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Abstract

We study two-player games played by two communities in amibefy repeated
anonymous random matching setting. It is well-known thafpite the informational
restrictions of this setting, for the prisoner’s dilemmagpperation can be sustained
in equilibrium through grim trigger strategies also caltedntagion” or “community
enforcement” in this context. But, little is known beyone frisoner’s dilemma when
information transmission is minimal. In this paper we shbattthe ideas of commu-
nity enforcement can indeed be applied far more generally.
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1 Introduction

We study infinitely repeated matching games where, in everipg, players from two com-
munities are randomly and anonymously matched to each tipday a two-player game.
A common interpretation of such a setting is a large marketretpeople are matched
with strangers to engage in bilateral trades in which they aw in good faith or cheat.
An interesting question is whether players can achieve@@pe outcomes in anonymous
transactions. What payoffs of the stage-game can be achieeguilibrium in the repeated
random matching game?

The seminal papers by Kandori (1992) and Ellison (1994) dubtliat in this setting,
for the Prisoner’s Dilemma (PD), cooperation can be susthby grim trigger strategies,
also known as “community enforcement” or “contagion”. e D, if a player ever faces a
defection, she punishes all future rivals by switching ttedton forever. By starting to de-
fect, she spreads the information that someone has defeltbeddefection action spreads
throughout the population, and cooperation eventuallgkseown completely. The cred-
ible threat of such a breakdown of cooperation can deteleptafyom defecting in the first
place. However, these arguments rely critically on progerof the PD, in particular on
the existence of a Nash equilibrium in strictly dominanatdgies. The argument does
not work in general. In an arbitrary game, on facing a dewrafor the first time, players
may not have the incentive to punish, because punishing atmidwer future continua-
tion payoffs and entail a short-term loss in that period him®D, the punishment action is
dominant and so gives a current gain even if it lowers coatilon payoffs.

A natural question is whether cooperation can be sustaimékis setting for games
other than the PD, with minimal transmission of informatidinis is the central question
of this paper. In particular, we investigate whether thaidecommunity enforcement can
still be used. As trigger strategies are simple, we think doanmunity enforcement is a
plausible description of behavior in large communities. $New that it is indeed possible
to sustain cooperation in the random matching setting indewange of games beyond the
PD using the idea of community enforcement, provided theroanities are large enough
and all players are sufficiently patient.

To the best of our knowledge, this is the first paper to sustaoperation in a non-
PD random matching game, without adding any extra inforomatiSome papers that go
beyond the PD introduce verifiable information about paaly @b sustain cooperation.
For instance, Kandori (1992) assumes the existence of aanirh that assigns labels to



players based on their history of play. Players who haveatiestior have seen a deviation
can be distinguished from those who have not, by their lab&lsis naturally enables
transmission of information and cooperation can be sustkiima specific class of gamés.
More recently, Deb (2008) obtains a general folk theoremaioy game by just adding
unverifiable information (cheap talk).

For ease of exposition, for most of the paper, we restrienétin to a particular stage-
game, called the product-choice game. This game has a upigaestrategy Nash equilib-
rium that is inefficient. Unlike in the PD, the Nash equiliom is not in dominant strategies.
We show that the efficient outcome can still be approximateequilibrium, using com-
munity enforcement. More generally, we provide sufficieamditions to describe the class
of games and the set of achievable payoffs that our congiruapplies to.

An important feature of our construction is that our stregegre quite simple. Un-
like the recent literature in repeated games with imperpestate monitoring (Ely and
Valimaki, 2002; Piccione, 2002; Ely et al., 2005; Horaed Olszewski, 2006) and, more
specifically, in repeated random matching games (Takah280v; Deb, 2008), our equi-
librium does not rely on belief-free ideas. In particuldgyers have strict incentives on
and off the equilibrium path. It is also important to notetthanlike most of the existing
literature, our strategies are robust to changes in thedmdactor.

Further, our methodological contribution lies in that werkvexplicitly with players’
beliefs. We hope that the methods we use to study the evolatidoeliefs will be of
independent interest, and can be applied elsewhere.

The rest of the paper is organized as follows. In the nextiaectve describe the
model. In Section 3, we present the main result, and thetiotubehind the proof. Section
4 contains the formal equilibrium construction and proaf. section 5, we discuss the
generality of the result, limitations and potential exiens.

2 Model

We have2 M players, divided in two communities, each witlh players. We usg® :=
{1,...,M} andJ? := {1,..., M} to denote the communities of (male) sellers and (fe-
male) buyers respectively. In each period {1, 2, ...}, the players are randomly matched
into pairs with each seller facing a buyer. The matching dependent and uniform over

For related approaches see Okuno-Fujiwara and Postle(@8ig5), Takahashi (2007), Dal B6 (2007),
and Hasker (2007).



time? After being matched, each pair of players plays the prodboice game below (see
Figure 1), whergy > 0, ¢ > 0, andl > 0.2

Buyer
By By
Seller Qg 1,1 —l,1—c¢
QL 1 + g, -1 0, 0

Figure 1: The product-choice game.

The seller can exert either high effo) {;) or low effort ();) in the production of his
output. The buyer, without observing the choice of the seatlen either buy a high-priced
product (By) or a low-price product®B;). The buyer prefers the high-priced product if
the seller has exerted high effort and prefers the low-grim®duct if the seller has not.
For the seller, exerting low effort is a dominant action. Effficient outcome of this game
is the seller exerting high effort and the buyer buying thghkpriced product, while the
Nash equilibrium i@, Br). We denote a product-choice gamelby, [, ¢). We choose
this as the benchmark game as it represents a minimal dep&dm the PD. Indeed, if we
replace the payoff — c with 1+ ¢ we get the standard PD. For most of the paper we restrict
attention to this game. Section 5 discusses how our reseiitsrglize to other two-player
games.

Players can observe only the transactions they are pehg@rajaged inj.e., each
player knows the history of action profiles played in each eff/lis past stage-games.
A player gets no information about how other players havenbeatched or about the
actions chosen by any other pair of players. All players hdigseount factory € (0, 1)
and their payoffs are the normalized sum of the discountgdffsafrom the stage-games.
The infinitely repeated random matching game associatdu thvit product-choice game
I'(g,1, c), with discount parametérand communities of siz&/ is denoted by} (g, [, c).
No public randomization device is assumed (refer to Se&ifar a discussion of what can
be gained if such a device is available).

We ask whether some degree of cooperation can be sustaieqdilibrium.

2Although the assumption of uniform matching greatly sirfigdi the calculations, we expect our results
to hold for all other matching technologies sufficientlysgao the uniform one.

3A more detailed discussion of this game within the contexepieated games can be found in Mailath
and Samuelson (2006).



2.1 A negative result

The main difficulty in sustaining cooperation in the prodalbice game through standard
community enforcement is that it is hard to provide buyerthwhe incentives to punish
deviations. Indeed, the next result shows that a straigh#ial adaptation of the strategies
used in Ellison (1994) to support cooperation in the PD da¢svork in our setting.

Proposition 1. LetI'(g, [, ¢) be a product-choice game with< 1. Then, there i/ € N
such that, for each\/ > M, regardless of the discount factér the repeated random
matching gamé'¥ (g, 1, ¢) has no sequential equilibrium in whidl);, By) is played in
every period on the equilibrium path, and in which playerayplhe Nash action off the
equilibrium path.

Proof. Suppose a seller decides to deviate in period 1. We arguevlibld for a buyer
who observes this deviation, it will not be optimal to switolthe Nash action permanently
from period 2. In particular, we show that playirg}; in period 2 followed by switching
to By, from period 3 onwards gives the buyer a higher payoff. Theebwho observes the
deviation knows that, in period 2, with probabilif«%g—1 she will face a different seller who
will play Q. Consider the short-run and long-run incentives of thisdouy

Short-run: The buyer’s payoff in period 2 from playinBy; is --(—1) + 2=L. Her payoff
if she switches ta,, is 2=1(1—c). Hence, ifM is large enough, she has no short-run
incentive to switch to the Nash action.

Long-run: With probability % the buyer will meet the deviant seller (who is already
playing ;) in period 2. In this case, her action will not affect thisleg$ future
behavior, and therefore her continuation payoff will be saene regardless of her
action.

With probability%, the buyer will meet a different seller. Note that, sirce ¢ >

0, a buyer always prefers to face a seller playing. So, regardless of the buyer’s
strategy, the larger is the number of sellers who have afrsadgtched toQ);,, the
lower is her continuation payoff. Hence, playirgy, in period 2 will give her a
lower continuation payoff than playing,;, because actioms; will make a new
seller switch permanently @ . O



3 The Main Result

The main result of this paper says that in a product-choioeegat is indeed possible for
players to achieve payoffs arbitrarily close to the efficipayoff, if the communities are
large enough and players are sufficiently patient.

Theorem 1. Let I'(g,, c) be a product-choice game. Then, therelis € N such that,
givene > 0, there iso € (0, 1) such that, for eacld/ > M, there exists a strategy profile
in the repeated random matching gai¥ (g, [, ¢) that, for eachy € [§, 1), constitutes a
sequential equilibrium with payoff withinof (1, 1).

A noteworthy feature of our strategies is that they are rbtmushanges in the discount
factor. In other words, if our strategies constitute an Eopiiim for a given discount fac-
tor, they do so for any higher discount factor as well. Thigigontrast with existing
literature. In games with private monitoring, strategiaséto be fine-tuned based on the
discount factor. In Ellison (1994), the severity of punigmts depends on the discount
factor. Moreover, unlike Ellison (1994), we do not need a n@mn discount factor. We just
need all players to be sufficiently patient.

Another feature of our equilibrium strategies is that thatowation payoff is within
e of (1,1) not just in the initial period, but throughout the game on élyeilibrium path;
in this sense, we sustain cooperation as a durable phenom&hih constrasts with the
results for reputation models where, for evéryhere exists a time after which cooperation
collapses (see Cripps et al. (2004)).

It is worthwhile to explain the role of the community sizesTiheorem 1. Contrary to
the existing literature, having a large population is haljh our construction. However,
the result should not be viewed as a limiting resulfliiy it turns out that in most games,
fairly small community sizes suffice to sustain cooperation

We present now the strategies that enable cooperation ifikegum. We divide the
game into three phases (see Figure 2). Phases | andtuatéouildingphases and phase lli
is thetarget payoffphase.

Phase | - Phasell Phase llI

T T+T
| |
T /l ...(X)

T T

2

Figure 2: Different phases of the strategy profiles.



Equilibrium play: Phase I: During the firstT' periods, the players pla§Qy, By). In
every period in this phase, sellers have a short-run incemdi deviate, but buyers
do not. Phase II: During the nextI” periods, the players play?)r, By). In every
period in this phase, buyers have a short-run incentive Watiewhile sellers do
not. Phase IlI: For the rest of the game, the players play the efficient agrofile

(Qw, Br).

Off Equilibrium play: A player can be in one of two moodsininfectedand infected
with the latter mood being irreversible. At the beginninglué game all players are
uninfected. We classify off equilibrium play into two typekactions. ActionS;, in
Phase | and actio 5 in Phase Il ar@on-triggeringactions. Any other action that is
off equilibrium is atriggering action. A player who has observed a triggering action
is in the infected mood. Now, we specify off-path behavion éninfected player
continues to play as if on-path. An infected player acts deis.

e A player who gets infected after facing a triggering actiatshes to his Nash
action forever either from the end of Phase | or immediatetynf the next
period, whichever is later. In other words, a buyer who faceggering action
in Phase | switches to her Nash action forever at the end dfePhplaying as if
on-path in the meantime. A player facing a triggering actbany other stage
of the game will immediately switch to the Nash action foreve

e A player who gets infected by playing a triggering action &aif henceforth
best responds to the strategies of the other players (thismply that, for
large enougHl’, a seller who deviates in the first period by playifig will
continue to play;, forever).

Note that a profitable deviation by a player is punishedrqately) by the whole com-
munity of players, with the punishment action spreading hk epidemic. We refer to the
spread of punishments as contagion.

The difference between the our strategies and standardgiontg.g, Ellison (1994)
and Kandori (1992)) is that here, the game starts with twatdowilding phases. In Phase I,
sellers build credibility by not deviating even though thegve a short-run incentive to
do so. The situation is reversed in Phase Il, where buyetd bredibility (and reward
sellers for not deviating in Phase 1), by not playiBg even though they have a short-run



incentive to do so. A deviation by a seller in Phase | is notighued in the seller’s trust-
building phase, but is punished as soon as the phase is on@lar§, if a buyer deviates
in her trust-building phase, she effectively faces punishihonce the trust-building phase
is over. Unlike the results for the PD, where the equilibria lbased on trigger strategies,
here we have delayed trigger strategies. In Phase lll, temgimmediately trigger Nash
reversion.

