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1 Introduction

Walrasian equilibrium defines equilibrium price vector in an exchange economy as

the prices at which all the markets clear when every consumer is maximizing her

preference given these prices. The intuitive appeal of this definition makes Walrasian

equilibrium the natural equilibrium concept not only for an exchange economy but

also for many other economic models. Thus, it is not surprising that there have

been many attempts at modeling the dynamic process through which a Walrasian

equilibrium may arise.

A well-known example is tâtonnement dynamics, first proposed by Walras [9]

in 1874, which assumes that the price of a good adjusts in the direction of its

excess demand.1 Tâtonnement captures the seemingly correct intuition that for an

economy to reach its equilibrium, the price of a good should rise when its demand

exceeds its supply and fall when its supply exceeds its demand. However, also well

known are its many shortcomings as a model of price adjustment.

First, its stability is not guaranteed in economies with more than two goods.

Second, it leaves the motivation of the price-setting agent unmodeled. Tâtonnement

models typically assume the existence of an exogenous agent, commonly called the

Walrasian auctioneer, who learns the demand of all the market agents at given

prices and adjusts the price of each good according to the sign of its excess demand.

However, assuming that the auctioneer is exogenous and not modeling why she

would want to adjust prices in this particular manner is a significant omission in

a model where all agents are assumed to be optimizing. Third, it does not specify

how trading occurs when the economy is not in equilibrium. Typically, the models

assume that prices first adjust toward their limit and that there is no actual trading

until the equilibrium prices have been reached. Without out-of-equilibrium trades,

however, there is no incentive for agents to reveal their demand.
1For a general discussion of tâtonnement dynamics, see Hahn [3].
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Thus, tâtonnement dynamics fails to be a satisfactory model of price adjustment

even in settings where its stability can be assured. This paper addresses this issue by

modeling a decentralized, endogenous price-adjustment process that is tâtonnement-

like. In particular, we provide a trading rule and a price-adjustment rule in replica

economies with two consumer types and two goods. The trading rule is constructed

to allow trades to occur out of equilibrium. The price-adjustment rule assumes that

the two consumer types set prices in different periods and adjust prices through a

“learning-through-noisy-imitation” rule in which the prices that were most successful

in the previous period are adopted with high probability but random experiments

are also taken with low but strictly positive probability.2

It is shown that for all sufficiently large economies, the noisy-imitation rule favors

adjustment of prices in the direction of the excess demand. As a result, when the

experimentation probability is small, the price-adjustment process mostly follows a

tâtonnement-like dynamics and leads eventually to a Walrasian equilibrium. More

precisely, we show that for any fixed experimentation probability, the distribution of

the prices converges to a limiting distribution. Following the standard approach in

evolutionary game theory, the limit of the limiting distributions, as the experimen-

tation probability decreases to zero, is then considered. The main result shows that

for any small neighborhood of the equilibrium price vector, the limit of the limiting

distributions is concentrated inside this neighborhood if the economy is sufficiently

large.

These results are derived in the setting of a 2× 2 replica economy with a unique

equilibrium. The 2 × 2 economy with a unique equilibrium provides the simplest

setting where tâtonnement is globally stable. Because our price-adjustment rule

incorporates learning through imitation, the existence of other agents from whom a

given agent can learn is required. Thus, a replica economy in which there are many

identical agents of each consumer type provides a natural setting for the model.
2See Foster and Young [2], Kandori, Mailath, and Rob [4], and Young [10] for pioneering examples

of evolutionary models that feature persistent random experimentation.
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Ultimately, like other attempts at providing a foundation for tâtonnement, this

paper addresses some issues while leaving others unresolved. For example, Keisler [5]

models a price-adjustment process that approximates tâtonnement dynamics and

also features out-of-equilibrium trading and decentralized price setting. Keisler as-

sumes that a large number of agents take turns trading with a market maker and

shows that if at each period the market maker adjusts the price vector in the di-

rection opposite to the changes in her inventory, the price vector approaches a Wal-

rasian equilibrium under suitable conditions. While Keisler’s model resolves many

deficiencies of tâtonnement, it still leaves unmodeled the motivation of the market

maker to adjust the prices in the specified manner. In contrast, the focus in this

paper is on providing a model in which price setters adjust prices because it is in

their interest to do so.3

Studying price adjustments through an evolutionary game theory approach is

not new. In a partial equilibrium context, Vega-Redondo [8] shows that learning

through noisy imitation leads to the competitive equilibrium in a Cournot model

with identical firms. In addition, Temzelides [7] applies noisy imitation to the market

game of Shapley and Shubik in 2×2 replica economies and shows that it leads to the

Walrasian equilibrium. While this paper shares the same replica economy setting of

Temzelides [7], the papers differ in that the market game requires the existence of

an auctioneer who collects the bids and uses them to determine the market clearing

prices.

Methodologically, this paper also departs from the existing literature on learning

through noisy imitation. The existing literature is limited to finite state space
3Although not a model of price adjustment, Crockett, Spear, and Sunder [1] also provides a

decentralized process that leads to a competitive equilibrium. The authors posit a general trading
rule that results in a Pareto optimal allocation at the end of each period. Once a Pareto optimal
allocation is reached, the trading for the period is over, and each agent uses the (common) utility
gradient at her consumption bundle as prices to calculate the value of her consumption. If the
value is less then the value of her endowment, the agent recognizes that she has “subsidized” the
other agents’ consumption. The only restriction on the trading rule is that, in the next period, as
the agents go through sequential trading stages, they accept a new allocation if and only if it is
Pareto improving from the current allocation and involves less subsidy than the previous period’s
allocation. The authors show that such process converges to the competitive equilibrium in 2 × 2
economies.
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models since it relies on the use of the tree-surgery technique to characterize a

limiting distribution. However, as prices get closer to the equilibrium price vector,

the excess demand approaches zero, and the set of prices that can be successfully

adopted through experimentation and imitation becomes arbitrarily small in our

model. As a result, considering only a finite set of prices, however large, leads to

unnecessary complications. Consequently, we forego the tree-surgery technique and

apply a method that is applicable to general state space models.

The remaining pages are organized as follows. Section 2 presents the trading

rule and the price-adjustment rule considered in this paper. Section 3 provides the

main result, and Section 4 gives a brief conclusion. The preliminary lemmas and

their proofs are given in the Appendix.

2 The Model

Since a replica economy is an economy in which there are many copies of the con-

sumers of some underlying economy, we begin by specifying the underlying economy.

It is a pure exchange economy consisting of two consumers and two goods. The set

of consumers is denoted by I = {1, 2}. We use i to denote a generic consumer and,

when needed, use j to denote the other consumer. In particular, whenever i and

j appear together, it is always assumed that i 6= j. For each i ∈ I, let ω̄i ∈ R2
++

be consumer i’s initial endowment, and let %i be consumer i’s preference, which is

assumed to be continuous, strongly monotone, and strictly convex. Let ui(·) be the

continuous utility function representing %i.

The two goods are denoted ` and m. To avoid confusion, subscripts are used

for indexing consumers and superscripts for goods. Consumer i’s demand function

is denoted by xi : ∆ × R2
++ → R2

+, where ∆ = {(p`, pm) ∈ R2
++ : p` + pm = 1}.

The assumptions on the preference imply that xi(·, ·) is a continuous function. Let

zi : (p, ωi) 7→ xi(p, ωi) − ωi denote consumer i’s excess demand function, and let
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z : (p, ωi, ωj) 7→ zi(p, ωi) + zj(p, ωj) denote the market excess demand function.

A Walrasian equilibrium price vector of the underlying economy is a price vector

p∗ that satisfies z(p∗, ω̄i, ω̄j) = 0. It is assumed that the Walrasian equilibrium is

unique and satisfies xi(p∗, ω̄i) 6= ω̄i for all i.

Let Z = {2, 3, 4, ...}. For each R ∈ Z, the R-replica economy is the economy with

2R consumers in which R consumers are exact copies of consumer i of the underlying

economy and the remaining R consumers are exact copies of consumer j. That is,

the consumers in the underlying economy are now interpreted as consumer types.

For each type i ∈ I, there are R consumers with the identical preference %i and

the identical initial endowment ω̄i. These consumers are called type i replicas, and

r-th replica of type i is denoted ir. A replica economy is related to the underlying

economy in that price vector p∗ together with each replica ir consuming xi(p∗, ω̄i)

is also the Walrasian equilibrium in the replica economy.

The following subsections present the price-adjustment process considered here.

In the model, each replica ir starts with the same endowment ω̄i in every period.

In the beginning of each period, a consumer type is chosen randomly as the price

setter. After the prices have been set, trades occur according to the trading rule

specified in Subsection 2.1. After all the trades have been completed, consumptions

occur and the new period begins. In the next period, each replica again receives

her endowment, a new price-setter type is chosen randomly, and the prices are set

according to the adjustment rule specified in Subsection 2.2. As seen below, these

two rules imply that the evolution of the economy can be modeled as a Markov

chain on the state space ΞR = I ×∆R, where a state (i, p1, p2, ..., pR) ∈ ΞR has the

interpretation that type i is the price setter and that replica ir has set pr.4

4In the discrete time model developed here, only one consumer type is chosen as the price setter
in each period. This assumption may seem more plausible if the discrete time model is thought
of as being embedded in a continuous time model in which price adjustments occur at random
times. Suppose each consumer type sets prices independently of each other and that the waiting
time between the price adjustments has exponential distribution. Assume further that each type
reacts first to the other type’s price changes before attempting to set its own prices. Then since
the probability of two adjustments occurring at any given time is zero, watching this continuous
time process only at random times in which a price adjustment occurs is effectively equivalent to
the original discrete time setup.
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2.1 The Trading Rule

The trading rule assumes that the replicas of the price-taking type trade with the

price-setting replicas in sequential stages, starting with the price setters offering

the most favorable prices and ending with those offering the least favorable prices.

The price takers are active traders in that they choose the order of their trading

partners and set the desired trade vector. The price setters are passive in that they

only trade when asked to trade by the price takers and are required to trade in an

amount proportional to the trade vector desired by the price takers.

More precisely, suppose state (i, p1, p2, ..., pR) ∈ ΞR has been realized at the

beginning of the current period so that i is the price-setting type and j is the price-

taking type. In the following, Ψs denotes the set of price setters who have not yet

traded as of the beginning of stage s, and Φs denotes those in Ψs that are offering

the most favorable prices. Each price setter trades only once, and the result of

her trade is denoted ω̂ir. Since all the price takers have the same preference and

endowment and face the same set of prices, they are assumed to behave identically.

Thus, the endowment each j-replica has at the beginning of stage s is denoted by

ωsj , and the final result of her trading in the current period is denoted by ω̂j without

using subscripts to distinguish among replicas.

Trading within the current period can now be described in the following inductive

manner.

• Let Ψ0 = {1, 2, ..., R}, Φ0 = ∅, and ω1
j = ω̄j .

• At stage s, let Ψs = Ψs−1 \ Φs−1. Assume Ψs 6= ∅. Let p ∈ {pr : r ∈ Ψs}

be such that xj(p, ωsj ) %j xj(pr, ωsj ) for all r ∈ Ψs, and let Φs = {r ∈ Ψs :

pr = p}. The total trade desired by each j-replica from the price setters in

Φs is given by zj(p, ωsj ). Since j-replicas are indifferent among their trading

partners in Φs, they are assumed to desire 1
|Φs|zj(p, ω

s
j ) from each price setter

in Φs. Thus, each i-replica in Φs receives a total order of R
|Φs|zj(p, ω

s
j ) as the
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desired trade from j-replicas.

