has just made a mistake, and so will

not punish. In this case, neither player reverts to Nash punishments. This implies that a

buyer may profitably deviate in the last period of Phase II, since her deviation would go

unpunished.

5.6 Uncertainty about Calendar Time

In the equilibrium in this paper, players condition their behavior on calendar time. On-

path, sellers switch their action in a coordinated way at theend of Phases I and II. Off-path,

players coordinate the start of the punishment phase. The calendar time and the timing of

the phases (̇T andT̈ ) are commonly known and are used to coordinate behavior. Arguably,

in modeling large communities, the need to switch behavior with precise coordination is an

unappealing feature. It may be interesting to investigate if cooperation can be sustained if

players were not sure about the calendar time or about the precise time to switch actions.

A complete analysis of this issue is beyond the scope of this paper, but we conjecture

that a modification of our strategies would be robust to the introduction ofsmalluncertainty

about timing. The reader may refer to the Appendix Section A.4, where we consider an

altered environment in which players are slightly uncertain about the timing of the different

phases. We conjecture equilibrium strategies in this setting, and provide the main intuition

behind why the efficient payoff might still be achieved.
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A Appendix

A.1 Properties of the Conditional Transition Matrices

In Section 4.2 we introduced a class of matrices, contagion matrices, which turns out to

be very useful in analyzing the beliefs of players. First note that, since contagion matrices

are upper triangular, their eigenvalues correspond with the diagonal entries. Givenx ∈ R
k,

let ‖x‖ :=
∑

i∈{1,...,k} xi. We are often interested in the limit behavior ofxt := xCt

‖xCt‖ ,

whereC is a contagion matrix andx is a probability vector. We present below a few results

about this limit behavior. We distinguish three special types of contagion matrices that will

deliver different limiting results.

Property C1: {c11} = argmaxi∈{1,...,k} cii.

Property C2: ckk ∈ argmaxi∈{1,...,k} cii.

Property C3: For eachl < k, C⌈l satisfies C1 or C2.

Lemma A.1. Let C be a contagion matrix and letλ be its largest eigenvalue. Then, the

left eigenspace associated withλ has dimension1. That is, the geometric multiplicity ofλ

is one, irrespective of its algebraic multiplicity.

Proof of Lemma A.1.Let l be the largest index such thatcll = λ > 0 and letx be a left

eigenvector associated withλ. We claim that, for eachi < l, xi = 0. Suppose not and leti

be the largest index smaller thanl such thatxi 6= 0. If i < l−1, we have thatxi+1 = 0 and,

sinceci,i+1 > 0, we get(xC)i+1 > 0, which contradicts thatx is an eigenvector associated

with λ. If i = l−1, then(xC)l ≥ cllxl +cl−1,lxl−1 > cllxl = λxl, which, again, contradicts

thatx is an eigenvector associated withλ. Then, we can restrict attention to matrixC⌈(l−1).

Now, alsoλ is the largest eigenvalue ofC⌈(l−1) but, by definition ofl, only one diagonal

entry ofC⌈(l−1) equalsλ and, hence, its multiplicity is one. Then,y ∈ R
k−(l−1) is a left

eigenvector associated withλ for matrix C⌈(l−1) if and only if (0, . . . , 0, y) ∈ R
k is a left

eigenvector associated withλ for matrixC.

Given a contagion matrixC with largest eigenvalueλ, we denote by̆x the unique left

eigenvector associated withλ such that‖x̆‖ = 1.

Proposition A.1. Let C ∈ Mk be a contagion matrix satisfyingC1 or C2. Then, for each

nonnegative vectorx ∈ R
k with x1 > 0, we havelimt→∞

xCt

‖xCt‖ = x̆. In particular, under

C2, x̆ = (0, . . . , 0, 1).
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Proof of Proposition A.1.Clearly, sinceC is a contagion matrix, ift is large enough all

the components ofxt are positive. Then, for the sake of exposition, we assume that all the

components ofx are positive. We distinguish two cases.