Clearly, the payoff from the strategy profile described abaill be arbitrarily close to
the efficient payoff1, 1) for § large enough. We now need to establish that the strategy pro-
file constitutes a sequential equilibrium of the repeatedoan matching gamgy’ (g, 1, c)
when M is large enough]’ and7 are appropriately chosen, aids close enough to 1.
Below, we provide some intuition for the result by examiniihg incentives of players after
key histories. We present the formal proof in Section 4.

3.1 Intuition for the Main Result

The incentives on-path are quite straightforward. Any sham profitable deviation will
eventually trigger Nash reversion that will spread and cedrontinuation payoffs. Hence,
given M, T, andT, for sufficiently patient players, the future loss in confition payoff
will outweigh any current gain from deviation.

Establishing sequential rationality of the strategiespafth is the main challenge. Be-
low, we consider some histories that may arise and argue hdngtrategies are optimal
after these histories. We start with two observations.

First, a seller who deviates to make a short-term gain atelgenbing of the game will
find it optimal to revert to the Nash action immediately. Alselvho deviates in period 1,
knows that, regardless of his choice of actions, from pefiash, at least one buyer will
start playing Nash and then, from peri@t+ 7" on, contagion will spread exponentially
fast. Thus, his continuation payoff aftér+ 7" will be quite low regardless of what he
does in the remainder of Phase |. Thereford] i large enough, no matter how patient
this seller is, the best thing he can do after deviating ifmogkt is to play the Nash action
forever?

Second, the optimal action of a player after he observegg@ering action depends on
the beliefs that he has about how the contagion has sprezatiglrTo see why, think of a
buyer who observes a triggering action during, say, Phads Nash reversion optimal for

4Clearly, the best thing he can do in Phase Il is to play the Matibn, as he was supposed to do on-path.



her? If she believes that there are few people infected, plegnng the Nash action may
not be optimal. With high probability she will face a selldaying @z and playing the
Nash action will entail a loss in that period. Moreover, shikely to infect her opponent,
hastening the contagion and lowering her own continuatayoff. The situation is differ-
ent if she believes that almost everybody is infected (seadly playing Nash). Then, there
is a short-run gain by playing the Nash action in this peribtbreover, the effect on the
contagion process and the continuation payoff will be mgigle. Since the optimal action
for a player after observing a triggering action dependshenbieliefs he has about “how
spread the contagion is”, we need to define a system of balmef€heck if Nash reversion
is optimal after getting infected, given these beliefs.

We define beliefs as follows. If a player observes a triggeaation, he thinks that
some seller deviated in period 1 and contagion has beendipgesince then (if an unin-
fected player observes a non-triggering action, then hethirsks that the opponent made
a mistake and that no one is infected).

These beliefs, along with the fact that a deviant seller p¥dly the Nash action forever,
imply that any player who observes a triggering action thittiat, since contagion has been
spreading from the start of the game, almost everybody naw ot infected by the end
of Phase I. This makes Nash reversion optimal for him afterethd of Phase I. To gain
some insight, consider the following histories.

e Suppose | am a buyer who gets infected in Phase llthink that a seller deviated
in the first period and that he will continue infecting buyémoughout Phase I. i/
is large, in each of the remaining periods of Phase |, theghitiby of meeting the
same seller again is low; so | prefer to pl@y; during Phase | (since other sellers
are playingQy). Yet, if T is large enough, once Phase | is over | will think that,
with high probability, every buyer is already infected. Nasversion thereafter is
optimal.

It may be the case that after | get infected, | obs&pyen most (possibly all) periods
of Phase I. Then, | will think that | met the deviant sellereafedly, and so not all
buyers are infected. However, it turns out that'ifs large enough | will still revert
to Nash play. Since | expect my continuation payoff to drdpraf + 7" anyway, for
T large enough | prefer to play the myopic best response diirage I, to make
some short-term gains (similar to the argument made for #st teply of a seller
who deviates in period 1).



e Suppose | am a buyer who face€)y in Phase Il or a seller who facesBy, in
Phase I.(Non-triggering actions) Since such actions are nevertataé (on-path or
off-path), after observing such an action | will think it wasnistake and that no one
is infected. Then, it is optimal to ignore it. The deviatingyer knows this, and so
it is also optimal for him to ignore it.

e Suppose | am a player who gets infected shortly after period” + 1" or a seller
who gets infected in Phase 11l know that contagion has been spreading since the
first period. However, the fact that | was uninfected so fdigates that possibly not
so many people were infected. We show thé&t i large enough an@ > 7', | will
still think that, with very high probability, | was just lugknot to have been infected
so far, but that everybody is infected now. This makes Nasérsgon optimal.

e Suppose | get infected late in the game, at period > T+ T. If t > T + T,
we can not rely any more on how largeis to characterize my beliefs. | can no
longer assign high probability to the event that everybadyiected now, and yet |
was uninfected so far. However, for this and other relatstbhies late in the game,
it turns out that | still believe that “enough” people aredctied and already playing
the Nash action, so that playing the Nash action is also @bfion me.

3.2 ChoosingM, 7,7, and§

It is useful to clarify how the different parameters are @t construct the equilibrium.
First, given a game, we findl/ so that i) a buyer who is infected in Phase | does not revert
to the Nash action before Phase Il and ii) players who areiafevery late in the game
believe that almost everybody is infected. Then, we chd@s® that, in Phase I, any
infected buyer will find it optimal to revert the Nash acti@vén if she observe@;, in all
periods of Phase I). Then, we pik with 7 >> T, so that the players infected in Phase I
or early in Phase Il believe that almost everybody is irddct Furtherl” must be large
enough so that a seller who deviates in period 1 plays the Wetsbn ever after. Finally,
we pickd large enough so that players do not deviate on the equilibpat!?.

The role of the discount factarrequires further explanation. Clearly, a higldeters
players from deviating from cooperation. However, a highilso makes players want to
slow down the contagion. Then why is it that even extremetiepaplayers are willing to

SNote thats must also be large enough so that the payoff achieved inilequih is close enough t@l, 1).
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spread the contagion after getting infected? A key observag the following. Suppose
M is fixed and consider a perfectly patient playee{ 1). Once this player gets infected he
knows that, at some point, the contagion will start spregidiponentially and the expected
payoffs in future stages will converge @ieexponentially fasti.e., because of the contagion
process this player acts as if he were indeed impatient. iHatehtly, the undiscounted
sum of future payoffs is bounded and so is the gain any plaafentake by slowing down
the contagion once it has started. Think of an infected play® is thinking whether to
revert to the Nash action or not when the strategy asks to détnsour construction, two
things can happen. First, this player believes that so maaoplp are already infected that,
regardless of his action, his continuation payoff is alyeguaranteed to be very low. In this
case, he is willing to play the Nash action and at least avsitbat-run loss. Second, if this
player does not believe that many people are infected, thestilhknows that in Phase I
his continuation payoff will drop exponentially fast and, aur construction, there will
be enough periods in the immediate future when playing th&hNetion will give him a
short-run gain. In this case, he is willing to play the Naghtree immediate short-run gain
outweighs the future loss in continuation payoff.

In the next section, we formalize the intuition just presentSome readers may prefer
to skip the formal proof and go to Section 5, where we disdusgénerality and robustness
of our main result.

4 Optimality of the Equilibrium Strategies

4.1 Incentives on-path

The incentives on-path are relatively straightforward] am we omit the formal proof. The
main idea is that if players are sufficiently patient, onkhpdéviations can be deterred by
the threat of eventual Nash reversion. It is easy to seeithtis large enough, the most
“profitable” on-path deviation is that of a seller in periad@iven/, T'and7’, the discount
factorg can be chosen close enoughitto deter sellers from such deviations.

4.2 System of beliefs

We make the following assumptions on the system of beliefdayfers. Beliefs are updated
as usual using Bayes rule.

11



i) Assumption1: If a player observes a triggering action, then this playéebes that
some seller deviated in the first period of the game, and iy play has proceeded
as prescribed by the strategies.

This requirement on beliefs may seem too extreme. Howedwerssential assump-
tion is that players regard earlier deviations as moreyikelease refer to Section 5.4
for a detailed discussion on this point.

i) Assumption 2: If a player observes a history that is not consistent withatheve
beliefs erroneous history he will think that some player in the other community
has made a mistake in a match where they faced each otheegliniiés player will
think that there have been as many mistakes by the playeheiather community
as needed to explain the history at h&rkroneous histories include the following:

e A player (infected or not) who observes a non-triggeringpact

e A player who, after being certain that all the players in ttleeocommunity are
infected, faces an opponent who does not play the Nash aghimncan only
happen in Phase III).

We refer the reader to the Appendix for the proof of the cdasisy of these beliefs.

4.2.1 Modeling Beliefs with Contagion Matrices

So far, we have not formally described the structure of agfaypeliefs. The payoff rele-
vant feature of a player’s beliefs is the number of peopledie¥es is currently infected.
Accordingly, we let a vector! € RM denote the beliefs of playerabout the number of
infected people in the other community at the end of petjodherez! denotes the prob-
ability he assigns to exactly people being infected in the other community. To illustrate
when player observes the first triggering action, Assumptiompliesz! = (1,0,...,0).

In some abuse of notation, when it is known that a player assigorobability to more
thank opponents being infected, we work with ¢ R*. We say a belief:* ¢ R* first-
order stochastically dominates beliefy! if 2! assigns higher probability to more people
being infectedi.e., for eachl € {1,...,k}, >.F 2/ > 3% 4. LetZ' denote the random

1=l

SFor the formation of a player’s beliefs after erroneousdrist, we assume that mistakes are infinitely
less likely than and independent from the event that a sedleiated in period 1. Hence, if a player observes
an erroneous history, he will still think that a seller deégdin period 1 and moreover other players have
made mistakes.

12



variable representing the number of infected people in thera&community at the end of
periodt. Let k' denote the events‘people in the other community are infected by the end
of periodt”, i.e., k' andZ' = k denote the same event.

As we will see below, the beliefs of players after differergtries evolve according
to simple Markov processes, and so can be studied using ao@jgte transition matrix
and an initial belief. We define below a useful class of masiccontagion matrices
Given a population sizé/, a contagion matriX_' is anM x M matrix that represents the
transitions between beliefs after a given history. The eletm,; of a contagion matrix
C denotes the probability that the stateritvals infected” transitions to the statg fivals
infected”. Formally, if we letM . denote the set df x k& matrices with real entries, we say
that a matrixC' € M, is a contagion matrix if it has the following properties:

i) All the entries ofC' belong to[0, 1] (represent probabilities).
i) C'is upper triangular (being infected is irreversible).

iii) All diagonal entries are strictly positive (with somegbability, infected people meet
other infected people and contagion does not spread in tihentyperiod).

Iv) For eachi > 1, ¢;_4; is strictly positive (unless everybody is already infectetth
some probability, exactly one person gets infected in thergcommunity in the
current period).

A useful technical property is that, since contagion masiare upper triangular, their
eigenvalues correspond to the diagonal entries. GivenR*, let ||z|| := Zie{l 77777 ky T
We will often be interested in the limit behaviorﬁ%, whereC'is a contagion matrix and
x is a probability vector. Given a matri, let Cyy denote the matrix derived by removing
the last/ rows and columns frond’. Similarly, C', is the matrix derived by removing the
first k rows and columns andy, ; by doing both operations simultaneously.

4.3 Incentives off-path

In order to prove sequential rationality we need to exammoemtives of players after all
possible off-path histories, given the beliefs. This ishibart of the proof and the exposition
proceeds as follows. We classify all possible off-pathdriss of a playef based on when
playeri observed off-path behavior for the first time.

13



e Given the beliefs described above, it will be important tetfcharacterize the best
response of a seller who deviates in the first period of theegam

e Next, we consider histories where playebserves a triggering action (gets infected)
for the first time in the Target Play Phase (Phase III).

e We then consider histories where playasbserves a triggering action for the first
time during one of the two Trust-Building Phases.

¢ Finally, we discuss non-triggering actions.