After an order is received, each i-replica in Φs gives αs

|Φs|zj(p, ω
s
j ) to each j-

replica, where

αs = arg max
α∈[0,1]

ui

(
ω̄i − α

R

|Φs|
zj(p, ωsj )

)
.

In particular, we let the price setters partially fill the orders they receive as

long as they trade in an amount proportional to the trade vector desired by

the price takers. The result of the trading in s-th stage is given by:

ωs+1
j = ωsj + αszj(p, ωsj ), and

∀r ∈ Φs, ω̂ir = ω̄i − αs
R

|Φs|
zj(p,ωsj ).

• The trading proceeds to stage s + 1 if Ψs+1 = Ψs \ Φs 6= ∅. Otherwise, all

trades have been completed and ω̂j = ωs+1
j .

The assumption that in each stage the price takers place trade orders equal

to their excess demand vectors implies that they are myopic in two ways. First,

the price takers do not take into account the rationing rule when they place their

orders. In particular, if the price takers will be receiving less than their desired

trades, then each price taker has an incentive to overstate her order so that she can

receive a greater share of the total trade. Second, the price takers do not exploit

the potential arbitrage opportunity that arises from facing trading partners offering

different prices. We justify this myopia with the fact that we do not assume that

the types know the preferences or the endowments of their trading partners.5

5Alternatively, as pointed out by an anonymous referee, we can allow the price takers to behave
strategically and instead suitably modify the rationing rule in a way that removes the strategic
incentives. For example, letting zsjr denote the trade order placed by replica jr in stage s, we may
specify that each price taker receives

ωs+1
j = ωsj + αs min

r
{zsjr},
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2.2 The Price-Adjustment Rule

Define a best price correspondence B from ΞR into ∆ as follows. For any ξ =

(i, p1, p2, ..., pR) ∈ ΞR, let trades occur according to the trading rule described above.

Then define B by

B(ξ) =
{
pr ∈ {p1, p2, ..., pR} : ω̂ir %i ω̂ir′ ∀r′ ∈ {1, 2, ..., R}

}
.

Thus, B(ξ) is the set of prices that were most successful for type i. Next, fix small

δ̄ > 0 and let N (pr, δ̄) = {p ∈ ∆ : |p` − p`r| < δ̄} be the δ̄-neighborhood of pr.

The learning-through-noisy-imitation rule governing the price-adjustment process

can now be given as:

• At t = 0: A state in ΞR is chosen according to some arbitrary initial distribu-

tion.

• At t = 1, 2, 3, ...: Suppose ξ = (i, p1, p2, ..., pR) is the state chosen at period

t− 1. Then a new state is chosen at period t in the following way.

1. A new price setter k ∈ I is chosen with uniform probability.

2. If k = i, then each replica ir independently chooses a price vector in

either of two ways. With probability 1 − ε > 0, replica ir “imitates” by

choosing an element of B(ξ) with uniform probability. With probability

ε > 0, replica ir “experiments” by choosing an element of N (pr, δ̄) with

uniform probability.6

3. If k = j, then each replica jr adopts the previous period’s prices by

setting pr.7

where

αs = arg max
α∈[0,1]

ui

(
ω̄i − α

R

|Φs| min
r
{zsjr}

)
so that no one has a unilateral incentive to overstate her desired trade.

6Experimentation is assumed to be local to dampen the dynamics near the equilibrium. As will
be seen in the proof of Lemma A.11, this keeps the dynamics from jumping from one side of the
equilibrium to the other, thereby simplifying the analysis.

7This specification implicitly assumes that consumers only remember the immediate past. If the
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For any R ∈ Z and ε ∈ (0, 1), the price-adjustment rule, together with the

trading rule, induces a Markov chain ξε on ΞR. Let λL be the Lebesgue measure

on R and define measure µL on Borel subsets of ∆ by µL(C) = λL({p` : (p`, 1 −

p`) ∈ C}). For any A ⊂ ΞR, partition the set into Ai = {(i, p′1, ..., p′R) ∈ A} and

Aj = {(j, p′1, ..., p′R) ∈ A}, and let Air be the (1 + r)-th component of Ai. Suppose

the state in period t − 1 was ξ = (i, p1, p2, ..., pR). If type i is chosen again as the

price setter in period t, the probability of replica ir choosing a price vector in Air is

(1− ε)|B(ξ) ∩Air|
|B(ξ)|

+
ε µL(N (pr, δ̄) ∩Air)

µL(N (pr, δ̄))
,

where the first part of the sum is the probability that ir chooses prices in Air

through imitation and the second part is through experimentation. If type j is

the price setter, then the probability of jr choosing a price vector in Ajr is one if

pr ∈ Ajr and zero otherwise since jr is assumed to adopt the last period’s prices.

Thus, letting 1 denote the indicator function, the transition kernel is given by

Prob
(
ξεt ∈ A | ξεt−1 = ξ

)
= Prob

(
ξεt ∈ Ai | ξεt−1 = ξ

)
+ Prob

(
ξεt ∈ Aj | ξεt−1 = ξ

)
=

1
2

R∏
r=1

(
(1− ε)|B(ξ) ∩Air|

|B(ξ)|
+
ε µL(N (pr, δ̄) ∩Air)

µL(N (pr, δ̄))

)
+

1
2
1{(j,p1,p2,...,pR)∈Aj}.

3 Limiting Distribution

This section characterizes the long-run behavior of the price-adjustment dynam-

ics. As a starting point, Subsection 3.1 shows that, for any fixed experimentation

probability, the price-adjustment dynamics is “stochastically stable.” That is, start-

ing from any arbitrary initial distribution, the dynamics eventually settles down to

the same limiting distribution given by the unique invariant distribution. However,

price setters in the current period had not been the price setters in the previous period, they would
have no information about which prices had been successful. It is assumed that under this scenario
they simply adopt the previous period’s prices.
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instead of deriving the limiting distribution explicitly, we derive the limit of the

limiting distributions as the experimentation probability goes to zero. This limit is

viewed as an approximation of the limiting distribution when the experimentation

probability is small. Subsection 3.2 shows that as the experimentation probabil-

ity goes to zero, the limiting distribution becomes concentrated around the states

corresponding to the Walrasian equilibrium price vector.

3.1 Existence of the Limiting Distribution

In countable state space models, a Markov chain has a limiting distribution if it

is irreducible, aperiodic, and non-null recurrent. Theorem 3.1 below states that a

similar result holds for general state space chains once these concepts are suitably

extended. Before proceeding, we set some notations. Given a time-homogenous

chain ζ on state space X, we use P tx(A) to denote Prob(ζt ∈ A | ζ0 = x) and Px(A) to

denote P 1
x (A). More generally, given some event E , we let Px(E) ≡ Prob(E | ζ0 = x).

Finally, τA ≡ min{t ≥ 1 : ζt ∈ A} denotes the return time to set A.

Let B(X) be a countably generated σ-field of X. A Markov chain on X is said

to be φ-irreducible if there exists a measure φ on B(X) such that for all x ∈ X and

A ∈ B(X) with φ(A) > 0, there exists n such that Pnx (A) > 0. A set C ∈ B(X) is

said to be small if there exists n and a non-trivial measure νn on B(X) such that

Pnx (A) ≥ νn(A) for all x ∈ C and A ∈ B(X). A chain on X is said to be strongly

aperiodic if it has a ν1-small set C with ν1(C) > 0.

Theorem 3.1 (Bonsdorff).8 Let ζ be a φ-irreducible, strongly aperiodic Markov

chain on state space X. If ζ has a small set C with supx∈X Ex(τC) <∞, then the
8This theorem appears as Theorem 16.2.2(iii) in Meyn and Tweedie [6] and is attributed by

the authors to Bonsdorff. The theorem as stated in Meyn and Tweedie requires the chain to be
ψ-irreducible, where ψ is a maximal irreducibility measure. In addition, it requires that chain be
merely aperiodic and set C be merely petite. However, φ-irreducibility implies ψ-irreducibility,
strong aperiodicity implies aperiodicity, and small implies petite. We have chosen to give a weaker
version since the conditions are simpler to state.
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unique invariant measure π for ζ exists. Moreover,

sup
x∈X

∥∥P tx(·)− π(·)
∥∥→ 0 as t→∞.

Using Bonsdorff’s Theorem, we can show that the price-adjustment dynamics

converges to a limiting distribution.

Theorem 3.2. Fix any R ∈ Z and ε ∈ (0, 1). Then the unique invariant measure

πε for the chain ξε on ΞR exists. Moreover,

sup
ξ∈ΞR

∥∥P tξ (·)− πε(·)∥∥→ 0 as t→∞.

Proof. Let µ0 be the measure on {∅, {1}, {2}, {1, 2}} such that µ0({1}) = µ0({2}) =

1
2 . Let µ be the product measure µ0 ×

(
×Rr=1µL

)
on ΞR equipped with the natural

σ-field B(ΞR). Since ∆R is bounded and the probability of every replica choosing

prices by experimentation in a given period is strictly positive, ξε is µ-irreducible.

Fix any i ∈ I and p ∈ ∆, and let C = {(i, p, ..., p)}. Define ν1 on B(ΞR) by

ν1(A) = 1
2(1 − ε)R1{(i,p,...,p)∈A}. Then ν1(C) > 0 and P(i,p,...,p)(A) ≥ ν1(A) for

all A ∈ B(X). Thus, ξε is strongly aperiodic. By Theorem 5.2.4(ii) of Meyn and

Tweedie [6], ΞR is a countable union of small sets. So, one of these small sets, call

it C ′, must have µ(C ′) > 0. Then, for any ξ ∈ ΞR, supξ∈ΞR Eξ(τC′) <∞.

As the above argument makes clear, the existence of a limiting distribution for

the chain ξε is not a deep result. As in finite state space evolutionary models

with persistent randomness, it is essentially the consequence of the “irreducibil-

ity” generated by allowing random experiments. The more interesting result, the

characterization of the limiting distribution, is given next.
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3.2 Characterization of the Limiting Distribution

Since finding the exact expression for the limiting distribution πε is difficult, we

characterize it by deriving the limit of πε as ε → 0. Meyn and Tweedie [6] gives

a useful characterization of an invariant measure that simplifies this derivation. A

simple version of their theorem is stated below as Theorem 3.3.

Theorem 3.3 (Meyn and Tweedie).9 Under the assumptions of Theorem 3.1, the

unique invariant measure π for ζ satisfies the following. For any C ∈ B(X) such

that π(C) > 0 and A ∈ B(X),

π(A) =
∫
C
π(dx)Ex

[
τC∑
t=1

1{ζt∈A}

]
.

Meyn and Tweedie’s theorem states that for any fixed set C of π-positive mea-

sure, the measure π places on A is determined by how often the chain visits A

before returning to C. Theorem 3.4 and Theorem 3.5 below exploit this return time

characterization.

Following Vega-Redondo [8], let the states in which all the replicas are setting

the same prices be called “monomorphic” states. Consider the expected number of

times the economy, starting from a monomorphic state, will visit non-monomorphic

states before returning to the set of monomorphic states. Consider also the expected

number of times the economy, starting now from a non-monomorphic state, will visit

monomorphic states before returning to the set of non-monomorphic states. When

the experimentation probability is small, the probability of replicas imitating is

greater than the probability of replicas experimenting. Since imitations lead to a

monomorphic state, the expected number of visits to monomorphic states is greater

than the expected number of visits to non-monomorphic states. Therefore, according
9For the statement of this theorem in its full generality, see Theorem 10.4.9 of Meyn and

Tweedie [6]. In particular, Theorem 10.4.9 only requires ζ to be recurrent, which is weaker than the
hypothesis stated in Theorem 3.3. Furthermore, Theorem 10.4.9 requires C to satisfy ψ(C) > 0,
where ψ is the maximal irreducibility measure for ζ. However, since ψ and π are equivalent mea-
sures, this simpler statement of the theorem is used.
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to the return time characterization, the limiting distribution πε puts greater measure

on the set of monomorphic states. In the limit, as the experimentation probability

goes to zero, full measure is placed on the set of monomorphic states. This is

formally stated and shown as Theorem 3.4 below.