C satisfies C1. In this caseλ has multiplicity1. We show that, for each pairi, j ∈
{1, . . . , k}, limt→∞

xt
i

xt
j

= x̆i

x̆j
. Once this is established, the result immediately follows from

the fact that, for eacht ∈ N, ‖xt‖ = ‖x̆‖ = 1. We already know that,̆xC = λx̆, where

λ is the largest eigenvalue ofC. Then, the vectorx can be written asx = αx̆ + v, where

v is a vector orthogonal tŏx. Sincex̆ is a nonnegative vector different from0 and all the

components ofx are positive,̆x andx are not orthogonal. Hence,α > 0. Then,

xt
i

xt
j

=
(xCt)i/‖xCt‖
(xCt)j/‖xCt‖ =

(xCt)i

(xCt)j

=
λtαx̆i + (vCt)i

λtαx̆j + (vCt)j

=
αx̆i + (v( 1

λ
C)t)i

αx̆j + (v( 1
λ
C)t)j

Sinceλ is the largest eigenvalue ofC and has multiplicity one, ast → ∞, the second terms

in both the numerator and denominator vanish. Then the limitast → ∞ is x̆i

x̆j
.

C satisfies C2. We show that, for eachi < k, limt→∞ xt
i = 0. We prove this by

induction oni. Let i = 1. Then, for eacht ∈ N,

xt+1
1

xt+1
k

=
c11x

t
1

∑

l≤k clkxt
i

<
c11x

t
1

ckkxt
k

≤ xt
1

xt
k

,

where the first inequality follows from the facts thatxk−1 > 0 and ck−1,k > 0 (C is a

contagion matrix); the second inequality follows from C2. Hence, the ratiox
t
1

xt
k

is strictly

decreasing int. Moreover, since all the components ofxt lie in [0, 1], it is not hard to see

that, as far asxt
1 is bounded away from0, the speed at which the above ratio decreases is

also bounded away from0.14 Therefore, we must havelimt→∞ xt
1 = 0. Suppose the claim

holds for eachi < j < k − 1. Now,

xt+1
j

xt+1
k

=

∑

l≤j cljx
t
l

∑

l≤k clkxt
l

<

∑

l≤j cljx
t
l

ckkxt
k

=
∑

l<j

clj

ckk

xt
l

xt
k

+
cjj

ckk

xt
j

xt
k

≤
∑

l<j

clj

ckk

xt
l

xt
k

+
xt

j

xt
k

.

By the induction hypothesis, for eachl < j, the termxt
l

xt
k

can be made arbitrarily small for

large enought. Then, the first term in the above expression can be made arbitrarily small.

14Roughly speaking, this is because the statek will always get some probability from state1 via the
intermediate states, and this probability will be bounded away from 0 as far as the probability of state 1 is
bounded away from 0.
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Hence, it is easy to see that, for large enought, the ratio
xt

j

xt
k

is strictly decreasing int. As

above, this can only happen iflimt→∞ xt
j = 0.

Recall the matrices used to represent a player’s beliefs after he observes historyht =

g . . . gb. At the beginning of Phase III, the beliefs evolved according to matricesC1⌋ and

S1⌋, and late in Phase III, according tôC1⌋. Note that these three matrices all satisfy the

conditions of the above proposition. This is what drives Lemmas 1 and 2 in the text. Con-

sider the truncated matrix̂C2⌋ that gave the transition of beliefs of a player who observes

historyht = g . . . bg. This matrix also satisfies the conditions of the above proposition and

this suffices for Lemma 3.

Proposition A.2. Let C ∈ Mk be a contagion matrix satisfyingC1 and C3. Let x ∈ R
k

be a nonnegative vector. Then, ifx is close enough to(0, . . . , 0, 1), we have that, for each

t ∈ N and eachl ∈ {1, . . . , k},
∑k

i=l x
t
i ≥

∑k

i=l x̆
t
i.

Whenever two vectors are asxt andx̆ above, we say thatxt first order stochastically

dominates̆x (in the sense of more people being infected).

