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Abstract

Minimum cost spanning tree problems try to connect agents e¢ ciently to a source when agents
are located at di¤erent points in space and the cost of using an edge is �xed. We examine solution
concepts to divide the common cost of connection among users and revisit the dispute between
two of the most familiar solutions: the Kar and folk solutions, both based on the familiar Shapley
value. We characterize the family of solutions corresponding to the a¢ ne combination of the Kar
and folk solutions. The weights being put on the Kar and folk solutions are related to how we share
cost in a simple two-agent problem. This family is characterized using a new property called Weak
Problem Separation that allows, under conditions, to divide the problem in two: the connection
of an agent to the source and the connection of agents to each other. New characterizations of the
Kar and folk solutions are then o¤ered. In addition, a new rule is proposed and characterized.

1 Introduction

Minimum cost spanning tree (mcst) problems study situations where a group of agents, located at
di¤erent points in space, need to be connected to a source. Agents can be connected directly to this
source or indirectly through other agents already connected. Connection costs on an edge between two
agents or between an agent and the source is a �xed cost, invariant with the number of users connecting
through it. Examples of economic situations that can be modeled as mcst problems include electricity
distribution networks as well as communication networks such as Internet, cable TV or telephone.
Finding the optimal con�guration of the network, a minimum cost spanning tree, was the focus

of the early operations research literature, and it provided e¢ cient algorithms (Kruskal (1956), Prim
(1957)).
The next task was to de�ne methods to share the common costs of these networks. Bird (1976) was

the �rst to study the problem with cooperative game theory tools. He provided a method based on
Prim�s algorithm. Dutta and Kar (2004) introduced a distinct method based on the algorithm. Their
method also satis�es a cost monotonicity property; if the cost of the edge between i and j increases,
these agents cannot bene�t from this, a property that Bird�s solution does not always satisfy. The two
methods share the unappealing characteristic that they depend heavily on the minimum cost spanning
tree and do not behave smoothly when there are more than one mcst, a clear possibility.
Two other cost sharing solutions are built around the familiar Shapley value. Kar (2002) applies

the Shapley value to the stand-alone game associated with the mcst problem, where a coalition can
only use edges between its agents to build an optimal network. This solution is known as the Kar
solution. The second method was discovered independently by Feltkamp et al. (1994) and Bergantinos
and Vidal-Puga (2007a), as well as being the average of the family of solutions proposed by Norde
et al. (2004). While there are many ways to interpret the solution, one of them consists in de�ning
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the irreducible cost matrix, which is such that the cost of the edges on the mcst remains unchanged,
while the cost on other edges is reduced up to the point where further reductions would change the
total cost to connect everybody to the source. The so-called folk solution is the Shapley value of the
stand-alone game associated with the irreducible cost matrix. Remarkably, the two solutions have
not been characterized together. However, Bergantinos and Vidal-Puga (2010) show that they can be
implemented using similar non-cooperative mechanisms.
The Kar solution has been criticized in the recent literature for two reasons: it does not always

propose a stable solution where no coalition has an incentive to quit the group and do the project on
its own, and it sometimes proposes negative cost shares.
While the �rst criticism is valid, we feel that the second one is not. In mcst problems, when an

agent i joins a coalition S, if we suppose that a coalition can only use the location of its members,
then it is possible for the cost of connecting agents in S [fig to the source to be smaller than the cost
to connect agents in S: It is natural to impose non-negativity of the cost shares for monotonic games,
since we do not want agents to pay less than their smallest incremental cost, which are all non-negative.
However, for non-monotonic games this natural lower bound is not appropriate as incremental costs
can be negative. The assumption that a coalition can only use the locations of its members is natural
when there is a notion of property rights over these locations. This is the case in many applications
of the mcst model. For example, Russian natural gas producer Gazprom sends gas to Europe through
Ukraine. In exchange for allowing European nations to reach the source of natural gas cheaply, Ukraine
is compensated with transit fees by Gazprom. Negotiations over these fees have played a role in the
many disputes between Ukraine and Gazprom over the past years.
While the folk solution o¤ers a stable and non-negative allocation, it depends only on the irreducible

cost matrix. Therefore, a large portion of the information contained in the cost matrix is lost. (See
Bogomolnaia and Moulin (2008) for a critique of this Reductionism property.) Similar criticisms can
be made of other stable allocation solutions.
This paper o¤ers a way to reconcile the two cost sharing solutions by de�ning and characterizing a

family of solutions that contains both solutions. This is done by introducing some new properties, with
the main one being the Weak Problem Separation property. Suppose that the optimal way to connect
agents is to have only one of them connected to the source, and that this edge is the most expensive of
the minimum cost spanning tree. Then, Weak Problem Separation says that we can split the problem
in two: �nding who to connect to the source and then connecting all agents together. Applying a cost
sharing solution on the mcst problem or separately on these two problems should yield the same cost
shares. This property allows one to split the problem into two simpler problems and is, thus, similar in
nature to many properties found in the cost sharing literature, most notably the Additivity property.
This property is combined with three known properties: Piecewise Linearity, Group Independence

and Symmetry; and two new ones: Independence of Irrelevant Arcs and Free Cycle Consistency.
Piecewise Linearity allows one to decompose the problem into elementary problems where edges have a
cost of 0 or 1. Group Independence says that if two groups are such that no pair of agents from di¤erent
groups gain anything from being connected directly together, then we can share cost independently on
each group. Symmetry says that if two agents are symmetric with respect to the cost of their edges,
then they should have the same cost share. Independence of Irrelevant Arcs states that if the cost of
the edge between i and j is larger then the cost to connect i to the source and the cost to connect j
to the source, then cost shares should not depend on the cost of the edge between i and j, since this
edge will never be used. Free Cycle Consistency applies when there exists a cycle of free arcs between
a group of agents. In this case, there are many di¤erent mcst. This property says that cost shares
should be the average of the cost shares when we remove, one by one, an agent from the cycle by
increasing the cost of the arcs connecting him to other agents. It is, therefore, similar in nature to the
procedure used to compute the Bird allocation when there are more than one mcst.
The set of solutions satisfying these six properties is composed of solutions that are a weighted sum

of the Kar and folk solutions. Since the weights sum to one, we actually have an a¢ ne combination
of the Kar and folk solutions, leaving only one parameter free. This parameter turns out be the cost
share in a simple two-agent problem. This not only shows clearly the di¤erence between the two rules,
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but it can also ease implementation. Once agents agree that the six properties are desirable, their
opinion of what should be the allocations in the simple two-agent problem will be enough to generate
the corresponding cost-sharing solution.
We o¤er new characterizations of the folk and Kar solutions. The folk solution is obtained by

adding one of the following properties: Core Selection, Population Monotonicity or Non-Negativity.
Core Selection assures that all cost shares are stable allocations. Population Monotonicity states that
no agent should be worse o¤ when a coalition grows. Non-Negativity prohibits subsidizing an agent.
The Kar solution is obtained by either strengthening the Weak Problem Separation property or by
adding a new property called Source Connection Appropriation, which says that if an agent who has
the smallest connection cost to the source sees that cost decrease, then he should get all of this cost
reduction.
The set also contains another natural solution, which had not been studied previously. In opposition

to the folk solution, which severely limits the ability of an agent to bene�t from his location, this new
solution gives much more credit to an agent who has an advantageous location in the network that
allows others to connect to the source at a lower cost. It is characterized by a Location Dependence
property that says that if an agent is the only one that allows others to improve on their stand-alone
connection cost, he should extract all of the surplus.
The structure of the paper is as follows. In section 2 we formally de�ne mcst problems as well as

the Kar and the folk solutions. De�nitions of the main properties used in the paper are given in section
3 together with the main theorem describing the family of solutions characterized by these properties.
Section 4 o¤ers characterizations of the Kar and folk solutions. Section 5 introduces and characterizes
a new solution in the family. Parts of the proofs are in the appendix.

2 The setting

2.1 Minimum cost spanning tree problems

Let N = f1; :::; ng be the set of agents and let 0 denote the source to which agents have to be connected.
Let N0 = N [ f0g : For any set Z; de�ne Zp as the set of all non-ordered pairs (i; j) of elements of Z:
In our context, any element (i; j) of Zp represents the edge between i and j: Let c = (cij)i;j2NP

0
be a

vector in RN
P
0

+ with cij representing the cost of edge (i; j): Let �(n) be the set of all cost vectors when
N contains n agents, with n 2 N. Let � be the set of all cost vectors, for all possible values of n. Since
c assigns cost to all edges (i; j), we often abuse language and call c a cost matrix. A minimum cost
spanning tree problem is a triple (0; c;N): Since 0 does not change, we omit it in the following and
simply identify a mcst problem as (c;N):
A spanning tree is a non-orientated graph without cycles that connects all elements of N0: A

spanning tree t is identi�ed by the set of its edges. Its associated cost is
P

e2t ce:

Let plm be a path between l and m: It is a set of K edges (ik; ik+1); with k 2 [0;K � 1] ; containing
no cycle and such that i0 = l and iK = m: Let P lm(N0) be the set of all such paths between l and
m: For a set of edges Y 2 Np