Theorem 3.4. Let R ∈ Z and Ξ̂ = {(i, p, ..., p) : i ∈ I and (p, ..., p) ∈ ∆R}. Then

πε(Ξ̂) > 0 for all ε ∈ (0, 1). Moreover, πε(Ξ̂)→ 1 as ε→ 0.

Proof. Fix any ε ∈ (0, 1). Since πε(ΞR) > 0 and τΞR = 1 Pξ-a.s. for all ξ ∈ ΞR,

Theorem 3.3 yields

πε(Ξ̂) =
∫

ΞR
Pξ(Ξ̂)πε(dξ) =

∫
Ξ̂
Pξ(Ξ̂)πε(dξ) +

∫
ΞR\Ξ̂

Pξ(Ξ̂)πε(dξ)

≥
∫

Ξ̂

(
1
2

+
1
2

(1− ε)R
)
πε(dξ) +

∫
ΞR\Ξ̂

1
2

(
1− ε
R

)R
πε(dξ)

> (1− ε)Rπε(Ξ̂) +
1
2

(
1− ε
R

)R
πε(ΞR\Ξ̂)

> 0.

Moreover, the above inequality yields πε(Ξ̂)− (1− ε)Rπε(Ξ̂) > 1
2

(
1−ε
R

)R
πε(ΞR\Ξ̂).

Therefore,

πε(Ξ̂)
1− πε(Ξ̂)

=
πε(Ξ̂)

πε(ΞR\Ξ̂)
>

1
2

(
1−ε
R

)R
1− (1− ε)R

→∞ as ε→ 0,

which implies πε(Ξ̂)→ 1 as ε→ 0.

Theorem 3.4 shows that when the experimentation probability is small, the econ-

omy spends most of its time in monomorphic states. Our main result, Theorem 3.5,

characterizes the dynamics further and shows that the economy spends most of its

time in monomorphic states near the equilibrium. The basic intuition for the result

is that experiments made in the direction of the excess demand vector has a much

higher probability of being adopted through imitation than the experiments in the
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opposite direction.10 Therefore, the most probable trajectory for the economy is a

tâtonnement-like transitions toward the equilibrium. In the following, we present a

series of lemmas that expand on this intuition and lead to Theorem 3.5. The formal

proofs of the lemmas are deferred to the appendix.

For any set A, let A◦ denote the relative interior of A and Ā denote the clo-

sure of A. By supporting price for i at ωi, we mean a price vector at which

type i will demand exactly ωi when her endowment is ωi. Let p̄i denote the

supporting price for i at her initial endowment; that is, xi(p̄i, ω̄i) = ω̄i. Let

T = {λp̄j + (1− λ)p̄i : λ ∈ [0, 1]} be the set of prices that are convex combina-

tions of p̄j and p̄i. Lemma A.2 in the Appendix implies that, given their initial

endowments, the desired trades of the two types are compatible at p if and only if p

is in T ◦. Let Ti = {λp̄j + (1− λ)p∗ : λ ∈ [0, 1]} be the set of prices that are convex

combinations of p̄j and the equilibrium price vector, p∗. Then T = Ti ∪ Tj , and

Lemma A.1 implies that Ti \ {p∗} consists of prices that are more favorable than p∗

for type i and, consequently, less favorable for type j.

Suppose the economy is in a monomorphic state in which everyone is setting

a non-equilibrium price p that is nevertheless in T ◦. Since p is in T ◦, the desired

trades of the two types are compatible and some trade will occur. However, since p

is not the equilibrium price vector, trading results in a non-Pareto optimal allocation

so that there is some unexploited gains in trade. Our price-adjustment dynamics

that moves the economy toward the equilibrium can be interpreted as attempts by

the replicas to exploit such potential gains.

To see this, suppose p is in Ti \ {p∗} so that the utility level j-replicas receive in

this state is less than their equilibrium level. Since price setters are chosen randomly

in each period, eventually type j will get the chance to set the prices. When that

happens, some j-replicas may wish to experiment with prices to obtain better results

for themselves. For example, a j-replica may wish to set p′ that gives her better
10Since prices are normalized to lie in the simplex, p′ is said to be derived by adjusting p in the

direction of the excess demand vector if p′`

p′m = p`

pm + γz`(p, ω̄i, ω̄j) for some γ > 0.
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terms of trade than p. That is, set p′ where xj(p′, ω̄j) �j xj(p, ω̄j). However, better

terms of trade for j may mean worse terms for i. Since type i gets to choose both the

order of trades and the potential magnitude of each trade, the j-replica’s experiment

could yield a bundle that is worse than the bundle obtained by those who stayed

with p. In the following, we construct a set of prices that are not only potentially

more favorable than p for type j but also actually yield better trading results.

For each p ∈ Ti and R ∈ Z, let fi(p,R) be the supporting price for i at ω̄i −
R−1
R zj(p, ω̄j). That is, define fi : Ti ×Z → ∆ by

xi

(
fi(p,R), ω̄i −

R− 1
R

zj(p, ω̄j)
)

= ω̄i −
R− 1
R

zj(p, ω̄j).

Let Ti(p,R) be the set of convex combinations of p and 1
2p+ 1

2fi(p,R) that are also

in Ti. That is, define Ti : Ti ×Z → 2∆ by

Ti(p,R) = Ti ∩
{
λp+ (1− λ) fi(p,R) : λ ∈ [1

2 , 1]
}
.

We show later in the proof of Lemma A.7 that indeed xj(p′, ω̄j) �j xj(p, ω̄j)

for every p′ ∈ Ti(p,R) \ {p}. Moreover, p ∈ Ti means ‖zi(p, ω̄i)‖ ≥ ‖zj(p, ω̄j)‖

by Lemma A.2, so xi(p, ω̄i − R−1
R zj(p, ω̄j)) = xi(p, ω̄i) 6= ω̄i − R−1

R zj(p, ω̄j). Thus,

fi(p,R) 6= p, and the relative interior of Ti(p,R) is non-empty.

Starting from state (j, p, ..., p), where p ∈ T ◦i , suppose a single j replica, say j1,

experiments by setting p′ ∈ Ti(p,R)\{p} so that the state is now (j, p′, p, ..., p). The

price vector p′ is better than p for j, but as we show in the proof of Lemma A.7,

xi(p, ω̄i) �i xi(p′, ω̄i), so it is worse than p for type i. Therefore, type i will trade

first with j-replicas offering p. Since p is in T ◦, some trade will occur. In fact, it

is shown that the result of this trading stage is ω̄i − R−1
R zj(p, ω̄j) for type i and

xj(p, ω̄j) for j-replicas. In the second stage, we have i-replicas, each of whom now

has ω̄i − R−1
R zj(p, ω̄j), wanting to trade with replica j1 who has endowment ω̄j .

Lemma A.5 below states that the desired trades of the two parties are compatible
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so that some trade will occur.

Lemma A.5. For all p ∈ Ti, R ∈ Z, and p′ ∈ Ti(p,R) \ {p}, there exists β > 0

such that zi
(
p′, ω̄i − R−1

R zj(p, ω̄j)
)

= −βzj(p′, ω̄j).

However, in certain circumstances, if p is already very close to the equilibrium

for example, the desired trade of each i-replica may be very small in the second

stage. Thus, if j1 has a small number of trading partners, it is possible that she

will end up short of her desired consumption level, xj(p′, ω̄j). It may even be the

case that she ends up worse off than her fellow replicas. Lemma A.6 below states

that this will not happen outside a small neighborhood of the equilibrium if the

number of her trading partners is large. That is, j1 indeed achieves her optimal

consumption level.

Lemma A.6. Fix any N (p∗, δ∗). Then there exists R′ such that for all R > R′, the

following holds. For any p ∈ Ti \ N (p∗, δ∗) and p′ ∈ Ti(p,R) \ {p}, let

α∗ = arg max
α∈[0,1]

uj

(
ω̄j − αRzi

(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
))

.

Then

ω̄j − α∗Rzi
(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
)

= xj(p′, ω̄j).

To summarize, the trading process in state (j, p′, p, ..., p) results in replica j1

receiving xj(p′, ω̄j) and the remaining j-replicas receiving xj(p, ω̄j). As noted earlier,

Ti(p,R) is constructed so that xj(p′, ω̄j) �j xj(p, ω̄j) for every p′ ∈ Ti(p,R) \ {p}.

Therefore, we have p′ ∈ B((j, p′, p, ..., p)), as stated in Lemma A.7 below.

Lemma A.7. Fix any N (p∗, δ∗). Then there exists R′ such that for all R > R′, the

following holds. Suppose ξ = (j, p′, p, ..., p) ∈ ΞR is such that p ∈ Ti \ N (p∗, δ∗) and

p′ ∈ Ti(p,R). Then p′ ∈ B(ξ).

Lemma A.7 implies that starting from state (j, p, ..., p) in which everyone is

setting p ∈ Ti \ N (p∗, δ∗), if a single replica experiments by setting another price
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vector p′ in Ti(p,R), then it can be adopted through imitation in the following

period. Therefore, the probability of the transition from (j, p, ..., p) to (j, p′, ..., p′)

has an asymptotic order of ε.11 In Lemma A.8 below, we show that prices in Ti(p,R)

can be obtained by adjusting p in the direction of the market excess demand vector.

Therefore, the transition from (j, p, ..., p) to (j, p′, ..., p′) is a tâtonnement-like step.

Lemma A.8. For all R ∈ Z, p ∈ Ti \ {p∗}, and p′ ∈ Ti(p,R) \ {p}, there exists

γ > 0 such that
p′`

p′m
=

p`

pm
+ γz`(p, ω̄i, ω̄j).

This implies that the economy that starts in state (j, p, ..., p) can move toward

the equilibrium by following a series of tâtonnement-like transitions, such as:

(j, p0, ..., p0) → (j, p1, p0, ..., p0) → (j, p1, ..., p1) → (j, p2, p1, ..., p1) → ... ,

where p0 = p and pn+1 ∈ Ti(pn, R) ∩ N (pn, δ̄) for each n. By Lemma A.8, each

monomorphic state in this chain is a transition in the direction of the excess demand

vector from the previous state. Since tâtonnement dynamics converges monotoni-

cally in the underlying economy, each monomorphic state in the chain brings the

economy closer to the equilibrium.

Of course, in our dynamics it is possible for the economy to move away from

the equilibrium as well. For example, if all the replicas experiment by choosing

prices that can be derived by adjusting p in the direction opposite to the excess

demand, the price vector that will be adopted through imitation in the next period

is necessarily further from the equilibrium than p. In the remainder of the section we

show that the probability of such event is low relative to the probability of moving

toward the equilibrium and that, as the experimentation probability goes to zero,

movements toward the equilibrium dominate.

This is formally shown using Meyn and Tweedie’s return time characterization.
11That is, letting p(ε) denote Prob(ξε

2 ∈ {(j, p′, ..., p′) : p′ ∈ Ti(p,R) \ {p}} | ξε
0 = (j, p, ..., p)), we

have p(ε) = O(ε) and ε = O(p(ε)) as ε→ 0.
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Let A = {(i, p, ..., p) : i ∈ I and p ∈ N (p∗, δ∗)}. We will show that the proba-

bility of transitioning from a monomorphic state that is outside A into A without

encountering any other monomorphic state goes to zero at a rate slower than or

equal to εN , where N is a constant that is independent of the starting price vector

p. We will also show that in contrast the probability of transitioning from A to a

monomorphic state outside A without encountering any other monomorphic state

goes to zero at the rate faster than or equal to εN+1. These two results together

imply that the probability of leaving A goes to zero asymptotically faster than the

probability of entering A. Therefore, as ε → 0, the economy spends increasingly

greater proportion of time in A than outside A.

