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Abstract

We study elections that simultaneously decide multiple issues, where voters have independent
private values over bundles of issues. The innovation is considering nonseparable preferences,
where issues may be complements or substitutes. Voters face a political exposure problem: the
optimal vote for a particular issue will depend on the resolution of the other issues. Moreover,
the probabilities that the other issues will pass should be conditioned on being pivotal. We
first prove equilibrium exists when distributions over values have full support or when issues are
complements. We then study limits of symmetric equilibria for large elections. Suppose that,
conditioning on being pivotal for an issue, the outcomes of the residual issues are asymptotically
certain. Then limit equilibria are determined by ordinal comparisons of bundles. We characterize
when this asymptotic conditional certainty occurs. Using these characterizations, we construct
a nonempty open set of distributions where the outcome of either issue remains uncertain in all
limit equilibria. Thus, predictability of large elections is not a generic feature of independent
private values. While the Condorcet winner is not necessarily the outcome of the election, we
provides conditions that guarantee the implementation of the Condorcet winner. Finally, we
prove results that suggest transitivity and ordinal separability of the majority preference relation
are conducive for ordinal efficiency and for predictability.

1 Introduction

Propositions 1A and 1B of the 2006 California General Election both aimed to increase funding
for transportation improvements.1 Suppose a voter prefers some increased funding and supports
either proposition by itself, but given the state’s fiscal situation, also prefers that both measures
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fail together than to have both pass together. She views the propositions as substitutes. However,
the ballot does elicit her preferences over bundles of transportation measures, but only a separate
up-down vote on each proposition. If she votes up on Proposition 1A while Proposition 1B passes,
she contributes to the undesired passage of both measures. On the other hand, if Proposition 1B
were to fail, she would like to see Proposition 1A pass to fund some transportation improvements.

How should she vote? Some subtle considerations complicate the answer to this question.
What is the likelihood she is pivotal on either proposition or both? If she is pivotal on some
proposition, what is the conditional likelihood that the other will pass or fail? The natural model
for these questions is a game of incomplete information. The model begs other questions. Does
equilibrium exist? What does it look like? Does it exhibit special properties in large elections?
Are equilibrium outcomes predictable? Are these outcomes ordinally efficient? For elections with
nonseparable issues, these basic questions are still undecided. To our knowledge, this paper is
the first to follow the strategic implications of electoral complementarity or substitution to their
equilibrium conclusions, and makes initial progress in addressing these concerns.

1.1 An example

The following example illustrates the strategic delicacy of elections with multiple issues. There
are two issues, say Propositions 1 and 2. Each voter’s private values for the four possible bundles
∅, {1}, {2}, {1, 2} can be represented as a four-dimensional type θ = (θ∅, θ1, θ2, θ12), where θA de-
notes the value for bundle A. Voters’ types are independent and identically distributed with the
following discrete distribution:

θ =


(δ, 0, 0, 1) with probability 1− 2ε

(1, 0, 0, 0) with probability ε

(0, 1, 0, 0) with probability ε

where δ, ε > 0 are arbitrarily small. With high probability 1−2ε, a voter wants both issues to pass,
but slightly prefers both issues to fail than either issue pass to alone. With small probability ε, a
voter is either type (1, 0, 0, 0) and wants both issues to fail or type (0, 1, 0, 0) and wants issue 1 to
pass alone. In either case, she is indifferent between her less preferred alternatives. It is a dominant
strategy for type (1, 0, 0, 0) to vote down on both issues and for type (0, 1, 0, 0) to support issue 1
and vote against issue 2. The question is how type (δ, 0, 0, 1) should vote.

A natural conjecture is that type (δ, 0, 0, 1) should vote up on both issues in any large election.
Then the conjectured equilibrium strategy s∗ as a function of types is

s∗(δ, 0, 0, 1) = {1, 2}

s∗(1, 0, 0, 0) = ∅

s∗(0, 1, 0, 0) = {1},
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where s∗(θ) refers to the issues that type θ supports. When voters play this strategy, both issues will
have majority support in large elections, which is efficient. The suggested strategy might appear
incentive compatible, since (δ, 0, 0, 1) should vote up for either issue when she is confident that the
other issue will pass.

However, the proposed strategy is not an equilibrium in large elections. This is because the
conditional probability that the residual issue passes is starkly different from the unconditional
probability. Consider a voter deciding whether to support issue 1. She correctly reasons that her
support only matters when she is pivotal for issue 1. When the other votes on issue 1 are split, she
is in the unlikely state of the world where half of the other voters are of type (1, 0, 0, 0), since this
is the only type who votes against issue 1. Moreover, in large elections, there will be some voters of
type (0, 1, 0, 0). Then voters of type (δ, 0, 0, 1) comprise a strict minority. Since these are the only
types who support issue 2, this voter should conclude that issue 2 will surely fail whenever she is
pivotal for issue 1 in a large election. Therefore, if the pivotal voter is of type (δ, 0, 0, 1), she should
vote down on issue 1 because she prefers the bundle ∅ yielding utility δ to the bundle {1} yielding
utility 0. In fact, the only equilibrium in weakly undominated strategies is for type (δ, 0, 0, 1) to
vote down on both issues, inducing the ex ante inefficient social outcome of the empty bundle in
large elections.2

Finally observe that, had δ been equal to 0, then type (δ, 0, 0, 1) = (0, 0, 0, 1) would have
had a dominant strategy to vote up on both issues. In this case, the suggested strategy where
s∗(δ, 0, 0, 1) = {1, 2} would be an equilibrium and the efficient bundle would be implemented in
large elections. So, a small amount of nonseparability, i.e. a slightly positive δ > 0, is enough to
remove efficiency and change the outcome of the election.

1.2 A political exposure problem

The basic complication for elections with nonseparable issues is the wedge between the uncondi-
tional probability that an issue will pass and the conditional probability when a voter is pivotal on
another issue. This resonates with existing analyses of strategic voting on a single issue with inter-
dependent values; for example, see Austen-Smith and Banks (1996) or Feddersen and Pesendorfer
(1997). In these models, being pivotal provides additional information regarding other voters’ sig-
nals about an unknown state of the world. The intuition there is analogous to the importance of
strategic conditioning in common value auctions for a single item, where it leads to the winner’s
curse and strategic underbidding. In both single-object auctions and single-issue elections with
common values, strategic conditioning complicates information aggregation and efficiency. This is
because the expected value of the object or the proposal is different when the player conditions on
being the winner of the auction or the pivotal voter of the election.

The intuition here also has a relationship with auction theory, but with a different branch.
2A related example on voting over binary agendas is due to Ordeshook and Palfrey (1988). There, being pivotal

in the first round of a tournament changes the expected winner in later rounds. This reasoning can lead to inefficient
sequential equilibria in their model.
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Here, the wedge is related to the exposure problem in combinatorial auctions for multiple items,
which exists even with private values. Suppose two items are sold in separate auctions. Consider
a bidder with complementary valuations who desires only the bundle of both items. She must bid
in both auctions to have any chance of obtaining this package. But, she should recognize that
doing so exposes her to the risk of losing the second auction while winning the first, forcing her to
pay for an undesired single item bundle. Moreover, the unconditional probability of winning the
second auction is not appropriate in computing her exposure, but rather the conditional probability
of winning the second auction assuming that she wins the first auction. Likewise, a voter in an
election who desires a bundle of two issues to pass, but does not want either issue to pass alone,
faces an exposure problem. In deciding her vote for issue 1, she should consider whether issue 2
will pass, but also condition this probability on the assumption that she is pivotal on issue 1.

This exposure problem disappears when values are separable across issues, in which case each
issue can be treated like a separate election. However, with nonseparable preferences, the following
intuitions from single-issue elections break down. First, with one issue, voting sincerely for the
preferred outcome (pass or fail) is a weakly dominant strategy for every voter. In contrast, with
nonseparable preferences, voting sincerely is never an equilibrium. Instead, a voter’s equilibrium
strategy must correctly condition the other voters’ ballots on the assumption that she is pivotal
for some issue. Second, with a single issue, there is a generic class of distributions over values for
which the outcome is predictable in large elections. We assume independent private values, so the
composition of preferences is known for large electorates. Nevertheless, there exists a nontrivial set
of type distributions which generate unpredictable election outcomes. This aggregate endogenous
uncertainty is despite the fact that there is no aggregate primitive uncertainty in large elections.
Third, the Condorcet winner is always implemented in single-issue elections. With multiple issues,
the Condorcet winning bundle can fail to be the outcome of large elections. Instead, additional
assumptions are required to guarantee implementation of the Condorcet winner.

1.3 Outline

The paper proceeds as follows. Section 2 introduces the Bayesian game of voting over multiple
issues. Section 3 shows the existence of equilibrium using two arguments. One is topological
and converts the infinite-dimensional fixed point problem over strategies to a finite-dimensional
problem over probabilities regarding which issues a voter is pivotal for and which issues will pass
irrespective of her vote. This conversion yields later dividends in characterizing equilibrium. The
second argument assumes complementarity between issues and shows the existence of a monotone
equilibrium, where types with a stronger preference for passing more issues also vote for more
issues. This proof relies on recent general monotone existence results due to Reny (2009).

Section 4 characterizes limit equilibria for large elections. In particular, we examine when the
probability that issue y passes, conditional on a voter being pivotal on issue x, goes to zero or one.
When this conditional asymptotic certainty holds, computation of best response is simplified. For
every issue x, there exists some subset Dx of the residual issues such that a voter supports x if and
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only if the bundle {x} ∪Dx is preferred to the bundle Dx. We characterize conditional certainty
with an intuitive inequality on the limit strategy: the conditional probability that another voter
supports issue y ∈ Dx, when the vote on x is split, is greater than a half. For the case of two issues,
we identify an inequality on the primitive of the model, namely the distribution over types, which
characterizes conditional certainty.

Section 5 leverages these limit characterizations to construct a nonempty open set of densities
which exhibit aggregate uncertainty regarding the outcome of the election. Even though there is no
uncertainty regarding the primitives of the model, unpredictability of the outcomes is required to
maintain incentives in equilibrium. This establishes that predictability of outcomes is not a generic
feature of large elections with multiple issues.

Section 6 uses the limit results to study the relationship between combinatorial voting and
the majority preference relation. While the Condorcet winner is not generally the outcome of the
election, we provide sufficient conditions for implementation of the Condorcet winner. Finally, we
provide results suggest that ordinal separability of the majority preference relation is conducive to
implementation of the Condorcet winner and hence to predictability.

Section 7 concludes and reviews open questions. Proofs are collected in the appendix.

1.4 Related literature

Several papers in political science recognize the potential problems introduced by nonseparable
preferences over multiple issues. Brams, Kilgour, and Zwicker (1998) point out that the final set
of approved issues may not match any single submitted ballot, which they call the “paradox of
multiple elections.”3 Lacy and Niou (2000) construct an example with three strategic voters and
complete information where the final outcome is not the Condorcet winner. Our model enriches
this literature in two directions. First, while this literature largely focuses on sincere voting, we
analyze the implications of strategic voting for this setting.4 Second, we introduce uncertainty
regarding other’s preferences. This uncertainty is crucial for a voter with nonseparable preferences,
whose optimal vote for a particular issue depends on her conjecture regarding the resolution of
other issues.

While more specific comparisons are made as results are presented in the paper, we now high-
light some differences between large elections under combinatorial rule and plurality rule. We focus
on plurality rule as an alternative aggregation scheme because it shares the same space of ballots
or messages as combinatorial voting.5 As originally observed by Palfrey (1989), limit equilibria of

3The paradox is extended by Özkal-Sanver and Sanver (2007) and reinterpreted by Saari and Sieberg (2001).
4The exceptions are the mentioned example by Lacy and Niou (2000) and a single-person model of sequential

survey responses by Lacy (2005).
5In our setting, the set of candidates is the power set 2X of bundles. Combinatorial rule is not a scoring rule.

In particular, combinatorial voting invokes the structure of the power set in an essential way, while this structure is
irrelevant to a scoring rule. Moreover, general scoring rules require larger message spaces than combinatorial rule.
For example, in this environment approval voting requires that the space of ballots be the power set of the power set,

or 22X

. General treatments of scoring rules can be found in Myerson and Weber (1993) and Myerson (2002).
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plurality rule typically satisfy Duverger’s Law and involve two active candidates.6 These equilibria
have qualitatively different features than the limit equilibria of this model. First, predictability of
the outcome is a generic feature of any Duvergerian equilibrium under plurality rule. There are
multiple Duvergerian equilibria involving different pairs of candidates. But for any fixed equilib-
rium, the outcome is determinate for a generic set of type distributions. In contrast, combinatorial
voting can yield unpredictability for an open set of type distributions. Second, plurality rule al-
ways has at least one limit equilibrium which selects a Condorcet winner when the winner exists.
As the example shows, combinatorial rule can fail to have any limit equilibria which implement
the Condorcet winner. Finally, in our view the strategic considerations under plurality rule are
relatively simpler than under combinatorial rule. Once an equilibrium is fixed, each voter should
support whichever of the two active candidates she prefers. In our model, if the voter assumes that
she is pivotal for some issue, she must then condition her conjecture regarding the residual issues
on that pivot event.

One feature common to both plurality rule and combinatorial rule is that the distribution of
types conditional on being pivotal diverges from the ex ante distribution of types. Other multi-
candidate models with independent private values and incomplete information also share this fea-
ture. The most closely related in terms of the strategic intuitions are models that have a dynamic
element to the aggregation. In such models, the wedge between pivotal and unconditional proba-
bilities can also lead to inefficiencies. The earliest example of which we are aware is the treatment
of strategic voting on dynamic agendas by Ordeshook and Palfrey (1988); there the winner between
alternatives a and b in the first round faces alternative c in the second round. With incomplete
information, being pivotal for a against b in the first round can reverse the expected resolution of a
vote between a and c. In particular, as in our initial example, this wedge can prevent a Condorcet
winner from being the final outcome of the tournament. More recently, Bouton (2009) points out
that, being pivotal for a candidate in the first round of a runoff election provides information on
whether a runoff will take place and on which candidates will be active in the runoff. Consequently,
there are equilibria where a Condorcet loser is the outcome of the election. While a wedge between
pivotal and unconditional probabilities appears in existing work, to our knowledge this paper is
the first to observe the wedge between pivotal and unconditional probabilities in the context of the
exposure problem and nonseparabilities in multi-issue elections.

A natural application of our model is to simultaneous two-candidate elections for multiple
political offices. Split tickets, such as those supporting a Republican president but a Democratic
legislator, are increasingly common in such elections, constituting about a quarter of all ballots in
recent presidential elections. In our model, the different tickets can be modeled as different bundles
of Republican offices. Fiorina (2003) argues some voters have an inherent preference for divided
government. Here, such voters would treat issues as substitutes.

Alesina and Rosenthal (1996) present a spatial model where voters split ticket to moderate pol-
icy location. Chari, Jones, and Marimon (1997) present a fiscal model where voters split tickets to

6Fey (1997) shows that only the Duvergerian limit equilibria are stable in a variety of senses.
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increase local spending and restrain national taxation. These motivations provide foundations for
nonseparable preferences, but also restrict the implied preferences and thus the implied predictions;
Alesina and Rosenthal (1996) predict that all split tickets in a particular election support the same
candidates, while Chari, Jones, and Marimon (1997) predict that all split tickets support a conser-
vative president and a liberal legislator. While we are agnostic about the source of nonseparability,
we allow arbitrary preferences over the composition of government, for example some voters may
have a desire for unified government, and predict the full spectrum of split tickets. Finally, the
existing models move directly to large elections with a continuum of voters. While we examine
limits as they tend large, the finite electorates in this paper are essential to maintain the political
exposure problem in equilibrium.

2 Model

There is a finite and odd set of I voters. They vote over a finite set of binary issues X, whose power
set is denoted X . Each voter i submits a ballot Ai ∈ X , with x ∈ Ai meaning that i votes “up” on
issue x, and y /∈ Ai that she votes “down” on y. Issues can be interpreted as policy referenda which
will pass or fail, or as elected offices decided between two political parties where one is labelled
“up.” The social outcome F (A1, . . . , AI) ∈ X is decided by what we call combinatorial rule:

F (A1, . . . , AI) = {x ∈ X : #{i ∈ I : x ∈ Ai} > I/2}.