We need some extra notation. Denotegeriod private history for a playéroy h'. At
any time period, we denote hy(good) the action an uninfected player would choose and
by b (bad) the action an infected player would choose. For exanigblayer: observes a
t-period historyh! followed by three periods of good behavior and then one pesfdoad
behavior, we represent this Bygggb. In an abuse of notation, the history of a player is
written omitting his own actions. In most of the paper, wecdss beliefs from the point of
view of a fixed playet, and so often refer to playein the first person. For example, from
i's point of view, g, denotes the event “| observedn periodt”. Similarly, for player:, U*
denotes the event “I am uninfected at the end of petiod

4.3.1 Computing off-path beliefs

Since we work with off-path beliefs of players, it is usefal ¢larify at the outset, our
approach to computing beliefs. As an example, considerdhexfing history. | am on-
path until periodf > T + T, when | observe a triggering action followed by on-path
behavior at period + 1, i.e., il = gg. .. gbg. It is easy to see that, after peridth- 1" + 2,

the number of infected people will be the same in both comtiami So it suffices to
compute beliefs about the number of people infected in treé community. These beliefs
are represented by’ *' € R, wherez.™ is the probability of exactly: people being
infected after period + 1, and must be computed using Baye’s rule and conditioning on
my private history. What is the information | have after bigth‘? | know a seller deviated
atperiod 1, sa! = (1,0,...,0). | also know that, after any periddk ¢, | was not infected
(U"). Moreover, since | got infected at periodat least one player in the rival community
got infected in the same period. Finally, since | faced amfgaited player at + 1, at most
M — 2 people were infected after any peribet ¢ (Z@ < M — 2).
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To computez'*! we compute a series of intermediate beliefsfor t < ¢ + 1. We
computez? from z! by conditioning on/? andZ? < M — 2, then we compute? from
22 and so on. Note that, to computé, we do not use the information that “I did not
get infected at any perio?2l < ¢t < ¢". So, at eacht < t, 2! represents my beliefs when
| condition on the fact that the contagion started at periaghd that no matching that
leads to more than/ — 2 people being infected could have been realiz&uit differently,
at each period, | compute my beliefs by eliminating (assigrezero probability to) the
matchings | know could not have taken place. As we said alaive given period < t,
the information that “I did not get infected at any perigevith 7 < ¢ < ¢” is not used. This
extra information is added period by periags., only at period: we add the information
coming from the fact that “I was not infected at periidin Section A.2 in the Appendix
we show that this method of computing! generates the required beliéfs, my beliefs
at periodt + 1 conditioning on the entire history | have observed. Now weaquipped to
check the optimality of the equilibrium strategies.

4.3.2 A seller deviates at beginning of the game

The strategies specify that a player who gets infected byatieg to a triggering action
himself will henceforth play his best response to the sjiateof the other players. As we
argued in Section 3.1, it is easy to show that for a gi¥énif 7" is large enough, a seller
who deviates in period 1 will find it optimal to play the Nashian (dominant action) for
the rest of the game. In particular, a seller who deviates-at will play @Q;, forever.

4.3.3 A player gets infected in Phase Il

Case 1: Infection at the start of Phase Ill.Let h7+7+! denote a history in which I am a

player who gets infected in peridl + 7" + 1. The equilibrium strategies prescribe that |
switch to the Nash action forever. For this to be optimal, ktrhelieve that enough players
in the other community are already infected.

In order to compute my beliefs, | need to know how the contagipreads during
Phase | after a seller deviates in period 1. In Phase |, ordydemiant seller is infecting buy-
ers. The contagion in this phase is a simple Markov proce$ssiate spacél, ..., M},
where a state represents the number of infected buyers. ofFfesponding transition ma-

"The updating after periotis different, since | know that | was infectedzznd that no more thah/ — 1
people could possibly be infected in the other communithatend of period.
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trix is Sy € My, where a staté transits tok + 1 if the deviant seller meets an uninfected
buyer, which has probabilitQ%. With the remaining probability,e., % statek remains

at statet. To save notation, we may omit the subscriptin matrix.S,; when no confusion
arises. Lets;; denote the probability that statdransitions to statg¢. We present matrix

S below.

hoME 0o
0 & %7 0 0
M

Svu = )
M M 0
0 0 0 M-1 %

0 0 0 0 0 1

5

The above transitions represent how the contagion wasnatlgiexpected to spread.
To compute my current beliefs, | must also condition on tHermation | have about how
it has really spread. Consider any period 7'. After observing history'zTJfTJrl =g...gb,
| know that at the end of period+ 1 at mostM — 1 buyers were infected and | was not
infected. Therefore, to compuié™, my intermediate beliefs about the number of buyers
infected at the end of periad+ 1 (i.e., aboutZ'*1), | need to condition on the following:

i) My beliefs aboutZ®: z*.

i) 1was uninfected at the end of+ 1: the event/*! (this is irrelevant if | am a seller,
since no seller can get infected in Phase ).

iii) At most M — 1 buyers were infected by the end of peribd- 1: 70! < M — 1
(otherwise | could not have been uninfected at the start aseHl).

Therefore, giverl < M, if | am a buyer, the probability that exactlybuyers are
infected after period + 1, conditional on the above information, is given by:

P(lt+1 NU N < M —1 |t)
PUINTH < M — 1[at)
x;—lsl_lleM——l_-i-ll + xfsl’l

M—-1/ 4 M-I t )
=1 (xl—13l—1,l M1 T 9315171)

P(lt+1 ‘xt N Ut-‘rl mz‘t—i—l S M — 1) —

The expression for a seller would be analogous, but Withwﬁ% factors. Notice
that we can express the transition frafto z**! using what we call theonditional tran-
sition matrix Since we already know that,, = ' = 0, we can just work inR*-1,
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Let C € M, be defined, for each pait, i € {1,..., M — 1}, by ¢y := spa=t; with the
remaining entries being

Recall thatCy; and.S;; denote the matrices obtained frathand .S by removing the
last row and the last column of each. So, the truncated matr@onditional transitional
probabilitiesC’y; is as follows:

1 M—-1M-2
M M M-1 0 0
2 M-—2 M-—3

0 M M M-—2 0

Cy = :
M-—2 21
0 3 iz
1—1
0 0 0 0 0 57

Recall that my beliefs are such that = (1,...,0), since the deviant seller infected

one buyer at period 1. Then, if | am a buye* can be computed as

xt Cu z! Cﬁ

Izt Cyll 2 Cy I

t+1

The expression for a seller would be analogous, Withinstead ofC’;;. Hence, | can
compute my beliefs about the situation at the end of Phase | by
zleT-1

2 if  am a buyer,

LT

xlsjll .
Y if | am a seller.

letsT L)

Lemma 1. Fix M. Thenlim; - (0,...,0,1).

The intuition for the above lemma is as follows. Note thatldrgest diagonal entry in
the matrixCy (or Sy)) is the last one. This means that the state- 1 is more stable than
any other state. Consequently, as more periods of conta¢apse in Phase |, stalé — 1
becomes more and more likely. The formal proof is a stragyhthrd consequence of some
of the properties of contagion matrices (see Propositidnit\the Appendix).

Proposition 2. Fix 7" and M. If | observe history,’+7+1 = ¢ ... gb andT is large enough,
then it is sequentially rational for me to play the Nash aetit period?” + 7" + 2.
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Proof. Suppose | am a buyer. Since sellers always play the Nasmactthase Il, | cannot
learn anything from play in Phase Il. By Lemma 17ifs large enough, | assign very high
probability to M — 1 buyers being infected at the end of Phase I. Then, at leashag m
sellers were infected during Phase Il. If exactly — 1 sellers were infected by the end
of Phase II, then the only uninfected seller must have getcied in period” + 7" + 1,
since in this period | was the only uninfected buyer and | meah&ected seller. So | assign
arbitrarily high probability to all sellers being infectegt the end ofl” + 7" + 1, and hence
it is optimal to playB;..

Next, suppose | am a seller. In this case, the fact that norbofexted me in Phase |l
will make me update my beliefs about how contagion has sprilasvever, if T is large
enough relative t@”, even if | factor in the information that | was not infectedRhase I,
the probability | assign td/ — 1 buyers being infected by the end of Phase | is arbitrarily
higher than the probability | assign kobuyers being infected for anly < M — 1. By the
same argument as above, playing Nash is optimal. O

Next, we consider thos@l’ + 7" + 1 + «)-period histories of the form+7+1+e —
g...gbg .. g,withl <o < M —2,i.e, these are histories where | was infected at period
T + T + 1 and then | observed periods of good behavior while | was playing the Nash
action. For the sake of exposition, assume that | am a bulgergtguments for a seller
are analogous). Why are these histories significant? Ntiatef | get infected in period
T + T + 1, | can believe that all other buyers are infected. HowevVaftér that, | observe
Qpu, | have to revise my beliefs, since it is not possible thatladl buyers were infected
after periodl” + 7"+ 1. Can this alter my incentives to play the Nash action?

Supposer = 1. After historyh7+7+2 = ¢ ... gbg, | know that at mosf\/ — 2 buyers
were infected by the end of Phase I. Therefore, for eagh T, 2%, = 2, , = 0. My
beliefs are no longer computed usify, but rather withC'y. By a similar argument as
Lemma 1, we can show that now € R -2 converges t@0,0,...,1). In other words,
the statel/ — 2 is the most stable and, f@tlarge enough, | assign very high probability to
M — 2 buyers being infected at the end of Phase |. Consequentbasttas many sellers
were infected during Phase Il. This in turn implies (justm&roposition 2) that | believe
that, with high probability, all players are infected by n@tt = 7'+ T + 2). To see why,
note that in the worst case, exactly — 2 sellers were infected during Phase Il. In that
case, one of the uninfected sellers met an infected buyaridi” + 7"+ 1 and | infected
the last one in the last period. Therefore, | assign very prgibability to everyone being
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infected by now, and it is optimal for me to play the Nash attidn analogous argument
holds for(7 + 7 + 1 + «)-period histories withw € {1,..., M — 1},

We need not check incentives for Nash reversion after estavhere | observe more
than M — 2 periods ofg after being infected. These are erroneous histories antbtae
explained by a single deviation in period 1. Here, | will legk that there have been as
many mistakes by players as needed to be consistent wittbde\eed history.

Finally, consider histories such that, after getting itdel¢c | observe a sequence of
actions that includes boti andb, i.e., histories starting Wit T+7+1 = g...gbandin
which | have observeblin one of more periods after getting infected. After suchdriss,
| will assign higher probability to more people being infettcompared to histories where
| only observedy after getting infected. Intuitively speaking, observingeconfirms my
belief that the contagion is widely spread. It is again optifor me to play the Nash action
after any such history.

We have thus shown that a player who observes a triggerimgnaict the first time at
the start of Phase Il will find it optimal to revert permangro the Nash action.

Case 2: Infection late in Phase Ill.Next, suppose | get infected after observing history
At = ... gb,with? > T+ T. Now we need to study how the contagion spreads during
Phase IIl. As we noted earlier, from peri@d+ T + 2 on, the same number of people is
infected in both communities. The contagion can again bdietias a Markov process with
state spacé¢l,..., M}. In contrast to Phase |, all infected players spread theagion in
Phase III. The new transition matrixfse M ;. For each paik, [ € {1,....,M},ifk >1

orl > 2k, 8y = 0; otherwisej.e, if £ <[ < 2k, (see Figure 3)

) ((sz) (o - k)!)2(2k‘ — DM —1)! (EN)2((M — k)12
SR M (= RD2k — DM — IM!

Consider any such thaf'+7 < t < %. If | observe histonh't = ¢. .. gb, | know that
“at mostM — 1 people could have been infected in the rival community aetieof period
t" (I < M — 1) and “I was not infected”[{?). As before, leti’ be my intermediate
beliefs after period. We are interested in the beli@ft!, but first we studyi* ast — oo.
Our limit results will not depend on the specific beliefs a #nd of Phase Il (as long as
i?*hl > 0, which is always true). Since, for ea¢h< ¢, i, = 0, we can just work
with ¢ € RM-1. As before, we want to compute(/'t! |2t N Ut N Tt < M — 1) for

19



Sellers Buyers

(2k — 1)! T

K Already infected
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Figure 3:Spread of Contagion in Phase Ill. There afé possible matchings. For stateto transit

to statel, exactly(! — k) infected people from each community must mget &) uninfected people
from the other community. The number of ways of choosing td¢t — k) buyers fromk infected
ones who will spread the contagion(ilsjjk). The number of ways of choosing the corresponding

(1—k) uninfected sellers who will get infected (§',*), and the number of ways in which these sets
of (I — k) people can be matched is the total number of permutatiohs-df people,i.e., (I — k)!.
Analogously, we choose thg — k) infected sellers who will be matched o — &) uninfected
buyers. The number of ways in which the remaining infectegelsiand sellers get matched to each
other is(2k — 1)!, and the uninfected ones is(i3/ — )!.

le{l,...,M —1}.

P N UM A THL < M — 1) |
P(UH N TH < M — 1) |dt)
Zke{l,...,M} xfcgkl%

216{1,...71\4—2} (Zke{17,,,,M} xiékl%) .