We consider transitions into A first. We can show that the µL-measure of Ti(p,R)

is bounded below by a positive constant for all p ∈ Ti\N (p∗, δ∗). So, if we let Si(p,R)

be the half of Ti(p,R) ∩ N (p, δ̄) that is further away from p, then the µL-measure

of Si(p,R) is bounded below as well. Consider a chain of transitions

(j, p0, ..., p0) → (j, p1, p0, ..., p0) → (j, p2, p1, ..., p1) → (j, p3, p2, ..., p2) → ...

where p0 = p and pn+1 ∈ Si(pn, R) for each n. Each step in the chain has a

transition probability of order ε and, until N (p∗, δ∗) is reached, brings the price

vector at least some minimum distance closer to p∗. Since ∆ is bounded, there must

be a constant N1 such that every chain of this type has pn inside N (p∗, δ∗) before

the N1-th step. Once this happens, (j, pn, ...., pn) can occur through imitation in

the following period. Therefore, starting from (j, p0, ..., p0), the probability of the

economy entering A without encountering any other monomorphic state has an

asymptotic order of at least εN1 .

We still need to consider the case in which the economy starts from a monomor-

phic state where everyone is setting p 6∈ T ◦. When the two types have their initial

endowments, no actual trade takes place under prices outside T ◦. Thus, it is not

hard to see that for any price vector p′ there is a type that will prefer the experiment
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p′ over p, as stated in Lemma A.9 below.

Lemma A.9. Fix any R ∈ Z. For all p ∈ ∆ \ T ◦ and p′ ∈ ∆, there exists

ξ = (k, p′, p, ...p) ∈ ΞR such that p′ ∈ B(ξ).

Suppose the economy starts from a state (j, p, ..., p), where p is not in T ◦ but

is on the same side of the equilibrium as Ti. If one of the replica, say j1, keeps

experimenting by choosing a price vector closer to Ti while everyone else adopts the

price vector chosen by j1 in the previous period, then the economy will eventually

reach (j, pn, pn−1, ..., pn−1), where pn−1 ∈ Ti and pn ∈ Ti(pn−1, R). Since in each

step it is possible to move some minimum distance toward Ti, the number of steps

that are needed for this is also bound by some constant N0. Moreover, once this

happens, the economy can then follow a chain of transitions similar to the one

discussed earlier. Thus, letting N = N0 +N1, we have the following lemma.

Lemma A.10. For any N (p∗, δ∗), where δ̄ < δ∗, there exist R′′ and N ∈ Z such

that for all R > R′′ the following holds. Let A = {(i, p, ..., p) ∈ ΞR : i ∈ I and

p ∈ N (p∗, δ∗)}. Then for any ξ ∈ Ξ̂ \ A, we have Pξ(ξετΞ̂ ∈ A) ≥ Kε ε
N , where

Kε > 0 is a constant that does not depend on ξ and Kε → K > 0 as ε→ 0.

We now consider transitions out of A. Suppose the economy is in state (i, p, ..., p)

where every i-replica is setting p ∈ N (p∗, δ∗). Lemma A.11 below states that if the

economy is large it takes at least N + 1 many replicas experimenting with prices to

be able to transition into Ξ̂ \ A. To see this, we divide the starting state into two

possible categories.

The first possibility is that p is in N (p∗, δ∗)∩T ◦j . Then Lemma A.2 implies that

the magnitude of the trade desired by i is smaller than that of j, so the trading

in the initial state results in i-replicas receiving xi(p, ω̄i) each. Suppose one i-

replica, say i1, experiments by setting p′ that is outside N (p∗, δ∗). Since δ̄ < δ∗, p′

must be on the same side of the equilibrium as p. Because tâtonnement converges

monotonically in the underlying economy, this necessarily means that p′ can be
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derived by adjusting p in the direction opposite to the market excess demand. Such

price vector can be shown to offer worse terms of trade for i than p and, therefore,

better terms for j. Thus, type j will trade first with i1, but whatever bundle i1 ends

up with as a result, denoted ω̂i1, cannot be better than xi(p′, ω̄i). In addition, if R

is large, the magnitude of the trade realized by each j-replica is small and j-replicas

will be entering the second stage with endowments that are close to their initial

endowments.

In the second stage, we have R many j-replicas trading with R − 1 many i-

replicas that are offering p. If R is large enough so that the difference in the number

of replicas in each party is negligible and the endowment of type j is close enough to

its initial endowment, the result of the second stage trading for i will be the same as

that under the initial state (i, p, ..., p), namely xi(p, ω̄i). Since p offers better terms

for i than p′, we have xi(p, ω̄i) �i xi(p′, ω̄i) % ω̂i1. Therefore, p′ 6∈ B((i, p′, p, ..., p))

as desired.

Next, suppose there are many experimenters. That is, consider a state (i, p1, ..., pR),

where N prices are different from p. We want to apply a similar reasoning as the

single experimenter case and argue that when R is large relative to N , none of the

prices outside N (p∗, δ∗) are in B((i, p1, ..., pR)). However, the key element of the

reasoning, that any price vector outside N (p∗, δ∗) that can be chosen through ex-

perimentation offers better terms of trade than p for type j, implicitly relied on j’s

endowment being ω̄j . However, when there are multiple experimenters, the endow-

ment j brings to each stage can change as a result of the trading in the previous

stage. Therefore, j’s preference over the prices may also change from stage to stage.

We circumvent this potential problem by using Lemma A.4, which states that pref-

erences over the prices are not affected by small changes in the endowment. Unless

the price takers are trading with i-replicas offering p, the number of their trading

partners at a given stage is at most N . Thus, if R is large, the magnitude of the

realized trade for each j-replica will be negligible and her resulting endowment will

be close to ω̄j . Therefore, until price vector p is reached, the order of trades will be
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the same as if the endowment of type j had stayed constant at ω̄j , and a similar

reasoning as the single experimenter case applies.

The second possibility is that p is in N (p∗, δ∗) ∩ T ◦i . Lemma A.2 then implies

that the magnitude of the net trade desired by i is greater than that of j, so the

trading in the initial state results in j-replicas receiving xj(p, ω̄j) each. Suppose

replica i1 experiments by setting p′ that is outside N (p∗, δ∗). As before, δ̄ < δ∗

means that p′ can be derived by adjusting p in the direction opposite to the market

excess demand. However, in this case such price vector can be shown to offer better

terms of trade than p for i and, therefore, worse terms for j. Thus, type j will

trade first with i-replicas offering p. Since there are R-many j-replicas trading with

R − 1-many i-replicas, the result of the trading will be similar to that under the

initial state (i, p, ..., p) if R is large. In particular, type j ends up with xj(p, ω̄j).

In the second stage, we have j-replicas trading with replica i1 who is offering p′.

However, j-replicas enter the stage with the endowment xj(p, ω̄j) while i1 has en-

dowment ω̄i. It turns out that the desired trades of the two parties are incompatible

under these endowments so that no actual trade is realized and i1 ends up with ω̄i,

which must be worse than what her fellow replicas received in stage 1. Therefore,

p′ 6∈ B((i, p′, p, ..., p)) as desired. Finally, if there are many experimenters, we can

again appeal to Lemma A.4 to show that none of the prices outside N (p∗, δ∗) are

in B((i, p1, ..., pR)).

Putting the two categories together, we obtain Lemma A.11.

Lemma A.11. Fix N (p∗, δ∗) where N̄ (p∗, δ∗) ⊂ T ◦ and δ̄ < δ∗. For every N ∈

Z, there exists R′′′ such that the following holds for all R > R′′′. Suppose ξ =

(i, p1, p2, ...pR) ∈ ΞR has pr = p ∈ N (p∗, δ∗) for R−N many r’s and pr ∈ N (p, δ̄) \

{p} for N many r’s. Then pr ∈ B(ξ) only if pr ∈ N (p∗, δ∗).

Lemma A.10 and Lemma A.11 show that the price-adjustment dynamics favors

adjustment of prices in the direction of the excess demand vector in all sufficiently
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large economies. As a result, the limiting distribution is concentrated around the

monomorphic states corresponding to the equilibrium price vector. This is formally

stated and shown below as Theorem 3.5.

Theorem 3.5. Fix N (p∗, δ∗), where δ̄ < δ∗. There exists R̄ such that for all

R > R̄ the following holds. Let πε be the limiting distribution of ξε on ΞR and let

A = {(i, p, ..., p) : i ∈ I and p ∈ N (p∗, δ∗)}. Then πε(A)→ 1 as ε→ 0.

Proof. If Ξ̂\A = ∅, then the theorem follows from Theorem 3.4. So, assume

Ξ̂\A 6= ∅. Take N and R′′ from Lemma A.10 and R′′′ from Lemma A.11. Let

R̄ = max {R′′, R′′′} and fix R > R̄.

Take any ε ∈ (0, 1). Since πε(Ξ̂) > 0, Theorem 3.3 yields

πε(A) =
∫

Ξ̂
Eξ

[ τΞ̂∑
t=1

1{ξε
t∈A}

]
πε(dξ)

=
∫

Ξ̂
Pξ(ξετΞ̂ ∈ A)πε(dξ) since A ⊂ Ξ̂

=
∫
A
Pξ(ξετΞ̂ ∈ A)πε(dξ) +

∫
Ξ̂\A

Pξ(ξετΞ̂ ∈ A)πε(dξ).

Suppose ξ ∈ Ξ̂\A. Then by Lemma A.10, Pξ(ξετΞ̂ ∈ A) ≥ Kεε
N , where Kε → K > 0

as ε → 0. Next, suppose ξ = (i, p, ..., p) ∈ A. Lemma A.11 implies that if a state

(i, p1, p2, ...pR) ∈ ΞR has pr = p for at least R−N many r’s, then only the prices in

N (p∗, δ∗) are candidates for imitation in the next period. So, any transition from ξ

into Ξ̂\A requires at least N+1 simultaneous experimentations by the price setters.

Therefore, for any ξ ∈ A, Pξ(ξετΞ̂ ∈ Ξ̂ \A) ≤ K ′εεN+1, where K ′ε does not depend on

ξ and K ′ε → K ′ > 0 as ε→ 0. Therefore,

πε(A) ≥
∫
A

(
1−K ′εεN+1

)
πε(dξ) +

∫
Ξ̂\A

Kεε
Nπε(dξ)

=
(
1−K ′εεN+1

)
πε(A) +Kεε

Nπε(Ξ̂\A).
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Then
πε(A)

1− πε(A)
=

πε(A)
πε(Ξ̂\A)

≥ Kεε
N

K ′εε
N+1

→∞ as ε → 0,

so πε(A)→ 1 as ε→ 0.

4 Concluding Remarks

We have presented a model of price adjustment in which agents grope toward the

equilibrium by experimenting with prices. In the model, experiments that are made

in the direction of the market excess demand vector have a much greater probability

of being adopted in the following period than the experiments in the opposite direc-

tion. Therefore, the most probable trajectory for the economy is a tâtonnement-like

transitions toward the equilibrium. However, in our model it is not the Walrasian

auctioneer’s desire to clear the market that moves the economy but the fact that

experiments in the direction of the excess demand make the experimenters better

off. As such, this model resolves some of the difficulties in interpreting tâtonnement

dynamics. First, it specifies out-of-equilibrium trading so that a fictional time scale

in which prices adjust without trading is not needed. Second, the price-adjustment

rule is decentralized and endogenous so that it does not require an exogenous agent

whose motivation for adjusting prices is unmodeled.
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A Appendix

Preliminary results are collected here. The four lemmas in Subsection A.1 provide

some useful facts about 2 × 2 exchange economies. The proofs of the lemmas on

the price-adjustment process that were discussed in the main text are given in

Subsection A.2.