We assume each voter knows her own private values over outcomes, but allow uncertainty about
others’ values. Each voter has a (normalized) type space Θi = [0, 1]#X , with typical element θi.
Then θi(A) denotes type θi’s utility for all the issues in A passing and all those in its complement
failing: so θi’s utility for the profile of ballots (A1, . . . , AI) is θi(F (A1, . . . , AI)). Let Θ =

∏
i Θi

denote the space of all type profiles, and Θ−i =
∏
j 6=i Θj . Voter i’s type realization follows the

distribution µi ∈ ∆Θi. We assume that µi admits a density. We also assume types are independent
across voters, letting µ = µ1 ⊗ · · · ⊗ µI ∈ ∆Θ refer to the product distribution across voters.

A (pure) strategy si for each voter i is a measurable function si : Θi → X assigning a ballot
to each of her types. The space of strategies for each voter is Si. The space of strategy profiles is
S =

∏
i Si, and let S−i =

∏
j 6=i Sj . Voter i’s ex ante expected utility for the joint strategy profile

s(θ) = (s1(θ1), . . . , sI(θI)) is EUi(s) =
∫

Θ θi(F (s(θ)) dµ.

Definition 1. A strategy profile s∗ is a voting equilibrium if it is a Bayesian-Nash equilibrium
in weakly undominated strategies.

A voter’s values might exhibit certain structural characteristics. For example, she might view
the issues as complements, as substitutes, or as having no interaction. These are captured by the
following definitions.
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Definition 2. θi is supermodular if, for all A,B ∈ X :

θi(A ∪B) + θi(A ∩B) ≥ θi(A) + θi(B).

θi is submodular if, for all A,B ∈ X :

θi(A ∪B) + θi(A ∩B) ≤ θi(A) + θi(B).

θi is additively separable if it is both supermodular and submodular.

3 Existence of equilibrium

We begin by proving existence of voting equilibria. We will present topological and lattice-theoretic
arguments for existence.

3.1 General existence of equilibrium

Proposition 1. Suppose µi admits a density function with full support. There exists a voting
equilibrium s∗.

Remark. The full support assumption can be replaced with the following weaker condition: for
every bundle A, there is a positive measure of types whose unique weakly undominated strategy is
to submit the ballot A. Alternatively, assuming a set of naive voters who submit the ballot A in
all circumstances would also guarantee an equilibrium among the sophisticated voters.

The proof lifts the infinite-dimensional problem of finding a fixed point in the space of strategy
profiles to a finite-dimensional space of probabilities. Specifically, when other voters submit the
ballots A−i, the strategically relevant information for voter i is summarized as the set of issues C
for which voter i is pivotal and the set of issues D which will pass irrespective of voter i’s ballot.
The outcome of submitting the ballot Ai is that those issues which she supports and on which she
is pivotal will pass, along with those issues which will pass no matter how she votes: [Ai ∩C] ∪D.
The relevant uncertainty can therefore be summarized as a probability over the ordered disjoint
pairs of subsets of X, which we write as D = {(C,D) ∈ X ×X : C ∩D = ∅}. Each strategy profile
s ∈ S induces a probability πi(s) ∈ ∆D for each voter i over D, where ∆D denotes the space of
probabilities on D. Viewed as a function, πi : S → ∆D is continuous by construction.7

In turn, each belief Pi ∈ ∆D over these ordered pairs induces an optimal ballot [σi(Pi)](θi) ∈ X
for a voter with values θi, which is the ballot Ai that maximizes the expected utility

∑
D θi(Ai ∩

C ∪D) ·Pi(C,D). Observe that this expression for interim expected utility is a linear function with
coefficients Pi(C,D) on θi. Then the set of types for whom Ai is an optimal ballot are those where∑
D θi(Ai ∩ C ∪ D) · Pi(C,D) ≥

∑
D θi(A

′
i ∩ C ∪ D) · Pi(C,D), which defines a finite intersection

of half-spaces. Small changes in Pi induce small geometric changes in these half-spaces. The
7The topology on Si is defined by the distance d(si, s

′
i) = µi({θi : si(θi) 6= s′i(θi)}).
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density assumption implies that these small geometric changes also have small measure, proving
that σi : ∆D → Si is continuous.

Define the functions π : S → [∆D]I by π(s) = (π1(s), . . . , πI(s)) and σ : [∆D]I → S by
σ(P1, . . . , PI) = (σ1(P1), . . . , σI(PI)). Then the composition π ◦ σ : [∆D]I → S → [∆D]I defines
a continuous function between finite-dimensional spaces. However, before applying a fixed point
theorem, we still need to prove that we can restrict attention to undominated strategies.

Consider a strategy profile s in weakly undominated strategies. The induced probability πi(s)
that voter i will be pivotal for the issues in C while the issues in D pass is at least as large as
the probability that half the other voter submit C ∪ D while the other half submits D. By the
full support assumption, there is a strictly positive probability any voter submits C or C ∪ D
in any weakly undominated strategy. The independence assumption allows us to multiply these
probabilities across voters, to conclude that [πi(s)](C,D) is strictly positive. Then the probabilities
induced by weakly undominated strategy profiles SU lives in a compact subsimplex ∆U in the
interior of the entire ∆D, so πi(SU ) ⊆ ∆U ⊆ int(∆D). Since all strategically relevant events (C,D)
have strictly positive probability in ∆U , the induced best replies must also be weakly undominated.
Therefore, the restriction π◦σ : [∆U ]I → SU → [∆U ]I defines a continuous function from a compact
subset of a finite-dimensional space to itself. By Brower’s Theorem, there exists a fixed point P ∗

with strictly positive probabilities on all pairs. Then σ(P ∗) is a Bayesian-Nash equilibrium in
weakly undominated strategies.

The key step in the proof, moving from the infinite-dimensional space of strategies to a finite-
dimensional space of probabilities, is adapted from Oliveros (2007). The broad approach of reducing
the fixed point problem to a finite simplex is reminiscent of the distributional approach of Radner
and Rosenthal (1982) and Milgrom and Weber (1985). However, these results are not immediately
applicable, as we require equilibrium in weakly undominated strategies. Beside the technical benefit,
there is a methodological insight in conceptualizing equilibrium as a fixed point of probabilities over
pivot and passing events. In subsequent sections, this approach will enable sharper characterizations
of voting behavior in large elections.

A similar proof can be used to demonstrate existence without a common prior, as long as i’s
belief for the others’ values is constant across her own types θi. Another variant can be used to
show that if µi is identically distributed across voters, there exists a symmetric equilibrium.

Proposition 2. Suppose µ admits a density function with full support and µi = µj for all i, j ∈ I.
There exists a symmetric voting equilibrium where s∗i = s∗j for all i, j ∈ I.

We will later focus attention to symmetric settings to obtain limit characterizations.

As mentioned in the introduction, sincere voting is not an equilibrium when µi has full support.
The result has a simple intuition. Optimal voting is determined cardinally by utility differences
across bundles, while sincere voting is determined ordinally by the best bundle.
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Proposition 3. If each µi admits a density with full support, then sincere voting, where

si(θi) = arg max
A

θi(A).

is not a voting equilibrium.

3.2 Existence of monotone equilibrium

With complementary issues, equilibrium can be sharpened to be monotone in the increasing dif-
ferences order: those types who have a stronger preference for more issues passing will support
more issues in equilibrium. Monotonicity of ballots with respect to types is useful for empirical
identification. Monotonicity justifies the following inference: those who are observed to vote for
more issues have a preference for larger bundles. For example, suppose X is a number of political
offices and voting “up” corresponds to voting for the Republican candidate while voting “down”
corresponds to voting for the Democratic candidate. If all voters prefer to have politicians of the
same party in government, then we can infer than those who vote for more Republicans are more
right-leaning than those who vote for fewer Republicans. However, if some voters are concerned
with balancing party representation, i.e. if issues are substitutes, then this inference is no longer
justified, as it confounds ideological centrism with a desire for party balance.

Consider the partial order ≥ on types defined as follows: θ′i ≥ θi if the inequality θ′i(A)−θ′i(B) ≥
θi(A)−θi(B) holds for allA ⊇ B. This order captures the notion that a larger type θ′ has a uniformly
stronger preference for more issues to pass, as the difference in her utility between a larger bundle
A and a smaller bundle B always dominates that difference for a smaller type θ. Going back to the
ideology example, if “up” is coded as a Republican candidate for that office, the difference in utility
between a more Republican (A) and a less Republican (B) legislature is greater for a right-leaning
type θ′ then it is for a left-leaning type θ. The following theorem demonstrates that assuming issues
are complementary, i.e. that a more unified legislature is more desirable, suffices for the desired
inference that more right-leaning types will vote for more Republican candidates.

Proposition 4. Suppose µ admits a density whose support is the set of all supermodular type
profiles. Define the increasing differences order ≥ on Θi by θ′i ≥ θi if

θ′i(A)− θ′i(B) ≥ θi(A)− θi(B), ∀A ⊇ B.

Then there exists a monotone voting equilibrium s∗, where s∗i (θ
′
i) ⊇ s∗i (θi) whenever θ′i ≥ θi.

A topological proof similar to that of Proposition 1 would be enough to prove existence of a
voting equilibrium. However, the key part of Propositon 4 is that the equilibrium is monotone, and
lattice-theoretic arguments are essential.

Note that the election is not a supermodular game. Sufficiently large strategies by all voters
guarantee that no voter is ever pivotal on any issue and eliminate the difference in interim utility
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between any of two strategies. Moreover, the restriction to weakly undominated strategies is impor-
tant, since the trivial equilibrium where all voters play the same constant strategy is monotone. To
handle these considerations, the proof relies on recent monotone existence results by Reny (2009)
that improve earlier theorems by Athey (2001) and McAdams (2003) by allowing for general orders
on types, such as the increasing differences order, and for restrictions on strategies, such as the
exclusion of weakly dominated strategies.

4 Limit behavior

This section examines asymptotic voting behavior in large elections. The results in this section
provide useful tools in later analyzing the predictability and ordinal efficiency of large elections.
To this end, we assume that voters are identically distributed, µi = µj for all voters i, j, and
focus attention to symmetric equilibria where s∗i = s∗j . For notational ease, we henceforth drop the
subscript as a reference to a particular player, and let s∗I denote the equilibrium strategy for an
anonymous player in the game with I voters.

4.1 Conditional certainty

Given a sequence of strategies, the following defines whether an issue becomes certain to pass or
fail at the limit, i.e. whether the outcome of that issue is predictable in large elections.

Definition 3. Consider a sequence of strategies sI → s. Issue y is unconditionally certain to

pass (fail) if

P
(

#{i : y ∈ s∗I(θi)} > (<)
I

2

)
→ 1.

If issue y is neither unconditionally certain to pass or fail, we say issue y is unconditionally

uncertain.
If every issue y is unconditionally certain to pass or to fail, we write that the set

A = {y ∈ X : y is unconditionally certain to pass}

is a limit outcome of the election.

However, the unconditional probability of an issue passing is not the strategically relevant
statistic. Rather, it is the probability that this issue passes when a voter is pivotal for some other
issue. This motivates the following definition.

Definition 4. Fix a sequence of strategies sI → s and an issue x. An issue y 6= x is conditionally

certain to pass (fail) at x if:

P
(

#{j 6= i : y ∈ sI(θj)} > (<)
I − 1

2

∣∣∣∣#{j 6= i : x ∈ sI(θj)} =
I − 1

2

)
→ 1 (1)
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If each issue y 6= x is conditionally certain to either pass or fail at x, then we say the sequence
exhibits conditional certainty at x. In this case, we let Dx denote those issues which are
conditionally certain to pass and write that Dx is conditionally certain at x.

If the sequence exhibits conditional certainty at every issue x, then we simply write that it
exhibits conditional certainty. If it does not exhibit conditional certainty, we write that it
exhibits conditional uncertainty.

As the number of voters gets large, the probability of being pivotal for any single issue x becomes
small. But, since each bundle is submitted with strictly positive probability in a weakly dominant
strategy, the probability of being simultaneously pivotal on two issues vanishes at a much faster
rate. So when a voter conditions on the unlikely event of being pivotal for issue x, she can ignore
the doubly unlikely event of also being pivotal for another issue. Then the only relevant uncertainty
is how the residual issues besides x are resolved, after appropriately conditioning on being pivotal
for issue x.

Suppose that as the electorate grows, conditioning on a voter being pivotal for issue x, it
becomes certain that the issues in Dx ⊆ X \ {x} will pass while the other issues outside of this set
will fail. A voter’s decision to support issue x then reduces to whether the conditional outcome Dx

of the residual issues is better for her with or without the addition of issue x, i.e. whether Dx∪{x}
is better than Dx alone. So, the equilibrium strategy is determined separately on each issue.
This substantially reduces the complexity of deciding a voter’s equilibrium ballot, which is then
determined by her ordinal ranking of bundles. If there is conditional certainty for each issue, then all
types which share the same ordinal ranking of bundles will submit the same equilibrium ballot; if two
voters are observed submitting different ballots, then their preferences must be ordinally distinct.
The reduction also provides a useful tool in proving the later limit results. In characterizing limit
equilibria, we will often invoke the following result and examine purely ordinal conditions.

Proposition 5. Consider a sequence of equilibrium strategies s∗I → s∗. If Dx is conditionally
certain at x, then

x ∈ s∗(θ)⇐⇒ θ(Dx ∪ {x}) ≥ θ(Dx).

The proof of Proposition 5 exploits the probabilistic structure used to prove Theorem 1, the
general existence result. There, the strategically relevant information was summarized by an in-
duced probability P (C,D) over ordered disjoint pairs (C,D) of subsets of issues, interpreting C

as the issues for which voter is pivotal and D as the issues which will pass irrespective of her bal-
lot. In deciding whether to support issue x, the relevant probability is the conditional probability
P (C,D |x ∈ C). The incentive condition for whether the ballot A ∪ {x} is better than the ballot
A for a voter of type θ is a comparison of the following weighted sums:∑

C,D∈D
P ({x}, D |x ∈ C) · θ([A ∪ {x} ∩ C] ∪D) ≥

∑
C,D∈D

P (C,D |x ∈ C) · θ([A ∩ C] ∪D).

Conditional certainty of Dx implies that the P ({x}, Dx |x ∈ C)→ 1. But this is the weight on the
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term θ(Dx ∪ {x}) on the left and the term θ(Dx) on the right. Because |θ(A)− θ(B)| is uniformly
bounded, these terms determine the inequality in large elections, except on a geometrically dimin-
ishing set of types. By the density assumption, this set is also approaching probability zero. So,
except on a vanishing set of types, the decision as to whether to submit the ballot A or the ballot
A ∪ {x} is mediated by the difference θ(Dx ∪ {x})− θ(Dx).

4.2 Characterizing conditional certainty with strategies

This subsection characterizes conditional certainty with conditions on the limit equilibrium. The
next proposition presents an inequality which essentially characterizes conditional certainty: it is
sufficient in its strict form and necessary in its weak form.

Proposition 6. Let s∗I → s∗. If

µ(y ∈ s(θ) |x ∈ s(θ)) > (<)µ(y /∈ s(θ) |x /∈ s(θ)), (?)

then y is conditionally certain to pass (fail) at x.
Moreover, if y is conditionally certain to pass (fail) at x, then (?) holds weakly.

A heuristic intuition for the inequality is straightforward: inequality (?) is equivalent to

1
2
µ(y ∈ s(θ) |x ∈ s(θ)) +

1
2
µ(y ∈ s(θ) |x /∈ s(θ)) > 1

2
.

When a voter is pivotal on issue x, the conditional probability that someone else supports x or votes
against x is a half, so the left hand side is the conditional probability that another supports issue y.
The suggested inequality guarantees that the conditional probability another voter supports issue
y is strictly larger than one half.

However, the result is not a simple application of the law of large numbers. Conditioning on
being pivotal for x breaks the statistical independence across the other voters’ ballots. Suppose
voter i is pivotal on issue x. Then knowing that voter j supported issue x makes it more likely that
another voter j′ voted against it, since an equal number voted each for and against. From the pivotal
voter’s perspective, the votes on x are negatively dependent. This indirectly introduces statistical
dependence for any issue which is strategically correlated with x, precluding a straightforward
application of convergence results for independent sequences.