P(lt—i-l |i,tﬁUt+1 mz‘t—i—l S M—l) —

These conditional transition probabilities can be exmgeésa matrix form. LetC' €
My be defined, for each pait | € {1,..., M —1}, by ¢y := 8,1 47—; with the remaining
entries beind. Then, my intermediate beliefs @t- 1 are given by

At A
A Tt ¢4
L ]

&t Cyll
We show next that a result similar to Lemma 1 holds.
Lemma 2. FixT € N, T € N,andM & N. Thenlim;_, ' = (0,0,...,0,1) € RM~1,

The above lemma follows from properties of contagion mesri(see Proposition A.1
in the Appendix). We present now an informal argument. Nbg the largest diagonal
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entries of the matri>(:*1j are the first and last one8,{ and¢y;_1 »—1), Which are equal.
Unlike in the Phase | transition matrix, staté — 1 is not the unique most stable state.
Here, state$ and M — 1 are equally stable, and more stable than any other state.d&/hy
beliefs then converge t®, 0, ...,0,1)? In each period, many states transif\fo— 1 with
positive probability, while no state transits to state 1d an the ratioj”%{—{1 goes too ast
increases. So, late in the game, | assign arbitrarily highability to state\/ — 1.

Proposition 3. Fix 7" € N, T € N, and M e N. If | observe historyi'™! = ¢...¢b and
t is large enough, then it is sequentially rational for me taypthe Nash action at period
t+2.

Proof. By Lemma 2, iff is large enoughi! is such that | assign very high probability
to M — 1 players in the other community being infected by the end oioge. Now, to
computei*t! from z*, | add the information that | got infected &t 1 and hence, the only
uninfected person in the other community got infected too, r®w | assign very high
probability to everyone being infected. Then, Nash rewerss optimal. O

Suppose now that | obseri&™ = ¢ . . . gbg and that | played the Nash action at period
t + 2. Then, | will know that less that/ — 1) people were infected at the end of period
t since, otherwise, | could not have facedn period¢ + 2. In other words, | have to
recompute my beliefs using the information that, for each ¢, 78 < M — 2. | should
now use the truncated transition mateiy . Since, for each any< , 7, = @, _, = 0, to
obtainz! we just work withi* € RM~2, Now we have

~t A
A 2t Oy
L J

12¢ Cy

As before, we will study the limit behavior af ast goes toxo, and then usg’ to compute
my beliefs att + 2. First, we establish that indeed converges (again, see Proposition A.1
in the Appendix).

Lemma 3. For eachT € N, each?' € N, and eachV/ € N, lim; .. 2! = 7, wherez is
the unique left eigenvector associated with the largesireiglue of’y such that|z|| = 1.
Thatis,zCy = L.

Note that in matrixégJ, the largest diagonal entry is the first one. This implies tha
result similar to Lemma 1 does not hold any mdre, =z # (0,...,0,1). However, we
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show below that | will still believe that “enough” people ardgected with “high enough
probability”.

Lemma 4. Letz = lim; .. 2, wherei! denotes a player’s beliefs at the end of period
after he observes histoly*? = ¢...gbg. Letr € (0,1). Then, for eaclz > 0, there is
M € N such that, for eacid/ > M,

M-2
Z Zf'] > 1 — &,
j=[rM]

where|z] is the ceiling function and is defined as the smallest integéismaller thar:.
Indeed, for eachn € N, there isM < N such that, for eacid/ > M,

This result can be interpreted as follows. Think-afs a proportion of people, s@y.
Provided the population size is large enough, after obsgrvistoryh'™2 = ¢ ... gbg, my
limiting belief z will be such that | will assign probability at leagt — <) to at least0% of
the population being already infected. Now we can cheadese enough td ande small
enough and then find alW € N large enough so that | believe that the contagion is spread
enough that playing Nash action is optimal.

Figure 4 below represents the probabilitEé\i‘[fM] 7, for different values of and M.

In particular, it shows that they go to one very fast with From the rest of the results
in this section it will follow that, after any history in whicl have been infected late in
Phase Ill, my beliefs will be that the contagion is at leass@®ad ag indicates. Then,
take for instancé/ = 20. Now z is such that at lea$i0% of the people are infected with
probability at leasd.75; which should be enough to induce the right incentives fostmo
games. So, quite generally, the incentives will hold everdisly small population size%.

In order to prove Lemma 4, we need to study more carefully taesitions between
states and their probabilities. The main idea of the proasidollows. There are two
opposing forces that affect how my beliefs evolve after lesbas g ... gbg. First, each
observation ofy is a signal that not too many people are infected, making e Isack

8The non-monotonicity in the graphs in Figure 4 may be suinmisTo the best of our understanding, this
can be essentially attributed to the fact that the statdsatieapowers of 2 tend to be more likely and their
distribution within the top\/ — [r M| states varies in a non-monotone way.
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Figure 4: lllustration of Lemma 4.

in my beliefs and assign higher weight to lower states. Orother hand, since | believe
that the contagion started at= 1 and that it has been spreading exponentially during
Phase lll, every elapsed period makes me assign more weigigher states (believe that
more people are infected). What we need to do is to compamdgmitudes of these two
effects. Two main observations drive the proof. First, e&le | observey, my beliefs get
updated with more weight assigned to lower states and, tpggleaking, this step back in
beliefs turns out to be of the order 6f. Second, we identify the the most likely transition
from any given staté, sayk’, and it turns out that the statéis abouty/A/ times as likely
as the staté. Similarly, if we consider the most likely transition frok), sayk”, we get
thatk” is /M times as likely as the staké. Hence, given a proportion of peoples (0, 1),
itis easy to see that, i/ is large enough, for each stdte< r M, we can find another state
k that is at leasfi/? times more likely than state. So the second effect on the beliefs is of
an order ofA/2, which dominates the first one.

We need some preliminaries before we prove Lemma 4. Reall th

M—k (KD2((M — k)!)? M—Fk—j

Colies = Swiees 5715 = G0k — L —k — IOA M —F

~

Given a state&k € {1,..., M — 2}, consider the transition frorh to state t(k) := k +
LW], where| z] is the floor function; defined as the largest integer not lattgen 2. It
turns out that, for largé/, this is a good approximation of the most likely transitioon
statek.

For analytical ease, we temporarily assume that there isnincmm of statesi.e.,
we let the set of states be the intery@l)/]. We analyze the transitions between states
in this environment and then show that the results also holthe finite setting. In the
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continuous setting, a statec [0, M|, can be representedasrM; wherer = z/M can
be interpreted as the proportion of infected people at stateet o« € R. We define the
function f,: [0,1] — R as

rM(M —rM)

T +a=r—-r)M+a.

fa(r) =

Note thatf,, is continuous and further that\/ + f,(r) would just be the extension of the
function tr(k) to the continuous case; we want to know how likely it is thasion from
stater tor + fy(r). Also, we define the function: [0,1] — [0, 1] as

g(r) :=2r —r?
The functiong is continuous and strictly increasing. Note that, giver [0, 1], g(r)
represents the proportion of infected people if, at state f,(r) people get infected; just
note thatr M + fo(r) = rM + (r —r>)M = (2r —r?)M. Letg*(r) := g(g(r)) and define
analogously any other power gf Hence, for each € [0, 1], ¢"(r) represents the fraction
of people infected aftet steps starting at)/ when transitions are made according§o ).

Claim 1. Let M € Nanda,b € [0, 1], witha > b > 0. ThenaM + fy(a) > bM + fo(D).

Proof. Note thataM + fo(a) — bM — fo(b) = aM + MMM ppp  SMMZBA)

2aM — a?M — 2bM + b*M = (g(a) — g(b))M. Sinceg(-) is strictly increasing ir{0, 1
the result follows.

~—

O

Now we define one last function functidi{’ : (0,1) — (0, 00) as

(rM"2((M —rM)!)? M—rM — fa(r)‘

hﬁ%ZMMm%M_hmmM_mﬁﬁmwM! M —rM

The above function represents the continuous version dfaneitions given by the matrix

Cy. In particular, givenv € R andr € [0, 1] the functionh? (r) represents the conditional

probability of transition from state) to stater M + f,(r). Note that, in some abuse of
notation, we apply the factorial function to non-integealreumbers. In such cases, the
factorial can be interpreted as the corresponding Gamnaitumi.e., a! = I'(a + 1).

Claim 2. Leta € Randr € (0,1). Thenlimy; .., MhM(r) = co. More precisely,

lim MhM(r) 1
i = )
M—oo /M 2T

24




Proof. We prove the above claim in two ste@Step 1: a = 0. We know from Stirling’s
formula thatlim,, .. (e "n"t21/27)/n! = 1. Hence, given € (0,1), to studyh?(r) in
the limit, we can use the approximation that= e~"n"t3/2r. Making the appropriate
substitution and simplifying, we get the following:

((rM)N*(((1 = r)M)1)? (1-1)
M\(r2 M) (((r — r2)M)1)2((1 — r)2M)!
M(TM)l—i-QrM((l _ 7A)A/M)1+2(1—r)M(1 _ 7,)
V2r MM (1 — )2 M) 200 M ((p — p2) M)z 0= )M (2 ) )5 +72M
VM

r2r

MhY(ry = M

Step 2: Letae € Randr € (0,1). Now,

RM(r) (M —a)!/(((r — ) )M + a))2((1 —7r)?M —a)! (1 —7)°M

hM(r) (r2MON(((r = r2)M )2 ((1 —7)2M)! (1—7r)2M—a

Applying again Stirling’s formula we get

2 2
(7”2M—Oé)%+r M-« ((T_T,2)M+a)1+2(r7'r2)]M+20< ((1_7,,)2M_a)%+(1*7') M-« (1—7”)2M (1)
RAEE (= My (e FRaP (-nEM =

To compute the limit of the above expressionlds— oo, we analyze the four fractions
above separately. Clearly,1 — r)>M)/((1 —r)*M — a) — 1 asM — oco. So, we restrict
attention to the first three fractions. Take the first one:

«
r2M

(r2M — a)%—‘erJ\/[—a B a

r2M 2 -
e~ U M — )T = Ay Ay Ay

)%.(1

wherelim,; .., A; = 1 andlim,;_., A, = e~“. Similarly, the second fraction decomposes
asB; - By - Bs, wherelimy; .., By = 1, limy; .o By = €** andBz = ((r — r*)M + «a)?.
Finally, the third fraction can be decomposed@s- C5 - C3, wherelimy,_.., C; = 1,
limy oo Co = e andC3 = ((1 — r)?M — a)~. Therefore, the limit of the above
expression reduces to

((ﬂj\j(—r;)&iﬂf;ﬁ—a})a =1 =

We are now ready to prove Lemma 4.
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Proof of Lemma 4Fix r € (0,1) ande > 0. We show that there i3/ such that, for each
M > M and each staté < [rM], there is a staté € {[rM],..., M — 2} such that

Tp > M?Z;. We show this first for staté, = [rM] — 1. Consider the stateM and

let 7 := ¢°(r). Recall thatr is the state reached (proportion of people that are inf¢cted
from initial stater M after 5 steps according to the functigfn Recall that functiong,
andg are such thaty < 7 < 1. Moreover, suppos@/ is large so thatM < M — 2.
Consider now the state, and letk be the number of infected people after giving 5 steps
according to function tr). Clearly, for each of these steps, therexise (—1, 0], with

j €{1,...,5}, such that the step corresponds with that of funcfign By Claim 1, since

ko < rM, k < M — 2. Moreover, it is trivial to see that > [rM]. Let k; be the
state that is reached after the first step friyraccording to function tr). By Lemma 3,

7 = MzCy. Thenzy, = M S0l * 74(Co iy > MTpy (Coy ok, = T MA (1), which,

if M is large enough, can be approximatedmy%. Repeating the same argument
for the other intermediate states that are reached in eatihedive steps, we get that,
if M is large enoughz; > M?z,,. The proof for an arbitrary state < [rM| — 1 is
very similar, with the only difference that more steps migbtneeded to get to a state
ke {[rM],..., M — 2}; yet, the extra number of steps makes the difference between
andz; even bigge®.

Letk € {[rM],..., M—2} be astate suchthat > M?max{z; : k€ {1,...,[rM]—
1}. Then, 1™ 2, < rM+% < L. Therefore, ifM is big enough; < = and we get
thaty " % 2 > 1 —e.

The second part of the statement is now straightforward: tdke7 := ¢>"3(r) and
repeat the argument above. O

Proposition 4. Fix a gamel'(g, 1, ¢). Fix T € NandT € N and let? >> T + 7. Suppose
that | observe historyi't? = ¢...gbg. Then, if M is large enough, it is sequentially
rational for me to play the Nash action at periéd- 3.

Proof. First, consider my beliefs$* computed conditioning only the information that at
mostM — 2 people were infected after perio@nd that | was uninfected until period- 1.
From Lemma 3, if is large enoughi’ is very close taz. In particular, | believe that, with
probability at least — ¢, at least-M people are infected. We can ugeto compute my
beliefs at period + 2.