A.1 2× 2 Exchange Economy Lemmas

Since xi(p̄j , ω̄i) �i ω̄i = xi(p̄i, ω̄i), type i prefers p̄j over p̄i. The first lemma below

shows that more generally, given any two prices in T ◦, type i prefers the price that

is closer to p̄j .

Lemma A.1. Let p ∈ T ◦ and p′ = λ′p̄j + (1 − λ′)p for some λ′ ∈ (0, 1]. Then

xi(p′, ω̄i) �i xi(p, ω̄i).

Proof. Let λ ∈ (0, 1) be such that p = λp̄j + (1 − λ)p̄i. Since xi(p, ω̄i) �i ω̄i =

xi(p̄i, ω̄i), we have p̄i · zi(p, ω̄i) > 0 by the weak axiom of revealed preference. So,

p̄j · zi(p, ω̄i) =
1
λ

(p− (1− λ)p̄i) · zi(p, ω̄i) = −
(

1− λ
λ

)
p̄i · zi(p, ω̄i) < 0.

This implies

p′ · zi(p, ω̄i) =
(
λ′p̄j + (1− λ′)p

)
· zi(p, ω̄i) = λ′p̄j · zi(p, ω̄i) < 0.

Therefore, xi(p′, ω̄i) �i xi(p, ω̄i).

Since p · zi(p, ω̄i) = 0 = p · zj(p, ω̄j) by Walras’ Law, zi(p, ω̄i) and zj(p, ω̄j) are

colinear for all p. The next lemma shows that, in addition, if p ∈ T ◦i then the excess

demand vectors of the two types are in the opposite direction, with the magnitude of

type i’s excess demand exceeding that of type j. However, if p 6∈ T then the excess

demand vectors are in the same direction. We will see in the proof of Lemma A.9
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that this implies that trade will occur at the initial endowment allocation and price

p if and only p ∈ T ◦.

Lemma A.2. For all p ∈ ∆\{p̄i}, there exists β ∈ R such that zj(p, ω̄j) = βzi(p, ω̄i).

Furthermore, β = 0 if p = p̄j, β ∈ (−1, 0) if p ∈ T ◦i , and β > 0 if p 6∈ T .

Proof. If p = p̄j , zj(p̄j , ω̄j) = 0 = βzi(p̄j , ω̄i) with β = 0. If p ∈ ∆ \ {p̄j , p̄i}, then

zj(p, ω̄j) 6= 0 6= zi(p, ω̄i). Moreover, p · zj(p, ω̄j) = 0 = p · zi(p, ω̄i) by Walras’ Law.

Therefore,
z`j(p, ω̄j)
zmj (p, ω̄j)

= −p
m

p`
=

z`i (p, ω̄i)
zmi (p, ω̄i)

.

So, there exists β ∈ R such that zj(p, ω̄j) = βzi(p, ω̄i).

Suppose p ∈ T ◦i . Then p = λp̄j + (1− λ)p∗ for some λ ∈ (0, 1). By Lemma A.1,

xi(p, ω̄i) �i xi(p∗, ω̄i). So, the weak axiom yields

p̄j · zi(p, ω̄i) =
1
λ

(p− (1− λ)p∗) · zi(p, ω̄i) = −
(

1− λ
λ

)
p∗ · zi(p, ω̄i) < 0.

But, since xj(p, ω̄j) �j ω̄j = xj(p̄j , ω̄j),

β (p̄j · zi(p, ω̄i)) = p̄j · zj(p, ω̄j) > 0.

Therefore, β < 0. In addition, ‖zi(p̄j , ω̄i)‖ > 0 = ‖zj(p̄j , ω̄j)‖ while ‖zi(p∗, ω̄i)‖ =

‖zj(p∗, ω̄j)‖. Since excess demand functions are continuous in prices and the equi-

librium is assumed to be unique, ‖zi(p, ω̄i)‖ > ‖zj(p, ω̄j)‖ for all p ∈ T ◦i . Therefore,

|β| < 1.

Now, suppose p 6∈ T . Then either p̄i = λp + (1 − λ)p̄j for some λ ∈ (0, 1),

or p̄j = λp + (1 − λ)p̄i for some λ ∈ (0, 1). Without loss of generality, assume

p̄i = λp + (1 − λ)p̄j . Since xi(p, ω̄i) �i ω̄i = xi(p̄i, ω̄i), we have p̄i · zi(p, ω̄i) > 0.

Since xj(p, ω̄j) �j ω̄j = xj(p̄j , ω̄j), we also have

β (p̄i · zi(p, ω̄i)) = (λp+ (1− λ)p̄j) · zj(p, ω̄j) = (1− λ)p̄j · zj(p, ω̄j) > 0.
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Therefore, β > 0.

The following lemma shows that if two price vectors are obtained by adjusting p

in the direction opposite to type i’s excess demand, i prefers the one that is further

from p.

Lemma A.3. Fix any ωi ∈ R++. Suppose p, p1, and p2 are such that

p`1
pm1

=
p`

pm
− γ1z

`
i (p, ωi) and

p`2
pm2

=
p`

pm
− γ2z

`
i (p, ωi)

for some γ2 > γ1 > 0. Then xi(p2, ωi) �i xi(p1, ωi) �i xi(p, ωi).

Proof. Using p · zi(p, ωi) = 0, we obtain

p`1
pm1

z`i (p, ωi) + zmi (p, ωi) =
(
p`

pm
− γ1z

`
i (p, ωi)

)
z`i (p, ωi) + zmi (p, ωi)

= −γ1z
`
i (p, ωi)z

`
i (p, ωi)

< 0.

Thus, p1 · zi(p, ωi) < 0, which implies xi(p1, ωi) �i xi(p, ωi).

Next, p · zi(p1, ωi) > 0 by the weak axiom. So,

p`

pm
z`i (p1, ωi) + zmi (p1, ωi) > 0 =

p`1
pm1

z`i (p1, ωi) + zmi (p1, ωi).

Subtracting yields

0 <

(
p`

pm
− p`1
pm1

)
z`i (p1, ωi) = γ1z

`
i (p, ωi)z

`
i (p1, ωi).
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Since γ1 > 0, this means that z`i (p, ωi)z
`
i (p1, ωi) > 0. So,

p`2
pm2

z`i (p1, ωi) + zmi (p1, ωi) =
(
p`

pm
− γ2z

`
i (p, ωi)

)
z`i (p1, ωi) + zmi (p1, ωi)

=
(
p`

pm
− (γ1 + (γ2 − γ1))z`i (p, ωi)

)
z`i (p1, ωi) + zmi (p1, ωi)

=
(
p`1
pm1
− (γ2 − γ1)z`i (p, ωi)

)
z`i (p1, ωi) + zmi (p1, ωi)

= −(γ2 − γ1)z`i (p, ωi)z
`
i (p1, ωi)

< 0.

Therefore, p2 · zi(p1, ωi) < 0, which implies xi(p2, ωi) �i xi(p1, ωi).

The last lemma concerns the effect of small changes in the endowment. First, for

any price vector in Ti ∪ N̄ (p∗, δ∗), type i’s excess demand stays approximately the

same. Second, type i’s preference over the prices in Ti ∪ N̄ (p∗, δ∗) stays the same.

These facts are used in Lemma A.11.

Lemma A.4. Fix N (p∗, δ∗) where N̄ (p∗, δ∗) ⊂ T ◦. For any ε > 0, there exists δ′

such that for all δ ≤ δ′ and i ∈ I, the following hold: (1) for all p ∈ Ti ∪ N̄ (p∗, δ∗)

and ωi ∈ N̄ (ω̄i, δ), there exists η ∈ (1− ε, 1 + ε) such that zi(p, ωi) = ηzi(p, ω̄i), and

(2) for all p, p′ ∈ Ti ∪ N̄ (p∗, δ∗) and ωi, ω
′
i ∈ N̄ (ω̄i, δ), xi(p′, ωi) �i xi(p, ωi) if and

only if xi(p′, ω′i) �i xi(p, ω′i).

Proof. For each δ > 0, z`i ( · , · ) is uniformly continuous on Ti ∪N̄ (p∗, δ∗)×N̄ (ω̄i, δ).

Since z`i (p, ω̄i) is either strictly positive or strictly negative on T \ {p̄i}, either

min z`i (p, ω̄i) > 0 or max z`i (p, ω̄i) < 0 on Ti ∪ N̄ (p∗, δ∗). So, z`i ( · , · )
z`i ( · ,ω̄i)

is uniformly

continuous on Ti ∪ N̄ (p∗, δ∗)× N̄ (ω̄i, δ). This implies that both

max
(p,ωi)∈Ti∪N̄ (p∗,δ∗)×N̄ (ω̄i,δ)

z`i (p, ωi)
z`i (p, ω̄i)

and min
(p,ωi)∈Ti∪N̄ (p∗,δ∗)×N̄ (ω̄i,δ)

z`i (p, ωi)
z`i (p, ω̄i)

exist and converge to 1 as δ → 0. Therefore, there exists δi such that property (1)

holds for all δ ≤ δi. That is, for all (p, ωi) ∈ Ti ∪ N̄ (p∗, δ∗) × N̄ (ω̄i, δ), there exists
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η ∈ (1− ε, 1 + ε) such that zi(p, ωi) = ηzi(p, ω̄i).

Let δ′ = min{δi, δj}, and fix δ ≤ δ′. Suppose p, p′ ∈ Ti ∪ N̄ (p∗, δ∗) are such

that xi(p′, ωi) �i xi(p, ωi) for some ωi ∈ N̄ (ω̄i, δ). Then p · zi(p′, ωi) > 0 by the

weak axiom. Since zi(p′, ω̄i) = 1
ηzi(p

′, ωi) for some η > 0, we have p · zi(p′, ω̄i) =

1
ηp·zi(p

′, ωi) > 0. Because both p and p′ are in T , either p is a convex combination of

p′ and p̄i or p′ is a convex combination of p and p̄i. Suppose, toward contradiction,

p′ = γp+ (1− γ)p̄i for some γ ∈ (0, 1). But, then,

0 = p′ · zi(p′, ω̄i) = γp · zi(p′, ω̄i) + (1− γ)p̄i · zi(p′, ω̄i) > 0,

which is impossible. So, it must be that p = γp′ + (1 − γ)p̄i for some γ ∈ (0, 1).

Then

p′ · zi(p, ω̄i) =
1
γ

(p− (1− γ)p̄i) · zi(p, ω̄i)

= −
(

1− γ
γ

)
p̄i · zi(p, ω̄i)

< 0 since xi(p, ω̄i) �i xi(p̄i, ω̄i).

For any ω′i ∈ N̄ (ω̄i, δ), there exists η′ > 0 such that zi(p, ω′i) = η′zi(p, ω̄i). Therefore,

p′ · zi(p, ω′i) = η′p′ · zi(p, ω̄i) < 0, which implies xi(p′, ω′i) �i xi(p, ω′i).

A.2 Proofs of the Price-Adjustment Lemmas

Lemma A.5. For all p ∈ Ti, R ∈ Z, and p′ ∈ Ti(p,R) \ {p}, there exists β > 0

such that zi
(
p′, ω̄i − R−1

R zj(p, ω̄j)
)

= −βzj(p′, ω̄j).