The proof handles this dependence by making an artificial conditioning assumption. This
additional conditioning restores independence of votes across players, but has no effect on the
conditional distribution of the sum. In particular, suppose that the highest-indexed voter I is
pivotal on issue x. Assume that the lowest-indexed half of the other voters 1, . . . , I−1

2 supported
issue x, while the higher-indexed voters I+1

2 , . . . , I−1 voted against it. When I is pivotal on x, the
others’ votes are no longer independent, but are still exchangeable. Moreover, we are interested only
in the sum of supportive votes, and not in the identity of the supporters. This artificial assumption
regarding the identities of the supporters has no effect on the distribution of the vote count on y.

13



However, this assumption breaks the correlation across ballots, because knowing player j’s vote on
issue x is no longer informative regarding player k’s vote on x, since k’s vote is now assumed to be
known. We can then apply the law of large numbers separately to each artificial subsample, the
sample of those assumed to support issue x or those assumed to vote against it.

4.3 Characterizing conditional certainty with primitives: two issues

The prior results characterized conditional certainty through inequalities on strategies. Turning to
the simpler case with only two issues, the first part of this section expresses these inequalities on
the primitive details of the model, namely the distribution of values over bundles. For either issue
x = 1, 2, let x′ 6= x denote the complementary issue. Henceforth, for a fixed bundle A of issues, we
let A′, A′′ 6= X \A denote its two neighbors; for the bundle {1}, its neighbors are {1, 2} and ∅. For
notational lightness, we will also write θA to mean θ(A).

Limiting attention to two issues allows the following generalization of Proposition 5, which
will useful in proving characterization results. The equilibrium strategy s∗ is summarized by two
parameters α1, α2 ∈ [0, 1] for large elections, where αx corresponds to the asymptotic conditional
probability that issue x passes when a voter is pivotal for issue x′. Proposition 5 is the special case
where α1 and α2 are degenerately 0 or 1.

Lemma 1. There exists αx ∈ [0, 1] such that:

x ∈ s∗(θ)⇐⇒ αxθ12 + (1− αx)θx ≥ αxθx + (1− αx)θ∅.

Restricting attention to two issues affords a notational simplification, since each issue can be
conditionally certain only at its complement.

Definition 5. For the two issue case, the bundle A ⊆ {1, 2} is conditionally certain if x is
conditionally certain to pass at x′ for every x ∈ A and x is conditionally certain to fail at x′ for
every x /∈ A.

So in the two-issue case, a sequence of equilibria exhibits conditional certainty if and only if
there is a conditionally certain set A.

Recalling Proposition 5, if the bundle A is conditionally certain, then whether type θ votes up
for issue x can be verified by testing whether θ(A ∪ {x}) ≥ θ(A \ {x}).

Proposition 7. Consider the following graph:

{1, 2}

{1} {2}

∅
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Let A′, A′′ denote the two nodes connected to A. If

µ[θA ≥ max{θA′ , θA′′}]
µ[θA ≤ min{θA′ , θA′′}]

> max
{
µ[θA′ ≥ θA ≥ θA′′ ]
µ[θA′′ ≥ θA ≥ θA′ ]

,
µ[θA′′ ≥ θA ≥ θA′ ]
µ[θA′ ≥ θA ≥ θA′′ ]

}
, (†)

then there exists a sequence of equilibria s∗I → s∗ such that A is conditionally certain.
Moreover, if there exists a sequence of equilibria s∗I → s∗ such that A is conditionally certain,

then (†) holds weakly.

When the sufficient inequality in Proposition 7 holds, computing an equilibrium for large elec-
tions is simple. By virtue of Proposition 5, the asymptotic equilibrium decision to support issue x
is determined by

x ∈ s∗(θ)⇐⇒ θ(A ∪ {x}) ≥ θ(A \ {x}).

The sufficiency of the inequality, which ignores the value for the bundle {1, 2}\A that is unconnected
to A, is suggestive of the scope for inefficiency or miscoordination in elections with nonseparable
preferences.

Lemma 2. The following conditions are equivalent:

(i) Inequality (†) in Proposition 7;

(ii) µ (θA ≥ θA′ | θA′′ ≥ θA) > µ (θA′ ≥ θA | θA ≥ θA′′) and
µ (θA ≥ θA′′ | θA′ ≥ θA) > µ (θA′′ ≥ θA | θA ≥ θA′);

(iii) µ(θA ≥ θA′) >
µ(θA′′≥θA≥θA′ )

µ(θA′≥θA≥θA′′ )+µ(θA′≥θA≥θA′′ )
and

µ(θA ≥ θA′′) >
µ(θA′≥θA≥θA′′ )

µ(θA′≥θA≥θA′′ )+µ(θA′≥θA≥θA′′ )
.

Moreover, the weak versions of these conditions are equivalent.

To interpret the inequalities in condition (iii) of Lemma 2, consider the quantity on either side.
On the left hand side is the statistical electoral advantage that A enjoys against its neighbor A′ or
A′′. The right hand side is a ratio which measures, conditional on A being between its neighbors,
the likelihood that the most preferred bundle among them is the opposite neighbor. This ratio is
close to one if, for example, the likelihood that θA′′ ≥ θA ≥ θA′ is much larger than θA′′ ≥ θA ≥ θA′ .
This reflects a local asymmetry across the bundle A and its neighbors. So, two factors will make
the sufficient inequalities more likely to carry:

(i) Local lectoral advantage, i.e. a large proportion of the population favors the bundle A to
either of its neighbors (this increases the quantities on the left hand sides);

(ii) Local symmetry, i.e. the distribution of rankings treats the two neighbors as nearly identical
(this decreases the quantities on the right hand sides).
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5 Unpredictability

This section studies the predictability of outcomes in combinatorial elections. Since the distribution
µ over types is fixed, there is no aggregate uncertainty in large elections about the proportion
of types in the population. Nevertheless, we prove that the outcomes of large elections remain
uncertain for a nontrivial set of type distributions. This unpredictability is not an artifact of
primitive statistical uncertainty, but rather is necessary to maintain incentives in equilibrium.8

The unpredictability of outcomes under combinatorial rule is qualitatively distinct from the
indeterminacy of equilibrium under plurality rule. Under plurality rule, there are multiple limit
equilibria where different pairs of candidates are active. But for any selection of a specific equi-
librium, the outcome is generically certain. In contrast, the unpredictability of outcomes under
combinatorial rule is not due to multiplicity of equilibria. Rather, for any fixed limit equilibrium,
the probability of an issue passing must be uniformly bounded away from 0 or 1 in large elections.

Unpredictability also contrasts nonseparable preferences from separable preferences in our model.
Within the class of distribution with separable support, predictable outcomes are relatively generic.
Excepting knife-edge distributions where voters are equally likely to prefer an issue’s passage or its
failure, the outcome of each issue is certain in large elections. Unpredictability in election outcomes
is therefore difficult to reconcile with a model of costless voting with private separable values. With
nonseparable preferences, the predictability of large elections depends on the type distribution µ.

We will focus on the following set of densities for the setting with two issues.

Example 1. Pick some small ε > 0.9 Consider the class of densities C which satisfy the following
restrictions:

1− ε
4

< µ(θ12 ≥ θ1 ≥ θ∅ ≥ θ2) <
1
4

1− ε
4

< µ(θ1 ≥ θ∅ ≥ θ2 ≥ θ12) <
1
4

1− ε
4

< µ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1) <
1
4

1− ε
4

< µ(θ2 ≥ θ12 ≥ θ1 ≥ θ∅) <
1
4

This class is open and nonempty.10

For all sequences of equilibria for all distributions in C, the probability that either issue will pass
is uniformly bounded away from 0 or 1. In other words, even given the exact distribution µ ∈ C
and an arbitrarily large number of voters that are independently drawn from that distribution, an
observer would not be able to predict the outcome of either issue.

8In a two-period version of their model with aggregate uncertainty regarding the distribution of preference, Alesina
and Rosenthal (1996) predict uncertain presidential winners for a nontrivial range of parameters. However, this
assumes primitive uncertainty on the distribution of preferences. The unpredictability disappears in their basic
model where the distribution of preferences is common knowledge.

9In fact, ε can be as large as 1
16

.
10It is open in both the sup and weak convergence topologies.
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Proposition 8. For every density in C, all convergent sequences of equilibria exhibit unconditional
uncertainty on both issues.

There are two key features regarding the majority preference ranking in the example. The first
feature is that a Condorcet cycle exists. The second feature is that the majority preference is not
ordinally separable; a majority prefers issue 2 to pass if issue 1 were to pass (µ(θ12 ≥ θ1) > 1

2),
but also prefer issue 2 to fail if issue 1 were to fail (µ(θ∅ ≥ θ2) > 1

2). We will explore the extent to
which transitivity and separability of the majority preference ensure predictability in Section 6.

The proof of Proposition 8 proceeds in two major steps. First, we establish that every density
in C exhibits conditional uncertainty on both issues. Second, we demonstrate that conditional
uncertainty on both issues implies unconditional uncertainty on both issues.

The proof of the first step begins by showing that there must be at least one conditionally
uncertain issue. This is straightforward given our prior results. Proposition 7 provides a necessary
inequality for a bundle A to be conditional certain. This inequality is violated for every bundle A by
the construction of C: the fraction µ(θ1≥θ12≥θ2)

µ(θ2≥θ12≥θ1) is large because the denominator µ(θ2 ≥ θ12 ≥ θ1)
is less than ε.

This forces conditional uncertainty on at least one issue. The proof of the first step proceeds by
arguing that conditional uncertainty on one issue implies conditional uncertainty on the other. For
example, suppose issue 1 is conditionally uncertain while issue 2 is conditionally certain to pass.
We invoke Lemma 1 to parametrize the equilibrium decision to support issue 1 by some probability
α ∈ (0, 1). In particular, in large elections a type θ will support issue 1 if and only if

αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅.

This parameterization identifies the subsets of types who support or oppose issue 2 in large elections.
For example, any type θ where θ2 ≥ θ12 ≥ θ1 ≥ θ∅ must vote support issue 2 regardless of the
value of α, because θ12 ≥ θ1 and θ2 ≥ θ∅. We can also use Proposition 5 to identify the subsets
of types who support or oppose issue 1. Namely, θ supports issue 1 if θ12 ≥ θ2, and opposes
issue 1 otherwise. We can then bound these probabilities using the construction of the example,
e.g. the probability that θ12 ≥ θ2 is at most 1

4 + ε. However, we can also use Proposition 6 to
show that issue 2 is conditionally certain to pass only if certain inequalities on these probabilities
hold. These required inequalities are precluded by the bounds we obtained after characterizing the
limit equilibrium with α. Considering different cases yields similar contradictions. Therefore, we
conclude that conditional uncertainty on one issue must be accompanied by conditional uncertainty
on the other.

The first step proved that there must be conditional uncertainty on both issues when a voter
is pivotal on the other. But the relevant uncertainty regards the unconditional uncertainty. The
second step links the two uncertainties: in particular conditional uncertainty on both issues is
equivalent to unconditional uncertainty on both issues. To provide some intuition for the equiva-
lence, recall that assuming conditional uncertainty on both issues imposes restrictions on the limits
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of conditional probabilities, such as the probability issue 1 will pass when a voter is pivotal for
issue 2. By reapplying the artificial conditioning argument used in the proof of Proposition 6 to
work around the conditional dependence of the ballots, we can apply the central limit theorem to
the conditional distribution of the vote count on issue 1. Therefore, the conditional vote count on
issue 1 passing can be approximated by a normal cumulative distribution function. For there for
to be conditional uncertainty on issue 1, the conditional probability that a random voter supports
issue 1 when there is a split on issue 2 must converge to one half at rate faster than

√
I − 1:

√
I − 1

∣∣∣∣12µ(1 ∈ s∗I(θ) | 2 ∈ s∗I(θ)) +
1
2
µ(1 ∈ s∗I(θ) | 2 /∈ s∗I(θ))−

1
2

∣∣∣∣ <∞,
otherwise the distribution function will collapse too quickly and will be degenerately 0 or 1 at one
half. A similar rate of convergence must hold for the conditional probability of supporting issue 2
given a split on issue 1.

To move from the conditional probabilities to the unconditional probabilities, observe that the
unconditional probability of a voter supporting issue 1 can be written as a convex combination
of the two conditional probabilities given her vote, either up or down, on issue 2. This can also
be viewed as a linear equation. A similar linear equation can be written for the unconditional
probability of a voter supporting issue 2 as a function of conditional probabilities. Jointly, the pair
defines a system of two linear equations with two unknowns, namely the unconditional probabilities.
The coefficients of the system are given by the conditional probabilities. The resulting solutions
for the unconditional probabilities imply that root convergence to one half for both conditional
probabilities is equivalent to root convergence to one half for both unconditional probabilities. In
fact, conditional uncertainty on both issues is that on the only case where this conversion is possible,
because this guarantees that the coefficients of the linear system are finite.

In general, characterizing unconditional uncertainty and limit outcomes faces two obstacles.
First, a full characterization of the relevant limits would involve not only deciding whether there
is convergence of equilibrium probabilities, but rather controlling the rate of this convergence.
Moreover, while the characterizations of Section 4 are helpful in controlling the the conditional
uncertainty, we are ultimately interested in the unconditional uncertainty. While there is a tight
connection between these concepts when both issues are uncertain, this connection is lost in all
other cases. For example, it is possible for both issues to be unconditionally certain but to have
conditional uncertainty on one issue.

While a complete characterization is still outstanding, additional assumptions on the type distri-
bution make it possible to provide simple and easily verifiable conditions which guarantee whether
an issue is conditionally certain to pass or fail. One such assumption is supermodularity. This is
because, in the two-issue case, supermodularity is equivalent to the inequality θ12+θ∅ ≥ θ1+θ2. For
example, suppose θ1 ≥ θ∅. Then, to maintain supermodularity, it must be that θ12 ≥ θ2. But such
a voter must support issue 1, because its passage is beneficial regardless of whether issue 2 passes
(since θ12 ≥ θ2) or fails (since θ1 ≥ θ∅). So if more than half the types satisfy θ1 ≥ θ∅, then more

18



than a majority will support issue 1 in large elections. Similarly, if θ2 ≥ θ12, then supermodularity
forces θ∅ ≥ θ1, so voting down on issue 1 is dominant.

Proposition 9. Suppose the support of µ is the set of supermodular types. Then the following hold
for x = 1, 2:

(i) If µ(θx ≥ θ∅) > 1
2 , then issue x is unconditionally certain to pass.

(ii) If µ(θx′ ≥ θ12) > 1
2 , then issue x is unconditionally certain to fail.

Note that the asymmetry in the tests in parts (i) and (ii) for being conditional to pass and
to fail is due to the definition of supermodularity. An analogous version of Proposition 9 can be
proven for submodular preferences.

The other assumptions which are useful in guaranteeing predictability are restrictions on the
majority rule preference, which is the subject of the next section.

6 Condorcet orders and combinatorial rule

In this section, we examine the Condorcet consistency of majority rule with two issues. We make
two points at the outset. First, since we assume independent private values, any Vickrey-Clarke-
Groves mechanism will implement the utilitarian outcome in dominant strategies. However, the
communication demands and the implied transfers of such mechanisms seem impracticable in many
situations. Given a restriction to mechanisms where the message space is equivalent to the outcome
space (such as in combinatorial or plurality rule), ordinal efficiency is the most that can be achieved.

Second, a distinguishing feature of combinatorial rule is its dependence on the structure of
the power set of bundles. This manifests itself in the earlier characterizations, which all apeal
exclusively to the relationship between a bundle A and its neighbors A′ and A′′. Consequently, the
more useful concept is not whether a bundle A is preferred by a majority to all other bundles, but
whether A is preferred by a majority to its neighboring bundles.

We now define the Condorcet order, or majority rule preference. The maximal and minimal
bundles of this order are the Condorcet winner and loser. In addition, in combinatorial voting,
local comparisons with neighboring bundles are particularly important. So, we also define a local
Condorcet winner as a bundle which is preferred by a majority to its neighbors; an analogous notion
defines a local Condorcet loser.