Proof of Proposition A.2.For eachi ∈ {1 . . . , k}, let ei denote thei-th element of the

canonical basis inRk. By C1,c11 is larger than any other diagonal entry ofC. Let x̆ be the

unique left eigenvector associated withc11 such that‖x̆‖ = 1. Clearly,x̆1 > 0 and, hence,

{x̆, e2, . . . , ek} is a basis inRk. With respect to this basis, the matrixC looks like









c11 0

0 C⌈1









.

Now we distinguish two cases.

C⌈1 satisfies C2.In this case we can apply Proposition A.1 toC⌈1 to get that, for each

nonnegative vectory ∈ R
k−1 with y1 > 0, limt→∞

yCt
⌈1

‖yCt
⌈1
‖ = (0, . . . , 0, 1). Now, letx ∈ R

k

be the vector in the statement of this result. Sincex is very close to(0, . . . , 0, 1). Then,

using the above basis, it is clear thatx = αx̆ + v, with α ≥ 0 andv ≈ (0, . . . , 0, 1). Let

t ∈ N. Then, for eacht ∈ N,

xt =
xCt

‖xCt‖ =
λtαx̆ + vCt

‖xCt‖ =
λtαx̆ + ‖vCt‖ vCt

‖vCt‖
‖xCt‖ .
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Clearly,‖xCt‖ = ‖λtαx̆ + ‖vCt‖ vCt

‖vCt‖‖ and, since all the terms are positive,

‖xCt‖ = ‖λtα‖ ‖x̆‖ + ‖vCt‖ ‖ vCt

‖vCt‖‖ = ‖λtα‖ + ‖vCt‖

and, hence, we have thatxt is a convex combination of̆x and vCt

‖vCt‖ . Sincev ≈ (0, . . . , 0, 1)

and vCt

‖vCt‖ → (0, . . . , 0, 1), it is clear that, for eacht ∈ N, vCt

‖vCt‖ first order stochastically

dominates̆x in the sense of more people being infected. Therefore, alsoxt will first order

stochastically dominatĕx.

C⌈1 satisfies C1.By C1, the first diagonal entry ofC⌈1 is larger than any other diagonal

entry. Letx̆2 be the unique associated left eigenvector such that‖x̆2‖ = 1. It is easy to see

thatx̆2 first order stochastically dominatesx̆; the reason is that̆x2 andx̆ are the limit of the

same contagion process with the only difference that the state in which only one person has

been infected is known to have probability0 when using obtaininğx2 from C⌈1. Clearly,

x̆2
2 > 0 and, hence,{x̆, x̆2, e3, . . . , ek} is a basis inRk. With respect to this basis, the matrix

C looks like 










c11 0 0

0 c22 0

0 0 C⌈2












.

Again, we can distinguish two cases.

• C⌈2 satisfies C2. In this case we can repeat the arguments above to show thatxt

is a convex combination of̆x, x̆2 and vCt

‖vCt‖ . Since bothx̆2 and vCt

‖vCt‖ first order

stochastically dominatĕx, alsoxt does.

• C⌈2 satisfies C1.Now we would get a vector̆x3 and the procedure would continue

until a truncated matrix satisfies C2 or until we get a basis ofeigenvectors, one of

them beinğx and all the others first order stochastically dominatex̆. In both situa-

tions the result immediately follows from the above arguments.

Note that the matrix̂C2⌋ which gave the transition of beliefs of a player conditionalon

historyht = g . . . gbg late in the game, satisfies the conditions of the above proposition.

This property is useful in proving Proposition 6.
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A.2 Updating of Beliefs Conditional of Observed Histories

Suppose playeri observes historyht̄+1 = g . . . gbg in Phase III, and we want to compute her

beliefs at period̄t + 1 conditional onht̄+1, namelyxt̄+1. Recall our method for computing

xt̄+1. We first compute a set of intermediate beliefsxt for t < t̄ + 1. For any periodτ , we

computexτ+1 from xτ by conditioning on the event that “I was uninfected in periodτ +1”

and that “Iτ+1 ≤ M − 2” (It is the random variable representing the number of infected

people after periodt). We do not use the information that “I remained uninfected after any

periodt with τ + 1 < t < t̄”. This information is added later period by period,i.e., only

at periodt we add the information coming from the fact that “I was not infected at period

t”. Below, we show that this method of computing beliefs is equivalent to the standard

updating of beliefs conditioning on the entire history at once.