91t is worth noting that we can do this argument uniformly foe wifferent states and the corresponding
o’s because we know that all of them lie insiglel, 0], a bounded interval; that is, we can take diiebig
enough so as to ensure that we can use the approximationigiezgmma 2 for anyv in [—1, 0].
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e After periodf + 1: | computei’*! by updatingi?, conditioning oni) | observed
in period? 4+ 1 andii) at mostM — 1 people were infected aftért- 1 (1 observedy
at? + 2). Now, comparei+! with '*', computed fromi? by conditioning instead
on i) | observed; and i) at most\/ — 2 people are infected. Clearly!* first order
stochastically dominateg*!, in the sense of placing higher probability on more
people being infected. Now, recall that the belig¢fsare very close ta: and, by
definition, the beliefg:'*2 are even closer to.

e After period? + 2: | computez’*? based on:**! and conditioning on i) | observed
g, ii) I infected my current opponent (I played the Nash act@bn -+ 2), and iii) at
mostM have been infected aftér+ 2. Again, this updating leads to beliefs that first
order stochastically dominate beliefs we would obtain ifin&ead conditioned on
i) | observedg and ii) at mostM — 2 people were infected aftér+ 2. Again, the
beliefsz'+2 would be very close ta.

Hence, if it is optimal for me to play the Nash action when mijdfe are given byz, it is
also optimal to do so after observing the histaty? = ¢. .. gbg (provided that is large
enough). But Lemma 4 ensures that)if is large enough, the beliefscan be made as
extreme as desired (in the sense of many people being idjeetesuring that the players
have the right incentives. 0J

As we did in Case 1, histories of the forlit!t* = ¢...gbg .. ¢ also have to be
accounted for. The key idea for the incentives after theswhes is the following. It is
small, then | will still think that a lot of players were aldbainfected when | got infected;
the argument being similar to the one in Proposition 4. Onather hand, if« is large,
| may learn that there were not so many players infected wigst Infected. However,
the number of players | my have infected since then, togetiterthe exponential spread
of the contagion, will be enough to convince me that, at thes@nt period, contagion is
widely spread anyway.

To formalize the above intuition, we need the following sggthening of Lemma 4. We
omit the proof, as it involves a minor elaboration of the angmts in Lemma 4.

Lemma5. Letr € (0, 1). Then, for eacls > 0, there arer € (r,1) and M € N such that,
for eachM > M,
| M—7M |
j=[rM] Li

M
1 - Ej:LM—fMJ—H L

>1—¢
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Indeed, for eacln € N, there isM € N such that, for eacid/ > M,

| M —#M |
Zg [rM] L > 1 1
Mm

1- ZJ | M—#M)+1 L)

Proposition 5. Fix a gamel'(g,1, ¢). FixT € Nand7 € Nand letf > T+ 7. Leta > 1.
Suppose that | observe histay't® = ¢...gbg .. g. Then, ifM is large enough, it is
sequentially rational for me to play the Nash action at pdriet- 2 + a.

Proof. The idea of the proof is similar to that of Proposition 4. Eitknow that at most
M — o — 1 people were infected after periedHence, the new limit vector ¢ RM !
must be computed using mathaH However, if we defing := (Zy,...,Zy—a-1), it
is easy to see that= W

Second, consider the following scenario. Suppose that,itaPhase Ill, an infected
player believes that exactly two people were infected irheemmmunity, and then he
played the Nash action for a series of periods while obsgremly ¢g. In each period
he infected a new person and he knows that the contagion weadipg exponentially.
Clearly, once the number of periods during which this pldyas been infecting people
is large enough, Nash reversion would be the best replh\speetive of what this player
observes in the meantime (because the player would hawdedfenough people himself).
Let ¢(M) denote this number of periods. Since the contagion sprequmentially, the
thresholdp(1M) is some logarithmic function of/. Hence, for each < (0, 1), there isM
such that forM > M, #M > ¢(M). Now, givens > 0, we can find* and M such that
Lemma 5 holds. For the rest of the proof we work with > max{M, M?}. There are two
cases.

a < ¢(M): In this case, we can repeat the arguments in the proof ofd3itpn 4
to show that my belief$!t+ first order stochastically dominate those givenibySince
rM > ¢(M), | M — M| < M — ¢(M) and we can rely on Lemma 5 to get the desired
result.

a > ¢(M): In this case | played the Nash action ferperiods. By definition of
»(M), playing Nash is the unique best reply after observitig*. O

Finally, we consider histories in which after getting irtkt, | observe actions that in-
clude bothy andb, i.e., histories starting with'*' = ¢ ... gb and in which | have observed
b in one or more periods after getting infected. The reasoisitige same as Case 1. After
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such histories, | will assign higher probability to more pkobeing infected compared to
histories where | only observedafter getting infected.

Case 3: Infection in other periods of Phase Il (“Monotonicity” of Beliefs). We already
know that when a player is infected early in Phase I, hekhithat he was the last player
in being infected and that everybody is infected. Also,@liih a player infected late in
Phase Ill may not think that he was the last one, he will stithk that enough players are
already infected (for him to be sequentially rational toydlae Nash action), with this limit
belief being given byt. In the result below we show that the belief of a player irdect
not very late in Phase Il will be somewhere in between. Thieza player gets infected
in Phase lll, the closer his belief will be {0, ..., 0, 1) and, the later he gets infected, the
closer his belief will be tar.

Proposition 6. Fix a gamel'(g, [, c). Fix T € N. There isM € N such that, for each
M > M, if T is large enough, then it is sequentially rational for me taypthe Nash
action after any history in which I get infected in Phase lII.

Proof. In Cases 1 and 2 we showed that if | get infected at the stati@é®I|l (atl'+7'+1)
or late in Phase Il (at > T + 7)), | will switch to the Nash action. What remains to be
shown is that the same is true if | get infected at some intdrate period in Phase Ill. We
prove this for histories in Phase Ill of the fofi™2 = ¢ .. .. gbg. The proof can be extended
to include other histories just as in Cases 1 and 2. Recdllztlienotes the limit belief
whent goes to infinity.

We want to compute my belief™2 after historyhi*2 = ¢...gbg. We first compute
intermediate belief?, for ¢ < . Take M such that Proposition 4 holds for alf > /.

During Phase |, beliefs are computed using mafijx and from Phase Il on, matrix
Cy is used. We know (from Case 1) that férlarge enoughi”*+” € RM~! is close to
(0,...,0,1). Moreover, by taking” large enough, we also get theff 7! > #7+7+1
> 27T S 0 and, for eachi > 7, :%f*f“/i;“'f“ > 7;/7;. Using the properties of
the contagion matrix’y, we can show that if we start Phase 11l with such a belfef?+!
we also get that, for each> j, il/i > z;/z; (see Proposition A.2 in the Appendix).
This means also that first order stochastically dominatésin the sense of placing higher
probability on more people being infected. Now, my belieégd to be updated fromf
to #t1 and then fromi*! to 2'+2. We can use similar arguments as in Proposition 4 to
show thati’*2 first order stochastically dominates In other words+2 assigns higher
probability to more people being infected than Hence, if it is sequentially rational for
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me to play the Nash action when my beliefs &ret is also sequentially rational to do so
when my belief isti*2. O

Hence, we have established that if a player observes a tingggction any time during
Phase 11, it is sequentially rational for him to revert te thash action.

4.3.4 A player observes a triggering action in Phases | or Il

It remains to check the incentives for a player who is inféadering the initial Trust-
Building Phases. We argued informally in Section 3.1 whyeta would find it optimal to
switch to the Nash action. We omit the formal proofs, as tigeiaents are very similar to
those used for Case 1 above.

4.3.5 A player observes a non-triggering action

An uninfected player who observes a non-triggering actioovks that his opponent will
not get infected, and will continue to play as if on-path.c&ihe knows that contagion will
not start, clearly, the best thing to do is also to ignore dfffigpath behavior.

4.4 ChoosingM,T,T, and ¢

We have shown that ilZ, 7', 7, andd are chosen appropriately, the prescribed strategies
are sequentially rational. We show now that, given any pcédhoice gamé'(g, [, ¢), itis
possible to choose these parameters to satisfy all ineeobinstraints simultaneously.

Fix a gamel'(g, 1, c). The first step is to choos¥ large enough so that the incentive
constraints in Phase Il are satisfie@,, a player who observes a triggering action late in
Phase lll believes that enough people are already infeotdths Nash reversion is optimal.

Here there is one subtle issue. Onlde 7', and7" are chosen, we need players to be
patient enoughd(large) to prevent deviations on-path. Then, we need to ctietkonce
the contagion has started, not even an extremely patiepgpleants to slow it down. We
do this below. The essence of the argument is in observirgftra fixed population size,
once the contagion has started the expected stage payalffe mture go ta) exponen-
tially fast. That is, even the undiscounted sum of futuregff@yis bounded. Thus, even a
perfectly patient player becomes effectively impatient.

Let m be the maximum possible gain any player can make from a engdladieviation
from any action profile of the stage-game. Suppose that wénaPdase Il and take a
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player who knows that the contagion has started. Then(let) denote his (expected)
undiscounted sum of future payoffs. Similarly, define, facker < (0, 1], v(r, M) to be
the (expected) undiscounted sum of future payoffs of a pley® in Phase Il knows that
at least- M people are infected in each community.

It is easy to see that()M) is finite. The player knows that contagion is spreading
exponentially and, hence, payoffs will drop to zero in thegoun. In fact, although (M)
increases with\/, since contagion spreads exponentially fagd/) grows at a slower rate
than M. Moreover, we show below théin, ., v(r, M) is uniformly bounded ord/.

Lemma 6. Fix a product-choice gamEg(g, [, ¢). Letr > 1 andM € N. Thenw(r, M) <
1+g.

Proof. Letr = % If & people are infected in each community at peripthe expected

number of additional people who will get infected duringipdr + 1 is given by

z’“: [kI(M — k)12
p= k— )M — k‘—])'M']

In particular, ifr = 1 (i.e, k = 4), the above expression simplifies#§* = 2. This
implies that, if at least half of the population is infectediay, the expected number of
people to get infected during the next period is, at leadf,diahe remaining uninfected
people. Therefore, giveli(g, [, ¢),

1
~(1+g)=1+g.

1 1
<549+ (1+g)+c(1+g)+ 5

2

S
S
S

.
M 3

t=1

Clearly, forr > 1, v(r, M) < v(i,M). Hence, for eachr > 1 and eachV/ € N,
v(r, M) <1+g. O

Proposition 7. Fix a product-choice gamg(g, [, ¢). Then, there are € (0,1)andM € N
such that, for eaclr > 7 and eachM > M, a player who gets infected very late in the
game will not slow down the contagion, irrespective of hotigud he is.

Proof. By Proposition 4, ifM is big enough, a player who gets infected late in Phase Il
believes that “with probability at leagt— ﬁ at leastr M people in each community are
infected”. Suppose he deviates and does not play the Nasmathen:
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i) With probability 1 — ﬁ at leastr M people are infected. So, with probability at least
r he meets an infected player, makes a losslof not playing Nash, and does not
slow down the contagion. With probability—  he gains, at mostp in the current
period andv(M, r) in the future.

i) With probability ﬁ less tham M people are infected, and the player’s continuation
payoff is, at mosty(M).

Hence, the gain from not playing the Nash action instead ofgiso is bounded above by:

v(M)
M2

—rl+(1=r)(m+v(M,r)) < %Jr(l—i)(—rl+(1—r)(m+1+g)).

+(1 Ve Ve

L

The inequality follows from the facts that /) increases slower than the rate af and
that1 + ¢ is a uniform bound for(r, M). Now, if M is large enough and is close
to 1, the above expression becomes negative. So there i<entive to slow down the
contagion. O

Oncel is chosen, we piclf’. T'is chosen large enough so that a buyer who is infected
in Phase | and knows that not all buyers were infected by tldeoéPhase | still has an
incentive to playB;, in Phase Il. This buyer knows that contagion will spread fiehase
Il anyway, and playing3;, gives him a short-term gain in Phase II. Sd['ifs long enough,
she will want to playB;, in Phase Il. Because of the finiteness0#/), we can pickl’ such
that the incentive constraint holds even for a perfectlygpatbuyer.

Next, we choos&. T"must be chosen large enough so that i) a buyer infected irePhas
who has observedy in most periods of Phase | believes that with high probabdit
buyers were infected during Phase |, ii) a seller infectel@hase Il believes that with high
probability at leasf\/ — 1 buyers were infected during Phase I, iii) a seller who degat
Phase | believes that, with high probability, he met all thgdss in Phase |, and iv) players
infected in Phase Il believe with high probability that targh” people were infected by
the end of Phases | and II.

Finally, onceM, T, andT" have been chosen, we find the threshdlsuch that for
discount factors > ¢, players will not deviate on-path.