0 ; we say that Y is in S � N0 if for all (i; j) 2 Y; i; j 2 S: We say that
Y contains a cycle in S if, for all i 2 S; there exists a path pii in S that contains at least three edges
and such that all elements of pii are also in Y: We say that a path plm is a free path if ce = 0 for all
e 2 plm:
The minimum cost of connecting N to the source and the associated minimum cost spanning tree is

obtained using Prim�s algorithm, which has n steps. First, pick an edge (0; i) such that c0i � c0j for all
j 2 N . We then say that i is connected. In the second step, we choose an edge with the smallest cost
connecting an agent in Nn fig either directly to the source or to i; which is connected. We continue
until all agents are connected, at each step connecting an agent not already connected to an agent
already connected or to the source. Let C(N; c) be the associated cost. Note that the mcst might not
be unique. Let t�(c) be a minimum cost spanning tree for the cost matrix c. Let T �(c) be the set of
all minimum cost spanning trees for the cost matrix c.
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Let cS be the restriction of the cost matrix c to the coalition S0 � N0: Let C(S; c) be the cost of
the mcst of the problem (S; cS): Given these de�nitions, we say that C is the stand-alone cost function
associated with c:

2.2 Cost sharing solutions

A cost allocation y 2 Rn assigns a cost share to each agent, and the budget balance condition isP
i2N yi = C(N; c): Note that these cost shares can be negative. Since C is not necessarily monotonic,

we have ample justi�cation to subsidize an agent.
A cost sharing solution (or rule) assigns a cost allocation y(c;N) to any admissible mcst problem

(c;N): We introduce the two solutions that are the focus of the paper.
The Kar solution was explicitly de�ned and characterized in Kar (2002). It is the Shapley value of

the game C: More precisely,

yki (c;N) = Shi(C) =
X

S�Nnfig

jSj!(n� jSj � 1)!
n!

(C(S [ fig ; c)� C(S; c))

for all i 2 N; with C(;; c) = 0: See Winter (2002) for a review of the broad applications and appeal of
the Shapley value.
As mentioned in the introduction, the so-called folk solution has been obtained in di¤erent ways.

We focus on the approach of Bergantinos and Vidal-Puga (2007a), which uses the Shapley value, thus
allowing a clear comparison with the Kar solution.
From any cost matrix c; we can de�ne the irreducible cost matrix c� as follows:

c�ij = min
pij2P ij(N0)

max
e2pij

ce:

The folk solution is the Shapley value of the stand-alone cost function associated to c�; de�ned as
C�(S; c) = C(S; c�) for all S � N:
Bogomolnaia and Moulin (2008) o¤er a closed-form expression of the folk solution. Fix i and re-

arrange the cost c�ij of the n � 1 edges connecting agent i to other agents in increasing order as c�ki
such that c�1i � c�2i � ::: � c�(n�1)i : Then, the folk solution yf (N; c) can be written as

yfi (c;N) =
1

n
c�0i +

n�1X
k=1

1

k(k + 1)
min

�
c�ki ; c

�
0i

	
:

Another interpretation, found in Bergantinos and Vidal-Puga (2007b), uses the notion of an opti-
mistic game. This game assigns to any coalition S the cost of connecting its members to the source
under the assumption that agents in NnS are already connected and that agents in S can use their
locations. Formally, for any c 2 � and S � N; let �cNnS 2 RS

p
0
+ be the cost matrix such that for all

i 2 S; �cNnS0i = minj2N0nS cij and �c
NnS
ij = cij for all j 2 S: Then, the optimistic game is Co; where

Co(S; c) = C(S; �cNnS): We can then de�ne the folk solution as yf (c;N) = Sh(Co):
By contrast, the Kar solution is the Shapley value of the stand-alone game where a coalition assumes

that others are not connected and that it cannot use their locations, also called the pessimistic stand-
alone game.
Even on simple games, the two solutions often propose allocations that are quite di¤erent. Consider

the following two player example.

Example 1 N = f1; 2g ; c and c� are represented below. Agents are identi�ed in the circles and the
costs are next to the edges.
We have the following values for C(�; c) and C(�; c�):
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Figure 1: Two-agent example

S C(S; c) C(S; c�)
f1g 0 0
f2g 1 0
f1; 2g 0 0
We obtain the following allocations: yk1 (c; f1; 2g) = � 1

2 ; y
k
2 (c; f1; 2g) = 1

2 ; y
f
1 (c; f1; 2g) = 0 and

yf2 (c; f1; 2g) = 0:

3 Problem Separation and solutions satisfying it

Before introducing the main new property, we start with a new but very weak property stating that
cost shares should not depend on the cost of edges that are never used. An edge (i; j) is irrelevant if
cij > max [c0i; c0j ] : Such an edge is never used, as it is always preferable to connect agents i and j
through the source.
Let �� be set of cost matrices such that there are no irrelevant edges; i.e. cij � max [c0i; c0j ] for

all i; j 2 N: Let �c 2 �� be the cost matrix with no unused edges associated with c: For all i; j 2 N;
�cij = min [cij ;max [c0i; c0j ]] ; while �c0i = c0i for all i 2 N:
Independence of Irrelevant Edges: For any c 2 �(jN j); y(c;N) = y(�c;N):
Therefore, if a solution satisfying Independence of Irrelevant Edges is well de�ned on ��; it is also

uniquely de�ned on �: This very mild property is satis�ed by all usual cost sharing solutions.
Notice that for c 2 ��; there is always a mcst such that only one agent is connected to the source.

Therefore, the minimum cost spanning tree problem contains two sub problems: connecting one agent
to the source and connecting that agent to all others. We introduce a new property based on this
observation that we are able to split a minimum cost spanning tree problem into these two problems.
Therefore, applying a cost sharing solution to the whole problem or independently to the sub-problems
should yield the same result.
Formally, let ĉ be the source connection problem associated with c : for all i 2 N; ĉ0i = c0i; while

ĉij = 0 for all i; j 2 N: Then, all that is left are the costs to connect agents to the source. The mcst is
such that one agent is connected to the source (i such that ĉ0i � ĉ0j for all j 2 N) and all others are
connected to him (at no cost since ĉij = 0 for all i; j 2 N):
Let ~c be the agent connection problem associated with c : for all i; j 2 N; ~cij = cij ; while ~c0i =

maxe2NP
0
ce for all i 2 N: Then, all agents have the same (high) cost to connect to the source, so

the mcst is such that only one (random) agent is connected to the source, and all other agents are
connected through this agent.
We have this relationship between stand alone costs on c; ĉ and ~c :

Lemma 1 For all c 2 ��(jN j) and S � N; C(S; c) = C(S; ĉ) + C(S; ~c)�maxe2NP
0
ce:
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Proof. Since for all c 2 �� there is always a mcst such that only one agent is connected to the source,
this is also true for all cS ; with S � N: Then, there is always a mcst for the problem (cS ; S) such that
one agent is connected to the source and all other agents are connected to this agent. Let wS be (one
of) the cheapest way to connect agents in S using only the edges between agents in S (not using the
source). Therefore, C(S; c) = mini2S c0i +

P
e2wS ce:

Consider now the cost matrix ĉ: Clearly, C(S; ĉ) = mini2S ĉ0i = mini2S c0i: Consider the cost
matrix ~c: There always is a mcst for the problem (~cS ; S) such that one agent is connected to the source
and all other agents are connected to this agent. Therefore, C(S; ~c) = maxe2NP

0
ce +

P
e2wS ce:

Therefore, C(S; ĉ) + C(S; ~c) � maxe2NP
0
ce = mini2S c0i + maxe2NP

0
ce +

P
e2wS ce � maxe2NP

0
ce

which simpli�es to mini2S c0i +
P

e2wS ce: Therefore, C(S; c) = C(S; ĉ) + C(S; ~c)�maxe2NP
0
ce:

Since we have this relationship between a mcst problem and its associated source connection and
agent connection problems, it becomes natural to introduce a property linking the cost shares of the
mcst problem to those of the source connection and agent connection problems.
Problem Separation: For any c 2 ��(jN j); yi(c;N) = yi(ĉ; N) + yi(~c;N)� 1

jN j maxe2NP
0
ce for all

i 2 N:
This property, however, might be too strong. In fact, the folk solution does not satisfy it. While

we have the relationship of Lemma 1, notice that in both the source connection and agent connection
problems, we can �nd the optimal tree by connecting an agent to the source and all others through
that agent. While for any c 2 �� there exists such an optimal tree, we will limit the scope of Problem
Separation to a subset of problems where it is natural to connect only one agent to the source. This
case is as follows: suppose that the smallest cost to connect an agent to the source is x: If for any pair
of agents i; j 2 N; we can construct a path pij in N such that the cost of all edges is no larger than
x, then clearly the optimal way to go is to connect only one agent to the source. In many examples
associated to mcst problems, it is expected that costs to connect to the source are large compared to
costs to connect agents between themselves.1

Weak Problem Separation: For any c 2 ��(jN j); if ce � mini2N c0i for all e 2 t�(c); all t� 2 T �(c);
then yi(c;N) = yi(ĉ; N) + yi(~c;N)� 1

jN j maxe2NP
0
ce for all i 2 N:

We therefore restrict the scope of Problem Separation to the set of problems where there is no edge
used in a mcst that is more expensive than the cheapest edge connecting an agent to the source.
Weak Problem Separation and Independence of Irrelevant Edges will be used with four other

properties, with the next three being already known in the literature.
We use a symmetry property, found in Bergantinos and Vidal-Puga (2009) and Bogomolnaia and