Definition 6. The Condorcet order �C on X is defined by: A �C B if µ(θA ≥ θB) > 1
2 .11

The bundle A ∈ X is a Condorcet winner A �C B for all B 6= A. It is a local Condorcet

winner if A �C B for B = A′, A′′.
The bundle A ∈ X is a Condorcet loser if B �C A, for all B 6= A. It is a local Condorcet

winner if B �C A for B = A′, A′′.
11The inequality θA ≥ θB is weak to maintain notational consistency with the rest of the paper. Given the density

assumption on µ, it is equivalent to the strict version, i.e. A �C B if and only if µ(θA > θB) > 1
2
.
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The Condorcet criterion for ordinal efficiency is that an electoral mechanism implements the
Condorcet winner whenever such a winner exists. Under plurality rule, there exists a limit equi-
librium of plurality rule that selects the Condorcet winner. As the example in the introduction
illustrates, there is no such guarantee under combinatorial rule. We now examine conditions which
determine whether the Condorcet winner is implemented under combinatorial voting.

Proposition 10. Suppose A is a local Condorcet winner. Suppose there exists x = 1, 2 such that
either of the following statements holds:

(i) x ∈ A and x is conditionally certain to pass, or

(ii) x /∈ A and x is conditionally certain to fail.

Then A is unconditionally certain.
Moreover, if A is unconditionally certain, then there exists x = 1, 2 such that either (i) or (ii)

holds.

So, to implement the Condorcet winner, it suffices for either issue to conditionally agree with
the Condorcet winning bundle. In addition, a local Condorcet winner fails to be implemented
if, and only if, either both issues are conditionally uncertain or one issue conditionally disagrees
with A. In other words, if a local Condorcet winner is not the limit outcome, then either there
is conditional uncertainty on at least one issue, or its complement be conditionally certain. For
example, if {1, 2} is the Condorcet winner but is not the limit outcome, it must be the case that
neither issue 1 nor issue 2 is conditionally certain to pass. In the example in the introduction, this
is indeed the case, since {1, 2} is the Condorcet winner while the bundle ∅ is conditionally certain.
A special case of Proposition 10 is that if a Condorcet winner is conditionally certain, then it is also
unconditionally certain. Then the primitive conditions for the conditional certainty of A provided
in Proposition 7 and Lemma 2 also suffice as primitive conditions for its unconditional uncertainty
when A is a local Condorcet winner. In particular, by part (iii) of Lemma 2, if a local Condorcet
winner A enjoys a sufficiently large electoral advantage over its neighbors and the type distribution
µ is sufficiently symmetric across neighbors, then A is a limit outcome.

An appealing feature of the limit equilibria when the Condorcet winner is conditionally certain
is that they require less strategic sophistication by the voters. This is because the same bundle,
namely the Condorcet winner, is both conditionally and unconditionally certain. So even if voters
fail to condition their strategies on being pivotal, they will still submit their equilibrium ballots
as long as their conjectures regarding the unconditional limit outcome are correct. More precisely,
consider a voter who somewhat naively votes up on issue 1 because she expects issue 2 to pass,
without correcting for being pivotal on issue 1 or understanding the correlation in votes across
issues 1 and 2. Such a voter will nonetheless submit her suggested equilibrium ballot.

We mentioned that plurality rule always has one limit equilibrium which enacts the Condorcet
winner. However, plurality rule also yields other equilibria which fail to pass the Condorcet winner,
e.g. when the Condorcet winner is not one of the two active candidates. This logic for inefficiency
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also exists under combinatorial rule. The assumption in Proposition 10 is that the bundle A is a
local Condorcet winner. There can be two local Condorcet winners. For example, if �C is transitive
and {1, 2} �C ∅ �C {1} �C {2}, then both {1, 2} and ∅ are local Condorcet winners. Consequently,
there can be two limit equilibria under combinatorial rule, one which selects {1, 2} and another
which selects ∅, even though a majority prefers {1, 2} to ∅.

Because plurality rule always yields an efficient limit equilibrium, Condorcet inconsistency un-
der plurality rule is a consequence of miscoordination or bad equilibrium selection. In contrast,
combinatorial voting can fail to yield any limit equilibria that selects the Condorcet winner. So
combinatorial rule generates other factors beyond miscoordination which exclude the existence of
any efficient limit equilibria and can lead to ordinal inefficiency.

Another criterion for ordinal efficiency is that, when a Condorcet loser exists, it is not the
outcome of the election. When a Condorcet loser exists, it cannot be a limit outcome of plurality
rule for any sequence of equilibria. For combinatorial voting, the Condorcet loser is generically not
a limit outcome.

Proposition 11. If A is a local Condorcet loser and �C is complete, then A is not a limit outcome.

The Condorcet order �C is generically complete. Therefore, Proposition 11 proves that, for a
generic set of distributions, a Condorcet loser cannot be the determinate outcome of the election.
However, this result leaves open whether a Condorcet loser can have strictly positive probability of
being enacted; Proposition 11 only proves that this probability is generically less than one.

Recall Example 1, which is an open set of distributions with unpredictable election outcomes,
had two features. The first is the lack of a Condorcet winner. The second is that the Condorcet
order was not separable; a majority preferred issue 2 to pass if issue 1 were to pass, but also
preferred issue 2 if issue 1 were to fail. We now examine whether excluding these two pathologies,
cyclicity and nonseparability of the Condorcet order, generates predictability.12 We first introduce
an ordinal definition of separability.

Definition 7. A binary relation � on X is quasi-separable if

A � A ∩B ⇐⇒ A ∪B � B.

Under either the assumption of conditional certainty or the assumption of supermodularity,
quasi-separability of �C guarantees that the Condorcet winner the implemented when it exists.
Consequently, these results also provide sufficient conditions for predictability.

When �C is a quasi-separable weak order, conditional certainty of any bundle, even a bundle
that is not the Condorcet winner, is sufficient for the Condorcet winner to be the outcome of the
election.

12An open question is whether the existence of a Condorcet winner, by itself, implies predictability. Note that this
is different than the question of Condorcet consistency; in the introductory example the Condorcet winner {1, 2} fails
but the outcome of ∅ is still predictable.
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Proposition 12. Suppose �C is quasi-separable and there is conditional certainty on both issues.
If a Condorcet winner A exists, then A is conditionally certain and A is a limit outcome.13

There are two observations in proving Proposition 12. For concreteness, take the case where
{1, 2} is the Condorcet winner. This first observation is that, if the Condorcet ranking is quasi-
separable and {1, 2} is the Condorcet winner, then its complement ∅ must be the Condorcet loser.
The second observation is that a Condorcet loser cannot be conditionally certain. Then since both
issues cannot be conditionally certain to fail, one issue must be conditionally certain to pass. By
Proposition 10, this is enough to insure that {1, 2} is conditionally certain.

Another condition which pairs with quasi-separability to ensure Condorcet consistency is com-
mon knowledge of supermodularity. So, if all voters agree that the issues are complements, then a
quasi-separable �C suffices to make the Condorcet winner a limit outcome of the election. In this
case, we can also conclude that the Condorcet winner is the unique outcome of the election, across
all limit equilibria.

Proposition 13. Suppose �C is quasi-separable and the support of µ is the set of supermodular
(or submodular) types. If a Condorcet winner A exists, then it is the unique limit outcome.

To obtain some intuition for Proposition 13, consider the case where A = {1, 2} is the Condorcet
winner. Then quasi-separability of �C implies that its complement ∅ is the Condorcet loser. So,
{1} �C ∅, i.e. µ(θ1 ≥ θ∅) > 1

2 . Since we assumed supermodularity, Proposition 9 implies that issue
1 is unconditionally certain to pass. Arguing similarly, issue 2 is also unconditionally certain to
pass. Thus {1, 2} must be the limit outcome of the election.

A corollary of Propositions 12 and 13 is that if the Condorcet order is a quasiseparable weak
order, then either conditional certainty or supermodularity would guarantee predictability of large
elections. We conjecture that either assumption is dispensable, in other words that quasiseparability
and transitivity of the majority preference are sufficient for predictability. However, the difficulties
in proving this are similar to those in completely characterizing limit outcomes: the need to control
rates of convergence and the need to pass these rates from conditional to unconditional probabilities.

7 Conclusion

This paper introduced and analyzed a model of elections with nonseparable preferences over mul-
tiple issues. We provided topological and lattice-theoretic proofs for existence of equilibrium. We
characterized limit equilibria for large elections. With these characterizations, we showed that the
predictability of elections outcomes is not generic and provided sufficient conditions for predictabil-
ity. While the Condorcet winner is not generally the outcome of the election, we provided sufficient
conditions for its implementation. We conclude by posing some open questions that have not yet
been mentioned.

13We cannot conclude that the Condorcet winner is the unique limit outcome because there could be other limit
equilibria without conditional certainty.
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Multi-issue elections induce a political exposure problem which is analogous to the exposure
problem in multi-unit auctions. This exposure problem was at the core of our strategic analysis.
We assumed voters understand this exposure, and that they conditioned the exposure on being
pivotal for some issue. Alternative assumptions regarding the sophistication of voters could generate
different predictions.

Our results regarding predictability and ordinal efficiency were restricted to the setting with
two issues. While two issues were enough to construct the negative counterexamples, it remains
open whether our positive results have analogs with three or more issues. We suspect there is an
extension of our methods, that compared bundles that are connected in the set-containment lattice,
to more general settings.

In conjunction with existing results on large plurality elections, our findings provide an initial
comparison of combinatorial rule and plurality rule. Plurality rule always has an equilibrium which
selected a Condorcet winner, but the multiplicity of equilibria presents voters with a coordination
problem. Like plurality rule, combinatorial rule can also present voters with a coordination problem
among equilibria. More distinctively however, combinatorial rule can fail to have any equilibria
which implement the Condorcet winner. On the other hand, in some cases the Condorcet winner is
the unique limit outcome across equilibria. We feel like our general understanding of the comparison,
especially across the general space of distributions, is still incomplete. That said, the worst-case
distributions for combinatorial rule can be very inefficient in terms of aggregate utility.

This perhaps begs why combinatorial voting is so pervasive despite its potential inefficiency.
We took the set of issues on the ballot as exogenous. In reality, the set of referendums or initiatives
is a consequence of strategic decisions by political agents. For example, a new substitute measure
can be introduced to siphon votes away from an existing measure. Or, two complementary policies
can be bundled as a single referendum. The persistence of combinatorial rule might be due to the
considered introduction or bundling of issues. If agents anticipate the electoral consequences of
their decisions, our model provides a first step in the analysis of strategic ballot design.

A Appendix

A.1 Proof of Proposition 1

We first verify that every undominated strategy assigns an open set of types to each ballot. Additive
separability is too strong for this purpose because the set of additively separable types is Lebesgue null.
This motivates the following weaker notion of separability:

Definition 8. θi is quasi-separable if

θi(A) ≥ [>]θi(A ∩B)⇐⇒ θi(A ∪B) ≥ [>]θi(B).

When θi is quasi-separable, the voter’s preference for whether any issue x is voted up or down is invariant
to which of the other issues in A \ {x} pass or fail. The following observation is also made by Lacy and Niou
(2000, Result 4).
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Lemma 3. Suppose θi is quasi-separable and A∗i (θi) = arg maxA∈X θi(A) is unique. Then si(θi) = A∗i (θi)
whenever si is weakly undominated.

Proof. Suppose θi is quasi-separable and A∗i = A∗i (θi) is unique. We first prove that if x ∈ A∗i , then si is
weakly dominated whenever x /∈ si(θi). Since θi(A∗i ) > θi(A∗i \ {x}), we have θi({x}) > θi(∅). Consider
any strategy si where x /∈ si(θi). Compare this to the strategy s′i(θi) = si(θi) ∪ {x} for θi and equal for all
other types. Now, for any fixed ballot profile A−i for the other voters, either i is pivotal for issue x or is
not. If not, then the same set of issues passes under both strategies, so there is no loss of utility to θi. If
she is pivotal on x, then the set of issues F (si(θi), Ai) ∪ {x} passes, which leaves her strictly better off by
quasi-separability. So si is weakly dominated.

Similarly, if x /∈ A∗i , then si is weakly dominated whenever x ∈ si(θi). Therefore A∗i = si(θi) for every
weakly undominated strategy si.

We now begin the proof of existence. We endow each voter’s strategy space Si with the topology induced
by the following distance: d(si, s′i) = µi({θi : si(θi) 6= s′i(θi)}) and endow the space of strategy profiles S with
the product topology.14 For a fixed strategy profile s, let the function Gs−i = (Gs−i

0 , G
s−i

+ ) : Θ−i → X ×X
be defined by

G
s−i

0 (θ−i) =
{
x ∈ X : #{j 6= i : x ∈ sj(θj)} =

I − 1
2

}
,

i.e. the set of issues where voter i is pivotal, and

G
s−i

+ (θ−i) =
{
x ∈ X : #{j 6= i : x ∈ sj(θj)} >

I − 1
2

}
,

i.e. the set of issues which pass irrespective of voter i’s ballot. Then, for type θi, her utility for a fixed ballot
profile (A1, . . . , AI) is θi([Ai ∩GA−i

0 ] ∪GA−i

+ ), i.e. the union of two sets: first, the set of issues where she is
pivotal and she votes up; second, the set of issues which are passed irrespective of her ballot. Let D ⊆ X ×X
denote the space of ordered disjoint pairs of sets of issues, D = {(C,D) ∈ X × X : C ∩D = ∅}. For a type
θi, her expected utility for a strategy profile s is∑

(C,D)∈D

θi([si ∩ C] ∪D)× µ−i
(
[Gs−i ]−1(C,D)

)
.

An important observation is that the type’s expected utility for a ballot depends only on her belief about
for which issues she will be pivotal and which issues will pass irrespective of her ballot. Let ∆D denote the
probability distributions over D. For P, P ′ ∈ ∆D, define the sup metric ‖P −P ′‖ = max(C,D)∈D |P (C,D)−
P ′(C,D)|.

Define the probability πi(s) ∈ ∆D by

[πi(s)](C,D) = µ−i
(
[Gs−i ]−1(C,D)

)
. (2)

In words, [πi(s)](C,D) is the probability, from voter i’s perspective, that she will be pivotal on the issues in
C and that the issues in D will pass no matter how she votes, given that the strategy s is being played by the
other voters. Fix (C,D) ∈ D. If sj is weakly undominated, by Lemma 3 there exists some quasi-separable
type θj for whom sj(θj) = D. Moreover, these conditions are satisfied in an open neighborhood UD of
θi. By the full support assumption, there is some strictly positive probability µj(UD) > 0 of a type for j

14To be precise, this is defined over equivalence classes of strategies whose differences are µi-null.
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with sj(UD) = D, and similarly µC∪Dj of a set of types UC∪D for which sj(UC∪D) = C ∪ D. Enumerate
I \ {i} = {j1, . . . , jI−1}. By independence of µ across voters, for any weakly undominated strategy profile
the joint probability that D is submitted for the first I−1

2 other voters and C ∪D is submitted by the second
I−1

2 other voters is at least

Li(C,D) =

I−1
2∏

k=1

µDjk ×
I−1∏

k= I+1
2

µC∪Djk
> 0.

Thus [πi(s)](C,D) ≥ Li(C,D) for all (C,D) ∈ D, whenever s is weakly undominated. Let

L = min{Li(C,D) : i ∈ I, (C,D) ∈ D}

and define the following compact convex subset of probabilities:

∆U =
{
P ∈ ∆D : min

(C,D)∈D
P (C,D) ≥ L

}
.

So, letting SU denote the space of weakly undominated strategy profiles, we can consider the function
πi : SU → ∆U . By independence of µ,

[πi(s)](C,D) = µ−i
(
[Gs−i ]−1(C,D)

)
=

∑
{A−i∈X I−1:G

A−i
i =(C,D)}

µ−i({θ−i : s−i(θ−i) = A−i})

=
∑

{A−i∈X I−1:G
A−i
i =(C,D)}

∏
j 6=i

µj({θj : sj(θj) = [A−i]j})

 .
The last expression is a sum of products of probabilities µj({θj : sj(θj) = [A−i]j}) which, considered
as functions dependent on SU , are immediately continuous in the defined topology on SU . Hence πi is
continuous. Then the function π : SU → [∆U ]I defined by π(s) = (π1(s), . . . , πI(s)) is continuous.