Proof. Since p′ · zi
(
p′, ω̄i − R−1

R zj(p, ω̄j)
)

= 0 = p′ · zj(p′, ω̄j), there exists β ∈ R

such that zi
(
p′, ω̄i − R−1

R zj(p, ω̄j)
)

= −βzj(p′, ω̄j). In the following, we show that

β > 0.

By Lemma A.2, zj(p, ω̄j) = −β′zi(p, ω̄i) for some β′ ∈ [0, 1]. Moreover, since
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p ·
(
ω̄i − R−1

R zj(p, ω̄j)
)

= p · ω̄i, we have

xi(p, ω̄i) �i ω̄i −
R− 1
R

zj(p, ω̄j) = xi

(
fi(p,R), ω̄i −

R− 1
R

zj(p, ω̄j)
)
.

So, the weak axiom yields

0 < fi(p,R) ·
(
xi(p, ω̄i)−

(
ω̄i −

R− 1
R

zj(p, ω̄j)
))

= fi(p,R) ·
(
xi(p, ω̄i)−

(
ω̄i + β′

R− 1
R

zi(p, ω̄i)
))

=
(

1− β′R− 1
R

)
fi(p,R) · zi(p, ω̄i)

so that fi(p,R) · zi(p, ω̄i) > 0.

Since p′ ∈ Ti(p,R) \ {p}, p′ = λp+ (1− λ)fi(p,R) for some λ ∈ [1
2 , 1). So,

p′ · zj(p, ω̄j) = (λp+ (1− λ)fi(p,R)) · zj(p, ω̄j)

= −β′(1− λ)fi(p,R) · zi(p, ω̄j)

≤ 0.

Thus, p · zj(p′, ω̄j) > 0 by the weak axiom.

Next, since

xi

(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
)
�i ω̄i−

R− 1
R

zj(p, ω̄j) = xi

(
fi(p,R), ω̄i −

R− 1
R

zj(p, ω̄j)
)
,

we have fi(p,R) · zi
(
p′, ω̄i − R−1

R zj(p, ω̄j)
)
> 0 by the weak axiom. So,

−βp · zj(p′, ω̄j) =
1
λ

(
p′ − (1− λ)fi(p,R)

)
· zi
(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
)

= −
(

1− λ
λ

)
fi(p,R) · zi

(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
)

< 0.

Therefore, β > 0 as claimed.
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Lemma A.6. Fix any N (p∗, δ∗). Then there exists R′ such that for all R > R′, the

following holds. For any p ∈ Ti \ N (p∗, δ∗) and p′ ∈ Ti(p,R) \ {p}, let

α∗ = arg max
α∈[0,1]

uj

(
ω̄j − αRzi

(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
))

.

Then

ω̄j − α∗Rzi
(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
)

= xj(p′, ω̄j).

Proof. Take any R ∈ Z, and let p ∈ Ti \ N (p∗, δ∗) and p′ ∈ Ti(p,R) \ {p}. By

Lemma A.5, there exists β > 0 such that zi
(
p′, ω̄i − R−1

R zj(p, ω̄j)
)

= −βzj(p′, ω̄j).

Then

ω̄j − αRzi
(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
)

= ω̄j + αRβzj(p′, ω̄j).

Therefore,

arg max
α∈[0,1]

uj

(
ω̄j − αRzi

(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
))

= min
{

1
Rβ

, 1
}
.

It remains to show that Rβ ≥ 1 for all sufficiently large R.

Price vector fi(p,R) was defined earlier as the supporting price for i at ω̄i −
R−1
R zj(p, ω̄j). Extend the definition by letting fi(p,∞) be the supporting price for

i at ω̄i − zj(p, ω̄j). That is, let fi(·,∞) : Ti → ∆ be defined by

xi (fi(p,∞), ω̄i − zj(p, ω̄j)) = ω̄i − zj(p, ω̄j).

Similarly, define Ti(·,∞) : Ti → 2∆ by

Ti(p,∞) = Ti ∩
{
λp+ (1− λ) fi(p,∞) : λ ∈ [1

2 , 1]
}
.

For each p ∈ Ti \ N (p∗, δ∗), let

hi(p,∞) = min
p′∈Ti(p,∞)

∥∥zi (p′, ω̄i − zj(p, ω̄j))∥∥ .
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By construction, fi(p,∞) = p if and only if p = p∗. So, fi(p,∞) 6∈ Ti(p,∞)

and ‖zi (p′, ω̄i − zj(p, ω̄j))‖ > 0 for all p′ ∈ Ti(p,∞). Since ‖zi (· , ω̄i − zj(p, ω̄j))‖

is continuous and Ti(p,∞) is compact, hi(p,∞) > 0. Moreover, hi(·,∞) is itself

continuous by the theorem of the maximum; therefore, we have

h̄i(∞) ≡ min
p∈Ti\N (p∗,δ∗)

hi(p,∞) > 0.

Next, for each p ∈ Ti \ N (p∗, δ∗) and R ∈ Z, let

hi(p,R) = min
p′∈Ti(p,R)

∥∥∥∥zi(p′, ω̄i − R− 1
R

zj(p, ω̄j)
)∥∥∥∥ .

Since hi(·, R) is continuous and strictly positive on Ti \ N (p∗, δ∗), we have

h̄i(R) ≡ min
p∈Ti\N (p∗,δ∗)

hi(p,R) > 0.

Moreover, h̄i(R) → h̄i(∞) > 0 as R → ∞. So, there exists Ri such that for all

R > Ri, h̄i(R) > h̄i(∞)
2 .

Let z̄j = maxp∈T ‖zj(p, ω̄j)‖. Then z̄j ∈ (0,∞). Now, letR′ = max
{
Ri, Rj ,

2z̄i
h̄j(∞)

,
2z̄j
h̄i(∞)

}
and consider any R > R′. Since

βz̄j ≥ ‖βzj(p′, ω̄j)‖ =
∥∥∥∥zi(p′, ω̄i − R− 1

R
zj(p, ω̄j)

)∥∥∥∥ > h̄i(∞)
2

,

β > h̄i(∞)
2z̄j

. Therefore, Rβ >
(

2z̄j
h̄i(∞)

)(
h̄i(∞)

2z̄j

)
= 1, as desired.

Lemma A.7. Fix any N (p∗, δ∗). Then there exists R′ such that for all R > R′, the

following holds. Suppose ξ = (j, p′, p, ..., p) ∈ ΞR is such that p ∈ Ti \ N (p∗, δ∗) and

p′ ∈ Ti(p,R). Then p′ ∈ B(ξ).

Proof. Let R′ satisfy Lemma A.6 and fix R > R′. Consider any ξ = (j, p′, p, ..., p) ∈

ΞR satisfying the hypothesis. Since there is nothing to prove if p′ = p, assume

p′ ∈ Ti(p,R) \ {p}.
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Suppose p 6= p̄j . By Lemma A.2, zj(p′, ω̄j) = −β′zi(p′, ω̄i) for some β′ ∈ (0, 1).

In the proof of Lemma A.5, we have shown that p · zj(p′, ω̄j) > 0. So,

p · zi(p′, ω̄i) = − 1
β′
p · zj(p′, ω̄j) < 0.

Therefore, xi(p, ω̄i) �i xi(p′, ω̄i), and Φ1 = {2, 3, 4, ..., R}.

Since Lemma A.2 also yields zj(p, ω̄j) = −βzi(p, ω̄i) for some β ∈ (0, 1), we have

arg max
α∈[0,1]

uj

(
ω̄j − α

R

R− 1
zi(p, ω̄i)

)
= arg max

α∈[0,1]
uj

(
ω̄j + α

R

β(R− 1)
zj(p, ω̄j)

)
=

β(R− 1)
R

.

Therefore, ω̂jr = xj(p, ω̄j) for all r ∈ Φ1 and

ω2
i = ω̄i +

β(R− 1)
R

zi(p, ω̄i) = ω̄i −
R− 1
R

zj(p, ω̄j).

In stage 2, we have Φ2 = {1}, so the trading results in

ω̂j1 = ω̄j − α2Rzi

(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
)
,

where

α2 = arg max
α∈[0,1]

uj

(
ω̄j − αRzi

(
p′, ω̄i −

R− 1
R

zj(p, ω̄j)
))

.

Thus, ω̂j1 = xj(p′, ω̄j) by Lemma A.6. Since we have shown in the proof of

Lemma A.5 that p′ · zj(p, ω̄j) ≤ 0, we have xj(p′, ω̄j) �j xj(p, ω̄j). Therefore,

{p′} = B(ξ).

Next, suppose p = p̄j . Then xi(p̄j , ω̄i) �i xi(p′, ω̄i) by Lemma A.1, so we still

have Φ1 = {2, 3, 4, ..., R}. However, no trading will take place in stage 1 since

xj(p̄j , ω̄j) = ω̄j . Therefore, p′ ∈ B(ξ) trivially.

Lemma A.8. For all R ∈ Z, p ∈ Ti \ {p∗}, and p′ ∈ Ti(p,R) \ {p}, there exists

33



γ > 0 such that
p′`

p′m
=

p`

pm
+ γz`(p, ω̄i, ω̄j).

Proof. Let p and p′ be as in the hypothesis. Then zj(p, ω̄j) = −βzi(p, ω̄i) for some

β ∈ [0, 1) by Lemma A.2, and p′ = λp+(1−λ)fi(p,R) for some λ ∈ [1
2 , 1). Moreover,

in the proof of Lemma A.5 we have shown that fi(p,R) · zi(p, ω̄i) > 0. Therefore,

p′ · z(p, ω̄i, ω̄j) = (λp+ (1− λ)fi(p,R)) · ((1− β)zi(p, ω̄i)) > 0

while p · z(p, ω̄i, ω̄j) = 0. Therefore,

p′`

p′m
z`(p, ω̄i, ω̄j) + zm(p, ω̄i, ω̄j) > 0 =

p`

pm
z`(p, ω̄i, ω̄j) + zm(p, ω̄i, ω̄j).

So, whether z`(p, ω̄i, ω̄j) > 0 or z`(p, ω̄i, ω̄j) < 0, there exists γ > 0 such that

p′`

p′m
=

p`

pm
+ γz`(p, ω̄i, ω̄j).

Lemma A.9. Fix any R ∈ Z. For all p ∈ ∆ \ T ◦ and p′ ∈ ∆, there exists

ξ = (k, p′, p, ...p) ∈ ΞR such that p′ ∈ B(ξ).

Proof. Since p 6∈ T ◦, either p̄i = λp + (1 − λ)p̄j for some λ ∈ (0, 1], or p̄j = λp +

(1− λ)p̄i for some λ ∈ (0, 1]. Without loss of generality, assume p̄i = λp+ (1− λ)p̄j

for some λ ∈ (0, 1].

Now, suppose p′ ∈ T ◦ so that p′ = λ′p̄j + (1 − λ′)p̄i for some λ′ ∈ (0, 1). Then

p′ = λ′p̄j + (1− λ′)(λp+ (1− λ)p̄j) = (1− λ+ λ′λ)p̄j + (λ− λ′λ)p. So,

p · zj(p′, ω̄j) =
(

1
λ− λ′λ

)
(p′ − (1− λ+ λ′λ)p̄j) · zj(p′, ω̄j)

= −
(

1− λ+ λ′λ

λ− λ′λ

)
p̄j · zj(p′, ω̄j)

< 0 since xj(p′, ω̄j) �j ω̄j = xj(p̄j , ω̄j).
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Therefore, xj(p, ω̄j) �j xj(p′, ω̄j).