Moulin (2008):
Symmetry: For any c 2 �(jN j); if i; j are such that cik = cjk for all k 2 N0n fi; jg ; then

yi(c;N) = yj(c;N):
We also use one of the properties used to characterize the Kar solution (Kar (2002)), that says that

if we can split our agents into two groups that can be connected independently to the source, then we
can do the cost sharing separately on these two groups. More precisely, two groups S and NnS can
be connected independently to the source if for all i 2 S and j 2 NnS; cij � max [c0i; c0j ] : Then, it
is always as costly to connect two agents in distinct groups directly one to the other than to connect
them both to the source.
Group Independence: For any c 2 �(jN j); if S � N is such that for all i 2 S and j 2 NnS;

cij � max [c0i; c0j ] ; then, yi(c;N) =
�

yi(c
S ; S) if i 2 S

yi(c
NnS ; NnS) if i 2 NnS :

Kar (2002) actually uses a weaker version, where S and NnS are considered distinct if for all
i 2 S and j 2 NnS; cij > max [c0i; c0j ] : Removing the strict inequality adds the case where we are
indi¤erent between connecting agents from distinct groups to each other or independently. The mere
fact that the groups can be connected independently seems a su¢ cient reason to consider the groups

1 In their study of Monotonicity and Ranking properties, Bogomolnaia and Moulin (2008) use a stronger but similar
restriction. They apply their properties to the set of cost matrices such that for all i; j 2 N; cij � mink2N c0k: That is,
they suppose that all connection costs between agents are lower than all connection costs to the source.
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as independent.
Note that when we apply Group Independence to a problem (c;N) with c 2 ��(N); there is no edge

(i; j) such that cij > max [c0i; c0j ] : Groups S and NnS are considered independent if for all i 2 S
and j 2 NnS; cij = max [c0i; c0j ] : Then we are indi¤erent between connecting agents in S alone or
with agents in NnS: More importantly, even in this case, there is no gain for coalition S (or any of
its subsets) to cooperate with agents in NnS (or any of its subsets); which justi�es their cost shares
being computed independently.
Next, we de�ne Piecewise Linearity, which says that if we can decompose a cost matrix into

submatrices where the cost of all edges are ordered in the same manner as the original matrix, then
the cost allocation on the original cost matrix should equal the sum of the cost allocations on the
submatrices. This property (or similar versions), a weaker version than the classical Additivity property
in the general setting, has been used in Branzei et al. (2004), Tijs et al. (2005, 2006), Bergantinos and
Vidal-Puga (2009) and Bogomolnaia and Moulin (2008). Piecewise Linearity generates a rich class of
solutions having a simple structure. Cost shares can be de�ned on simple elementary matrices where
costs of all edges are either 0 or 1, making it particularly appealing. In addition, many normative
properties easily de�ned on those elementary matrices automatically extend to arbitrary matrices.
To formally de�ne the Piecewise Linearity property we need the following notation. Suppose

N = f1; :::; ng and denote arbitrarily the p = n(n+1)
2 distinct edges in NP

0 ; such that c = (ce1 ; :::; cep):
For any permutation � of f1; :::; pg ; de�ne K�(n) = fc 2 �(n) j ce�(1) � ce�(2) � ::: � ce�(p)g to be the
cone in �(n) containing all cost matrices with a given increasing ordering of connection costs. Note
that �(n) = [K�(n):
Piecewise Linearity: a cost sharing solution y is piecewise linear if it is linear in K� for all �:
More precisely, denote by �e the set of elementary cost matrices where all connection costs are

either 0 or 1 : �e(jN j) =
�
c 2 �(jN j) : ce 2 f0; 1g for all e 2 NP

0

	
:

For any cone K�(jN j) and any k 2 f1; :::; pg ; let bk 2 �e(jN j) be such that bke�(1) = ::: = b
k
e�(k�1)

= 0

while bk
e�(k)

= ::: = bk
e�(p)

= 1: Then, a cost sharing solution is piecewise linear if

y(c;N) =

pX
k=1

(ce�(k) � ce�(k�1)) y(bk; N) for any � and any c 2 K�(jN j):

Therefore, if a solution satisfying Piecewise Linearity is well de�ned on �e; it is also uniquely de�ned
on �: Let y be a solution de�ned over �e. The piecewise linear extension of y is a solution yL such
that for all c 2 �; yL(c;N) =

Pp
k=1 (ce�(k) � ce�(k�1)) y(bk; N).

Having de�ned the set of elementary matrices, we de�ne the subsets of elementary matrices that
correspond to source connection and agent connection problems. The set of elementary cost matrices
generating source connection problems is �̂e, the set of elementary matrices c with no irrelevant edges
and such that cij = 0 for all i; j 2 N: The set of elementary cost matrices generating agent connection
problems is ~�e, the set of elementary matrices c with no irrelevant edges and such that c0i = 1 for all
i 2 N:
We introduce a �nal property that puts restrictions on how cost sharing solutions should behave in

presence of free cycles. Suppose that because many edges have a cost of zero, there exist many di¤erent
mcst t�: The union of those trees contains at least one cycle such that all edges in the cycle are free.
Then, Free Cycle Consistency says that cost shares for c should be the average of the cost shares when
we remove, one by one, an agent from the cycle, replacing the costs of its edges connecting him to
others in the cycle by the next highest cost (with an adjustment made to maintain budget balance).
If the free cycle contains m agents, there are multiple mcst that all contain m�1 free arcs. Free Cycle
Consistency is somewhat similar to the procedure used to compute the Bird solution when there are
multiple mcst. The Bird solution takes a particular t� and assigns to each agent the cost of the edge
that connects him to the network. If there are multiple mcst, we take the average over all of them. The
procedure in Free Cycle Consistency is therefore similar, as we modify the cost matrix to eliminate
many mcst.
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We need to de�ne the following notation. Let F (c) =
�
i 2 N j there exists a free cycle pii in N

	
:

For all i 2 F (c); let F i(c) =
�
j 2 Nn fig j there exists a free cycle pii that go through j

	
:

Free Cycle Consistency: For any c 2 �(jN j); if F (c) 6= ;; then, y(c;N) =
P

j2F (c) y(c
�j ;N)��

jF (c)j
with � = mine2NP

0
ce>0

ce being the smallest positive cost in the network2 and c�i such that

c�ikl =

�
max(�; ckl) if k = i and l 2 F i(c)

ckl else
:

Compared to the problem (c;N); in all problems (c�j ; N); the cost to connect agent j goes from
0 to �: Therefore, C(N; c�j) = C(N; c)+ �: Since this is true for all j; this cost di¤erence is simply
divided equally among members of S:

~�eNC(jN j) is the set of elementary matrices c with no irrelevant edges, with c0i = 1 and such that
there are no free cycles pii in N; for all i 2 N:
Let y be a solution de�ned over ~�eNC . The cycle consistency extension of y is a solution y

C such

that for all c 2 ~�e; if F (c) 6= ;; yC(c;N) =
P

j2S y(c
�j ;N)��

jSj :

We �rst show that under these properties, a cost sharing solution is uniquely de�ned by its values
on a small subset of problems.

Lemma 2 If a solution satis�es Free Cycle Consistency, Group Independence, Weak Problem Sepa-
ration, Independence of Irrelevant Edges and Piecewise Linearity, it is uniquely de�ned by its values
on problems (c;N) with c in ~�eNC or �̂

e:

Proof. Suppose that y is uniquely de�ned for problems on ~�eNC and �̂e and satis�es Free Cycle
Consistency, Group Independence, Weak Problem Separation, Independence of Irrelevant Edges and
Piecewise Linearity.
Suppose that N = f1; :::; ng and c is an elementary cost matrix such that mini2N c0i = 1; that is

c 2 ~�e(n): If c 2 ~�eNC(n), then by assumption, y(c;N) is de�ned. If c 62 ~�eNC(n); then F (c) 6= ; and
it contains at least one free cycle. By Free Cycle Consistency, y(c;N) =

P
j2F (c) y(c

�j ;N)��
jF (c)j : We either

have that F (c�i) = ; or F (c�i) 6= ;: In the �rst case, c 2 ~�eNC(n) and y(c�i; N) is well de�ned. In the
second case, c 62 ~�eNC(n) and still contains a free cycle. By Group Independence, yi(c;N) = yi(cfig; fig)
and yj(c;N) = yj(c

Nnfig; Nn fig) for all j 2 Nn fig : The cost matrix cNnfig is in ~�e(n � 1). Since
~�e(2) is well de�ned (as there cannot be a free cycle in f1; 2g), recursively, we can �nd values for all c
in ~�e(k); k 2 N: Therefore y(c;N) is well de�ned for any c 2 ~�e(jN j):
Suppose that c 2 ��e is an elementary cost matrix such that mini2N c0i = 0: If there exists a free

path linking all agents in N; then by Weak Problem Separation, y(ĉ; N) + y(~c;N) � 1
jN j maxe2NP

0
ce;

with ĉ 2 �̂e and ~c 2 ~�e: Therefore, y(c;N) is well de�ned.
If there does not exist a free path linking all agents in N; since c 2 ��e; there exists a partition

of N;
�
N1; :::; NK

	
such that for all i 2 Nk and j 2 N l; with l 6= k; cij = 1 � max [c0i; c0j ] :

Therefore, by Group Independence, if i 2 Nk; yi(c;N) = yi(c
Nk

; Nk). By de�nition, the mcst of
problem (cN

k

; Nk) consists of picking an arc (0; i) such that i 2 argminj2Nk
c0j ; and then selecting

a free path in Nk. Therefore, we can apply Weak Problem Separation and obtain y(cN
k

; Nk) =

y(ĉN
k

; Nk) + y(~cN
k

; Nk) � 1
jNkj maxe2NP

0
ce; with ĉN

k 2 �̂e and ~cNk 2 ~�e: Therefore, y(cNk

; Nk) is
well de�ned for all k 2 1; :::;K:
Putting everything together, we have that y is uniquely de�ned on ��e: By Independence of Irrelevant

Edges, y is uniquely de�ned on �e: By Piecewise Linearity, y is uniquely de�ned on �:
This result allows us to characterize a solution by its values for problems on ~�eNC and �̂

e: Before
moving on to the main theorem, we de�ne some additional notation. Let R(c) � N be the set of agents

2 If ce = 0 for all e 2 NP
0 ; let � = 1:
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such that c0i = 1: Any c 2 �̂e(jN j) is uniquely de�ned by R(c): Let Zi(c) = fj 2 Nn fig j cij = 0g be
the set of agents to which i has a free connection:Any c 2 ~�e(jN j) is uniquely de�ned by Z1; Z2; :::; Z jN j:
Let Ni(c) = fj 2 N j there exists a free path pij in Ng : Of course, Zi(c) � Ni(c): Also, since i 2
Ni(c); we always have that Ni(c) 6= ;:
The following theorem shows that there is a family of solutions satisfying the set of properties

de�ned in the previous section. These solutions are the a¢ ne combination of the Kar and folk solutions.
We write the weights such that it depends on a, the cost share of agent 2 in Example 1. Therefore,
by determining what we deem fair as a solution in Example 1, we can determine the weight to put on
the Kar and folk solutions.