Fix a belief Pi ∈ ∆U . Then the set of types for voter i for which it is optimal to submit the ballot Ai is
defined by

Ai(Pi) =
⋂
A′i∈X

{
θi :

∑
D
θi([Ai ∩ C] ∪D)× Pi(C,D) ≥

∑
D
θi([A′i ∩ C] ∪D)× Pi(C,D)

}
.

Fix an enumeration X = {A1, . . . , A|X |} and define the function σi : ∆D → S as follows. Let A0 denote
the set of types which are not quasi-separable or do not have a unique arg maxA∈X θi(A). For all θi ∈
Ak(Pi) \ [A0 ∪ . . . Ak−1], let [σi(Pi)](θi) = Ak.15 Since Pi is in the interior of ∆D, σi(Pi) is not weakly
dominated: σi(Pi) ∈ SUi . Observe that the set of types θi which play Ai is a convex polytope (with open
and closed faces).

We now prove that σi : ∆U → SUi is continuous. Since Pi ∈ ∆U is strictly bounded away from zero, the
set of types which have multiple optimal ballots given belief Pi is of strictly lower dimension than Θi, hence
µi-null since µi admits a density. Then µi(Ai(Pi) \ [σ(Pi)]−1(Ai)) = 0, so it suffices to show that µi(Ai(Pi))

15This construction is to avoid ambiguous assignments on the µi-null set of types with multiple optimal ballots given
Pi. Alternatively, one can consider the space S modulo differences of µ-measure zero, in which case the ambiguous
assignment is irrelevant.
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is continuous in Pi. Fix ε > 0. The set Ai(Pi) is nonempty, since there exists a nonempty neighborhood
of quasi-separable types which submit Ai in any undominated strategy. By outer regularity of µi, the
probability of the closed set Ai(Pi) is arbitrarily well approximated by the probabilities of its neighborhoods
(cf. Parthasarathy 1967, Theorem 1.2), i.e. there exists some δ-neighborhood of Ai(Pi), denoted Uδ[Ai(Pi)],
such that µi(Uδ[Ai(Pi)]) < µi(Ai(Pi)) + ε. Moreover, there exists a sufficiently small γ > 0 such that if, for
all A′i ∈ X , ∑

D
θi([Ai ∩ C] ∪D)× Pi(C,D) ≥

∑
D
θi([A′i ∩ C] ∪D)× Pi(C,D)− γ,

then θi ∈ Uδ[Ai(Pi)]; this because both sides of the inequality are continuous in θi. Suppose ‖Pi−P ′i‖ < γ/2.
The difference in expected utility for any action across the two probabilities is bounded by γ/2, since values
were normalized to live in the unit interval. Then, fixing θi ∈ Ai(P ′i ), i.e. a type θi for whom Ai is optimal
given conjecture P ′i , we have for all A′i ∈ X :∑

D
θi([Ai ∩ C] ∪D)× Pi(C,D) ≥

∑
D
θi([Ai ∩ C] ∪D)× P ′i (C,D)− γ/2

≥
∑
D
θi([A′i ∩ C] ∪D)× P ′i (C,D)− γ/2

≥
∑
D
θi([A′i ∩ C] ∪D)× Pi(C,D)− γ.

So, Ai(P ′i ) is contained in Uδ[Ai(Pi)]. Then µi(Ai(P ′i ) \ Ai(Pi)) ≤ µi(Uδ[Ai(Pi)] \ Ai(Pi)) < ε. Similarly,
there exists a sufficiently small distance γ′ > 0 such that if |Pi−P ′i | < γ′, then µi(Ai(Pi) \Ai(P ′i )) < ε. But

µi ({θi : [σi(Pi)](θi) 6= [σi(P ′i )](θi)}) ≤
∑
Ai∈X

µi(Ai(Pi) ∆Ai(P ′i ))

=
∑
Ai∈X

(µi(Ai(P ′i ) \Ai(Pi)) + µi(Ai(Pi) \Ai(P ′i )))

< 2|X |ε

whenever ‖Pi − P ′i‖ < min{γ/2, γ′}. So the function σ : [∆U ]I → SU defined by σ(P1, . . . , PI) =
(σ1(P1), . . . , σI(PI) is continuous.

Then the composition π ◦σ : [∆U ]I → SU → [∆U ]I is continuous, hence yields a fixed point (P ∗1 , . . . , P
∗
I )

by Brower’s Theorem. Then s∗ = σ(P ∗1 , . . . , P
∗
I ) is, by construction, a best response to itself, hence the

desired equilibrium in weakly undominated strategies.

A.2 Proof of Proposition 3

We maintain the notation from the proof of Theorem 1. Let s0 denote the sincere voting profile, where
s0
i (θi) ∈ arg maxA θi(A). By full support assumption, for all A and i, there is a strictly positive measure of

types θi where the sincere ballot is A. Hence the induced probability P 0
i = πi(s0) is in the interior of ∆D.

Therefore P 0
i (C,D) > 0. Consider θi with θi(∅) = 1 and θi({1}) = 0, and θi(A) = 1−δ whenever A 6= ∅, {1}.

When 2 ∈ C and D = {1}

θi([{2} ∩ C] ∪ {1})− θi([∅ ∩ C] ∪ {1}) = θi({1, 2})− θi({1}) = 1− δ.
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For all other (C,D), the difference θi([{2} ∩ C] ∪D) − θi([∅ ∩ C] ∪D) is either 0 or −δ. Since P 0
i has full

support, we have ∑
D
θi([{2} ∩ C] ∪D)× P 0

i (C,D) >
∑
D
θi([∅ ∩ C] ∪D)× P 0

i (C,D)

for sufficiently small δ > 0. So submitting the ballot {2} is a strictly better reply than the sincere ballot ∅
for this θi. This property is maintained in a neighborhood of θi, so by the full support assumption sincere
voting is not a best reply for a strictly positive measure of types.

A.3 Proof of Proposition 4

We use recent results due to Reny (2009). Namely, we will verify the assumptions of Theorem 4.1 and 4.2,
which we summarize in the following statement.

Theorem 1 (Reny 2008). Suppose that, for every player i:

G.1 Θi is a complete separable metric space endowed with a measurable partial order

G.2 µi assigns probability zero to any Borel subset of Ti having no strictly ordered points

G.3 Ai is a compact locally-complete metric semilattice

G.4 ui(·, θ) : A→ R is continuous for every θ ∈ Θ.

For each i, let Ci be a join-closed, piecewise-closed, and pointwise-limit-closed subset of pure strategies
containing at least one monotone pure strategy, such that the intersection of Ci with i’s set of monotone
best replies is nonempty whenever every other player j employs a monotone pure strategy in Cj. Then there
exists a monotone (pure strategy) equilibrium in which each player i’s pure strategy is in Ci.

We first show that the election is weakly quasi-supermodular and obeys single-crossing in ≥, which will
be useful later.

Lemma 4. The voting game is weakly quasi-supermodular in actions, i.e.∫
Θ−i

θi(Ai, s−i(θ−i))dµ−i ≥
∫

Θ−i

θi(Ai ∩Bi, s−i(θ−i))dµ−i

=⇒
∫

Θ−i

θi(Ai ∪Bi, s−i(θ−i))dµ−i ≥
∫

Θ−i

θi(Ai, s−i(θ−i))dµ−i

Proof. We show that supermodularity in outcomes of the ex post utilities implies weak quasi-supermodularity
in actions of the interim utilities. So, suppose the hypothesis inequality holds. Carrying the notation from
the proof of Theorem 1, this can be rewritten as∑

C,D∈D
θi([Ai ∩ C] ∪D)× [πi(s)](C,D) ≥

∑
C,D∈D

θi([Ai ∩Bi ∩ C] ∪D)× [πi(s)](C,D).

Applying supermodularity of θi to the sets [Ai ∩ C] ∪D and [Bi ∩ C] ∪D:∑
C,D∈D

[θi([Ai ∩ C] ∪D)− θi([Ai ∩Bi ∩ C] ∪D)]× [πi(s)](C,D) ≥ 0
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implies ∑
C,D∈D

[θi([(Ai ∪Bi) ∩ C] ∪D)− θi([Ai ∩ C] ∪D)]× [πi(s)](C,D) ≥ 0,

which can be rewritten as the desired conclusion.

Lemma 5. The voting game satisfies weak single-crossing in ≥, i.e. if θ′i ≥ θi and A′i ⊇ Ai, then∫
Θ−i

θi(F (A′i, s−i(θ−i)))dµ−i ≥
∫

Θ−i

θi(F (Ai, s−i(θ−i)))dµ−i

=⇒
∫

Θ−i

θ′i(F (A′i, s−i(θ−i)))dµ−i ≥
∫

Θ−i

θ′i(F (Ai, s−i(θ−i)))dµ−i

for any profile s−i of monotone strategies by the other voters.

Proof. Suppose θ′i ≥ θi and fix a monotone strategy profile s−i for the other voters. Suppose A′i ⊇ Ai. Then
F (A′i, s−i(θ−i)) ⊇ F (Ai, s−i(θ−i)) for any θ−i ∈ Θ−i. By construction of the partial order ≥,

θ′i(F (A′i, s−i(θ−i)))− θ′i(F (Ai, s−i(θ−i))) ≥ θi(F (A′i, s−i(θ−i)))− θi(F (Ai, s−i(θ−i))).

This inequality is preserved by integration:∫
Θ−i

θ′i(F (A′i, s−i(θ−i)))dµ−i −
∫

Θ−i

θ′i(F (Ai, s−i(θ−i)))dµ−i

≥
∫

Θ−i

θi(F (A′i, s−i(θ−i)))dµ−i −
∫

Θ−i

θi(F (Ai, s−i(θ−i)))dµ−i.

Then if ∫
Θ−i

θi(F (A′i, s−i(θ−i)))dµ−i ≥
∫

Θ−i

θi(F (Ai, s−i(θ−i)))dµ−i,

the inequality implies ∫
Θ−i

θ′i(F (A′i, s−i(θ−i)))dµ−i ≥
∫

Θ−i

θ′i(F (Ai, s−i(θ−i)))dµ−i.

We can now check the assumptions in Reny’s theorem. The technical conditions G.1 to G.4 are straight-
forward to verify. We will restrict attention to a space of strategies which will induce weakly undominated best
responses. Let Ri be the subset of strategies for player i such that (µi almost surely): if θi is quasi-separable
and A∗i (θi) = arg maxA∈X θi(A) is unique, then si(θi) = A∗i (θi). This space is join-closed, pointwise-limit-
closed, and piecewise-closed because it is the intersection of two measurable order inequalities (c.f. Reny
2008, Remark 4). To see this, let

fi(θ) =

A∗i (θi) if θi is quasi-separable and A∗i (θi) = arg maxA∈X θi(A) is unique

∅ otherwise
,

and similarly

gi(θ) =

A∗i (θi) if θi is quasi-separable and A∗i (θi) = arg maxA∈X θi(A) is unique

X otherwise
.
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And Ri = {si ∈ Si : fi(θi) ⊆ si(θi) ⊆ gi(θi), µi-a.s.}.
We next show that there exists a monotone strategy in Ri. Define the following strategy:

si(θi) =
⋃
θ′i≤θi

fi(θ′i).

By construction, si is monotone. Now suppose θ′i ≥ θi are quasi-separable with respective unique maximizers
A∗i (θ

′
i), A

∗
i (θ
′
i). By repeated application of quasi-separability, we have

θi(A∗i (θi) ∪A∗i (θ′i))− θ(A∗i (θ′i)) ≥ 0.

Considering the definition of ≥,

θ′i(A
∗
i (θ
′
i) ∪A∗i (θi))− θ′i(A∗i (θ′i)) ≥ 0.

Since A∗i (θ
′
i) is the unique maximizer of θ′i, this forces A∗i (θ

′
i) ∪ A∗i (θi) = A∗i (θ

′
i), i.e. A∗i (θ

′
i) ⊇ A∗i (θi). So if

θ′i is separable and has a unique maximizer A∗i (θ
′
i), then fi(θ′i) ⊇ fi(θi) for all θ ≤ θ′i. Hence si(θ′i) = A∗i (θi).

So si ∈ Ri.
Finally, we prove that any monotone strategy in R−i will induce a monotone best reply in Ri. Since Ri is

a superset of the weakly undominated strategies for i, clearly for any strategy profile s−i of the other voters,
there is some element of Ri which is a best response. Moreover, any best reply to a strategy profile from R

must be weakly undominated. This is because the quasi-separable types with unique maximizer A constitute
a relatively open subset of the supermodular types, so every ballot has positive probability for each voter by
the full support assumption. Standard lattice arguments show that weak quasi-supermodularity and weak
single-crossing imply that the pointwise join of each type’s best replies in weakly undominated strategies
constitutes a monotone best reply itself; for example, see the proof of Corollary 4.3 in Reny (2008). Since
Ri is join-closed, this monotone best reply lives in Ri. So, there exists an equilibrium in strategies in Ri,
and by construction this equilibrium must be in weakly undominated strategies.

A.4 Proof of Proposition 5

Fix x ∈ X and take any set B ⊆ X \ {x} and consider the strategies A = B ∪ {x} and B. Recall, from
the proof of Theorem 1, that for a fixed electorate size I, the expression (2) for [πi(s)](C,D) reflects the
probability induced by strategy profile s that voter i will be pivotal on the issues in C and the issues in D

will pass irrespective of her vote. For ease of notation, let P ∗I = πi(s∗I) in the election with I voters.
Then the incentive condition for A being a better reply than A′ to s∗I is∑

C,D∈D
P ∗I (C,D) · θ([A ∩ C] ∪D) ≥

∑
C,D∈D

P ∗I (C,D) · θ([A′ ∩ C] ∪D) (3)

However, since if x /∈ C, we have C ∩ A ∪ D = C ∩ A′ ∪ D, the only relevant components of the sums on
both sides of this inequality are:∑

C,D∈D:x∈C
P ∗I (C,D) · θi([A ∩ C] ∪D) ≥

∑
C,D∈D:x∈C

P ∗I (C,D) · θi([A′ ∩ C] ∪D)

Dividing both sides by
∑

(C,D):x∈C P
∗
I (C,D) > 0, we can replace the unconditional probabilities P ∗I with
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the conditional probabilities P ∗I (C,D |x ∈ C) :∑
C,D∈D:x∈C

P ∗I (C,D |x ∈ C) · θi([C ∩A] ∪D) ≥
∑

C,D∈D:x∈C
P ∗I (C,D |x ∈ C) · θi([C ∩A′] ∪D). (4)

We can rewrite the left hand side as:∑
C,D∈D:x∈C

P ∗I (C,D |x ∈ C) · θi([C ∩A] ∪D)

= P ∗I ({x}, Dx |x ∈ C)θi({x} ∪Dx) +
∑

C,D:x∈C,D 6=Dx

P ∗I (C,D |x ∈ C) · θi([C ∩A] ∪D)

Similarly rewriting the right hand side, the incentive inequality (4) can be rewritten:

P ∗I ({x}, Dx |x ∈ C) · θi({x} ∪Dx) +
∑

C,D:x∈C,D 6=Dx

P ∗I (C,D |x ∈ C) · θi([C ∩A] ∪D)

≥ P ∗I ({x}, Dx |x ∈ C) · θi(Dx) +
∑

C,D:x∈C,D 6=Dx

P ∗I (C,D |x ∈ C) · θi([C ∩A′] ∪D)

This is rearranged as
θ({x} ∪Dx) ≥ θi(Dx) + ∆(x, I) (5)

where

∆I =

∑
C,D:x∈C,D 6=Dx

P ∗I (C,D |x ∈ C) [θi([C ∩A′] ∪D)− θi([C ∩A] ∪D)]
P ∗I (x,Dx |x ∈ C)

.

If |θi({x} ∪Dx)− θi(Dx)| > ∆I for all x ∈ X, her best response A to sI(θ) is determined by

x ∈ A⇐⇒ θ({x} ∪Dx) ≥ θ(Dx).

To see this, suppose not. Then there exists some alternate ballot A′ such that either x ∈ A but θ(Dx) >
θ({x} ∪Dx), or x /∈ A but θ({x} ∪Dx) > θ(Dx). Assume the former, the second case being entirely similar.
Since |θ({x} ∪ Dx) − θ(Dx)| > ∆I , the inequality is stronger: θ(Dx) > θ({x} ∪ Dx) + ∆I . Now consider
the alternative A = {x} ∪ A′. Then, since inequality (5) was shown to be equivalent to inequality (3), the
inequality θ({x} ∪Dx) > θ(Dx) + ∆I implies A is a strictly better response than A′, a contradiction.