32



5 Discussion and Extensions

The main contribution of this paper lies in showing that camnity enforcement in random
matching games can be applied far beyond the PD to suppoderamnge of payoffs. The
main goal of this section is to discuss the versatility of thest-building ideas we have
used here to sustain cooperation in the product-choice gerparticular we show how far
we can get with a straightforward adaptation of the mainltesi this paper. Moreover,
we provide intuition for the way in which our approach mighktused to get more general
results such as a Nash-threats folk theorem, or similaiteastien the role of each player
is randomly assigned in each period (“interchangeable latipus”). We present these as
conjectures, as the formal proofs would require technicalyssis similar to what we have
already developed without adding new insights.

Note that throughout the paper we use symmetric strategielsso get symmetric pay-
offs for players within a community. In the discussion belahenever we talk about
the set of equilibrium payoffs, we restrict attention to lswymmetric payoffs. In other
words, we do not consider feasible payoff vectors wheregrkapf the same community
get different payoffs.

5.1 Games Beyond the Product-Choice Game

For ease of exposition, we restricted attention to the pebdhoice game, and showed that
payoffs arbitrarily close to the efficient payoff profile cha achieved. More generally, in
what classes of games does this result apply? What is thégyaffs that can be achieved
in equilibrium in these games?

Take a two player game with action sétand let(aj, a;) be a Nash equilibrium.

Al. One-sided Incentives: There are action profile@, a;) and(a;, a;) € A such that:

¢ In each of the two action profiles, exactly one player has eeritive to deviate,
with player1 wanting to deviate ifja, a;) and player2 wanting to deviate in

(a1, az).
¢ In one of the two action profiles, the player with no incentigedeviate is
playing an action in the support @i}, a3).
Let A := {(d},d}) € A: eitheri)(a},a)) = (a*,a}) orii) ¢ = o anda) = a}}. Then,
any payoffv € conv({u(a) : a € A}) that Pareto dominates the payoff @f, a;) can
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be approximated adapting the strategies in this p&p€he action profiles in Al are used
to define the trust-building phases and the payoiff approximated in the target payoff
phasé!l It may be worthwhile to note that conditiafl is generic in the class ¢f x 2
games with a unique pure strategy Nash equilibrium.

5.2 Can we get a Folk Theorem?

Note that, in the product-choice gamé,does not include action profilds),, By) and
(Qu, Br). Since we cannot achieve payoffs clos¢lte-g, —() or (—I, 1 —c), our strategies
do not suffice to get a folk theorem for all games satisfying Abwever, we believe that
the idea of trust-building that we develop in this paper iw@dul enough to take us farther.
We conjecture that it may be possible to obtain a Nash thfettsheorem for two-player
games by modifying our strategies with the addition of farttrust-building phases. We
do not attempt to prove a folk theorem here, but we hope tleanfiormal argument below
will illustrate how the idea of trust-building might lead adolk theorem.

To fix ideas, consider a feasible target equilibrium paytditican be achieved by play-
ing short sequences o)y, By) (10% of the time) alternating with longer sequences of
(Qu, Br) (90% of the time). It is not possible to sustain this payoff in Rhdswith our
strategies. To see why not, consider a long time window irs@h# where the prescribed
action profile is(Qy, Br). Suppose a buyer facég, for the first time in a period of this
phase followed by many periods ¢f;. Notice that since the action for a buyer/ss in
this time window, she cannot infect any sellers herself. v8h) more and more observa-
tions of i, she will ultimately get convinced that few people are itéelc So, it may not
be optimal to revert to Nash any more. Contrast this with thgiral situation where the
target action iSQy, By ). In that case, a player who gets infected starts infectingars
himself and so at most, aftéd — 1 periods of infecting opponents, he is convinced that
everyone is infected.

What modification to our strategies might enable us to atta@se payoffs? We will
use additional trust-building phases to recover incestivgay, the target payoff involves
alternating sequences @y, B ) for T} periods andQpy, By) for Tr = %Tl periods. In

10The results and proofs are straightforward adaptatiorfssobhes presented for the product-choice game.

INote that if the game has more than two actions, we need tdfgpeov players behave after observing
an action that is neither on-path nor the punishment aclioensure that incentives are satisfied, we require
an additional assumption on beliefs. It suffices to assumestich deviations are more likely to be made by
infected players than uninfected ones. This implies thelh sictions are triggering actions.
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the modified equilibrium strategies, in Phase Ill, the wind®f (Qx, Br) and(Qy, By)
will be separated by trust-building phases. To illustrate, start the game as before, with
two phases?” periods of(Q;, By;) andT periods of(Q., By ). In Phase lll, players play
the action profilgQy, B.) for T; periods, followed by a new trust-building phaseTdf
periods during which@ ., By ) is played. Then players switch to playing the sequence of
(Qu, By) for T, periods. The new phase is chosen to be short endwghl(’ <« T}) to
have no significant payoff consequences. Yet, it is chosagpémough so that a player who
is infected during thd? period window but thinks that very few people are infected|, w
still want to revert to Nash punishments to make short-teamsyduring the new phaseé.
We believe that adding appropriate trust-building phasdke target payoff phase in this
way can guarantee that players have the incentive to rev&tash punishments off-path
for any beliefs they may have about the number of people iefec

5.3 Interchangeable Populations

So far in this paper we have assumed that the random matchmeg ¢ played by two
independent communitiegg., each player is either a seller or a buyer. Alternatively, we
could have assumed that there is one population whose merateematched in pairs in
every period and, in each match, the roles of players areoralydassigned. Then, at the
start of every period, each player has a fifty percent chahpkaging in each role.

A firstimplication of this alternative modeling is that a iaige result like that of Propo-
sition 1 may not be true any moté.However, we conjecture that the trust-building ideas
that underlie the results in this paper are flexible enoudietadapted to this new setting.

Suppose that we want to get cooperation in the repeated grotlnice game when
roles are randomly assigned at the start of each period. Wedatare that the following
simplification of our trust-building strategies can be usedet as close as desired to the
efficient payoff(1, 1). There are two phases. Phase | is the trust-building phelerssplay
@1 and buyers playsy; the important features of this profile being that i) only btg/have

2For example, think of a buyer who observes a triggering adlio the first time in Phase 1lI (while
playing(Qm, Br)) and then observes only good behavior for a long time whitginaing to play(Q x, Br).
Even if this buyer is convinced that very few people are itddcshe knows that the contagion has begun,
and ultimately her continuation payoff will become very I080o, if there is a long enough phase of playing
(Qr, By) ahead, she will choose to revert to Nash because this is thpimigest response, and would give
her at least some short-term gains.

13A buyer infected in period 1 might become a seller in perioch#@ Ae might indeed have the right
incentives to punish.
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an incentive to deviate and ii) sellers are playing a NaslbacPhase Il is the target payoff
phase andQy, By) is played. Deviations are punished through Nash reversimne is
no delay in the punishment now. The main difference with eesgo the old strategies is
that contagion also takes place in Phase |; whenever arctadéplayer is in the role of a
buyer he will playB;, and spread the contagion, so we do not have a single plaetimg
people in this phase. This implies that we do not need a setcosidbuilding phase, since
its primary goal was to give the infected buyers the righemtw/es to “tell” the sellers that
there had been a deviation.

The arguments for the incentives in this case would be veryiai to those used in
the setting with independent populations. After gettinigdated, a player would form his
beliefs based on the fact that a buyer deviated in period adetfzat punishments have
been going on ever since. Proving formally that players hbgeaight incentives after all
histories is a hard exercise for which we cannot rely on theyais of the independent
populations case. The fact that players’ roles are not fixdtwo main consequences for
the analysis. First, the contagion is not the same and alsljfferent mathematical object
would be needed to model it. Second, the set of historiesy@piaay have observed would
depend on the roles he played in the past periods, so it ishtydharacterize all possible
histories. We think that this exercise would not add newghts to the main message of
the paper and rather leave it as a plausible conjecture.

5.4 Alternative Systems of Beliefs

We assume that a player who observes a triggering actioeMeslithat some seller deviated
in the first period of the game. This ensures that an infedegepthinks that the contagion
has been spreading long enough that, after Phase I, almeybedy is infected. It is easy
to see that alternate (less extreme) assumptions on beleefld still have delivered this
property. We work with this case mainly for tractability. s8I, since our equilibrium is
based on communities building trust in the initial phasethefgame, it is plausible that
players regard deviations to be more likely earlier rathantlater.

Further, the assumption we make is a limiting one in the streget yields the weakest
bound on)M. With other assumptions, for a given product quality ch@aene and given
T andT, the threshold population siZ€ required to sustain cooperation would be weakly
greater than the threshold we obtain. Why is this so? On wvimgea triggering action,
my belief about the number of infected people is determingdwm factors: my belief
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about when the first deviation took place and the subsequetagion process (described
by the matrices of transition probabilities). Formally, getting infected at period, my
belief 2! can be expressed = S°'_ u(7)y!(7), wherepu(r) is the probability | assign to
the first deviation having occurred at perieéndy’(7) is my belief about the number of
people infected if | know that the first deviation took plad¢epariodr. Since contagion
is not reversible, every elapsed period of contagion resnla weakly greater number of
infected people. Thus, my belief if | think the first infeatioccurred at = 1, first order
stochastically dominates my belief if | think the first infien happened later, at amy> 1,
i.e, Foreachr,foreachk ¢ {1,..., M}, > yi(r) > M yi(1). Now consider any
beliefz! that | might have had, with alternate assumptions on whenkthe first deviation
occurred. This belief will be some convex combination/tfr), for - = 1,...,¢. Since
we know thaty’(1) first order stochastically dominate$(r) for any = > 1, it follows
thaty*(1) will also first order stochastically dominagé. This in turn implies that with
most alternate belief assumptions, we would have needdeastt the population size to
be larger in order to ensure that my limit beliefs in Phasasigned enough weight to a
large number of people being infected.

5.5 Stability and Robustness to Introduction of Noise

A desirable feature of an equilibrium could be global sigbiA globally stable equilib-
rium is one where after any finite history, play finally regeid cooperative play (Kandori
(1992)). The notion is appealing because it implies thahglsimistake does not entail
permanent reversion to punishments. The equilibrium haite fo satisfy this property.
However, global stability can be obtained if a public randzation device is introduced.
This is similar to Ellison (1994). The role of the randomiaatdevice would be to allow
for the possibility of restarting the game in any period haatlow but positive probability.
A related question is to see if the equilibrium can be susthin a model with some
noise. First note that since players have strict incentimesquilibrium, our strategies
are robust to the introduction of some noise in the parametel, andc. However, if
we consider a setting where players make mistakes, or ther@sy observation of one’s
opponents’ actions, our equilibrium is no longer robustnsider a setting where players
are constrained to play the noncooperative action with gty at least: > 0 at every
possible history. We can ask if the equilibrium survivesdoralle. Our construction is not
robust to this modification. The incentive compatibilityefr strategies crucially relies on
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the fact that players believe that early deviations are rioety. If players make mistakes
with positive and equal probability in all periods, this pesty is lost. To see a particularly
problematic case, consider the following situation in tlb#isg with noise. If a buyer
makes a mistake late in Phase Il, no matter what she doegleteshe will start phase
knowing that not many people are already infected. Hencghefis very patient, it may
be optimal for her to play the cooperative action and slowmtve contagion. Suppose a
seller observes a triggering action in the last period ofsBHh This seller will think that,
it is very likely that his opponent was uninfected and hasade a mistake, and so will
not punish. In this case, neither player reverts to Nashgbuménts. This implies that a
buyer may profitably deviate in the last period of Phase He¢aiher deviation would go
unpunished.

5.6 Uncertainty about Calendar Time

In the equilibrium in this paper, players condition theithbeior on calendar time. On-
path, sellers switch their action in a coordinated way aetietof Phases | and 1. Off-path,
players coordinate the start of the punishment phase. Tlhadar time and the timing of
the phasesi({ andT’) are commonly known and are used to coordinate behaviouaky,
in modeling large communities, the need to switch behavithr precise coordination is an
unappealing feature. It may be interesting to investigateaperation can be sustained if
players were not sure about the calendar time or about tleespregme to switch actions.

A complete analysis of this issue is beyond the scope of éyiep but we conjecture
that a modification of our strategies would be robust to tir@auction ofsmalluncertainty
about timing. The reader may refer to the Appendix Sectioh where we consider an
altered environment in which players are slightly uncertdout the timing of the different
phases. We conjecture equilibrium strategies in thisrggtéind provide the main intuition
behind why the efficient payoff might still be achieved.
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A Appendix

A.1 Properties of the Conditional Transition Matrices

In Section 4.2 we introduced a class of matrices, contagiatrioes, which turns out to
be very useful in analyzing the beliefs of players. Firsenbiat, since contagion matrices
are upper triangular, their eigenvalues correspond witdthgonal entries. Givene R,

let ||| == > icqy, sy 7i- We are often interested in the limit behavior f := %
whereC' is a contagion matrix andis a probability vector. We present below a few results
about this limit behavior. We distinguish three speciaktypf contagion matrices that will

deliver different limiting results.