Theorem 1 A solution y satis�es Weak Problem Separation, Group Independence, Piecewise Lin-
earity, Symmetry, Free Cycle Consistency and Independence of Irrelevant Edges if and only if y =
2a
�
yk � yf

�
+ yf ; with a 2 R being the cost share of agent 2 in Example 1.

Proof. In the appendix, it is shown that all solutions of this form satisfy the six properties. By
Lemma 2, if a solution satis�es Weak Problem Separation, Group Independence, Piecewise Linearity,
Free Cycle consistency and Independence of Irrelevant Edges, it is uniquely de�ned by its values on
�̂e and ~�eNC . Therefore, the proof contains the following steps. First, we show that for c 2 �̂e; the

properties imply cost shares yai (c;N) =

8><>:
2a
jN j if i 2 R(c) and R(c) 6= N

1
jN j if R(c) = N

� jR(c)j2a
(jN j�jR(c)j)jN j if i 2 NnR(c)

; with a 2 R:

Next, we show that for c 2 ~�eNC ; the properties imply yai (~c;N) = 1
jNi(c)j+

a(jNi(c)j�2)
jNi(c)j �

���Zi��� 1� a:
Finally, we show that for any a; these cost shares are equivalent to ya = 2a

�
yk � yf

�
+ yf :

For c 2 �̂e(jN j); if R(c) = N; then C(N; c) = 1: By Symmetry and budget balance, yi(c;N) = 1
jN j

Let R ( N and cN;R 2 �e be such that cN;R0i =

�
1 if i 2 R
0 if i 2 NnR . Then, we de�ne ajN jjRj �

yi(ĉ
N;R; N) for all i 2 R: By budget balance and Symmetry, we have yi(ĉN;R; N) = � jRjajNj

jRj
jN j�jRj for

i 2 NnR:
Suppose that jN j = n: Fix i 2 N and let c 2 �e be such that

for all j; k 2 Nn fig ; cjk = 0
we have S � Nn fig such that cij = 0 if j 2 S and cij = 1 else, with jSj = m

c0j = 0 for all j 2 Nn fig ; c0i = 1:

By Weak Problem Separation, yl(c;N) = yl(ĉ; N) + yl(~c;N) � 1
n for all l 2 N; with y(ĉ; N) such

that yi(ĉ; N) = an1 and yj(ĉ; N) = �
an1
n�1 for all j 2 Nn fig :

Notice that for k 2 S [ fig and l 2 Nn (S [ fig) ; ckl � max [c0k; c0l] : Therefore, by Group Inde-
pendence, yk(c;N) = yk(cS[fig; S [ fig) for all k 2 S [ fig and yl(c;N) = yl(cNn(S[fig); Nn (S [ fig))
for all l 2 Nn (S [ fig) :
The problem (cS[fig; S [ fig) is such that cS[figkl = 0 for all k; l 2 S [ fig, cS[fig0j = 0 for j 2 S;

and cS[fig0i = 1: Therefore, yi(cS[fig; S [ fig) = am+11 and yj(cS[fig; S [ fig) = �am+1
1

m :

The problem (cNn(S[fig); Nn (S [ fig)) is such that cNn(S[fig)kl = 0 for all k; l 2 N0n (S [ fig) :
Therefore, by Symmetry, yk(cNn(S[fig); Nn (S [ fig)) = 0 for all k 2 Nn (S [ fig) :
Combining these results, we obtain

yi(~c;N) =
1

n
+ am+11 � an1

yj(~c;N) =
1

n
+

an1
n� 1 �

am+11

m
for j 2 S (1)

yj(~c;N) =
1

n
+

an1
n� 1 for j 2 Nn (S [ fig)

9



Consider c0 such that c0kl = ckl if k; l 6= 0, c00i = 0; c00j = 0 if j 2 S and c00j = 1 if j 2 Nn (S [ fig) :
By Weak Problem Separation, yl(c0; N) = yl(ĉ0; N) + yl(~c0; N)� 1

n for all l 2 N; with y(ĉ
0; N) such

that yj(ĉ0; N) = ann�m�1 if j 2 Nn (S [ fig) and yj(ĉ0; N) = �
(n�m�1)ann�m�1

m+1 for all j 2 S[fig : Also,
notice that ~c0 = ~c; so y(~c0; N) = y(~c;N):
Notice also that for j 2 Nn fig ; c0ij � max

�
c00i; c

0
0j

�
: Therefore, by Group Independence, yj(c0; N) =

yj(c
0Nnfig; Nn fig) for all j 2 Nn fig and yi(c0; N) = yi(c0fig; fig).
The problem (c0Nnfig; Nn fig) is such that c0Nnfigkl = 0 for all k; l 2 Nn fig, c0Nnfig0j = 0 for j 2 S;

and c0Nnfig0j = 1 for j 2 Nn (S [ fig) : Therefore, yj(c0Nnfig; Nn fig) = an�1n�m�1 for all j 2 Nn (S [ fig)

and yj(c0Nnfig; Nn fig) = �
(n�m�1)an�1n�m�1

m for all j 2 S:
By budget balance, yi(c0fig; fig) = c00i = 0:
Putting these results together with the values of y(~c;N) found in (1), we obtain

yi(c
0; N) = �

(n�m� 1)ann�m�1
m+ 1

+ am+11 � an1 = 0

yj(c
0; N) = �

(n�m� 1)ann�m�1
m+ 1

+
an1
n� 1 �

am+11

m
= �

(n�m� 1)an�1n�m�1
m

for j 2 S

yj(c
0; N) = ann�m�1 +

an1
n� 1 = a

n�1
n�m�1 for j 2 Nn (S [ fig)

This gives us the following three equations:

�
(n�m� 1)ann�m�1

m+ 1
+ am+11 � an1 = 0

�
(n�m� 1)ann�m�1

m+ 1
+

an1
n� 1 �

am+11

m
+
(n�m� 1)an�1n�m�1

m
= 0

ann�m�1 +
an1
n� 1 � a

n�1
n�m�1 = 0

Combining these and simplifying, we obtain

(m+ 1)

m
am+11 =

n

n� 1a
n
1 +

(n�m� 1)
m

an�1n�m�1

ann�m�1 + a
m+1
1 =

n

m+ 1
ann�m�1 +

n

n� 1a
n
1

n

m+ 1
ann�m�1 +

1

m
am+11 =

n� 1
m

an�1n�m�1

From the second equation, we obtain am+11 = n
m+1a

n
n�m�1 +

n
n�1a

n
1 � ann�m�1: Using this in the

�rst or third equation gives us

ann�m�1 +
1

n� 1a
n
1 = a

n�1
n�m�1: (2)

Reinserting this in the second equation gives

n�m� 1
m+ 1

ann�m�1 + a
n
1 = a

m+1
1 : (3)

Notice by our assumptions, 1 � m � n� 2:
In (2), let m = n� 2: We obtain

n

n� 1a
n
1 = a

n�1
1 : (4)

By iteration, we obtain
ak1 =

n

k
an1 for 2 � k � n:
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Replacing this in (3), we obtain

n�m� 1
m+ 1

ann�m�1 + a
n
1 = a

m+1
1 =

n

m+ 1
an1

which simpli�es to ann�m�1 = an1 for 1 � m � n � 2; which can be restated as an1 = ank � an for
2 � k � n� 2: It remains to show that ann�1 = an:
In (3), let m = 1: We obtain

n

n� 1a
n
1 = a

n�1
n�2:

Therefore, an�1n�2 = a
n�1
k = an�1: These results hold for any values of n; so we can conclude that for all

k � 2; 1 � l � k � 1; akl = ak: Furthermore, let a � a2: Then, by iteration on (4), we get ak = 2a
k :

Therefore, for c 2 �̂e; yai (c;N) =

8><>:
2a
jN j if i 2 R(c) and R(c) 6= N

1
jN j if R(c) = N

� jR(c)j2a
(jN j�jR(c)j)jN j if i 2 NnR(c)

; with a 2 R:

Next, we show that for ~c 2 ~�ePNC ; yai (~c;N) = 1
jN j +

a(jN j�2)
jN j �

���Zi(~c)��� 1� a; with ~�ePNC the set of
elementary matrices c with no irrelevant edges generating agent connection problems and such that it
does not contain a free cycle but, rather, contains a free path between any agent i and j: It is therefore
the subset of ~�eNC for which the cost of connecting all agents to the source is equal to 1.
For all ~c 2 ~�ePNC ; there is a unique free path p

f
ij(~c) between any agents i and j: For ~c 2 ~�ePNC ;

i; j 2 N; let N�i
j (~c) =

n
k 2 N j pfjk(~c) is in Nn fig

o
: N�i

j represents the agents to which j can connect

to freely without i: Then, for S � Nn fig ; DS
i (~c) = [j2SN�i

j (~c) represent the players in S plus the
agents k for which there is a free path pjk in Nn fig connecting it to an agent j 2 S: It represents
the set of agents to which agent i can connect freely with the help of agents in S: By de�nition,
S � DS

i (~c): Since Zi(~c) is the set of players for which the direct connection to i is free, we have that
D
Zi(~c)
i (~c) = Nn fig : Let dSi =

��DS
i

�� :
In the following, we consider c; c0 and c00 such that ~c = ~c0 = ~c00: In order to simplify, we write DS

i

and dSi instead of D
S
i (~c) and d

S
i (~c):

To make this notation clear, consider the example in Figure 2. It is such that N = f1; 2; 3; 4; 5; 6; 7g
and the free edges are represented in the �gure. Since everyone is connected and there are no free
cycles, then the cost matrix is in ~�ePNC : Consider agent 1. We have Z

1 = f2; 3; 4g and N�1
2 = f2g ;

N�1
3 = N�1

5 = f3; 5g ; N�1
4 = N�1

6 = N�1
7 = f4; 6; 7g : Therefore, we have, among others, Df2;3g

1 =

f2; 3; 5g ; Df3;4g
1 = f3; 4; 5; 6; 7g and Df2;3;4g

1 = Nn f1g :

Figure 2: Example of cost matrix in ~�ePNC :

We now return to the general case. Suppose that
��Zi(~c)�� = m and that jN j = n: Take any ordering

of the agents in Zi(~c); j1; j2; :::; jm: The proof contains m steps, one for each agent in Zi(~c):
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Step 1: Suppose that c0i = c0j1 = 0 and c0k = 1 else: By Weak Problem Separation, we have
that yi(c;N) = �a(n�2)

n + yi(~c;N) � 1
n : By de�nition of

~�ePNC ; there is only one free path in n:

Therefore, for all k 2 Dfj1g
i (c); cik � c0k: We can therefore apply Group Independence. We have

that yi(c;N) = yi

�
cNnD

fj1g
i ; NnDfj1g

i

�
: By Weak Problem Separation, yi

�
cNnD

fj1g
i ; NnDfj1g

i

�
=

�
2a
�
n�dfj1gi �1

�
�
n�dfj1gi

� + yi

�
~cNnD

fj1g
i ; NnDfj1g

i

�
� 1�

n�dfj1gi

� :
Therefore, combining these results, we obtain

yi(~c;N) = yi

�
~cNnD

fj1g
i ; NnDfj1g

i

�
+
a(n� 2)

n
�
2a
�
n� dfj1gi � 1

�
�
n� dfj1gi

� +
1

n
� 1�

n� dfj1gi

�
Step 2: De�ne c0 such that c0kl = ckl if k; l 2 N; c00i = c00j2 = 0; c

0
0k = 1 else. By de�nition, ~c

0 = ~c

and j2 =2 Dfj1g
i : Consider the problem

�
c0NnD

fj1g
i ; NnDfj1g

i

�
: By Weak Problem Separation, we have

yi

�
c0NnD

fj1g
i ; NnDfj1g

i

�
= �

a
�
n� dfj1gi � 2

�
�
n� dfj1gi

� + yi

�
~cNnD

fj1g
i ; NnDfj1g

i

�
� 1�

n� dfj1gi

� :
By the de�nition of ~�ePNC ; there is only one free path in NnD

fj1g
i : Therefore, for all k 2 Dfj2g

i (c); cik �
c0k:We can therefore apply Group Independence. Therefore, yi

�
c0NnD

fj1g
i ; NnDfj1g

i

�
= yi

�
c0NnD

fj1;j2g
i ; NnDfj1;j2g

i

�
:

By Weak Problem Separation,

yi

�
c0NnD

fj1;j2g
i ; NnDfj1;j2g

i

�
= �

2a
�
n� dfj1;j2gi � 1

�
�
n� dfj1;j2gi

� +yi

�
~cNnD

fj1;j2g
i ; NnDfj1;j2g

i

�
� 1�

n� dfj1;j2gi

� :
Combining these results, we obtain

yi

�
~cNnD

fj1g
i ; NnDfj1g

i

�
= yi

�
~cNnD

fj1;j2g
i ; NnDfj1;j2g

i

�
+
a
�
n� dfj1gi � 2

�
�
n� dfj1gi

�
�
2a
�
n� dfj1;j2gi � 1

�
�
n� dfj1;j2gi

� +
1�

n� dfj1gi

� � 1�
n� dfj1;j2gi

�
and

yi(~c;N) = yi

�
~cNnD

fj1;j2g
i ; NnDfj1;j2g

i

�
+
a(n� 2)

n
� a+ 1

n
� 1�

n� dfj1;j2gi

� :
Step l. De�ne c00 such that c00kl = ckl for k; l 2 N; c0i = c0jl = 0; c0k = 1 else: By de�nition, ~c0 = ~c

and jl =2 Dfj1;:::;jl�1g
i : Consider the problem

�
c00NnD

fj1;:::;jl�1g
i ; NnDfj1;:::;jl�1g

i

�
: By Weak Problem

Separation, we have that

yi

�
c00NnD

fj1;:::;jl�1g
i ; NnDfj1;:::;jl�1g

i

�
= �a(n� d

fj1;:::;jl�1g
i � 2)�

n� dfj1;:::;jl�1gi

� + yi

�
~cNnD

fj1;:::;jl�1g
i ; NnDfj1;:::;jl�1g

i

�

� 1�
n� dfj1;:::;jl�1gi

� :
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By de�nition of ~�ePNC ; there is only one free path in NnD
fj1;:::;jl�1g
i : Therefore, for all k 2 Dfjlg

i ; cik �

c0k: We can therefore apply Group Independence. We obtain yi

�
c00NnD

fj1;:::;jl�1g
i ; NnDfj1;:::;jl�1g

i

�
=

yi

�
c00NnD

fj1;:::;jlg
i ; NnDfj1;:::;jlg

i

�
: By Weak Problem Separation,

yi

�
c00NnD

fj1;:::;jlg
i ; NnDfj1;:::;jlg

i

�
= �

2a
�
n� dfj1;:::;jlgi � 1

�
�
n� dfj1;:::;jlgi

� + yi

�
~cNnD

fj1;:::;jlg
i ; NnDfj1;:::;jlg

i

�

� 1�
n� dfj1;:::;jlgi

� :
Combining these results, we obtain

yi

�
~cNnD

fj1;:::;jl�1g
i ; NnDfj1;:::;jl�1g

i

�
= yi

�
~cNnD

fj1;:::;jlg
i ; NnDfj1;:::;jlg

i

�
+
a
�
n� dfj1;:::;jl�1gi � 2

�
�
n� dfj1;:::;jl�1gi

�
�
2a
�
n� dfj1;:::;jlgi � 1

�
�
n� dfj1;:::;jlgi

� +
1�

n� dfj1;:::;jl�1gi

� � 1�
n� dfj1;:::;jlgi

�
and

yi(~c;N) = yi

�
~cNnD

fj1;:::;jlg
i ; NnDfj1;:::;jlg

i

�
+
a(n� 2)

n
� (l � 1)a+ 1

n
� 1�

n� dfj1;:::;jlgi

� :
Step m: By de�nition, NnDfj1;:::;jmg

i = fig and ~cNnD
fj1;:::;jmg
i is such that c0i = 1: Therefore,

yi

�
~cNnD

fj1;:::;jmg
i ; fig

�
= 1: The term 1�

n�dfj1;:::;jmg
i

� is also equal to 1. Therefore, we have that for all
~c 2 ~�ePNC

yai (~c;N) =
a(n� 2)

n
� (m� 1)a+ 1

n

=
1

jN j +
a(jN j � 2)

jN j �
���Zi��� 1� a

By Group Independence we can easily extend the result to any ~c 2 ~�eNC : We obtain

yai (~c;N) =
1

jNi(c)j
+
a(jNi(c)j � 2)

jNi(c)j
�
���Zi��� 1� a

if jNi(c)j > 1: If jNi(c)j = 1; then agent i is alone in his group. By Group Independence and budget
balance, yai (~c;N) = 1:
Finally, we prove that a solution ya that satis�es the six properties, and is thus de�ned as above

on �̂e and ~�eNC ; can be rewritten, for any c; as y
a = 2a(yk � yf ) + yf :

First, consider c 2 �̂e: We can check that yki (c;N) =

8><>:
1
jN j if i 2 R(c) and R(c) 6= N

1
jN j if R(c) = N

� jR(c)j
(jN j�jR(c)j)jN j if i 2 NnR(c)

and

yfi (c;N) =

8<:
0 if i 2 R(c) and R(c) 6= N

1
jN j if R(c) = N
0 if i 2 NnR(c)

: Therefore, for c 2 �̂e; 2a(yk(c;N)�yf (c;N))+yf (c:N) =
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8><>:
2a
jN j if i 2 R(c) and R(c) 6= N