Letα ∈ {0, . . . , M−2} and letht+1+α denote the(t+1+α)-period historyg . . . gbg α. . .

g. Recall thatU t denotes the event thati is uninfected at the end of periodt. Let bt (gt)

denote the event that playeri facedb (g) in periodt. We introduce some additional notation.

• I
(t)
i,k denotes the eventi < It < k, i.e., the number of infected people at the end oft

periods is at leasti and at mostk.

• Et
α := I t

0,M−α ∩ U t

• Et+1
α := Et

α ∩ I t+1
1,M−α+1 ∩ bt+1

• For eachβ ∈ {1, . . . , α − 1},

Et+1+β
α := Et+β

α ∩ I t+1+β
β+1,M−α+β+1 ∩ gt+1+β

• Et+1+α
α := Et+α

α ∩ gt+1+α = ht+1+α.

Let H t be a history of the contagion process up to periodt. Let Ht be the set of allH t

histories.Ht
k denotes the set oft-period histories of the stochastic process whereIt = k.

We sayH t+1 ⇒ ht+1 if history H t+1 implies that I observed historyht+1.

The probabilities of interest areP (It+1+α = k |ht+1+α) = P (It+1+α = k |Et+1+α
α

). We

want to show that we can obtain the probabilities aftert + 1 + α conditional onht+1+α by

starting with the probabilities aftert conditional onEt
α and then let the contagion elapse

one more period at a time conditioning on the new information, i.e., adding the “local”

information that playeri observedg in the next period and that infected one more person.
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Precisely, we want to show that, for eachβ ∈ {0, . . . , α},

P (It+1+β = k |
E

t+1+β
α

)
?
=

∑M

i=1 P (i
t+1+β→ k |

E
t+1+β
α

)P (It+β = i |
E

t+β
α

)
∑M

j=1

∑M

i=1 P (i
t+1+β→ j |

E
t+1+β
α

)P (It+β = i |
E

t+β
α

)
.

Fix β ∈ {0, . . . , α}. For eachH t+1+β ∈ Ht+1+β , let H t+1+β,β denote the uniqueH t+β ∈
Ht+β that is compatible withH t+1+β, i.e., the restriction ofH t+1+β to the firstt + β pe-

riods. LetF 1+β := {H̃ t+1+β ∈ Ht+1+β : H̃ t+1+β ⇒ Et+1+β
α }. Let F 1+β

k := {H̃ t+1+β ∈
F 1+β : H̃ t+1+β ∈ Ht+1+β

k }. Clearly, theF 1+β
k sets define a “partition” ofF 1+β (one or

more sets in the partition might be empty). LetF β
k := {H̃ t+1+β ∈ F 1+β : H̃ t+1+β,β ∈

Ht+β
k }. Clearly, also theF β

k sets define a “partition” ofF 1+β. Note that, for each pair

H t+1+β, H̃ t+1+β ∈ F 1+β
k ∩F β

i , P (H t+1+β |Ht+1,β) = P (H̃ t+1+β |H̃t+1,β). Denote this prob-

ability by P (F β
i

t+1+β→ F 1+β
k ). Let |i t+1+β→ k| denote the number of ways in whichi can

transition tok at periodt + 1 + β consistently withht+1+α or, equivalently, consistently

with Et+1+β
α . Clearly, this number is independent of the history that ledto i people being

infected. Now,P (i
t+1+β→ k |

E
t+1+β
α

) = P (F β
i

t+1+β→ F 1+β
k )|i t+1+β→ k|. Then,
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which equals

=
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α )
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α )

M∑

i=1

P (F β
i

t+1+β→ F 1+β
k )|i t+1+β→ k|

∑

Ht+β∈Ht+β
i

P (H t+β |
E

t+β
α

)