-----

77777

Property C3: For eachl < k, C} satisfies C1 or C2.

Lemma A.l. Let C be a contagion matrix and let be its largest eigenvalue. Then, the
left eigenspace associated witthas dimension. That is, the geometric multiplicity of
is one, irrespective of its algebraic multiplicity.

Proof of Lemma A.1Let [ be the largest index such that = A > 0 and letz be a left
eigenvector associated with We claim that, for each < [, z; = 0. Suppose not and let
be the largest index smaller thasuch that:; £ 0. If ¢ < [— 1, we have that;,; = 0 and,
sincec; ;41 > 0, we get(zC);;; > 0, which contradicts that is an eigenvector associated
with \. If i =1 —1, then(zC); > ¢y +¢—1,2-1 > eyxy = Az, which, again, contradicts
thatz is an eigenvector associated withThen, we can restrict attention to matei;_).
Now, also) is the largest eigenvalue dty;_,) but, by definition ofl, only one diagonal
entry of C;—1) equals) and, hence, its multiplicity is one. Then,c R¥=(=1) js a left
eigenvector associated withfor matrix C;_y) if and only if (0,...,0,y) € R* is a left
eigenvector associated withfor matrix C. O

Given a contagion matrig’ with largest eigenvalu@, we denote byt the unique left
eigenvector associated withsuch that|z|| = 1.

Proposition A.1. LetC € M, be a contagion matrix satisfyin@1 or C2. Then, for each
nonnegative vectar € R* with 2; > 0, we havdim,_, ”j—g:” = . In particular, under
C2,z=(0,...,0,1).
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Proof of Proposition A.1 Clearly, sinceC' is a contagion matrix, it is large enough all
the components of’ are positive. Then, for the sake of exposition, we assunteathténe
components of are positive. We distinguish two cases.

C satisfies C1.In this case\ has multiplicityl. We show that, for each pairj €
{1,...,k}, limt_,ooz—g = ;"’—] Once this is established, the result immediately follones
the fact that, for each € N, ||z*|| = ||Z|| = 1. We already know that;C' = A%, where
A is the largest eigenvalue 6f. Then, the vectos can be written as = ax + v, where
v is a vector orthogonal td. Sincez is a nonnegative vector different frotnand all the

components of are positive;r andz are not orthogonal. Hence,> 0. Then,

C))i
C)h);

8

Eoo@Ch/|=Ct (2C);  Nady 4 (0C');  adi + (u(

b @O /xCHl (€Y Mad; + (0CY); oy + (o

J

8
> =

Since) is the largest eigenvalue 6f and has multiplicity one, as— oo, the second terms
in both the numerator and denominator vanish. Then the &stit— o is ;’—

C satisfies C2. We show that, for each < £, lim; .. 2! = 0. Wejprove this by
induction oni. Leti = 1. Then, for eacht € N,

t+1 t t t
X1 1121 1121 ﬂ

- t t — t
) D i<k CETE  ChrTy T T,

9

where the first inequality follows from the facts that ; > 0 andc¢;,_1, > 0 (C'is a
contagion matrix); the second inequality follows from C2ende, the ratiG;T'i is strictly
decreasing irt. Moreover, since all the componentsadflie in [0, 1], it is notkhard to see
that, as far as! is bounded away from, the speed at which the above ratio decreases is
also bounded away fro'* Therefore, we must havan; .., 2} = 0. Suppose the claim
holds for each < j < k — 1. Now,

t+1 et et t t t
T Dt g T Ny ) LT > ay ]

t+1 t t o t t
T 2aakCRT CmT, G Ty G T

w&ﬁ | Q.HH-

t
Ckk Ty,

I<j

By the induction hypothesis, for ea¢h< j, the termj[f—iS can be made arbitrarily small for
k
large enouglt. Then, the first term in the above expression can be madeailyismall.

1Roughly speaking, this is because the statwill always get some probability from statevia the
intermediate states, and this probability will be boundedyafrom 0 as far as the probability of state 1 is
bounded away from 0.
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zt . . . .
Hence, it is easy to see that, for large enougihe ratio—+ is strictly decreasing in. As
k
above, this can only happenlifn, .., 2% = 0. O

Recall the matrices used to represent a player’s belieds hét observes history =
g...gb. At the beginning of Phase lll, the beliefs evolved accaydim matrices”’;; and
Sy, and late in Phase Ill, according @J. Note that these three matrices all satisfy the
conditions of the above proposition. This is what drives b 1 and 2 in the text. Con-
sider the truncated matri&*QJ that gave the transition of beliefs of a player who observes
historyh! = ¢...bg. This matrix also satisfies the conditions of the above psijom and
this suffices for Lemma 3.

Proposition A.2. Let C € M, be a contagion matrix satisfyingl and C3. Letz € R*
be a nonnegative vector. Thenyifs close enough t@0, ..., 0, 1), we have that, for each
teNandeach € {1,...,k}, ¢ 2t > S8

1=l =l "

Whenever two vectors are as and: above, we say that' first order stochastically
dominatest (in the sense of more people being infected).

Proof of Proposition A.2For eachi € {1...,k}, lete; denote the-th element of the
canonical basis iiR*. By C1,cy; is larger than any other diagonal entry®f Let i be the
unique left eigenvector associated with such thaf|z|| = 1. Clearly,z; > 0 and, hence,
{%,eq,...,e} is abasis irR*. With respect to this basis, the matrixlooks like

C11 0

Now we distinguish two cases.

C, satisfies C2.In this case we can apply Proposition A.1d8, to get that, for each
nonnegative vectay € R¥~! with y; > 0, lim,_, % = (0,...,0,1). Now, letz € R*
il

be the vector in the statement of this result. Simds very close tq0,...,0,1). Then,
using the above basis, it is clear that= ot + v, witha > 0 andv =~ (0,...,0,1). Let
t € N. Then, for eacht € N,

o t
. aCt Mot +0C* Nait + [[oC] ||zgt”

Al et l=C*]

i
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| = [Mai + [oC"|| 2 || and, since all the terms are positive,

leC|l = 1N o] [l#]] + [loC*| | B Ctll I'= (1Al + [[oC”]|
and, hence, we have theltis a convex combination af and llvgtl\ Sincev = (0,...,0,1)

and ||vgt|\ — (0,...,0,1), it is clear that, for each € N, oG] Ct” first order stochastlcally
dominatest in the sense of more people being infected. Therefore,zdlsall first order
stochastically dominate.

C satisfies C1By C1, the first diagonal entry @, is larger than any other diagonal
entry. Let? be the unique associated left eigenvector such|thdt = 1. It is easy to see
thatz? first order stochastically dominatgésthe reason is that?> andz are the limit of the
same contagion process with the only difference that the stavhich only one person has
been infected is known to have probabilityvhen using obtaining® from Cj,. Clearly,
I3 > 0and, hence{i, 72, es, . .., e, } is a basis iR*. With respect to this basis, the matrix

C'looks like

C11 0
0 | co
0 0 C(Q

Again, we can distinguish two cases.

e Cp, satisfies C2.In this case we can repeat the arguments above to show'that
is a convex combination of, 2 and Hzgzll' Since bothz2 and, ”C  first order
stochastically dominaté, alsoz! does.

e C, satisfies C1.Now we would get a vectar® and the procedure would continue
until a truncated matrix satisfies C2 or until we get a basisigénvectors, one of
them beingz and all the others first order stochastically dominatén both situa-
tions the result immediately follows from the above arguteen O

Note that the matriﬁa which gave the transition of beliefs of a player conditiooal
history h! = g...gbg late in the game, satisfies the conditions of the above pitipos
This property is useful in proving Proposition 6.
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A.2 Updating of Beliefs Conditional of Observed Histories

Suppose playerobserves historg'*! = ¢ ... gbg in Phase Ill, and we want to compute her
beliefs at period + 1 conditional on:/*+!, namelyz**'. Recall our method for computing
1, We first compute a set of intermediate beliefdor ¢t < ¢ + 1. For any periodr, we
computer” ! from 2™ by conditioning on the event that “| was uninfected in period 1”
and that 77! < M — 2" (Z* is the random variable representing the number of infected
people after period). We do not use the information that “I remained uninfectieraany
periodt with 7 + 1 < t < t". This information is added later period by periag., only
at periodt we add the information coming from the fact that “I was noerted at period
t". Below, we show that this method of computing beliefs is igglent to the standard
updating of beliefs conditioning on the entire history aten

Leta € {0,..., M —2} and leth!™ '+ denote thet+1+a)-period historyy . .. gbg ..
g. Recall thatU* denotes the event thais uninfected at the end of periad Let b, (g;)
denote the event that playgiacedb (¢) in periodt. We introduce some additional notation.

. Ii(f,z denotes the evernit< Z' < k, i.e., the number of infected people at the end of
periods is at leagtand at mosk:.

o Bl =1 ,NU"
o B =Bl NI NbT!

e Foreachd € {1,...,a — 1},

t+14
Efjl*ﬁ = E'gi‘ﬁ N Iﬁ+1,z\§—a+5+1 N gt+1+ﬁ

o Elflta . pttan gttlta — pt+lta

Let H' be a history of the contagion process up to petiodlet ' be the set of all7*
histories.H!. denotes the set afperiod histories of the stochastic process wtEre- k.
We sayH'*t! = hi*1if history H'*! implies that | observed historiy/**.

The probabilities of interest a(Z ' = k |ji111a) = P(THHY = k| gii11a). We
want to show that we can obtain the probabilities afterl + o conditional onh!*1+ by
starting with the probabilities aftérconditional onE?, and then let the contagion elapse
one more period at a time conditioning on the new informatian, adding the “local”
information that playef observed; in the next period and that infected one more person.
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Precisely, we want to show that, for eaéle {0,...,a},

. 1 .
B SSM P T k| eaes) P(THP = i | o)
S S P s P = i gys)
j=1 ] Efj”ﬁ) ( —Z|E&+ﬁ)

Fix 3 € {0,...,a}. For eachH!t1+# ¢ H!*1+5 et H!*1+55 denote the uniquél™? ¢
H!*P that is compatible with7'*1+7 | i.e, the restriction off**1*# to the firstt + 3 pe-
riods. LetF!t8 -— {[:[t+1+ﬁ € HITHB . [t+l+8 Et+1+6} Let F1+ﬁ — {[:[t+1+6 c
FIH6 . {146 ¢ 1iHH0) - Clearly, theF,! ' sets define a “partition” of'*+# (one or
more sets in the partition might be empty). Uef := {H''+0 ¢ FI+F . Fi+1+66 ¢

”ﬁ} Clearly, also theFﬁ sets define a “partition” of''*#. Note that, for each pair
HFH {0 € AP AP P(HH Y | i s) = P(H™'P | 7144,5). Denote this prob-
ability by P(F’ "7 F1*9) Let|i "3 k| denote the number of ways in whi¢fcan
transition tok at periodt + 1 + 3 consistently withh! ™1+« or, equivalently, consistently
with ELH+5 . Clearly, this number is independent of the history thattedpeople being
infected. Now,P(i "5 & | priren) = P(F] O ) T B Then,

P(It""l"'ﬁ =k |Eff1+ﬁ) =

_ Z P(Ht+1+6 \Efjl%) — Z P(Ht+1+ﬁ |E,§+1+5)
Ht+ 148y P Ht+1+8¢ 6
_ P(HHHB N E?Hﬁ) _ 1 t+1+3
- Z P(Et+l+6) - P(Et+1+6) Z P(H )
Ht+146epHA @ @ Hi+14+8e o

- t+1+6 Z Z P(H™)

=1 gt+i+8ep PRy

= W S Y P s P(H ) PEL)

=1 gt+1+8ep!+tPnpf
M

P(E“rﬁ B LS 111
- WZPF RN SRV L

HtH1+BeFIHPnE]
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which equals

P(Et+5 - 14 t+14A
D D D

)

Ht+BPeH! TP
P(Etw) 5 1B 1 1A
= WZP 6 F+6)| k|P(It+B—'l| t+/3)
P(ELP) M 4146 .
= W Z P ]{f |Et+1+ﬁ) (It+5 =1 |Ezﬁ¥+ﬁ)

It is easy to see thab(E.+7) = Y3 P(EL) S Pi i J | s P(THP =
i | ges) @nd the result follows.

Similar arguments apply to historiggt't® = ¢...gbg .~. where player observes
both ¢ andb in thea periods following the first triggering action.

A.3 Sequential Equilibrium - Consistency of Beliefs

In the construction of the sequential equilibrium, we faisnly on sequential rationality
of strategies. In this section, we address the issue of st@mgly of beliefs. Recall our two
assumptions on beliefs.

i) Assumption 1: If a player observes a triggering action, then he believasgsbme
seller deviated in the first period of the game, and since phey has proceeded as
prescribed by the strategies.

i) Assumption2: If a player observes a history not consistent with the abeliets, he
will think that some player in the other community has madestake; the probabil-
ity of this mistake being independent of whether the resjpb@sf the mistake was
infected or uninfected.this player will think that therevhdeen as many mistakes
by the players in the other community as needed to explaihigtery at hand.