1
jN j if R(c) = N

� jR(c)j2a
(jN j�jR(c)j)jN j if i 2 NnR(c)

= ya(c;N):

Next, consider c 2 ~�eNC :We can check that yki (c;N) = 1
jNi(c)j+

(jNi(c)j�2)
2jNi(c)j �

(jZij�1)
2 and yfi (c;N) =

1
jNi(c)j : Therefore, for c 2 ~�

e
NC ; 2a(y

k(c;N)�yf (c;N))+yf (c;N) = 1
jNi(c)j+

a(jNi(c)j�2)
jNi(c)j �

���Zi��� 1� a =
ya(c;N):
Since it has been shown that all solutions in the form 2a(yk(c;N)�yf (c;N))+yf (c;N) satisfy the

six properties and that all solutions satisfying the six properties can be written in this form, the proof
is complete.
This theorem can ease implementation among agents who do not necessarily have strong economic

backgrounds. Once they are convinced that the properties of the theorem are acceptable, we can ask
for their preferred value of a in Example 1 and obtain the corresponding cost sharing solution.
While a can take any value in R; if a < 0; then in Example 1, agent one has a cost share that

is higher than 0, his stand-alone cost. Similarly, if a > 1; it is agent 2 that has a cost share that
is higher than his stand-alone cost. In those cases, agents would be better o¤ not cooperating with
each other. This weak stability property, called Individual Rationality (or Stand-Alone property) is
formally de�ned as follows.
Individual Rationality: For any c 2 �(jN j) and i 2 N; yi(c;N) � C(fig ; c) = c0i:
Lemma A.2 in appendix shows formally that this property is satis�ed if and only if a 2 [0; 1] :

4 New characterizations of the Folk and Kar solutions

Quite obviously, the folk and Kar solutions are part of the family of solutions de�ned in the previous
section, respectively, when a = 0 and a = 1

2 : We provide new characterizations for these solutions by
adding additional properties to those presented in the previous section.
The �rst property we add is the usual Core Selection property, which assures stability. A stronger

version of Core Selection has been used by Bogomolnaia and Moulin (2008) to characterize the folk
solution.
Core Selection: for all problems (c;N) and all S � N;

P
i2S yi(c;N) � C(S; c):

Theorem 2 A solution y satis�es Weak Problem Separation, Group Independence, Piecewise Linear-
ity, Symmetry, Independence of Irrelevant Edges, Free Cycle Consistency and Core Selection if and
only if y is the folk solution.

Proof. Theorem A.1 shows that the folk solution satis�es Weak Problem Separation, Group Indepen-
dence, Piecewise Linearity, Symmetry, Independence of Irrelevant Edges and Free Cycle Consistency.
Lemma A.1 shows that the folk solution satis�es Core Selection and that the Kar solution does not
satisfy it.
Theorem 1 shows that if a solution satis�es Weak Problem Separation, Group Independence, Piece-

wise Linearity, Symmetry, Independence of Irrelevant Edges and Free Cycle consistency, then it can be
written as y = 2a

�
yk � yf

�
+ yf ; with a 2 R. Since the Kar solution does not satisfy Core Selection,

it is easy to see that any solution that puts a non-zero weight on the Kar solution will not satisfy Core
Selection. Therefore, we must have a = 0 and y = yf :
The following Corollary is obtained, as Core Selection implies Population Monotonicity (Berganti-

nos and Vidal-Puga (2007a)). Population Monotonicity requires that no agent be made worse o¤when
agents join the coalition. This eliminates possibilities that some agents would veto the addition of
members to the coalition.
Population Monotonicity: Let c 2 �(jN j) and i 2 S � N: Then, yi(c;N) � yi(cS ; S):

Corollary 1 A solution y satis�es Weak Problem Separation, Group Independence, Piecewise Linear-
ity, Symmetry, Free Cycle Consistency, Independence of Irrelevant Edges and Population Monotonicity
if and only if y is the folk solution.
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Using the same proof as for Theorem 2, we can see that the folk solution is also the only solution
in the family described in the previous section that always guarantees non-negative cost shares.
Non-Negativity: For all problems (c;N) and all i 2 N; yi(c;N) � 0:

Theorem 3 A solution y satis�es Weak Problem Separation, Group Independence, Piecewise Linear-
ity, Symmetry, Free Cycle Consistency, Independence of Irrelevant Edges and Non-Negativity if and
only if y is the folk solution.

If we compare this with other characterizations of the folk solution, we see for instance that like the
characterization found in Bogomolnaia and Moulin (2008), we use Piecewise Linearity and Symmetry,
and replace Strong Core Selection by the weaker property of Core Selection. While they use Reduction-
ism, that says that cost shares should only depend on the irreducible cost matrix, we use Weak Problem
Separation, Group Independence, Free Cycle consistency and Independence of Irrelevant Edges. This
shows how strong the Reductionism property is. Similarly, Bergantinos and Vidal-Puga (2009) char-
acterize the folk solution with Symmetry, a stronger version of Piecewise Linearity and Separability,
a stronger version of Group Independence that states that if C(S; c) + C(NnS; c) = C(N; c) then we
can compute cost shares of S and NnS independently. This is stronger than Group Independence
as it applies to cases where C(R; c) + C(T; c) > C(R [ T; c) where R � S and T � NnS; whereas
the Group Independence property only applies when two groups are completely disjoint. It seems like
this strengthening of the Group Independence axiom is signi�cant, because, in our case, we need to
compensate by adding Weak Problem Separation, Free Cycle consistency, Independence of Irrelevant
Edges and either Core Selection, Population Monotonicity or Non-Negativity.
The stronger version of Problem Separation is satis�ed by the Kar solution. It turns out that it is

the only solution in the family described in the previous section that satis�es it.

Theorem 4 A solution y satis�es Problem Separation, Group Independence, Piecewise Linearity,
Symmetry, Free Cycle Consistency and Independence of Irrelevant Edges if and only if y is the Kar
solution.

Proof. Theorem A.1 shows that the Kar solution satis�es Weak Problem Separation, Group Indepen-
dence, Piecewise Linearity, Symmetry, Independence of Irrelevant Edges and Free Cycle consistency.
Lemma A.1 shows that the Kar solution satis�es Problem Separation and that the folk solution does
not satisfy it.
Theorem 1 shows that if a solution satis�es Weak Problem Separation, Group Independence, Piece-

wise Linearity, Symmetry, Independence of Irrelevant Edges and Free Cycle consistency, then it can
be written as y = 2a

�
yk � yf

�
+ yf ; with a 2 R. Since the folk solution does not satisfy Problem

Separation, it is easy to see that any solution that puts a non-zero weight on the folk solution will not
satisfy Problem Separation. Therefore, we must have a = 1

2 and y = y
k:

We can also characterize the Kar solution by a new property called Source Connection Appropria-
tion, which says that if the agent with the lowest connection cost to the source sees this cost decrease,
then he should capture all of the cost reduction. This property makes an agent responsible for the cost
reductions generated by his location. The same proof as in the previous characterization can be used.
Source connection appropriation. If c0i � c0j for all j 2 Nn fig and c00i = c0i � x and c0e = ce

else, then yi(c0; N) = yi(c;N)� x:

Theorem 5 A solution y satis�es Weak Problem Separation, Group Independence, Piecewise Lin-
earity, Symmetry, Free Cycle Consistency, Independence of Irrelevant Edges and Source Connection
Appropriation if and only if y is the Kar solution.

The only characterization of the Kar solution appears in Kar (2002). It uses a weaker version of
Group Independence (strict inequalities) and Absence of Cross Subsidization, which together act as the
version of Group Independence used here. They are used with Equal Treatment, that says that if the
cost of the edge (i; j) changes, then the cost shares of agents i and j should change by the same amount.
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This strong property is replaced in our characterization by Piecewise Linearity, Symmetry, Free Cycle
consistency, Independence of Irrelevant Edges and either Problem Separation or the combination of
Weak Problem Separation and Source Connection Appropriation.
Comparing the characterizations of the folk and Kar solutions, we see that the folk solution is

characterized by properties that assure stability (making sure that no group wants to leave in the case
of Core Selection and that no agent will be vetoed from joining in the case of Population Monotonicity).
The Kar solution is characterized using a property that allows simpli�cation of the problem or a
property that makes the agent with the lowest connection cost to the source fully responsible for this
cost.
We now consider two properties making agents responsible for where they are located in the network.
Strict Cost Monotonicity: Suppose that cij � max [c0i; c0j ] : If c; c0 such that c0ij < cij and

c0e = ce else, then yk(c
0; N) < yk(c;N) for k 2 fi; jg :

Strict Cost Monotonicity says that for a relevant edge (i; j), if its cost decreases and the cost of all
other edge stay the same, then both agents i and j see their cost allocations strictly decrease.
Strict Ranking: Suppose that cik � cjk for all j 2 N0n fi; jg and cil < cjl for some l 2 N0n fi; jg ;

with cil < max [c0i; c0l] : Then yi(c;N) < yj(c;N):
Strong Ranking says that the location of agent i is strictly better than the location of agent j; then

the cost allocation of i is strictly less than the cost allocation of j:
Lemma A.2 in appendix shows that members of the family that satisfy these properties are such

that a > 0: Therefore, both eliminate the folk solution.
We can see that the choice between the folk and Kar solutions is essentially a choice between

stability properties and properties making agents responsible for the cost of the edges adjacent to their
locations.