=
P (Et+β

α )

P (Et+1+β
α )

M∑

i=1

P (F β
i

t+1+β→ F 1+β
k )|i t+1+β→ k|P (It+β = i |

E
t+β
α

)

=
P (Et+β

α )

P (Et+1+β
α )

M∑

i=1

P (i
t+1+β→ k |

E
t+1+β
α

)P (It+β = i |
E

t+β
α

)

It is easy to see thatP (Et+1+β
α ) =

∑M

j=1 P (Et+β
α )

∑M
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E
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α

)P (It+β =

i |
E
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) and the result follows.

Similar arguments apply to historiesht+1+α = g . . . gbg α. . . where playeri observes

bothg andb in theα periods following the first triggering action.

A.3 Sequential Equilibrium - Consistency of Beliefs

In the construction of the sequential equilibrium, we focused only on sequential rationality

of strategies. In this section, we address the issue of consistency of beliefs. Recall our two

assumptions on beliefs.

i) Assumption 1: If a player observes a triggering action, then he believes that some

seller deviated in the first period of the game, and since thenplay has proceeded as

prescribed by the strategies.

ii) Assumption2: If a player observes a history not consistent with the above beliefs, he

will think that some player in the other community has made a mistake; the probabil-

ity of this mistake being independent of whether the responsible of the mistake was

infected or uninfected.this player will think that there have been as many mistakes

by the players in the other community as needed to explain thehistory at hand.

We need to prove the consistency of these beliefs.

Proof. Fix any playeri. Perturb the equilibrium strategies as follows. Fixε > 0 small. In

any periodt of the game, each player plays the prescribed equilibrium action with probabil-

ity (1−εt), and plays the wrong action with probabilityεt. We need to show that, given any

t-period private history off-path for playeri, as perturbations vanish(ε → 0), the strategies
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converge to the prescribed equilibrium, and playeri believes that, with probability1, the

first deviation occurred att = 1. Moreover, we require that this convergence in beliefs be

uniform in t.

Consider a historyht∗, late in Phase III (t∗ ≫ Ṫ + T̈ ) such that playeri observes the

first triggering action at timet∗, i.e., ht∗ = g . . . gb. Denote any sequence of matches up

to periodt∗ by H t∗. We sayH t∗ =⇒ ht∗ , to mean that the sequence of matchesH t∗ is

consistent with historyht∗ being observed. Further, letH t∗(τ) denote a realization of the

matching technology, that is consistent with the observed historyht∗ = g . . . gb, and where

the first triggering action occurred at periodτ . Clearly, there exists a corresponding event

(sequence of matches), denoted byH̃ t∗(τ), that satisfies the following:

• The first triggering action occurred att = 1,

• The two players who got infected at periodt = 1 were matched to each other in each

period untilτ , and

• The realized matches iñH t∗(τ) andH t∗(τ) are the same from periodτ until t∗.

We first show that, conditional on observed historyht∗ , playeri assigns arbitrarily higher

probability to the event̃H t∗(τ) compared to the eventH t∗(τ).

P(H̃ t∗(τ) |ht∗)

P(H t∗(τ) |ht∗)
=

P(H̃ t∗(τ) ∩ ht∗)

P(H t∗(τ) ∩ ht∗)
=

ε(1 − ε)M−1 M−1
M

[∏τ

k=2
1
M

(1 − εk)M
]
X

(1 − ε)M
[∏τ−1

k=2(1 − εk)M
]
ετ (1 − ετ)M−1 1

M
X

,

whereX is the probability of the event (matches) that was realized from periodτ until t∗

in the eventsH̃ t∗(τ) andH t∗(τ). The above expression simplifies to

1 − ετ

1 − ε

M − 1

M

1

M

1

(εM)τ−1
.