We finally show that this equivalence holds for an arbitrarily large measure of types at the limit. When-
ever D 6= Dx, then

P ∗I (C,D|x ∈ C) = P

 #{j 6= i : y ∈ s∗I(θi)} = I−1
2 ∀y ∈ C

#{j 6= i : y ∈ s∗I(θi)} > I−1
2 ∀y ∈ D

#{j 6= i : y ∈ s∗I(θi) < I−1
2 ∀y /∈ C ∪D

∣∣∣∣∣∣∣#{j 6= i : x ∈ s∗I(θi)} =
I − 1

2


≤ 1−P

(
#{j 6= i : y ∈ s∗I(θi)} >

I − 1
2
∀y ∈ Dx

∣∣∣∣#{j 6= i : x ∈ s∗I(θi)} =
I − 1

2

)
→ 0

Noticing that |θ(·)| < 1, we have ∆I → 0 as I →∞.
Observe that the set of types for which |θ({x} ∪ Dx) − θ(Dx)| > ∆I for all x ∈ X is of full Lebesgue

measure at the limit, since ∆I → 0. Invoking the density assumption, this set also has full µ measure at the
limit.
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A.5 Proof of Proposition 6

Without loss of generality, suppose voter I is pivotal on issue 1 and consider whether issue 2 is conditionally
certain to pass or fail. Let XIi

k (I = 1, 3, . . .; i = 1, . . . , I − 1; k = 1, 2) denote the triangular array of
indicator functions on the events {θi : k ∈ s∗I(θi)}. While XIi

2 are unconditionally rowwise independent, this
independence is broken once we condition on voter I being pivotal on issue 1. This precludes a straightforward
application of the law of large numbers to the array and the proof requires more delicacy.

The basic logic is to split the sample of I − 1 other voters into two subsamples: those I−1
2 who voted for

issue 1, and those I−1
2 who did not. Within each subsample, the votes on issue k are conditionally identical

and independent because the votes on issue 1 are fixed. However, by exchangeability, the particular identity
of voters in each subsample is irrelevant, so we can proceed without loss of generality by assuming the first
half of other other voters constitute the first subsample while the remainder constitute the second.

Formally, consider the following arrays of rowwise independent binary random variables:

Y Ii =

1 with probability µ(2 ∈ sI(θi)|1 /∈ sI(θI))

0 with probability µ(2 /∈ sI(θi)|1 /∈ sI(θI))

and

ZIi =

1 with probability µ(2 ∈ sI(θi)|1 ∈ sI(θI)

0 with probability µ(2 /∈ sI(θi)|1 ∈ sI(θI)

Lemma 6. The distribution of
∑I−1
i=1 X

Ii
2 conditional on

∑I−1
i=1 X

Ii
1 = I−1

2 is identical to the distribution of
the sum

I−1
2∑
i=1

Y Ii +

I−1
2∑
i=1

ZIi.

Proof. Suppressing the I superscript for the size of the electorate and fixing any integer n:

P

(
I−1∑
i=1

Xi
2 = n

∣∣∣∣∣
I−1∑
i=1

Xi
1 =

I − 1
2

)

=
∑

A⊂I−1:#A= I−1
2

P

(∑
i∈A

Xi
2 = 0

∣∣∣∣∣
I−1∑
i=1

Xi
1 =

I − 1
2

)
P

I−1∑
i=1

Xi
2 = n

∣∣∣∣∣∣
∑
i∈A

Xi
1 = 0,

∑
j /∈A

Xj
1 =

I − 1
2


By exchangeability across voters, the particular identities of the voters in the set A that voted up on issue 1
is irrelevant. In other words, we can assume without loss that the first I−1

2 other voters included 1 in their
ballots and the last I−1

2 other voters excluded 1 from their ballots. The prior expression is therefore equal
to:

=
∑

A⊂I−1:#A= I−1
2

P

 I−1
2∑
i=1

Xi
2 = 0

∣∣∣∣∣∣
I−1∑
i=1

Xi
1 =

I − 1
2

P

I−1∑
i=1

Xi
2 = n

∣∣∣∣∣∣
I−1
2∑
i=1

Xi
1 = 0,

I−1∑
j= I+1

2

Xj
1 =

I − 1
2


= P

I−1∑
i=1

Xi
2 = n

∣∣∣∣∣∣
I−1
2∑
i=1

Xi
1 = 0,

I−1∑
j= I+1

2

Xj
1 =

I − 1
2


=

I−1
2∑

m=0

P

 I−1
2∑
i=1

Xi
2 = m

∣∣∣∣∣∣
I−1
2∑
i=1

Xi
1 = 0

P

 I−1∑
j= I+1

2

Xj
2 = n−m

∣∣∣∣∣∣
I−1∑
j= I+1

2

Xj
1 =

I − 1
2


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=

I−1
2∑

m=0

P

 I−1
2∑
i=1

Y Ii = m

P

 I−1
2∑
i=1

ZIi = n−m


= P

 I−1
2∑
i=1

Y Ii +

I−1
2∑
i=1

ZIi = n



Lemma 7. The normalized sum
PI−1

i=1 X
Ii
2

I−1 conditional on
∑I−1
i=1 X

Ii
1 = I−1

2 converges in probability to 1
2µ(2 ∈

s∗I(θ) | 1 ∈ s∗I(θ)) + 1
2µ(2 ∈ s∗I(θ) | 1 /∈ s∗I(θ)).

Proof. We can apply the Strong Law of Large Numbers for triangular arrays to Y Ii and ZIi to conclude
that (

I − 1
2

)−1
I−1
2∑
i=1

Y Ii → µ (2 ∈ s∗I(θi)|1 /∈ s∗I(θi))

and (
I − 1

2

)−1
I−1
2∑
i=1

ZIi → µ(2 ∈ s∗I(θi)|1 ∈ s∗I(θi))

almost surely, hence in distribution. By the Continuous Mapping Theorem, the sum

1
2

(
I − 1

2

)−1
I−1
2∑
i=1

Y Ii +
1
2

(
I − 1

2

)−1
I−1
2∑
i=1

ZIi (6)

converges in distribution to the constant

1
2µ(2 ∈ s∗I(θ) | 1 ∈ s∗I(θ)) + 1

2µ(2 ∈ s∗I(θ) | 1 /∈ s∗I(θ)).

Since, by Lemma 6, the conditional distribution of
PI−1

i=1 X
Ii
2

I−1 shares the distribution of (6), it also converges
in distribution to the same constant. As convergence in distribution to a constant implies convergence in
probability, this delivers the desired conclusion.

To prove the Proposition, suppose µ(2 ∈ s(θ) | 1 ∈ s(θ)) > µ(2 /∈ s(θ) | 1 /∈ s(θ)); the argument for the
opposite strict inequality is symmetric. Then:

µ(2 ∈ s(θ) | 1 ∈ s(θ)) > µ(2 /∈ s(θ)) | 1 /∈ s(θ))

µ(2 ∈ s(θ) | 1 ∈ s(θ) + 1− µ(2 /∈ s(θ) | 1 /∈ s(θ)) > 1

µ(2 ∈ s(θ)) | 1 ∈ s(θ) + µ(2 ∈ s(θ) | 1 /∈ s(θ)) > 1
1
2µ(2 ∈ s(θ) | 1 ∈ s(θ) + 1

2µ(2 ∈ s(θ)) | 1 /∈ s(θ)) > 1
2

Let E = 1
2µ(2 ∈ s(θ) | 1 ∈ s(θ)) + 1

2µ(2 ∈ s(θ) | 1 /∈ s(θ)) and pick a strictly positive δ < E − 1
2 . By Lemma

7, the probability that the normalized vote count on issue 2, conditional on voter I being pivotal on 1, is
greater than E − δ > 1

2 approaches one. Thus, the conditional probability that 2 passes converges to one.

The necessity of the weak inequality follows from the contraposition of the sufficiency claim, i.e. if y is
conditionally certain to pass then it is not conditionally certain to fail.
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A.6 Proof of Proposition 7

It suffices to prove the case A = {1, 2}. Other cases then follow by appropriately permuting the direction of
“pass” or “fail” on the ballot. For example, when A = {1}, consider the following permutation:

{1, 2} 7→ {1}, {1} 7→ {1, 2}, {2} 7→ ∅, ∅ 7→ {2}.

Similar permutations apply for A = {2} and A = ∅.
We first prove the sufficiency of the strict inequality. So let

Θ12 = {θ : θ12 ≥ max{θ1, θ2}}

Θ1 = {θ : θ1 ≥ θ12 ≥ θ2}

Θ2 = {θ : θ2 ≥ θ12 ≥ θ1}

Θ∅ = {θ : θ12 ≤ min{θ1, θ2}}

These four sets of types cover Θ. Since µ has full support and admits a density, they have strictly positive
probability but null pairwise intersections. By assumption,

µ(Θ12)
µ(Θ∅)

> max
{
µ(Θ1)
µ(Θ2)

,
µ(Θ2)
µ(Θ1)

}
.

Let
Pn =

{
P ∈ ∆U : P (x, x′|x ∈ C) ≥ 1− 1

n , ∀x = 1, 2
}

Recall that P (C,D) is the probability that an anonymous voter is pivotal on the issues in C and that the
issues in D will pass irrespective of her ballot. Let A ⊂ {x′} and consider A′ = {x} ∪ A. The incentive
condition for A′ being a better reply than A given the belief P ∈ Pn over pivotal and passing events is:

θ12 ≥ θx + ∆n(θ)

where
∆n(θ) =

P (x, ∅ |x ∈ C) [θ∅ − θx] + P ({1, 2}, ∅ |x ∈ C)[θA − θA′ ]
P (x, x′ |x ∈ C)

.

Observe that ∆n(θ)→ 0 as n→∞. Let Θn = {θ : |θ12 − θx| > ∆n} and notice µ(Θn)→ 1. As n→∞, the
proportion of types in Θ12 which include x in their optimal ballots covers the entire subset Θ12, while the
proportion of types in Θ \Θ12 which include x becomes null. Similarly arguing for Θ1,Θ2,Θ0, we have

σI(Pn)→ s

where sA(θA) = A for all θA ∈ ΘA, for any sequence of selections Pn ∈ Pn. Then

µ([σI(P )](θ) = {1, 2})
µ([σI(P )](θ) = ∅)

−max
{
µ([σ(P )](θ) = {1})
µ([σ(P )](θ) = {2})

,
µ([σI(P )](θ) = {2})
µ([σI(P )](θ) = {1}

}
which is arbitrarily close to

µ(Θ12)
µ(Θ∅)

−max
{
µ(Θ1)
µ(Θ2)

,
µ(Θ2)
µ(Θ1)

}
> 0
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for any P ∈ Pn as n→∞. So, there exists some n0 such that if n > n0:

µ([σI(P )](θ) = {1, 2})
µ([σI(P )](θ) = ∅)

> max
{
µ([σI(P )](θ) = {1})
µ([σI(P )](θ) = {2})

,
µ([σI(P )](θ) = {2})
µ([σI(P )](θ) = {1}

}
for all P ∈ Pn.

So, let n > n0 and consider the sequence of strategies sI = σI(P ) for any P ∈ Pn. Fix I and let
µA = µ([σI(P )](θ) = A) Then:

µ12

µ∅
>
µ1

µ2

µ12µ2 > µ∅µ1

µ12(µ2 + µ∅) > µ∅(µ1 + µ12)
µ12

µ1 + µ12
>

µ∅
µ2 + µ∅

µ (2 ∈ [σI(P )](θ) | 1 ∈ [σI(P )](θ)) > µ(2 /∈ [σI(P )](θ) | 1 /∈ [σI(P )](θ))

By Proposition 5 (see also the remark immediately following the proof), for I sufficiently large, the probability
πI(σI) satisfies

[πI(σI(P ))](x, x′|x ∈ C) ≥ 1− 1
n

for x = 1, 2. This means for sufficiently large I > I0, the image [π ◦ σI ](Pn) ⊆ Pn. It therefore admits a
fixed point P ∗I ∈ Pn which defines an equilibrium s∗I , for all sufficiently large I > I0(n).

Finally, define n(I) = max{n : I > I0(n)} ∨ I. Observe that as I →∞, we have n(I)→∞. For each I,
select a fixed point P ∗I ∈ [π ◦ σ](Pn(I)). The induced equilibrium strategy s∗I satisfies

µ (σ∗I (θ) | 1 ∈ [σI(P )](θ)) > µ(2 /∈ [σI(P )](θ) | 1 /∈ [σI(P )](θ))

By Propositon 5, the set {1, 2} is conditionally certain. Also, recalling the construction, s∗I → s∗ where
s∗(ΘA) = A.

We now prove the necessity of the weak inequality. Suppose each issue is conditionally certain to pass.
In particular, 2 is conditionally certain to pass at 1. By Proposition 6:

µ[2 ∈ s∗(θi) | 1 ∈ s∗(θi)] ≥ µ[2 /∈ s∗(θi) | 1 /∈ s∗(θi)].

For notational convenience, let µ∗A = µ({θi : s∗(θi) = A}). Since 2 is conditionally certain to pass at 1, we
have:

µ∗12

µ∗12 + µ∗1
≥

µ∗∅
µ∗∅ + µ∗2

µ∗12(µ∗∅ + µ∗2) ≥ µ∗∅(µ
∗
12 + µ∗1)

µ∗12µ
∗
2 ≥ µ∗∅µ

∗
1

µ∗12

µ∗∅
≥ µ∗1
µ∗2
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Symmetrically, since 1 is conditionally certain to pass at 2:

µ∗12

µ∗∅
≥ µ∗2
µ∗1

The prior two inequalities imply

µ∗12

µ∗∅
≥ max

{
µ∗1
µ∗2
,
µ∗2
µ∗1

}
(7)

By Proposition 5, we have
x ∈ s∗(θi)⇐⇒ θi({1, 2}) ≥ θ({x′})

Thus:

s∗(θ) =



{1, 2} if θ12 ≥ max{θ1, θ2}

{1} if θ1 ≥ θ12 ≥ θ2

{2} if θ2 ≥ θ12 ≥ θ1

∅ if θ12 ≤ min{θ1, θ2}

Substituting these cases into condition (7) delivers the result.

A.7 Proof of Lemma 2

We first prove that (i) and (ii) are equivalent. Observe that the following equality holds:

µ (θA ≥ max {θA′ , θA′′}) = µ (θA ≥ θA′′ ≥ θA′) + µ (θA ≥ θA′ ≥ θA′′)

This can be rewritten as:

µ (θA ≥ max {θA′ , θA′′}) + µ (θA′′ ≥ θA ≥ θA′)

= µ (θA′′ ≥ θA ≥ θA′) + µ (θA ≥ θA′′ ≥ θA′) + µ (θA ≥ θA′ ≥ θA′′) .

This is equivalent to:

µ (θA ≥ max {θA′ , θA′′}) = µ (θA ≥ θA′)− µ (θA′′ ≥ θA ≥ θA′) .

Reasoning analogously, we obtain the following four equations:

µ (θA ≥ max {θA′ , θA′′}) = µ (θA ≥ θA′)− µ (θA′′ ≥ θA ≥ θA′)

µ (θA ≥ max {θA′ , θA′′}) = µ (θA ≥ θA′′)− µ (θA′ ≥ θA ≥ θA′′)

µ (θA ≤ min {θA′ , θA′′}) = µ (θA ≤ θA′)− µ (θA′′ ≤ θA ≤ θA′)

µ (θA ≤ min {θA′ , θA′′}) = µ (θA ≤ θA′′)− µ (θA′ ≤ θA ≤ θA′′)
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Then condition (i) can be rewritten as the following two inequalities:

µ (θA ≥ θA′′)− µ (θA′ ≥ θA ≥ θA′′)
µ (θA ≤ θA′′)− µ (θA′ ≤ θA ≤ θA′′)

>
µ (θA′ ≥ θA ≥ θA′′)
µ (θA′′ ≥ θA ≥ θA′)

(8)

µ (θA ≥ θA′)− µ (θA′′ ≥ θA ≥ θA′)
µ (θA ≤ θA′)− µ (θA′′ ≤ θA ≤ θA′)

>
µ (θA′′ ≥ θA ≥ θA′)
µ (θA′ ≥ θA ≥ θA′′)

. (9)

Inequality (8) can be expressed as any of the following equivalent inequalities:

µ (θA ≥ θA′′)
µ (θA′ ≥ θA ≥ θA′′)

>
µ (θA ≤ θA′′)

µ (θA′ ≤ θA ≤ θA′′)
µ (θA′′ ≥ θA ≥ θA′)
µ (θA′ ≥ θA ≥ θA′′)

>
1− µ (θA ≥ θA′′)
µ (θA ≥ θA′′)

µ (θA′′ ≥ θA ≥ θA′)
µ (θA′′ ≥ θA)

>
µ (θA′ ≥ θA ≥ θA′′)

µ (θA ≥ θA′′)
µ (θA ≥ θA′ | θA′′ ≥ θA) > µ (θA′ ≥ θA | θA ≥ θA′′) .