Let ξ = (i, p′, p, ..., p) ∈ ΞR. Since xj(p, ω̄j) �j xj(p′, ω̄j), j-replicas will want

to trade first with i-replicas setting price p. That is, Φ1 = {2, 3, ..., R}, with each

replica ir, r ∈ Φ1, receiving the total trade order of R
R−1zj(p, ω̄j). However, if p = p̄i

no actual trade will occur since zi(p̄i, ω̄i) = 0. In addition, even if p 6= p̄i, no trade

will occur since the desired trades of the two types are in the opposite direction.

To see this, note that since xi(p, ω̄i) �i ω̄i = xi(p̄i, ω̄i), p̄i · zi(p, ω̄i) > 0. Using

Lemma A.2, we obtain

p̄i ·
(
ω̄i − α

R

R− 1
zj(p, ω̄j)

)
= p̄i ·

(
ω̄i − αβ

R

R− 1
zi(p, ω̄i)

)
for some β > 0

< p̄i · ω̄i for all α ∈ (0, 1].

Meaning, ω̄i �i ω̄i − α R
R−1zj(p, ω̄j) for all α ∈ (0, 1]. Therefore,

α1 = arg max
α∈[0,1]

ui

(
ω̄i − α

R

R− 1
zj(p, ω̄j)

)
= 0

so that ω̂ir = ω̄i for all r ∈ Φ1 and ω2
j = ω̄j .

In the second trading stage, Φ2 = {1}; that is, we have j-replicas wanting to

trade with replica i1. Since p′ is assumed to be in T ◦, some trade will occur, leaving

i1 strictly better off than i-replicas in Φ1. To see this, apply Lemma A.2 to obtain

α2 = arg max
α∈[0,1]

ui
(
ω̄i − αRzj(p′, ω̄j)

)
= arg max

α∈[0,1]
ui
(
ω̄i + αRβzi(p′, ω̄j)

)
for some β > 0

= min
{

1
Rβ , 1

}
.

Since a2 > 0, we have ω̂i1 = ω̄i + α2Rβzi(p′, ω̄j) �i ω̄i = ω̂ir ∀r 6= 1. Therefore,

B(i, p′, p, ..., p) = {p′}.

Next, suppose p′ 6∈ T ◦. Then a similar argument to the above yields that no

actual trade will occur under either p or p′. Therefore, ω̂ir = ω̄i for all r, and
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B(i, p′, p, ..., p) = {p′, p}.

Lemma A.10. For any N (p∗, δ∗), where δ̄ < δ∗, there exist R′′ and N ∈ Z such

that for all R > R′′ the following holds. Let A = {(i, p, ..., p) ∈ ΞR : i ∈ I and

p ∈ N (p∗, δ∗)}. Then for any ξ ∈ Ξ̂ \ A, we have Pξ(ξετΞ̂ ∈ A) ≥ Kε ε
N , where

Kε > 0 is a constant that does not depend on ξ and Kε → K > 0 as ε→ 0.

Proof. Fix any N (p∗, δ∗), and assume δ̄ < δ∗.

Case 1: We first consider the case where the chain starts from a state in which

every replica is setting the same price vector in T . Consider any p ∈ Ti. Since p is

an extreme point of Ti(p,R), it is an extreme point of Ti(p,R)∩N̄ (p, δ̄) as well. Let

gi(p,R) be the other extreme point. That is, define gi : Ti ×Z → ∆ by

Ti(p,R) ∩ N̄ (p, δ̄) = {λp+ (1− λ)gi(p,R) : λ ∈ [0, 1]} .

Let

Si(p,R) =
{
λp+ (1− λ)gi(p,R) : λ ∈ [0, 1

2 ]
}
.

be the half of Ti(p,R) ∩ N̄ (p, δ̄) that is further away from p.

If p ∈ Ti \ N (p∗, δ∗), then p 6= fi(p,R), which implies p 6= gi(p,R) and S◦i (p,R)

is non-empty. Thus,

µi(R) ≡ min
p∈Ti\N (p∗,δ∗)

µL (Si(p,R)) > 0,

and

di(R) ≡ min
p∈Ti\N (p∗,δ∗)

∣∣∣∣p` − g`i (p,R)
2

∣∣∣∣ > 0.

Next, define gi(·,∞) : Ti → ∆ by

Ti(p,∞) ∩ N̄ (p, δ̄) = {λp+ (1− λ)gi(p,∞) : λ ∈ [0, 1]} .
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If p ∈ Ti \ N (p∗, δ∗), then we have p 6= fi(p,∞), which implies p 6= gi(p,∞). Thus,

as R→∞,

µi(R) → µi(∞) ≡ min
p∈Ti\N (p∗,δ∗)

µL
({
λp+ (1− λ)gi(p,∞) : λ ∈ [0, 1

2 ]
})

> 0,

and

di(R) → di(∞) ≡ min
p∈Ti\N (p∗,δ∗)

∣∣∣∣p` − g`i (p,∞)
2

∣∣∣∣ > 0.

Therefore, there exists Ri such that for all R > Ri, we have di(R) > di(∞)
2 and

µi(R) > µi(∞)
2 . Let R′′ = max {Ri, Rj , R′}, where R′ satisfies Lemma A.7, and let

N1 ≥ max
{

2|p̄`i−p∗`|
dj(∞) ,

2|p̄`j−p∗`|
di(∞)

}
.

Now, fix R > R′′ and consider any ξ = (k, p0, ..., p0), where k ∈ I and p0 ∈ Ti \

N (p∗, δ∗). Let (j, p′; p) ≡ (j, p′, p, ..., p) and (j, C, p, ..., p) ≡ {(j, p′, p, ..., p) : p′ ∈ C}.

Let τ1 be the first time the chain enters the set {(j, p′; p) : p 6∈ N (p∗, δ∗) and p′ ∈

N (p∗, δ∗)∩Si(p,R)}. Using ξεt1 to denote the price vector set by replica 1 in ξεt , let

B be the event

{
ξε1 = (j, p0; p0), ξεt+1 ∈ (j, Si(ξεt1, R); ξεt1) for t = 1, ..., τ1 − 1,

and ξετ1+1 = (j, ξετ1 ; ξετ1)
}
.

Then on B, {ξεt1 : t = 1, ..., τ1} generates a sequence of prices p0, p1, ..., pτ1 , where

pt+1 ∈ Si(pt, R) for all t. Since Si(pt, R) ⊂ Ti(pt, R), Lemma A.8 implies that

pt+1 can be derived by adjusting pt in the direction of the excess demand. Because

tâtonnement converges monotonically to the equilibrium in the underlying economy,

this means |p`t+1−p∗`| < |p`t−p∗`| for all t. Moreover, by construction, |p`t+1−p`t| ≥

di(R) > di(∞)
2 for all pt 6∈ N (p∗, δ∗). Therefore, τ1 ≤ N1 Pξ-a.s. on B.

For any k ∈ I,

P (ξε1 = (j, p0; p0) | ξε0 = (k, p0; p0)) ≥ 1
2
.
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For all t = 1, ..., τ1 − 1,

P
(
ξεt+1 ∈ (j, Si(pt, R); pt) | ξεt = (j, pt; pt−1)

)
≥

(
1
2

)
εµL(Si(pt, R))
µL(N (p, δ̄))

(1− ε)R−1.

>
µ(∞)ε(1− ε)R−1

4
,

and

P
(
ξετ1+1 = (j, pτ1 ; pτ1) | ξετ1 = (j, pτ1 ; pτ1−1)

)
≥ 1

2
(1− ε)R.

Therefore,

P
(
ξετΞ̂
∈ A | ξε0 = (k, p0; p0)

)
≥ P (B | ξε0 = (k, p0; p0)) ≥ K ′ε εN1 ,

where Kε → K ′ > 0 as ε→ 0.

Case 2: We now consider the case where the chain starts from a state in which

every replica is setting the same price that is outside T . For each p ∈ ∆, let

S0(p) =
{
p′ ∈ N (p, δ̄) : |p′` − p`| > δ̄

2
and

p′`

p′m
=

p`

pm
+ γz`(p, ω̄i, ω̄j) for some γ > 0

}

be the set of prices that are obtained from p by moving at least δ̄
2 unit in the direction

of the excess demand. Then for all p 6∈ T and p′ ∈ S0(p), we have p′ ∈ B((j, p′; p))

by Lemma A.9. So,

P
(
ξεt+1 ∈ (j, S0(p′); p′) | ξε = (j, p′; p)

)
≥
(

1
2

)(ε
4

)(1− ε
R

)R−1

.

Let

C =
{

(i, p′; p) : i ∈ I, p 6∈ T , and p′ ∈ T ∩ S0(p)
}
.

The event {τΞ̂ ∈ A} contains the event {τC < τΞ̂ and the dynamics of the chain

from period τC on follows that of Case 1 }. So, for all p0 6∈ T ,

P
(
ξετΞ̂
∈ A | ξε0 = (k, p0; p0)

)
≥ P

(
τC < τΞ̂ | ξ

ε
0 = (k, p0; p0)

)
×K ′ε εN1 .
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Next, let

d0 = sup
p∈∆\T

inf
p′∈T

|p′` − p`|

be the maximal distance from any p 6∈ T to T , and let N0 >
2d0

δ̄
. Consider any

sequence of prices p0, p1, p2, ..., where p0 6∈ T and pt+1 ∈ S0(pt) for all t. By

construction, there exists n′ ≤ N0 such that pn′ ∈ T and pn 6∈ T for all n < n′.

Therefore, P
(
τC < τΞ̂ | ξ

ε
0 = (k, p0, ; p0)

)
≥ K ′′ε εN0 , where K ′′ε → K ′′ > 0.

Letting N = N0 +N1, we obtain that, in both cases,

P
(
ξετΞ̂
∈ A | ξε0 = (k, p0, p0, ..., p0)

)
≥ Kεε

N ,

where Kε → K > 0 as ε→ 0.

Lemma A.11. Fix N (p∗, δ∗) where N̄ (p∗, δ∗) ⊂ T ◦ and δ̄ < δ∗. For every N ∈

Z, there exists R′′′ such that the following holds for all R > R′′′. Suppose ξ =

(i, p1, p2, ...pR) ∈ ΞR has pr = p ∈ N (p∗, δ∗) for R−N many r’s and pr ∈ N (p, δ̄) \

{p} for N many r’s. Then pr ∈ B(ξ) only if pr ∈ N (p∗, δ∗).

Proof. Without loss of generality, we can assume ξ = (i, p1, p2, ..., pN , p, ..., p), where

pr ∈ N (p, δ̄) \ {p} for all r ≤ N . Let p̂i ∈ T ◦j and p̂j ∈ T ◦i be the extreme points of

N (p∗, δ∗) so that N (p∗, δ∗) = {λp̂i + (1 − λ)p̂j : λ ∈ (0, 1)}. Since there is nothing

to prove if N (p, δ̄) ⊂ N (p∗, δ∗), assume p ∈ (N (p̂i, δ̄) ∪ N (p̂j , δ̄)) ∩ N (p∗, δ∗) and

p1, ..., pN ∈ N (p, δ̄) \ {p}.

Let

β′i = sup
p′∈Tj∪N (p∗,δ∗)

‖zi(p′, ω̄i)‖
‖zj(p′, ω̄j)‖

and β′j = sup
p′∈Ti∪N (p∗,δ∗)

‖zj(p′, ω̄j)‖
‖zi(p′, ω̄i)‖

.

Since N̄ (p∗, δ∗) ⊂ T ◦, there exists δ > 0 such that (Tj ∪ N (p∗, δ∗)) ∩ N (p̄j , δ) = ∅.