Clearly, for a fixedM , the above expression goes to infinity asε goes to zero, uniformly

in τ . To summarize, we have shown above that, for any possible sequence of matches

H t∗(τ) that is consistent with the observed historyht∗ and where the first triggering action

occurred at some periodτ 6= 1, there exists a corresponding sequence of matchesH̃ t∗(τ)

which is also consistent withht∗ , where the first triggering action occurred att = 1, and

that is arbitrarily more likely thanH t∗(τ). This implies in particular, that on observing a

triggering action, a player will assign arbitrarily high probability to the event that the first
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deviation was by a seller in the first period of the game. To seewhy, note that

P(First dev. att=1 |ht∗)

P(First dev. att6=1 |ht∗)
= P(First dev. att=1 |ht∗)

Pt∗

τ=2

P

Ht∗(τ):Ht∗(τ) =⇒ ht∗ P(Ht∗(τ))
≥

Pt∗

τ=2

P

Ht∗(τ):Ht∗(τ) =⇒ ht∗ P(H̃t∗(τ))
Pt∗

τ=2

P

Ht∗(τ):Ht∗(τ) =⇒ ht∗ P(Ht∗(τ))
.

We know now that the above expression goes to infinity asε goes to zero, uniformly in

τ . Consequently, playeri on observinght∗ assigns arbitrarily high probability to the first

deviation having occurred in the first period of the game. Exactly similar arguments can be

used for other historiesht∗ with t∗ not late in Phase III.

We omit here the proof for the cases covered by Assumption2. As mentioned earlier,

to prove consistency in these cases, it suffices to assume that mistakes are infinitely less

likely than the event that a seller deviated in period 1.

A.4 Uncertainty about Calendar Time

In this section, we investigate what happens in setting in which players are not sure about

the calendar time or about the precise timing of the different phases. We conjecture that

a modification of our strategies would be robust to the introduction of small uncertainty

about timing. To provide some intuition for this conjecture, we consider an altered envi-

ronment where players are slightly uncertain about the timing of the different phases. For

the purpose of this example, we restrict attention to the product-choice game and try to

sustain a payoff arbitrarily close to the efficient outcome(1, 1).

Given a product-choice game and community sizeM , we chooseṪ and T̈ appropri-

ately. At the start of the game, each player receives an independent, noisy but informative

signal about the timing of the trust-building phases (values of Ṫ and T̈ ). Each player

receives a signalωi = (ḋi, ∆̇i, d̈i, ∆̈i), which is interpreted as follows. Playeri on re-

ceiving signalωi can bound the values oḟT andT̈ with two intervals;i.e.,she knows that

Ṫ ∈ [ḋi, ḋi + ∆̇i] and T̈ ∈ [d̈i, d̈i + ∆̇i]. The signal generation process is described be-

low. The idea is that players are aware that there are two trust-building phases followed

by the target payoff phase. Moreover, signals are informative in that the two intervals are

non-overlapping and larger intervals (imprecise estimates) are less likely than smaller ones.

i) ∆̇i is drawn from a Poisson distribution with parameterγ̇, and thenḋi is drawn from

the discrete uniform distribution over[Ṫ − ∆̇i, Ṫ − ∆̇i + 1, . . . , Ṫ ]. If either1 or T̈

lie in the resulting interval[ḋi, ḋi + ∆̇i], then∆̇i andḋi are drawn again.
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ii) After ∆̇i and ḋi are drawn as above,̈∆i is drawn from a Poisson distribution with

parameter̈γ. Finally, d̈i is drawn from the discrete uniform distribution over[T̈ −
∆̇i, T̈ − ∆̇i + 1, . . . , T̈ ]. If the resulting interval[d̈i, d̈i + ∆̈i] overlaps with the first

interval[ḋi, ḋi + ∆̇i] (i.e.,ḋi + ∆̇i ∈ [d̈i, d̈i + ∆̈i]), thend̈i is redrawn.

In this setting, players are always uncertain about the start of the trust-building phases and

precise coordination is not possible. However, we conjecture that with a modification to our

equilibrium strategies, sufficiently patient players willbe able to attain payoffs arbitrarily

close to(1, 1), provided the uncertainty about timing is very small. We describe below the

modified strategies.