This is the first inequality in condition (ii). Similarly, inequality (9) can be rewritten as the second inequality
in condition (ii).

We now prove that (ii) and (iii) are equivalent. First observe that the first inequality in (ii) is equivalent
to the second inequality in (iii) through the following steps:

µ (θA′′ ≥ θA ≥ θA′)
µ (θA′′ ≥ θA)

>
µ (θA′ ≥ θA ≥ θA′′)

µ (θA ≥ θA′′)
µ (θA ≥ θA′′)
µ (θA′′ ≥ θA)

>
µ (θA′ ≥ θA ≥ θA′′)
µ (θA′′ ≥ θA ≥ θA′)

µ (θA′′ ≥ θA)
µ (θA ≥ θA′′)

<
µ (θA′′ ≥ θA ≥ θA′)
µ (θA′ ≥ θA ≥ θA′′)

1− µ (θA ≥ θA′′)
µ (θA ≥ θA′′)

<
µ (θA′′ ≥ θA ≥ θA′)
µ (θA′ ≥ θA ≥ θA′′)

1
µ (θA ≥ θA′′)

− 1 <
µ (θA′′ ≥ θA ≥ θA′)
µ (θA′ ≥ θA ≥ θA′′)

1
µ (θA ≥ θA′′)

<
µ (θA′′ ≥ θA ≥ θA′) + µ (θA′ ≥ θA ≥ θA′′)

µ (θA′ ≥ θA ≥ θA′′)

µ (θA ≥ θA′′) >
µ (θA′ ≥ θA ≥ θA′′)

µ (θA′′ ≥ θA ≥ θA′) + µ (θA′ ≥ θA ≥ θA′′)
.

Similarly, the second inequality in condition (ii) is equivalent to the first inequality in condition (iii).

A.8 Proof of Lemma 1

Without loss of generality, consider the case x = 2. Let

αI = P
(

#{j 6= i : 2 ∈ s∗I(θk)} > I − 1
2

∣∣∣∣#{j 6= i : 1 ∈ s∗I(θk)} =
I − 1

2

)
.

and
βI = P

(
#{j 6= i : 2 ∈ s∗I(θk)} < I − 1

2

∣∣∣∣#{j 6= i : 1 ∈ s∗I(θk)} =
I − 1

2

)
.
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By the full support assumption, the conditional probability of being pivotal on issue 2 when pivotal on issue
1 vanishes, so αI + βI → 1.

Fix a voter i with type θ and consider a ballot A ⊆ {1} which does not include 2. The incentive condition
for {2} being a better reply than {2} ∪A to the strategy s∗I is:

αIθ12 + βIθ2 + (1− αI − βI)θ2∪A ≥ αIθ1 + βIθ∅ + (1− αI − βI)θA.

Passing to a subsequence if necessary, there exists an α such that αI → α. The incentive inequality can be
rewritten as

αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅ + ∆I

where
∆I = [αI − α](θ1 − θ12) + [βI − (1− α)](θ∅ − θ2) + [1− αI − βI ](θA − θ2∪A).

However, ∆I → 0. From here, we can replicate the arguments which conclude the proof of Proposition 5 to
conclude that, at the limit, the set of types which support issue 2 is characterized by the inequality

αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅.

A.9 Proof of Propostion 8

Suppose ε < 1
16 . Let µ be any density in the class described in Example 1. We first prove that there must

exist be at least a single issue which exhibits conditional uncertainty.

Lemma 8. For any density in C, there is no sequence of equilibria that exhibits conditional certainty.

Proof. To see that {1, 2} cannot be conditionally certain, observe that

µ(θ12 ≥ max{θ1, θ2})
µ(θ12 ≤ min{θ1, θ2})

≤
1
4 + ε
1
4 − ε

.

For small ε, this ratio approximates one. On the other hand,

µ(θ2 ≥ θ12 ≥ θ1)
µ(θ1 ≥ θ12 ≥ θ2)

≥
1
2 − ε
ε

.

For small ε, this ratio becomes arbitrarily large. This precludes the required inequality the necessity direction
of Proposition 7 for A = {1, 2}. An entirely similar argument proves that the inequality also fails for
A = {1}, {2}, ∅. By Proposition 7, there cannot be an equilibrium with conditional certainty.

By Lemma 8, we can assume that there is some issue with conditional uncertainty. We now prove that
this implies the other issue must also be conditionally uncertain.

Lemma 9. For every density in C, all convergent sequences of equilibria exhibit conditional uncertainty on
both issues.

Proof. The proof shows that assuming one issue is conditionally certain while the other is conditionally un-
certain leads to a contradiction. So either both issues are conditionally certain or both issues are conditionally
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uncertain. By Lemma 8, it must be the latter case. We now demonstrate that if issue 1 is conditionally
uncertain, then issue 2 cannot be conditionally certain to pass. The other cases can be argued symmetrically.

So, suppose issue 2 is conditionally certain to pass. Recall µ∗A denotes the probability that an anonymous
voter submits the ballot A when playing the limit strategy s∗. Since 2 is conditionally certain to pass,
µ∗12
µ∗∅
≥ µ∗1

µ∗2
. Since 1 is conditionally uncertain, it is not conditionally certain to fail. We therefore conclude

µ∗12
µ∗∅
≥ µ∗2

µ∗1
. So, we have the following inequality:

µ∗12

µ∗∅
≥ max

{
µ∗1
µ∗2
,
µ∗2
µ∗1

}
, (10)

In view of Proposition 5 and Lemma 1, there exists some α ∈ (0, 1) such that the following describes the
limit strategy in terms of types:

s∗(θ) =



{1, 2} if θ12 ≥ θ2 and αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅

{1} if θ12 ≥ θ2 and αθ12 + (1− α)θ2 ≤ αθ1 + (1− α)θ∅

{2} if θ12 ≤ θ2 and αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅

∅ if θ12 ≤ θ2 and αθ12 + (1− α)θ2 ≤ αθ1 + (1− α)θ∅

Let

ϕ12(α) = µ(αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅ | θ12 ≥ θ1 ≥ θ∅ ≥ θ2)

ϕ∅(α) = µ(αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅ | θ∅ ≥ θ2 ≥ θ12 ≥ θ1).

Observe that, since µ has full support and admits a density, ϕ12 and ϕ∅ are increasing and continuous
functions with ϕ12(0) = ϕ∅(0) = 0 and ϕ12(1) = ϕ∅(1) = 1.

Now we can rewrite the limit probability of voting for both issues as:

µ∗12 = µ(θ12 ≥ θ2) · µ(αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅ | θ12 ≥ θ2)

≤ µ(θ12 ≥ θ1 ≥ θ∅ ≥ θ2)µ(αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅ | θ12 ≥ θ1 ≥ θ∅ ≥ θ2) + ε

=
1
4
ϕ12(α) + ε.

Likewise, the limit probability of voting down on both issues can be rewritten as:

µ∗∅ = µ(θ12 ≤ θ2) · µ(αθ12 + (1− α)θ2 ≤ αθ1 + (1− α)θ∅ | θ2 ≥ θ12)

≥ µ(θ1 ≥ θ∅ ≥ θ2 ≥ θ12)µ(αθ12 + (1− α)θ2 ≤ αθ1 + (1− α)θ∅ | θ1 ≥ θ∅ ≥ θ2 ≥ θ12)

+ µ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1)µ(αθ12 + (1− α)θ2 ≤ αθ1 + (1− α)θ∅ | θ∅ ≥ θ2 ≥ θ12 ≥ θ1)

+ µ(θ2 ≥ θ12 ≥ θ1 ≥ θ∅)µ(αθ12 + (1− α)θ2 ≤ αθ1 + (1− α)θ∅ | θ2 ≥ θ12 ≥ θ1 ≥ θ∅)

= µ(θ1 ≥ θ∅ ≥ θ2 ≥ θ12) + µ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1)(1− ϕ∅(α))

≥ 1
4

+
1
4

(1− ϕ∅(α))− ε

So
µ∗12

µ∗∅
≤

1
4ϕ12(α) + ε

1
4 + 1

4 (1− ϕ∅(α))− ε
(11)
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Inequality (10) provides that µ∗12
µ∗∅
≥ µ∗2

µ∗1
. So, (11) implies:

µ∗2
µ∗1
≤

1
4ϕ12(α) + ε

1
4 + 1

4 (1− ϕ∅(α))− ε
(12)

Inequality (10) provides that µ∗12
µ∗∅

is larger than a fraction and its reciprocal. So we have µ∗12
µ∗∅
≥ 1. Therefore

(11) also implies:

1
4
ϕ12(α) + ε ≥ 1

4
+

1
4

(1− ϕ∅(α))− ε

ϕ12(α) ≥ 2− ϕ0(α)− 8ε

ϕ12(α) > 1− 8ε. (13)

Arguing symmetrically,

1
4
ϕ12(α) + ε ≥ 1

4
+

1
4

(1− ϕ∅(α))− ε

ϕ12(α) ≥ 2− ϕ0(α)− 8ε

ϕ0 ≥ 2− ϕ12(α)− 8ε

ϕ0(α) > 1− 8ε. (14)

We can rewrite the limit probability of voting only for issue 2 as:

µ∗2 = µ(θ12 ≤ θ2) · µ(αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅ | θ12 ≥ θ2)

≥ µ(θ1 ≥ θ∅ ≥ θ2 ≥ θ12)µ(αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅ | θ1 ≥ θ∅ ≥ θ2 ≥ θ12)

+ µ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1)µ(αθ12 + (1− α)θ2 ≥ αθ1 + (1− α)θ∅ | θ∅ ≥ θ2 ≥ θ12 ≥ θ1)

+ µ(θ2 ≥ θ12 ≥ θ1 ≥ θ∅)µ(αθ12 + (1− α)θ2 ≤ αθ1 + (1− α)θ∅ | θ2 ≥ θ12 ≥ θ1 ≥ θ∅)

= µ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1)ϕ∅(α) + µ(θ2 ≥ θ12 ≥ θ1 ≥ θ∅)

≥ 1
4
ϕ0(α) +

1
4
− ε.

Similarly, rewriting the probability of voting only for issue 1:

µ∗1 ≤
1
4

(1− ϕ12(α)) + ε.

So,
µ∗2
µ∗1
≥

1
4ϕ0(α) + 1

4 − ε
1
4 (1− ϕ12(α)) + ε

(15)

Combining (12) and (15):

1
4ϕ12(α) + ε

1
4 + 1

4 (1− ϕ∅(α))− ε
≥

1
4ϕ0(α) + 1

4 − ε
1
4 (1− ϕ12(α)) + ε

.

This can be rewritten as

(ϕ12(α) + 4ε)(1− ϕ12(α) + 4ε) ≥ (ϕ0(α) + 1− 4ε)(2− ϕ0(α)− 4ε). (16)
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At the same time, recalling earlier inequalities:

ϕ12(α) + 4ε < 1 + 4ε

< 2− 12ε, since ε < 1
16

< ϕ0(α) + 1− 4ε, by (14).

And:

1− ϕ12(α) + 4ε < 1− (1− 8ε) + 4ε, by (13)

= 12ε

< 1− 4ε, since ε < 1
16

< 2− ϕ0(α)− 4ε.

But the prior two series of inequalities contradict (16), since they imply the left hand side of (16) is the
product of strictly smaller positive quantities than those in the product on the right hand side (16).

We will now prove that if there is conditional uncertainty on both issues, then there is unconditional
uncertainty on both issues. Given Lemma 9, this will suffice to show that there is unconditional uncertainty
on both issues for every density in C.

For notational ease, we now define the following. Let

µI(x|x′) = µ (x ∈ sI (θi) | x′ ∈ sI (θi))

and
µI(x|¬x′) = µ (x ∈ sI (θi) | x′ /∈ sI (θi)) .

Let
µI(x) = µ (x ∈ sI (θi)) .

Lemma 10. Issue x is conditionally uncertain if and only if

lim
I→∞

∣∣∣√(I − 1)
(
µI(x|x′) + µI(x|¬x′)− 1

)∣∣∣ <∞.
Proof. Take x = 2; the case x = 1 is identical. Recall the two arrays defined in the proof of Proposition 6,
rowwise independent binary random variables Y Ii and ZIi whose success probabilities are µ(2 ∈ sI(θi)|1 ∈
sI(θI)) and µ(2 ∈ sI(θi)|1 /∈ sI(θI)). In Lemma 6 of that proof, we demonstrated that the conditional

distribution of the vote count on issue 2 is equal to the distribution of
∑ I−1

2
i=1 Y

Ii +
∑ I−1

2
i=1 Z

Ii. Let W Ii =
Y Ii +ZIi. As Y Ii and ZIi are mutually independent, the array W Ii defines a rowwise independent array of
random variables. We can write that

P
(

#{j 6= i : 2 ∈ s∗I(θj)} >
I − 1

2

∣∣∣∣#{j 6= i : 1 ∈ s∗I(θj)} =
I − 1

2

)
= P

 I−1
2∑
i=1

W Ii >
I − 1

2


Recalling the definition of the binary random variables Y Ii (θ) and ZIi (θ) we have that

E
(
W Ii

)
= µI(2|1) + µI(2|¬1)
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and
Var

(
W Ii

)
= µI(2|1)

[
1− µI(2|1)

]
+ µI(2|¬1)

[
1− µI(2|¬1)

]
.

Applying the Central Limit Theorem for triangular arrays:

P



I−1
2∑
i=1

W Ii −
(
I−1

2

) [
µI(2|1) + µI(2|¬1)

]
√(

I−1
2

)
(µI(2|1) [1− µI(2|1)] + µI(2|¬1) [1− µI(2|¬1)])

< y

 −→ Φ (y) , (17)

where Φ denotes the standard normal cumulative distribution function.
The conditional probability that issue i fails is P

(∑ I−1
2

i=1 W
Ii < I−1

2

)
. By manipulation of (17), this

converges to:

Φ

(
1
2
·

√
(I − 1)

(
1−

(
µI(2|1) + µI(2|¬1)

))√
µI(2|1) [1− µI(2|1)] + µI(2|¬1) [1− µI(2|¬1)]

)
.

Therefore lim
I→∞

∣∣∣√(I − 1)
(
µI(2|1) + µI(2|¬1)− 1

)∣∣∣ < ∞ is necessary and sufficient for issue 2 to be condi-
tional uncertain.

Lemma 11. Issue x is unconditionally uncertain if and only if lim
I→∞

∣∣∣√I (µIk − 1
2

)∣∣∣ <∞
Proof. Define the binary random variable

V Ii =

1 with probability µI(x)

0 with probability 1− µI(x)

with mean µI(x) and variance µI(x)
(
1− µI(x)

)
. The probability that issue k will pass (fail) is

P

(
I∑
i=1

V Iik > (<)
I

2

)
.

Arguing as in the proof of Lemma 10, we have that the asymptotic (unconditional) probability that issue x
will pass is equal to

Φ

( √
I
(

1
2 − µ

I(x)
)√

µI(x) (1− µI(x))

)
.

Therefore
lim
I→∞

∣∣∣∣√I (1
2
− µI(x)

)∣∣∣∣ <∞
is necessary and sufficient for unconditional uncertainty.