We need to prove the consistency of these beliefs.

Proof. Fix any playeri. Perturb the equilibrium strategies as follows. Eix 0 small. In
any period of the game, each player plays the prescribed equilibritrarawith probabil-
ity (1—¢'), and plays the wrong action with probability We need to show that, given any
t-period private history off-path for playeéras perturbations vanigh — 0), the strategies
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converge to the prescribed equilibrium, and playbelieves that, with probability, the
first deviation occurred d@t= 1. Moreover, we require that this convergence in beliefs be
uniform int.

Consider a history.'", late in Phase lllff > T + T)) such that playef observes the
first triggering action at time*, i.e, h'" = g...gb. Denote any sequence of matches up
to periodt* by H''. We sayH" = h'", to mean that the sequence of matchgs is
consistent with history” being observed. Further, 1&f" (7) denote a realization of the
matching technology, that is consistent with the obsenistbty k' = ¢ . .. gb, and where
the first triggering action occurred at period Clearly, there exists a corresponding event
(sequence of matches), denoted[—ES?(r), that satisfies the following:

e The first triggering action occurred at 1,

e The two players who got infected at peribe- 1 were matched to each other in each
period until7, and

e The realized matches ii*"(7) andH' (1) are the same from periaduntil t*.

We first show that, conditional on observed histafy, playeri assigns arbitrarily higher
probability to the event*" (1) compared to the everdf’ (7).

P(HY (1) |h")  PH"(r)nh")  e(l—e)M AT, (1 —HM] X
67’

P(HY (1) |h"") a P(H"(T)NR")  (1—g)M [HZ;;(I — MM em(1 — 6T)M—1ﬁX’

where X is the probability of the event (matches) that was realizethfperiodr until ¢*
in the eventd?"" (7) and H" (7). The above expression simplifies to

1—67M—1i 1
l—e M M(EM)V

Clearly, for a fixedM, the above expression goes to infinitysagoes to zero, uniformly
in 7. To summarize, we have shown above that, for any possiblgeseg of matches
H' (1) that is consistent with the observed histafy and where the first triggering action
occurred at some period+# 1, there exists a corresponding sequence of matéﬁ’é(&)
which is also consistent with!", where the first triggering action occurredtat 1, and
that is arbitrarily more likely tharif!" (7). This implies in particular, that on observing a
triggering action, a player will assign arbitrarily highoability to the event that the first
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deviation was by a seller in the first period of the game. Tord®g note that

P(First dev. at=1|ht")
P(First dev. at#1 |ht™)

* t* et
P(First dev. att=1|h!") > 2 Xpt* (o) t* () = pt* PH' (7))
23:2 ZHt* (.,—):Ht* (r) = ht* P(Ht* (T)) - 23:2 ZHt* (T):Ht* (r) = ht* P(Ht* (T)) ’

We know now that the above expression goes to infinity gees to zero, uniformly in
7. Consequently, playaron observing:!" assigns arbitrarily high probability to the first
deviation having occurred in the first period of the game.d#yaimilar arguments can be
used for other histories’” with t* not late in Phase lIl. O

We omit here the proof for the cases covered by Assumptioks mentioned earlier,
to prove consistency in these cases, it suffices to assurhentbt@mkes are infinitely less
likely than the event that a seller deviated in period 1.

A.4 Uncertainty about Calendar Time

In this section, we investigate what happens in setting irchvplayers are not sure about
the calendar time or about the precise timing of the diffeprases. We conjecture that
a modification of our strategies would be robust to the initin of small uncertainty
about timing. To provide some intuition for this conjectunee consider an altered envi-
ronment where players are slightly uncertain about thengpaif the different phases. For
the purpose of this example, we restrict attention to thelpectchoice game and try to
sustain a payoff arbitrarily close to the efficient outcofhel ).

Given a product-choice game and community siZewe choosel’ and 7" appropri-
ately. At the start of the game, each player receives an ertignt, noisy but informative
signal about the timing of the trust-building phases (valoéT and 7). Each player
receives a signal; = (d;, A;,d;, A;), which is interpreted as follows. Playémon re-
ceiving sighaky; can bound the values af and7" with two intervals;i.e.she knows that
T € [d;,d; + A;] andT e [d;,d; + A;]. The signal generation process is described be-
low. The idea is that players are aware that there are two-bwikling phases followed
by the target payoff phase. Moreover, signals are infowaati that the two intervals are
non-overlapping and larger intervals (imprecise estigjaee less likely than smaller ones.

i) A, is drawn from a Poisson distribution with parameteand theni, is drawn from
the discrete uniform distribution ovéf — A;, T — A, +1,...,T]. If either1 or T
lie in the resulting interva[ldi, d; + A,-], thenA,; andd; are drawn again.
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i) After A, andd; are drawn as abové; is drawn from a Poisson distribution with
parametery. Finally, d; is drawn from the discrete uniform distribution m{é? —
A, T — A; +1,...,T). If the resulting intervald;, d; + A,] overlaps with the first
interval[d;, d; + A] (i.e.d; + A; € [d;, d; + A;]), thend; is redrawn.

In this setting, players are always uncertain about thé stdne trust-building phases and
precise coordination is not possible. However, we conjedtuat with a modification to our
equilibrium strategies, sufficiently patient players viaé able to attain payoffs arbitrarily
close to(1, 1), provided the uncertainty about timing is very small. Weatiéee below the
modified strategies.

Equilibrium play: Phase I: Consider any playerwith signalw; = (d;, A;, d;, A;). Dur-
ing the firstd; + A; periods, he plays the cooperative actiGhy(or By). Phase I:
During the nextl; — (di + A,) periods, he plays as if he were in Phasé.d,a seller
playsQ;, and a buyeB;. Phase Ill: For the rest of the gamé.€..from periodd;
on), he plays the efficient actio®{ or By).

Off Equilibrium play: As before, a player can be in one of two moodsinfectedand
infected with the latter mood being irreversible. We define the mamdtle differ-
ently. At the beginning of the game all players are uninfécteny action (observed
or played) that is not consistent with play that can ariseati, given the signal
structure, is called a deviation. We classify deviatiorns two types. Deviations that
definitely entail a short-run loss for the deviating player eallednon-triggeringde-
viations (e.g. a buyer deviating in the first period of the ganfny other deviation
is called ariggeringdeviation {.e.,these are deviations that with positive probability
give the deviating player a short-run gain). A player whowaee of a triggering
deviation is said to be infected. Below, we specify off-pathavior. We do not
completely specify play after all possible histories, b@t tvink the description be-
low will suffice to provide the intuition behind the conjectu

An uninfected player continues to play as if on-path. An atdéel player acts as
follows.

e Deviations observed befork + A;: A buyeri who gets infected before period
d; switches to her Nash action forever at some period betweandd; + A;
when she believes that enough buyers are infected and hawhsdtvas well.
Note that buyers cannot get infected betwéeandd; + A;, since any action
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observed during this period is consistent with equilibriplay (.e..a seller;
playingQ;, at timet € [d;, d; + A;] may have received a signal such thatt
A; =1).

A selleri who facesB; before periodd;, ignores it (this is a non-triggering
deviation, as the buyer must still be in Phase I, which meaaisthe deviation
entails a short-term loss for her). If a seller obserBgdbetween periodéz- and
d; + A;, he will switch to Nash immediately.

e Deviations observed betwedn+ A; + 1 andd;: A player who gets infected
in the time interva[d}- + A +1, Ji] will switch to the Nash action forever from
periodd;. Note that buyers who obser@; ignore such deviations as they are
non-triggering.

e Deviations observed aftet: A player who gets infected aftel; switches to
the Nash action immediately and forever.

We argue below why these strategies can constitute an lequii by analyzing some
important histories.

Incentives of players on-path:If triggering deviations are definitely detected and pun-
ished by Nash reversion, then, for sufficiently patient ptay the short-run gain from a
deviation will be less than the long-term loss in payoff fretarting the contagion. So, we
need to check that all deviations are detected (thoughilgpsegth probability < 1 in this
setting), and that the resultant punishment that is triggdjes enough to deter the deviation.

e Seller: deviates (plays);) att = 1. With probability 1, his opponent will detect
the deviation, and ultimately his payoffs will drop to a véow level. A sufficiently
patient player will therefore not deviate.

e Selleri deviates af < ¢t < d; + A;: With positive probability, his opponerjthas
dj > t, and will detect the deviation and punish him. But, becadskeuncertainty
about the values df and7’, with positive probability, the deviation goes undetected
and unpunished. The probability of detection depends otinie of the deviation
(detection is more likely earlier than later, because eamlymost players are outside
their first interval). So, the deviation gives the seller abrourrent gain with prob-
ability 1, but a large future loss (from punishment) with probabildégs than 1. If
the uncertainty abouf’ and7 is small enoughi(e., signals are very precise), then
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the probability of detection (and future loss) will be higkor a sufficiently patient
player, the current gain will then be outweighed by the elgxbtuture loss.

e Selleri deviates (plays),) at¢ > d;: With positive probability, his opponerjthas
signald; = d;, and will detect the deviation.

¢ All deviations by buyers (playing,) are detected, sindB, is never consistent with
equilibrium play. If a buyer plays a triggering deviatid#),, she knows that with
probability 1, her opponent will start punishing immediately. The buyéntentives
in this case are exactly as in the setting without uncegtakdr appropriately chosen
T andT’, buyers will not deviate on-path.

Optimality of Nash reversion off-path: Now, because players are uncertain about the
true values of” and7’, there are periods when they cannot distinguish betwesiitggum
play and deviations. We need to consider histories wherayepkan observe a triggering
deviation, and check that it is optimal for him to start pinnents.

We assume that players on observing a deviation believestme seller deviated in
the first period of the game. This assumption on beliefs seh&same purpose as before,
i.e., conditional on observing a deviation, when it is time tatspéaying the Nash action,
players will think that enough people are already infectedtie Nash action to be optimal.

First, consider incentives of a seller We argue that a seller who deviatestat 1
will find it optimal to continue deviating. Further, a sellgho gets infected by a triggering
deviation at any other period will find it optimal to revertnmediately to the Nash action.

e Suppose seller deviates at = 1, and plays?);. He knows that his opponent will
switch to the Nash action at most at the end of her first intéplase to the trug’
with high probability), and the contagion will spread expatially from some period
close to the trud"+7'. Thus, if seller is sufficiently patient, his continuation payoff
will drop to a very low level aftefl” + 7', regardless of his play in his Phase | (until
periodd; + A,). Therefore, for a gived/, if 7" is large enough (and s + A, is
large), the optimal continuation strategy for sellevill be to continue playing); .

e Selleri observes a triggering deviation &f;: If a seller observes a triggering de-
viation of By, by a buyer (in Phase 1), he thinks that the first deviationuoed at
period1, and by now all buyers are infected. Since, his play will haveegligible
effect on the contagion process, it is optimal to pday.

51



Now, consider the incentives of a buyer.

e Buyeri observes), at1 < t < d;: This must be a triggering deviation. A sellgr
should switch ta;, only at the end of his first intervadi{ + A;), and this cannot be
the case, because then, the tfugoes not lie in playef’s first interval. On observing
this triggering deviation, the buyer believes that the filestiation occurred at= 1
and the contagion has been spreading since then. Consbkrskeatwill switch to her
Nash action forever at some period betwdeandd; + A; when she begins believing
that enough other buyers are infected and have switchedlb@twseeasily seen that
at worst, buye¥ will switch at periodd; + A;.).

e Buyeri observes); att > d; + A,;. Sincei is at the end of her second interval, she
knows that every rival must have started his second inteaval should be playing
®y-. So, this is a triggering deviation. She believes that tis¢ dieviation occurred at
t = 1, and so most players must be infected by now. This will maksehNaversion
optimal for her.

Note that in any other period, buyers cannot distinguishvéatien from equilibrium play.

i) Any action observed by buyerin her first interval i(e.for t such thatd, < ¢t <
d; + A;) is consistent with equilibrium play. A sellgrplayingQy could have got
signald; > t, and a seller playin@;, could have got signai; + A; < t.

i) Any action observed by buyébetween her two interval&€.,att such thati; + A; <
t < d;) is consistent with equilibrium playQ;, is consistent with a sellerwho got
d; + A; < t, andQy is consistent with a seller with signal such that d; + A;.

iii) Any action observed by buyerwithin her second interval.e.,att such thatd; <
t < d; + A;) is consistent with equilibrium playp; is consistent with a sellerwho
got ch >t (saydj = d; + A;), andQy is consistent with a seller with signal such
thatdj < t (sayj got the same signal as buy@r

52