Equilibrium play: Phase I: Consider any playeri with signalωi = (ḋi, ∆̇i, d̈i, ∆̈i). Dur-

ing the firstḋi + ∆̇i periods, he plays the cooperative action (QH or BH ). Phase II:

During the nexẗdi − (ḋi + ∆̇i) periods, he plays as if he were in Phase II,i.e.,a seller

playsQL and a buyerBH . Phase III: For the rest of the game (i.e.,from periodd̈i

on), he plays the efficient action (QH or BH).

Off Equilibrium play: As before, a player can be in one of two moods:uninfectedand

infected, with the latter mood being irreversible. We define the moodsa little differ-

ently. At the beginning of the game all players are uninfected. Any action (observed

or played) that is not consistent with play that can arise on-path, given the signal

structure, is called a deviation. We classify deviations into two types. Deviations that

definitely entail a short-run loss for the deviating player are callednon-triggeringde-

viations (e.g. a buyer deviating in the first period of the game). Any other deviation

is called atriggeringdeviation (i.e.,these are deviations that with positive probability

give the deviating player a short-run gain). A player who is aware of a triggering

deviation is said to be infected. Below, we specify off-pathbehavior. We do not

completely specify play after all possible histories, but we think the description be-

low will suffice to provide the intuition behind the conjecture.

An uninfected player continues to play as if on-path. An infected player acts as

follows.

• Deviations observed beforėdi + ∆̇i: A buyeri who gets infected before period

ḋi switches to her Nash action forever at some period betweenḋi andḋi + ∆̇i

when she believes that enough buyers are infected and have switched as well.

Note that buyers cannot get infected betweenḋi andḋi + ∆̇i, since any action
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observed during this period is consistent with equilibriumplay (i.e.,a sellerj

playingQL at timet ∈ [ḋi, ḋi + ∆̇i] may have received a signal such thatḋj +

∆̇j = t).

A seller i who facesBL before periodḋi, ignores it (this is a non-triggering

deviation, as the buyer must still be in Phase I, which means that the deviation

entails a short-term loss for her). If a seller observesBL between periodṡdi and

ḋi + ∆̇i, he will switch to Nash immediately.

• Deviations observed betweeṅdi + ∆̇i + 1 and d̈i: A player who gets infected

in the time interval[ḋi + ∆̇i + 1, d̈i] will switch to the Nash action forever from

periodd̈i. Note that buyers who observeQH ignore such deviations as they are

non-triggering.

• Deviations observed after̈di: A player who gets infected after̈di switches to

the Nash action immediately and forever.

We argue below why these strategies can constitute an equilibrium by analyzing some

important histories.

Incentives of players on-path:If triggering deviations are definitely detected and pun-

ished by Nash reversion, then, for sufficiently patient players, the short-run gain from a

deviation will be less than the long-term loss in payoff fromstarting the contagion. So, we

need to check that all deviations are detected (though, possibly with probability< 1 in this

setting), and that the resultant punishment that is triggered is enough to deter the deviation.

• Selleri deviates (playsQL) at t = 1: With probability1, his opponent will detect

the deviation, and ultimately his payoffs will drop to a verylow level. A sufficiently

patient player will therefore not deviate.

• Selleri deviates at2 ≤ t < ḋi + ∆̇i: With positive probability, his opponentj has

ḋj > t, and will detect the deviation and punish him. But, because of the uncertainty

about the values oḟT andT̈ , with positive probability, the deviation goes undetected

and unpunished. The probability of detection depends on thetime of the deviation

(detection is more likely earlier than later, because earlyon, most players are outside

their first interval). So, the deviation gives the seller a small current gain with prob-

ability 1, but a large future loss (from punishment) with probabilityless than 1. If

the uncertainty abouṫT and T̈ is small enough (i.e., signals are very precise), then
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the probability of detection (and future loss) will be high.For a sufficiently patient

player, the current gain will then be outweighed by the expected future loss.

• Selleri deviates (playsQL) at t ≥ d̈i: With positive probability, his opponentj has

signald̈j = d̈i, and will detect the deviation.