Lemma 12. There is unconditional uncertainty for both issues if and only if there is conditional uncertainty
for both issues
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Proof. Let

xI = µI(1) aI = µI(1|2)

yI = µI(2) bI = µI(1|¬2)

cI = µI(2|1)

dI = µI(2|¬1)

We have a system of two equations with two unknowns, xI and yI :

xI = aIyI + bI
(
1− yI

)
(18)

yI = cIxI + dI
(
1− xI

)
(19)

The corresponding solutions for x and y are:

xI =
(aI − bI)dI + bI

1− (aI − bI)(cI − dI)
(20)

yI =
(cI − dI)bI + dI

1− (cI − dI)(aI − bI)
. (21)

We will first prove that if there is conditional uncertainty on both issues, then there must be unconditional
uncertainty on both. Subtracting one half from both sides in Equations (20) and (21) yields, after some
manipulation:

xI − 1
2

=
1
2

(bI − aI)(1− (cI + dI)) + (1− (aI + bI))
1− (aI − bI)(cI − dI)

(22)

yI − 1
2

=
1
2

(dI − cI)(1− (aI + bI)) + (1− (cI + dI))
1− (cI − dI)(aI − bI)

. (23)

By Lemma 10, conditional uncertainty on both issues means

lim
I→∞

√
I
∣∣1− (aI + bI)

∣∣ <∞
and

lim
I→∞

√
I
∣∣1− (cI + dI)

∣∣ <∞.
Since 1− (aI − bI)(cI − dI) is uniformly bounded away from 0 and |(aI − bI)| is bounded by 1, this suffices
to show that limI→∞

√
I
∣∣xI − 1

2

∣∣ and limI→∞
√
I
∣∣xI − 1

2

∣∣ given the expressions in (22) and (23) are both
finite. By Lemma 11, this implies unconditional uncertainty on both issues.

We finally show that unconditional uncertainty on both issues implies conditional uncertainty on both.
Equations (18) and (19) imply:

xI − yI =
(
aI + bI − 1

)
yI + 2aI

(
1
2 − y

I
)

yI − xI =
(
cI + dI − 1

)
xI + 2cI

(
1
2 − x

I
)
.

42



These can be rewritten as (
aI + bI − 1

)
yI =

(
xI − 1

2

)
+ 2

(
1
2 − a

I
) (

1
2 − y

I
)(

cI + dI − 1
)
xI =

(
yI − 1

2

)
+ 2

(
1
2 − c

I
) (

1
2 − x

I
)
.

By Lemma 11, unconditional uncertainty on both issues provides limI→∞
√
I
∣∣ 1

2 − x
I
∣∣ and limI→∞

√
I
∣∣ 1

2 − y
I
∣∣

are both finite. Since both
∣∣ 1

2 − a
I
∣∣ and

∣∣ 1
2 − c

I
∣∣ are bounded by 1

2 , this suffices to show that

lim
I→∞

√
I
∣∣aI + bI − 1

∣∣ yI <∞.
By Lemma 10, this implies issue 1 is conditionally uncertain. Similarly, issue 2 is also conditionally uncertain.

A.10 Proof of Proposition 9

We first record the following lemma, which we will also use in future proofs.

Lemma 13. Suppose the support of µ is the set of supermodular types. Then for x = 1, 2:

µ(θx ≥ θ∅) ≤ µ(x ∈ s∗(θ)) ≤ µ(θx′ ≥ θ12).

Proof. Consider the case where x = 1. By Lemma 1, there exist α ∈ [0, 1] such that:

µ(1 ∈ s∗(θ)) = µ(αθ12 + (1− α)θ1 ≥ αθ2 + (1− α)θ∅)

= µ(α[θ12 + θ∅ − θ1 − θ2] ≥ θ∅ − θ1)

= µ((1− α)[θ1 + θ2 − θ12 − θ∅] ≥ θ2 − θ12).

Supermodularity implies that
θ12 + θ∅ − θ1 − θ2 ≥ 0. (24)

This provides the following inequality:

µ(1 ∈ s∗(θ)) = µ(α[θ12 + θ∅ − θ1 − θ2] ≥ θ∅ − θ1)

≥ µ(0 ≥ θ∅ − θ1)

= µ(θ1 ≥ θ∅).

Inequality (24) also provides the following inequality:

µ(1 ∈ s∗(θ)) = µ((1− α)[θ1 + θ2 − θ12 − θ∅] ≥ θ2 − θ12)

≤ µ(θ12 ≥ θ2)

= µ(θ12 ≥ θ2).

Then part (i) of the proposition follows from the first part of the inequality in Lemma 13: if

µ(x ∈ s∗(θ)) ≥ µ(θx ≥ θ∅) >
1
2
,

then the Strong Law of Large Numbers for triangular arrays implies that issue x is unconditionally certain
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to pass. Similarly, part (ii) follows from the second part of the inequality in Lemma 13.

A.11 Proof of Proposition 10

We begin by proving a useful implication of conditional certainty.

Lemma 14. If A is conditionally certain, then

µ (θA ≥ θA′)µ (θA ≥ θA′′) ≥ µ (θA′ ≥ θA)µ (θA′′ ≥ θA) .

Proof. Suppose that A is conditionally certain. By Proposition 7 and Lemma 2, we know that the following
hold:

µ (θA ≥ θA′ | θA′′ ≥ θA) ≥ µ (θA′ ≥ θA | θA ≥ θA′′) (25)

µ (θA ≥ θA′′ | θA′ ≥ θA) ≥ µ (θA′′ ≥ θA | θA ≥ θA′) . (26)

Observe that:

µ (θA ≥ θA′ | θA′′ ≥ θA) = µ (θA′′ ≥ θA | θA ≥ θA′)µ (θA ≥ θA′)µ (θA ≥ θA′′)

µ (θA′ ≥ θA | θA ≥ θA′′) = µ (θA ≥ θA′′ | θA′ ≥ θA)µ (θA′ ≥ θA)µ (θA′′ ≥ θA)

We can then rewrite (25) as:

µ (θA′′ ≥ θA | θA ≥ θA′)µ (θA ≥ θA′)µ (θA ≥ θA′′)

≥ µ (θA ≥ θA′′ | θA′ ≥ θA)µ (θA′ ≥ θA)µ (θA′′ ≥ θA)

This is equivalent to:

µ(θA′ ≥ θA)µ(θA′′ ≥ θA)
µ(θA ≥ θA′)µ(θA ≥ θA′′)

≤ µ(θA′′ ≥ θA | θA ≥ θA′)
µ(θA ≥ θA′′ | θA′ ≥ θA)

(27)

Moreover, (26) implies that

µ(θA′′ ≥ θA | θA ≥ θA′)
µ(θA ≥ θA′′ | θA′ ≥ θA)

≤ 1 (28)

Together, (27) and (28) imply
µ(θA′ ≥ θA)µ(θA′′ ≥ θA)
µ(θA ≥ θA′)µ(θA ≥ θA′′)

≤ 1

which is the desired conclusion.

Without loss of generality consider the case where the Condorcet winner is {1, 2}. We first prove
sufficiency. So, suppose that at least one issue agrees with {1, 2}. There are five cases to consider:

Case 1: {1, 2} is conditionally certain. Since issue 2 is conditionally certain to pass, by Proposition
5, 1 ∈ s∗(θ) whenever θ12 ≥ θ2. But since {1, 2} is a local Condorcet winner, µ(θ12 ≥ θ2) > 1

2 , i.e.
µ(1 ∈ s∗(θ)) > 1

2 . Then, by the Strong Law of Large Numbers for triangular arrays, issue 1 is unconditionally
certain to pass. A similar argument establishes that issue 2 is also unconditionally certain to pass. Thus
{1, 2} is unconditionally certain.
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Case 2: The bundle {1} is conditionally certain. By Lemma 14, we have

µ(θ1 ≥ θ12)µ(θ1 ≥ θ∅) ≥ µ(θ12 ≥ θ1)µ(θ∅ ≥ θ1). (29)

Since {1, 2} is a local Condorcet winner, we know µ(θ12 ≥ θ1) > 1
2 so:

µ(θ1 ≥ θ12) < µ(θ12 ≥ θ1). (30)

The in order to maintain the inequality (29), it must be that

µ(θ1 ≥ θ∅) > µ(θ∅ ≥ θ1). (31)

However, (30) and Proposition 5 imply that µ(1 ∈ s∗(θ)) > 1
2 . By the Strong Law of Large Numbers for

triangular arrays, issue 1 is unconditionally certain to pass. Similarly, (31) and Proposition 5 imply that
issue 2 is also unconditionally certain to pass.

Case 3: The bundle {2} is conditionally certain. This case can be argued similarly to Case 2.
Case 4: Issue 1 is conditionally certain to pass and issue 2 is conditionally uncertain. Recall

(22) from the proof of Lemma 12:

√
Iµ(1 ∈ s∗I(θ))−

1
2

=
1
2

√
I(bI − aI)(1− (cI + dI)) +

√
I(1− (aI + bI))

1− (aI − bI)(cI − dI)

where

aI = µ(1 ∈ s∗I(θ) | 2 ∈ s∗I(θ))

bI = µ(1 ∈ s∗I(θ) | 2 /∈ s∗I(θ))

cI = µ(2 ∈ s∗I(θ) | 1 ∈ s∗I(θ))

dI = µ(2 ∈ s∗I(θ) | 1 /∈ s∗I(θ)).

By Lemma 10, we have lim
√
I(1 − (cI + dI)) < ∞ since issue 2 is conditionally uncertain. Similarly,

lim
√
I(1− (aI + bI)) = ∞. Since 1− (aI − bI)(cI − dI) is uniformly bounded away from 0, this suffices to

prove
√
Iµ(1 ∈ s∗I(θ))− 1

2 →∞. Then by Lemma 11, we conclude that issue 1 is unconditionally certain to
pass. The argument that issue 2 is also unconditionally certain to pass is symmetric.

Case 5: Issue 2 is conditionally certain to pass and issue 1 is conditionally uncertain. This
case can be argued similarly to Case 4.

Now to prove necessity, we will show that the nonexistence of any issue satisfying (i) or (ii) implies that
{1, 2} cannot be conditionally certain. So, suppose either both issues are conditionally uncertain or that one
issue is conditionally certain to fail.

Case 6: Both issues are conditionally uncertain. Then, by Lemma 12, both issues are also
unconditionally uncertain. So {1, 2} is not unconditionally certain.

Case 7: Issue 1 is conditionally certain to fail and issue 2 is conditionally uncertain. This case
can be argued the same way that Case 4 but noting that Lemma 10 gives that lim

√
I
(
1−

(
aI + bI

))
= −∞

when issue 1 is conditionally certain to fail so (22) gives that lim
√
I
(
µ (1 ∈ s∗I (θ))− 1

2

)
→ −∞. Then by

Lemma 11, issue 1 is unconditionally certain to fail.
Case 8: Issue 2 is conditionally certain to fail and issue 1 is conditionally uncertain. This

can be argued similarly to Case 7.
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A.12 Proof of Proposition 11

Without loss of generality, assume A = ∅ is the local Condorcet loser. First, observe that if both issues
are conditionally uncertain, Lemma 12 implies there is no unconditionally certain bundle. In particular, ∅
cannot be unconditionally certain.

We next argue that if either issue is conditionally certain to fail, then ∅ cannot be unconditionally
certain. So, suppose issue 1 is conditionally certain to fail, Proposition 5 implies 2 ∈ s∗(θ) if θ2 > θ∅.
However, since ∅ is a local Condorcet loser, µ(θ2 > θ∅) > 1

2 . By the Strong Law of Large Numbers for
triangular arrays, this means issue 2 is unconditionally certain to pass. A symmetric argument holds if issue
2 is conditionally certain to fail. So, we can now assume without loss of generality that there is at least one
issue that is conditionally certain to pass, and that the other issue is either conditionally certain to pass or
is conditionally uncertain. Consider the case where issue 1 is conditionally certain to pass; the argument for
issue 2 is identical.

Case 1: Issue 2 is conditionally certain to pass. Then {1, 2} is conditionally certain. Now,
by way of contradiction, suppose ∅ is unconditionally certain. So µ(1 ∈ s∗(θ)) ≤ 1

2 . By Proposition 5,
µ(θ1 ≥ θ12) ≥ 1

2 ≥ µ(θ12 ≥ θ1) because issue 2 is conditionally certain to pass. Symmetrically, we can also
conclude µ(θ2 ≥ θ12) ≥ 1

2 ≥ µ(θ12 ≥ θ2). Then

µ(θ1 ≥ θ12)µ(θ2 ≥ θ12) ≥ µ(θ12 ≥ θ1)µ(θ12 ≥ θ2).

At the same time, the fact {1, 2} is conditionally certain also implies, through Lemma 14 in the proof of
Proposition 10, that

µ(θ1 ≥ θ12)µ(θ2 ≥ θ12) ≤ µ(θ12 ≥ θ1)µ(θ12 ≥ θ2).

The only way to maintain the prior two inequalities is for µ(θ1 ≥ θ12) = 1
2 and µ(θ1 ≥ θ12) = 1

2 . But then
the Condorcet ranking �C is incomplete, contradicting the hypothesis that �C is complete.

Case 2: Issue 2 is conditionally uncertain. Since issue 1 is conditionally certain to pass, we can
replicate the argument for Case 4 in the proof of Proposition 10 verbatim, and conclude that issue 1 is
unconditionally certain to pass. Then ∅ cannot be unconditionally certain.

A.13 Proof of Proposition 12

We first record a straightforward but useful implication of quasi-separability.

Lemma 15. Suppose �C is quasi-separable. If A is a Condorcet winner, then its complement X \ A is a
Condorcet loser.

Proof. Without loss of generality, suppose {1, 2} is a Condorcet winner. Then {1, 2} �C {1}. By quasi-
separability of �C , we have {2} �C ∅. Similarly, {1, 2} �C {2} implies {1} �C ∅. Moreover, since {1, 2} is a
Condorcet winner, we have {1, 2} �C ∅. Therefore ∅ is a Condorcet loser.

To prove the Proposition, without loss of generality consider the case where {1, 2} is the Condorcet
winner. Since ∅ is the Condorcet loser, then it cannot be conditionally certain. To see this, observe that the
necessary inequalities in part (iii) of Lemma 2 are impossible because both µ(θ∅ ≥ θ1) and µ(θ∅ ≥ θ2) are
strictly less than one half, while one of the ratios on the right hand sides of the inequality must be weakly
greater than one half. But since there is conditional certainty on both issues and ∅ is not conditionally
certain, one of the issues must be conditionally certain to pass. Then by Proposition 10, this implies that
{1, 2} is conditionally certain.
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A.14 Proof of Proposition 13

We will prove the case when types are supermodular; the argument for the submodular case then follows by
relabeling “up” to “down” on the second issue.

We first record the following implications of Lemma 13

µ(1 ∈ s∗(θ)) ≥ µ(θ1 ≥ θ∅) (32)

µ(2 ∈ s∗(θ)) ≥ µ(θ2 ≥ θ∅) (33)

µ(1 ∈ s∗(θ)) ≤ µ(θ2 ≥ θ12) (34)

µ(2 ∈ s∗(θ)) ≤ µ(θ1 ≥ θ12) (35)

We now argue by cases that the Condorcet winning bundle A is a limit outcome of the election and that
it is the unique limit outcome.

Case 1: A = {1, 2}. Since {1, 2} is the Condorcet winner, we have {1, 2} �C {2}. By quasi-separability,
{1} �C ∅. Recalling the definition of the Condorcet order, we have µ(θ1 ≥ θ∅) > 1

2 . But, using (32),
this implies µ(1 ∈ s∗(θ) > 1

2 . Appealing to the Strong Law of Large Numbers for triangular arrays, this
implies issue 1 is unconditionally certain to pass. Quasi-separability of �C similarly implies {2} �C ∅, i.e.
µ(θ2 ≥ θ∅) > 1

2 . Using (33), this similarly implies issue 2 is unconditionally certain to pass. Thus {1, 2} is
the only limit outcome.

Case 2: A = {1}. Then quasi-separability of �C implies µ(θ1 ≥ θ∅) > 1
2 . By (32), we have that issue 1

is unconditionally certain to pass. Also, quasi-separability implies µ(θ∅ ≥ θ2) > 1
2 , that is µ(θ2 ≥ θ0) < 1

2 .
Then by (35), it must be that issue 2 is unconditionally certain to fail.

Case 3: A = {2}. This argument is nearly identical to Case 2, using (34) and (33).

Case 4: A = ∅. This argument is nearly identical to Case 1, using (34) and (35).
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