So, there is a constant c > 0 such that ‖zj(p′, ω̄j)‖ > c for all p′ ∈ Tj ∪ N (p∗, δ∗).
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This implies β′i ∈ (1,∞). Similarly, we have β′j ∈ (1,∞). Next, let

β̄i = sup
p′∈Tj∩N (p̂i,δ̄)

‖zi(p′, ω̄i)‖
‖zj(p′, ω̄j)‖

and β̄j = sup
p′∈Ti∩N (p̂j ,δ̄)

‖zj(p′, ω̄j)‖
‖zi(p′, ω̄i)‖

.

Since δ̄ < δ∗, there exists δ > 0 such that N (p∗, δ) ∩ N (p̂i, δ̄) = ∅. This, together

with Lemma A.2, implies that there is a constant c > 0 such that ‖zj(p′, ω̄j)‖ −

‖zi(p′, ω̄i)‖ > c for all p′ ∈ Tj ∩ N (p̂i, δ̄). Therefore, β̄i ∈ (0, 1). Likewise, we have

β̄j ∈ (0, 1).

Choose ε > 0 so that 1 − ε > β̄j for each j ∈ I. By Lemma A.4, there exists

δ′ ∈ (0, 1) such that for each j ∈ I, p′ ∈ Tj ∪ N̄ (p∗, δ∗), and ωj ∈ N̄ (ω̄j , δ′),

zj(p′, ωj) = ηzj(p′, ω̄j) for some η ∈ (β̄i, (1− ε)/β̄j). For each j ∈ I, let

ζj = max

{
1 , sup

p′∈T , ωj∈N (ω̄j ,δ′)
‖zj(p′, ωj)‖

}
.

Finally, let

R′′′ = max

{
β′jζiN

2

δ′β̄j
,
β′iζjN

2

δ′β̄i
,
N

ε

}
,

and fix R > R′′′.

Case 1: Suppose p ∈ N (p̂i, δ̄) ∩ N (p∗, δ∗). Let s̄ = | {pr ∈ {p1, p2, ..., pR} :

xj(pr, ω̄j) �j xj(p, ω̄j)} |. Let Ψ̄0 = {1, 2, ..., R} and Φ̄0 = ∅. For each s = 1, ..., s̄,

define Ψ̄s and Φ̄s inductively as follows. Let Ψ̄s = Ψ̄s−1 \ Φ̄s−1, and let Φ̄s = {r ∈

Ψ̄s : xj(pr, ω̄j) %j xj(pr′ , ω̄j) for all r′ ∈ Ψ̄s}. The index s gives the order in which

trades will occur if the endowment of type-j does not change from stage to stage.

In the following, we show that the order of trades will be the same up to stage s̄

even if the endowment is allowed to change as the result of trading.

Since p ∈ T ◦j , zi(p, ω̄i) = −βzj(p, ω̄j) for some β ∈ (0, 1) by Lemma A.2. So,

if p`r
pmr

= p`

pm − γrz
`(p, ω̄i, ω̄j) for some γr > 0, then p`r

pmr
= p`

pm − γr(1 − β)z`j(p, ω̄j).

Thus, xj(pr, ω̄j) �j xj(p, ω̄j) by Lemma A.3. Next, if p`r
pmr

= p`

pm + γrz
`(p, ω̄i, ω̄j)

for some γr > 0, then p`r
pmr

= p`

pm + γr

(
1− 1

β

)
z`i (p, ω̄i). So, xi(pr, ω̄i) �i xi(p, ω̄i)
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by Lemma A.3. Then the weak axiom implies p · zj(pr, ω̄j) = − 1
βp · zi(pr, ω̄i) < 0,

so xj(p, ω̄j) �j xj(pr, ω̄j). Therefore, xj(pr, ω̄j) �j xj(p, ω̄j) if and only if p`r
pmr

=

p`

pm − γrz
`(p, ω̄i, ω̄j) for some γr > 0.

Since tâtonnement dynamics converges monotonically in the underlying econ-

omy, if pr 6∈ N (p∗, δ∗), then p`r
pmr

= p`

pm − γrz
`(p, ω̄i, ω̄j). By above, xj(pr, ω̄j) �j

xj(p, ω̄j) so that r ≤ s̄. Let ŝ = min {s ≤ s̄ : pr ∈ T ◦ for some r ∈ Φ̄s}. Then

Lemma A.3 further implies that pr 6∈ T ◦ if and only if r ∈ Φ̄s for some s < ŝ.

We have Ψ1 = Ψ̄1 and ω1
j = ω̄j . Suppose Ψs′ = Ψ̄s′ and ωs

′
j = ω̄j for each stage

s′ = 1, 2, ..., s, where s < ŝ. Since ωsj = ω̄j , Φs = Φ̄s. Consider any r ∈ Φs. Since

pr 6∈ T ◦, Lemma A.2 yields

αs = arg max
α∈[0,1]

ui

(
ω̄i − α

R

|Φs|
zj(pr, ω̄j)

)
= arg max

α∈[0,1]
ui

(
ω̄i − α

βR

|Φs|
zi(pr, ω̄i)

)
for some β > 0

= 0.

Thus, ωs+1
j = ω̄j . By induction, Ψs = Ψ̄s and ωsj = ω̄jfor all s ≤ ŝ.

Next, Suppose Ψs′ = Ψ̄s′ and ωs
′
j ∈ N (ω̄j , s

′δ′

N ) for each stage s′ = 1, ..., s,

where ŝ ≤ s ≤ s̄. Then Φs = Φ̄s by Lemma A.4. Consider any r ∈ Φs. Since

pr ∈ Tj ∪N (p∗, δ∗),

αs = arg max
α∈[0,1]

ui

(
ω̄i − α

R

|Φs|
zj(pr, ωsj )

)
= arg max

α∈[0,1]
ui

(
ω̄i − α

ηR

|Φs|
zj(pr, ω̄j)

)
for some η > β̄i

= arg max
α∈[0,1]

ui

(
ω̄i + α

ηR

β|Φs|
zi(pr, ω̄i)

)
for some β ∈ (0, β′i]

=
β|Φs|
ηR

since
β|Φs|
ηR

<
β′iN

β̄iR
<

β′iN

β̄i

(
β′iζjN

2

δ′β̄i

) =
δ′

ζjN
< 1.
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Therefore, ∥∥∥ωs+1
j − ωsj

∥∥∥ ≤ ∥∥∥∥ δ′

ζjN
zj(pr, ωsj )

∥∥∥∥ ≤ δ′

N
.

So, ωs+1
j ∈ N (ω̄j , sδ

′

N ). By induction, Ψs = Ψ̄s, Φs = Φ̄s, and ωsj ∈ N (ω̄j , δ′) for all

s = 1, ..., s̄+ 1.

Next, Φs̄+1 = {N + 1, ..., R}. So,

αs̄+1 = arg max
α∈[0,1]

ui

(
ω̄i − α

R

R−N
zj(p, ωs̄+1

j )
)

= arg max
α∈[0,1]

ui

(
ω̄i − α

ηR

R−N
zj(p, ω̄j)

)
for some η > β̄i

= arg max
α∈[0,1]

ui

(
ω̄i + α

ηR

β(R−N)
zi(p, ω̄i)

)
, where β ∈ (0, β̄i]

=
β(R−N)

ηR

since
β(R−N)

ηR
<
R−N
R

< 1.

Therefore, we have ω̂ir = xi(p, ω̄i) for all r ∈ Φs̄+1.

Now, suppose pr 6∈ N (p∗, δ∗). Then r ∈ Φs for some s ≤ s̄. Since xj(pr, ωsj ) �j

xj(p, ωsj ), p · zj(pr, ωsj ) > 0. Therefore,

p · ω̂ir = p ·
(
ω̄i − αs

R

|Φs|
zj(pr, ωsj )

)
≤ p · ω̄i.

Thus, xi(p, ω̄i) �i ω̂ir so that pr 6∈ B(ξ).

Case 2: Suppose p ∈ N (p̂j , δ̄)∩N (p∗, δ∗). Since p ∈ T ◦i , zj(p, ω̄j) = −βzi(p, ω̄i)

for some β ∈ (0, 1) by Lemma A.2. Similar argument to Case 1 yields xj(pr, ω̄j) �j

xj(p, ω̄j) if and only if p`r
pmr

= p`

pm + γrz
`(p, ω̄i, ω̄j) for some γr > 0. In particular, if

xj(pr, ω̄j) �j xj(p, ω̄j), then pr ∈ N (p∗, δ∗) since δ̄ < δ∗.

As in Case 1, Ψs = Ψ̄s, Φs = Φ̄s, and ωsj ∈ N (ω̄j , δ′) for all s = 1, ..., s̄ + 1. To

see this, we check the induction step. Suppose for each stage s′ = 1, 2, ..., s, where
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s ≤ s̄, Ψs′ = Ψ̄s′ and ωs
′
j ∈ N (ω̄j ,

(s′−1)δ′

N ). Then Φs = Φ̄s by Lemma A.4. Consider

any r ∈ Φs. Since pr ∈ N (p∗, δ∗), we have

αs = arg max
α∈[0,1]

ui

(
ω̄i − α

R

|Φs|
zj(pr, ωsj )

)
= arg max

α∈[0,1]
ui

(
ω̄i − α

ηR

|Φs|
zj(pr, ω̄j)

)
for some η > β̄i

= arg max
α∈[0,1]

ui

(
ω̄i + α

ηR

β|Φs|
zi(pr, ω̄i)

)
for some β ∈ (0, β′i]

=
β|Φs|
ηR

as in Case 1.

Next, we have Φs̄+1 = {N + 1, ..., R}.

αs̄+1 = arg max
α∈[0,1]

ui

(
ω̄i − α

R

R−N
zj(p, ωs̄+1

j )
)

= arg max
α∈[0,1]

ui

(
ω̄i − α

ηR

R−N
zj(p, ω̄j)

)
for some η <

1− ε
β̄j

= arg max
α∈[0,1]

ui

(
ω̄i + α

βηR

R−N
zi(p, ω̄i)

)
, where β ≤ β̄j

= 1

since R > N
ε = N

1−β̄j
(

1−ε
β̄j

) > N
1−βη so that R−N

βηR > 1. Therefore, ωs̄+2
j = xj(p, ωs̄+1

j )

and ω̂ir �i ω̄i for all r ∈ Φs̄+1.

Now, consider any r ∈ Φs̄+2. Since xj(pr, ωs̄+2
j ) �j ωs̄+2

j = xj(p, ωs̄+2
j ), we have

p · zj(pr, ωs̄+2
j ) > 0. We also have pr · zi(pr, ω̄i) = 0 = pr · zj(pr, ωs̄+2

j ), so zi(pr, ω̄i) =

β′′zj(pr, ωs̄+2
j ) for some β′′ ∈ R. Since pr 6∈ Tj , Lemma A.2 implies zi(pr, ω̄i) =

βzj(pr, ω̄j) for some β > −1. Then p`r
pmr

= p`

pm − γrz
`(p, ω̄i, ω̄j) = p`

pm − γr(1 +

1
β )z`i (p, ω̄i), so xi(pr, ω̄i) �i xi(p, ω̄i) by Lemma A.3. Therefore, β′′p · zj(pr, ωs̄+2

j ) =

p · zi(pr, ω̄i) > 0, which implies β′′ > 0. Thus,

arg max
α∈[0,1]

ui

(
ω̄i − α

R

|Φs̄+2|
zj(pr, ωs̄+2

j )
)

= arg max
α∈[0,1]

ui

(
ω̄i − α

R

|Φs̄+2|β′′
zi(pr, ω̄i)

)
= 0.

An induction argument yields that for all r ∈ Φs, where s ≥ s̄ + 2, ω̂ir = ω̄i.

Therefore, for all pr 6∈ N (p∗, δ∗), we have pr 6∈ B(ξ).
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