5 A new solution and the Location Dependence property

Example 1 has a third natural value, a = 1: In that case, agent 1 is able to extract all of the surplus
from cooperation with agent 2. It is thus a case where we value highly the position of a player in a
network and punish severely those who are badly located, up to the point where they are just indi¤erent
between cooperating or not. It is thus the mirror image of the folk solution, which does not allow an
agent to be subsidized for his location.
A value of a = 1 generates the cost sharing solution y1 = 2yk�yf :While this looks like an unusual

solution, we know that it satis�es Weak Problem Separation, Group Independence, Piecewise Linearity,
Symmetry, Independence of Irrelevant Edges and Free Cycle consistency.
To complete the characterization, we add this property:
Location Dependence: For any c 2 �(jN j); if i 2 N is such that c0i = 0; cij = 0 for all j 2 Nn fig

and ce = � else, with � > 0; then yj(c;N) = � for all j 2 Nn fig and yi(c;N) = �(jN j � 1)�:
The property generalizes the notion that if everyone in a set of agents depends on a single agent to

improve on their stand-alone connection, then this agent should be able to extract all of the surplus
as he is in a power position.
We obtain the following characterization:

Theorem 6 A solution y satis�es Weak Problem Separation, Group Independence, Piecewise Linear-
ity, Symmetry, Free Cycle Consistency, Independence of Irrelevant Edges and Location Dependence if
and only if y = y1.

Proof. Example 1 is a case where Location Dependence applies, with two players and � = 1. It is
satis�ed only when a = 1: y1 is therefore our only candidate. Lemma A.1 shows that y1 satis�es Weak
Problem Separation, Group Independence, Piecewise Linearity, Symmetry, Independence of Irrelevant
Edges and Free Cycle Consistency. It remains to show that it satis�es Location Dependence in general.
By Piecewise Linearity, the value of � has no importance, so we set it to 1. Let c be such that

c0i = 0; cij = 0 for all j 2 Nn fig and ce = 1 else. We can apply Weak Problem Separation
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and consider the problems (ĉ; N) and (~c;N) : By Theorem 1, we have yfl (ĉ; N) = 0 for all l 2 N ,
yki (ĉ; N) = �

jN j�1
jN j and ykj (ĉ; N) =

1
jN j for all j 2 Nn fig : We also have y

f
l (~c;N) =

1
jN j for all l 2 N ,

yki (~c;N) =
1
jN j +

jN j�2
2jN j �

jN j�2
2 and ykj (~c;N) =

1
jN j +

jN j�2
2jN j for all j 2 Nn fig : Applying Weak

Problem Separation, we have yfl (c;N) = 0 for all l 2 N while yki (c;N) = �
jN j�1
2 and ykj (c;N) =

1
2 for

all j 2 Nn fig :
Since y1(c;N) = 2yk(c;N) � yf (c;N); we have y1i (c;N) = �(jN j � 1) and y1j (c;N) = 1 for all

j 2 Nn fig :
Notice that the Kar solution is the average of the folk solution where, in situations were Location

Dependence applies, we split the surplus evenly between agents in Nn fig and the solution y1 where,
in the same situation, we give all of the surplus to agent i:
In addition, we have already mentioned that if we add an Individual Rationality constraint we need

to restrict a to the set [0; 1] : Therefore, the main result of the paper can be restated as follows, provid-
ing a new justi�cation for the Kar solution: the set of rules corresponding to the convex combination of
the folk solution and y1 are the only ones satisfying Weak Problem Separation, Group Independence,
Piecewise Linearity, Symmetry, Free Cycle consistency, Independence of Irrelevant Edges and Individ-
ual Rationality. Moreover, the weight put on y1 is equal to the cost share of agent 2 in Example 1.
The average of these rules is the Kar solution.
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Appendix

Theorem A.1 All solutions de�ned in Theorem 1 satisfy Weak Problem Separation, Group Indepen-
dence, Piecewise Linearity, Symmetry, Free Cycle Consistency and Independence of Irrelevant Edges.

Proof. Notice that the weight on the Kar solution is 2a while the weight on the folk solution is 1�2a:
Let � = 2a and rewrite the family of solutions as �yk+(1� �)yf : The family of solutions is a weighted
sum of the Kar and folk solutions, with the weights summing to one, but the weights being possibly
negative. Since both solutions are budget balanced and the weights sum to one, all of the solutions of
Theorem 1 are also budget balanced.
Since the Kar and folk solutions are part of the family, we �rst show that they satisfy all properties.

This result then trivially extends to solutions ya = 2a(yk � yf ) + yf ; the weighted sums of these two
solutions.
We start with the Kar solution. Symmetry is proven in Bergantinos and Vidal-Puga (2007a). Group

Independence is proven in Kar (2002) (The proof easily extends when we remove strict inequality).
Piecewise Linearity is proven in Bogomolnaia and Moulin (2008).
We show that the Kar solution satis�es the stronger property of Problem Separation: By Lemma 1,

C(S; c) = C(S; ĉ)+C(S; ~c)�maxe2NP
0
ce: Consider a game �c such that �c0i = maxe2NP

0
ce for all i 2 N0

and ce = 0 otherwise. Then, C(S; �c) = maxe2NP
0
ce. Clearly, by Symmetry, yki (�c;N) =

1
jN j maxe2NP

0
ce

for all i 2 N:
We then have C(S; ĉ) + C(S; ~c) � C(S; �c) = C(S; c): By the properties of the Shapley value,

yki (c;N) = yki (ĉ; N) + y
k
i (~c;N) � yki (�c;N); or yki (c;N) = yki (ĉ; N) + y

k
i (~c;N) � 1

jN j maxe2NP
0
ce for

all i 2 N:
Free Cycle Consistency: We need to show that when i 2 F (c); yki (c;N) =

P
j2F (c) y

k
i (c

�j ;N)��
jF (c)j :

We have

C(T [ fig ; c�i) =
�
C(T [ fig ; c) + � if T \ Fi(c) 6= ;
C(T [ fig ; c) if T \ Fi(c) = ;

as when T \ Fi(c); the incremental cost of agent i is 0 when the cost matrix is c and � when the
cost matrix is c�j : All other costs are the same. In particular, we have C(T; c�j) = C(T; c) for all
T � Nn fig : Let C�i be a coalitional cost function such that C�i(S) = C(S; c) � C(S; c�i) for all
S � N: By the properties of the Shapley value, Sh(C(c�i; N)) = Sh(C(c;N))� Sh(C�i):
Consider Sh(C�i): By the properties of the Shapley value, Shj(C�i) = 0 if j =2 Fi(c) (as those

agents are dummies): We also have Shi(C�i) =
jFi(c)j

(jFi(c)j+1)� and Shj(C
�i) = 1

(jFi(c)j+1)jFi(c)j� for all
j 2 Fi(c): This result is obtained as the incremental cost of agent i is equal to � for all coalitions that
include members of Fi(c) and is zero for the empty set.
Notice that if j 2 Fi(c); then i 2 Fj(c) and jFi(c)j = jFj(c)j : Therefore,

P
j2F (c) Shi (C

�i) =
jFi(c)j

(jFi(c)j+1)�+ jFi(c)j
1

(jFi(c)j+1)jFi(c)j� = �:

Thus, we obtain
P

j2F (c) y
k
i (c

�j ;N)��
jF (c)j =

P
j2F (c) y

k
i (c;N)+���
jF (c)j = yki (c;N):

Independence of Irrelevant Edges: Clearly, C(S; c) = C(S; �c) for all S � N: Therefore, yk(c;N) =
yk(�c;N):
Next, we show that the folk solution satis�es all of these properties.
Piecewise Linearity and Symmetry were proved in Bergantinos and Vidal-Puga (2007a).
Weak Problem Separation: Suppose c 2 ��(jN j) such that ce � mini2N c0i for all e 2 t�; all t� 2 T �:

This implies that there is an optimal tree where one agent is connected to the source (say agent i),
and all other agents are connected, directly or not, to this agent. The cost of connection to the
source is the highest. Therefore, we obtain that c�0j = c0i for all j 2 N (as the cost of the most
expensive arc between i and j is smaller than c0i) and c�kl � c0i for all k; l 2 N: Now consider ĉ: Since
ĉkl = 0 for all k; l 2 N; ĉ�0j = c0i for all j 2 N: Consider ~c: Since c�kl � c0i for all k; l 2 N , and
neither c�kl nor ~c

�
kl depends on the values of c0j or ~c0j ; then c

�
kl = ~c�kl for all k; l 2 N: Then, clearly,

yfi (c;N) = y
f
i (ĉ

�; N) + yfi (~c
�; N)� 1

jN j maxe2NP
0
ce for all i 2 N:
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Group Independence: Bergantinos and Vidal-Puga (2007a) show that the folk solution satis�es
Separability, which says that if C(S; c) +C(NnS; c) = C(N; c); then yi(c;N) = yi(cS ; S) if i 2 S: This
is a stronger property than Group Independence.
Free Cycle Consistency: We can see that the only di¤erences between �c and �c�i are that �cij = 0

and �c�iij = � for all j 2 Fi(c): Therefore,

C(T [ fig ; c�i) =
�
C(T [ fig ; c) + � if T \ Fi(c) 6= ;
C(T [ fig ; c) if T \ Fi(c) = ;

:

The rest of the proof is identical to the one for the Kar solution.
Independence of Irrelevant Edges: Suppose c and c0 are such that cij = max (c0i; c0j) ; c0ij = cij +1

and c0e = ce otherwise. Clearly, c
� = c0

�
and therefore yf (c;N) = yf (c0; N):

It is easy to show that Weak Problem Separation, Group Independence, Piecewise Linearity,
Symmetry, Free Cycle consistency and Independence of Irrelevant Edges extend to any solution
ya = 2a(yk � yf ) + yf since they are satis�ed by both yk and yf :

Lemma A.1 i) The folk solution satis�es Core Selection, Population Monotonicity and Non-Negativity,
but it does not satisfy Problem Separation or Source Connection Appropriation.
ii) The Kar solution satis�es Problem Separation and Source Connection Appropriation, but it does

not satisfy Core Selection, Population Monotonicity or Non-Negativity.