• All deviations by buyers (playingBL) are detected, sinceBL is never consistent with

equilibrium play. If a buyer plays a triggering deviationBL, she knows that with

probability1, her opponent will start punishing immediately. The buyer’s incentives

in this case are exactly as in the setting without uncertainty. For appropriately chosen

Ṫ andT̈ , buyers will not deviate on-path.

Optimality of Nash reversion off-path: Now, because players are uncertain about the

true values ofṪ andT̈ , there are periods when they cannot distinguish between equilibrium

play and deviations. We need to consider histories where a player can observe a triggering

deviation, and check that it is optimal for him to start punishments.

We assume that players on observing a deviation believe thatsome seller deviated in

the first period of the game. This assumption on beliefs serves the same purpose as before,

i.e., conditional on observing a deviation, when it is time to start playing the Nash action,

players will think that enough people are already infected for the Nash action to be optimal.

First, consider incentives of a selleri. We argue that a seller who deviates att = 1

will find it optimal to continue deviating. Further, a sellerwho gets infected by a triggering

deviation at any other period will find it optimal to revert immediately to the Nash action.

• Suppose selleri deviates att = 1, and playsQL. He knows that his opponent will

switch to the Nash action at most at the end of her first interval (close to the trueṪ

with high probability), and the contagion will spread exponentially from some period

close to the truėT + T̈ . Thus, if selleri is sufficiently patient, his continuation payoff

will drop to a very low level afterṪ + T̈ , regardless of his play in his Phase I (until

periodḋi + ∆̇i). Therefore, for a givenM , if Ṫ is large enough (and sȯdi + ∆̇i is

large), the optimal continuation strategy for selleri will be to continue playingQL.

• Selleri observes a triggering deviation ofBL: If a seller observes a triggering de-

viation of BL by a buyer (in Phase II), he thinks that the first deviation occurred at

period1, and by now all buyers are infected. Since, his play will havea negligible

effect on the contagion process, it is optimal to playQL.
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Now, consider the incentives of a buyer.

• Buyer i observesQL at 1 ≤ t < ḋi: This must be a triggering deviation. A sellerj

should switch toQL only at the end of his first interval (ḋj + ∆̇j), and this cannot be

the case, because then, the trueṪ does not lie in playeri’s first interval. On observing

this triggering deviation, the buyer believes that the firstdeviation occurred att = 1

and the contagion has been spreading since then. Consequently, she will switch to her

Nash action forever at some period betweenḋi andḋi+∆̇i when she begins believing

that enough other buyers are infected and have switched as well (It is easily seen that

at worst, buyeri will switch at periodḋi + ∆̇i.).

• Buyeri observesQL at t ≥ d̈i + ∆̈i. Sincei is at the end of her second interval, she

knows that every rival must have started his second interval, and should be playing

QH . So, this is a triggering deviation. She believes that the first deviation occurred at

t = 1, and so most players must be infected by now. This will make Nash reversion

optimal for her.

Note that in any other period, buyers cannot distinguish a deviation from equilibrium play.

i) Any action observed by buyeri in her first interval (i.e.,for t such thatḋi ≤ t <

ḋi + ∆̇i) is consistent with equilibrium play. A sellerj playingQH could have got

signalḋj > t, and a seller playingQL could have got signal̇dj + ∆̇j ≤ t.

ii) Any action observed by buyeri between her two intervals (i.e.,att such thatḋi+∆̇i ≤
t < d̈i) is consistent with equilibrium play.QL is consistent with a sellerj who got

ḋj + ∆̇j ≤ t, andQH is consistent with a seller with signal such thatt < ḋj + ∆̇j .

iii) Any action observed by buyeri within her second interval (i.e.,at t such thatd̈i ≤
t < d̈i + ∆̈i) is consistent with equilibrium play.QL is consistent with a sellerj who

got d̈j > t (say d̈j = d̈i + ∆̈i), andQH is consistent with a seller with signal such

thatd̈j < t (sayj got the same signal as buyeri).
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