Proof. i) Bergantinos and Vidal-Puga (2007a) show that the folk solution satis�es Core Selection,
Population Monotonicity and Non-Negativity.
Take c 2 ��e such that c0i = c0j = cij = 0 and ce = 1 else. We have yfl (c;N) = 0 if l = fi; jg and

1 else. Also, we have yfl (ĉ; N) = 0 for all l 2 N and yfl (~c;N) =
1
2 if l = fi; jg and 1 else: Therefore,

yfl (ĉ; N) + y
f
l (~c;N)� 1

jN j 6= y
f
l (c;N): Problem Separation is not satis�ed.

Consider c0 such that c0ij = 0 for all j 2 Nn fig and c0e = 1 else. We have y
f
l (c

0; N) = 1
jN j for all

l 2 N:
Consider c00 such that c000i = 0 and c00e = c0e else. We obtain y

f
l (c

00; N) = 0 for all l 2 N: Source
Connection Appropriation is not satis�ed.
ii) Problem Separation was proved in Theorem A.1.
Suppose c0i � c0j for all j 2 Nn fig ; c00i = c0i � x and c0e = ce else. Then, for all S � Nn fig ;

C(S; c0) = C(S; c) and C(S [ fig ; c0) = C(S [ fig ; c) � x: By the properties of the Shapley value,
yki (c

0; N) = yki (c;N)� x: Thus, the Kar solution satis�es Source Connection Appropriation.
Consider the problem c such that cjk = 0 for all j; k 2 N , c0j = 0 for all j 2 Nn fig and c0i = 1;

with jN j > 2: Then, yki (c;N) = 1
jN j and y

k
j (c;N) = � 1

jN j(jN j�1) for all j 2 Nn fig :We have C(S; c) = 0
for all S 6= fig : Take l 2 Nn fig : We obtain yi(c;N) + yl(c;N) = (jN j�2)

jN j(jN j�1) > 0: The Kar solution
fails to satisfy Core Selection.
Consider the addition of agent m; so that the problem becomes (cm; N [ fmg) : We have cmlm = 0

for all l 2 N , cm0m = 0 and c
m
e = ce else: Then, for all j 2 Nn fig ; yj (cm; N [ fmg) = � 1

jN j+1(jN j) <

� 1
jN j(jN j�1) = y

k
j (c;N): Population Monotonicity is not satis�ed.

Example 1 shows that the Kar solution does not satisfy Non-Negativity.

Lemma A.2 Suppose that ya(c;N) = 2ayk(c;N) + (1� 2a)yf (c;N) with a 2 R: We have that:
i) ya(c;N) satis�es Individual Rationality if and only if a 2 [0; 1] :
ii) ya(c;N) satis�es Strict Cost Monotonicity if and only if a > 0:
iii) ya(c;N) satis�es Strict Ranking if and only if a > 0:

Proof. i) Example 1 shows that Individual Rationality is not satis�ed if a < 0 or a > 1: We show
that a 2 [0; 1] is a su¢ cient condition for Individual Rationality.
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Suppose that c 2 �̂e: Suppose that i 2 R(c) and R(c) 6= N: Then, c0i = 1 and yi = 2a
jN j : We need

2a
jN j � 1: Since R(c) 6= N; we have jN j � 2: Therefore, Individual Rationality is satis�ed if a � 1 for
all such c: If R(c) = N; then yi = 1 = c0i:
If i =2 R(c); then yi = � jRj2a

(jN j�jRj)jN j and c0i = 0: We have �
jRj2a

(jN j�jRj)jN j � 0 if and only if a � 0:
Suppose that c 2 ~�eNC : If jNi(c)j = 1, then yi = 1 = c0i: If jNi(c)j > 1, then yi = 1

jNi(c)j +
a(jNi(c)j�2)
jNi(c)j �

���Zi��� 1� a; with ��Zi�� � 1 and c0i = 1: We need 1
jNi(c)j +

a(jNi(c)j�2)
jNi(c)j �

���Zi��� 1� a �
1; which simpli�es to a

�
2(jNi(c)j � 1)�

��Zi�� jNi(c)j� � jNi(c)j � 1: Suppose that 2(jNi(c)j � 1) ���Zi�� jNi(c)j � 0: Then, the condition becomes a � jNi(c)j�1
2(jNi(c)j�1)�jZijjNi(c)j : However, we have that

jNi(c)j�1
2(jNi(c)j�1)�jZijjNi(c)j � 1 if and only

��Zi�� � 1 � 1
jNi(c)j : This is always satis�ed, since

��Zi�� � 1:

Therefore, for a � 1; Individual Rationality is satis�ed on such c:
Suppose that 2(jNi(c)j�1)�

��Zi�� jNi(c)j � 0: Then, the condition becomes a � jNi(c)j�1
2(jNi(c)j�1)�jZijjNi(c)j �

0: Therefore, for a � 0; Individual Rationality is satis�ed on such c:
For c 2 ~�en~�eNC ; we can apply Free Cycle Consistency. Thus, yi(c;N) =

P
j2F (c) yi(c

�j ;N)��
jF (c)j :

Suppose that all c�j 2 ~�eNC : Then, we have shown that yi(c
�j ; N) � c�j0i = c0i which results in

yi(c;N) � jF (c)jc0i��
jF (c)j < c0i: If some c�j =2 ~�eNC ; we obtain the same result by iteration on c

�j :

Therefore, Individual Rationality is satis�ed for all c 2 ~�e if a 2 [0; 1] :
For c 2 �e; we can apply Problem Separation. We have yi(c;N) = yi(ĉ; N)+ yi(~c;N) � 1

jN j ; with

ĉ 2 �̂e and ~c 2 ~�e: Therefore, yi(ĉ; N) � ĉ0i and yi(~c;N) � ~c0i: Since c0i = ĉ0i + ~c0i � 1
jN j ; we also

have that yi(c;N) � c0i: Individual Rationality is satis�ed for all c 2 �e if a 2 [0; 1] :
For c 2 �; we can apply Piecewise Linearity. We have yi(c;N) =

Pp
k=1 (ce�(k) � ce�(k�1)) yi(bk; N)

with all bk 2 �e. Therefore, yi(bk; N) � bk0i for all k: Since c0i =
Pp

k=1 (ce�(k) � ce�(k�1)) bk0i and all the
weights are positive, we have yi(c;N) � c0i: Individual Rationality is satis�ed for all c 2 � if a 2 [0; 1] :
ii) Suppose that cij � max [c0i; c0j ] and c; c0 such that c0ij < cij and c0e = ce else.
De�ne �ykl = ykl (c;N) � ykl (c;N) and �y

f
l = yfl (c;N) � y

f
l (c;N): By the properties of the Kar

and folk solutions, �ykl > 0 and �y
f
l � 0 for l 2 fi; jg : We have Strict Cost Monotonicity if 2a�ykl +

(1� 2a)�yfl > 0 for l 2 fi; jg :
For the following, suppose that l 2 fi; jg : Suppose that �yfl = 0 (which happens when cij > �cij):

We have 2a�ykl > 0 if and only if a > 0.
We need to show that 2a�ykl + (1� 2a)�y

f
l > 0 when �y

f
l > 0: If 0 < a � 1

2 ; we have 2a > 0 and
1� 2a � 0: Combined with �ykl > 0 and �y

f
l � 0; it assures that 2a�ykl + (1� 2a)�y

f
l > 0:

We can see that �ykl � �y
f
l : Therefore, if a >

1
2 ; we have 2a�y

k
l + (1� 2a)�y

f
l � 2a�ykl + (1�

2a)�ykl = �y
k
l > 0:

Therefore, Strict Cost Monotonicity is satis�ed if and only if a > 0:
iii) Suppose that cik � cjk for all j 2 N0n fi; jg and cil < cjl for some l 2 N0n fi; jg ; with

cil < max [c0i; c0l] :

De�ne �ykij = ykj (c;N) � yki (c;N) and �y
f
ij = yfj (c;N) � y

f
i (c;N): By the properties of the Kar

and folk solutions, �ykij > 0 and �yfij � 0: We have Strict Ranking if 2a�ykij + (1 � 2a)�y
f
ij > 0:

Suppose that �yfij = 0 (which happens when �cil = �cjl). We have 2a�y
k
ij > 0 if and only if a > 0.

We need to show that 2a�ykij + (1 � 2a)�y
f
ij > 0 when �y

f
ij > 0: If 0 < a � 1

2 ; we have 2a > 0

and 1� 2a � 0: Combined with�ykij > 0 and �y
f
ij � 0; it assures that 2a�ykij + (1� 2a)�y

f
ij > 0:

We can see that �ykij � �y
f
ij : Therefore, if a >

1
2 : we have 2a�y

k
ij + (1� 2a)�y

f
ij � 2a�ykij + (1�

2a)�ykij = �y
k
ij > 0:

Therefore, Strict Ranking is satis�ed if and only if a > 0:
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