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Abstract

This paper explores a dynamic model of adverse selection in which trading partners receive

noisy information. A monopolistic buyer wants to procure service. Seller�s cost depend on the

buyer�s type. The buyer contacts sellers sequentially and enters into a bilateral bargaining game.

Each seller observes the buyer�s o¤er. In addition, each seller observes a noisy signal. Contacting

sellers (search) is costly. We characterize equilibrium when search cost become small. In the

limit, the price will depend in a simple way on the curvature of the signal distribution. If signals

are su¢ ciently strong, the limit outcome is equivalent to the full information outcome. (The

equilibrium is separating and prices are equal to the true cost.) If signals are weak, the limit

outcome is equivalent to an outcome with no information. (The equilibrium is pooling and

prices are equal to ex ante expected cost.) The e¢ ciency of the limit is closely tied to whether

or not limit prices are separating or pooling. Intuitively, search cost reduce the winner�s curse

by reducing excessive search by bad types.

Away from the limit, a dynamic model of adverse selection with noisy information has several

natural implications for the correlation between duration, quality, and prices. Most importantly,

in many equilibria it will be the "lemons" that stay in the market for a long time, while good

types trade fast. This is in accord with stylized facts about the housing or the labor market.

Very preliminary and Incomplete. Please do not post publicly. Appendix not
included

JEL Classi�cations: D44, D82, D83

Keywords: Adverse Selection, Winner�s Curse, Search Theory, Auctions, Information Aggregation.

�The title is preliminary and subject to change. The full paper is yet to be written and might di¤er substantially
from the current version. Acknowledgements to be added later.
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1 Introduction

The paper looks at dynamic model of adverse selection. An agent that we call the buyer samples

sequentially alternative trading partners, sellers, for a transaction that involves information asym-

metry. The buyer knows his own characteristics (type), while sellers receive signals about it. The

cost of the sellers depend on the buyer�s characteristics. Signals are imperfect and the buyer has

an incentive to search for a seller who received a favorable signal (indicating low cost). Sellers take

this behavior into account when interpreting their own information. The main objective of this

paper is to understand how the combination of search activity and information asymmetry a¤ects

prices and welfare.

Our main result concerns a situation in which search cost become small, i.e., we are looking

at a limit. When search costs are small, equilibrium price can be characterized completely by the

curvature of the tail of the signal distribution. We say that an equilibrium involves complete pooling

if good and bad buyers trade at the same prices. An equilibrium is perfectly revealing if buyers

get the same price they would get with perfect information. We show that, when search costs are

small, equilibrium is perfectly revealing if and only if there are arbitrarily informative signals1 and

the tail of the distribution of the signals is su¢ ciently thick. If arbitrarily informative signals do

not exist or if the tail is not thick enough, the limit equilibrium involves complete pooling, i.e.,

prices are independent of individual characteristics. The reason for this negative result is excessive

search of the bad types, diminishing the value of information and excerbating the winner�s curse

for the seller.

Whether or not information is perfectly revealed implies whether or not equilibrium is e¢ cient.

Except for signal distributions that are degenerate or have arbitrarily thin tails, equilibrium with

small search cost is e¢ cient if and only if the equilibrium is separating. We also discuss the relation

between welfare and information revelation in an extension, where the e¢ cient allocation depends

on the personal characteristics of the buyer.

We compare our result to a setting in which a buyer can commit to a procurement auction and

we look at the case in which the number of bidders become large. In a procurement auction the

limiting outcome never involves total pooling. Furthermore, if arbitrarily informative signals exist,

the limiting outcome will be perfectly informative as shown by Milgrom (1979) and Wilson (1977).2

In contrast, in a model with search, the outcome can involve complete pooling even with arbitrarily

informative signals. The main di¤erence is that, with an auction, a buyer can commit to sample

1Signals exist that are so informative that they are arbitrarily close to reveale the state:
2Note that we are looking at a model in which individual characteristics matter; Pesendorfer and Swinkels (2000)

show that information aggregation is possible under weaker conditions for characteristics common to many buyers
(e.g., the common value of stocks).
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only a �xed number of sellers and buy from the seller with the lowest bid. In a search model, the

buyer cannot commit to sample more sellers (or commit to truthfully report the number of sellers

sampled before.)

Beyond auction theory, the relation between the strength of signals and information revelation

by limit equilibria is analyzed in models of Herding and Voting. Duggan and Martinelli (2001)

�nd that the existence of arbitrarily informative signals are a necessary and su¢ cient condition for

information aggregation in a model of voting in juries when the size of the jury increases. Smith and

Sorenson (2000) show that with social learning, herds on the correct action must occur if signals

are arbitrarily informative (and weak conditions that that often su¢ ce.)

Our model is this: A buyer searches sequentially among sellers to obtain a service. The value

of the service to the buyer is commonly known. The buyer incurs a cost s > 0 ("search cost") to

sample a seller. A seller�s cost of providing the service, cw, is the same for all sellers and it depends

on an underlying state w 2 fL;Hg with cH > cL. The state w is known to the buyer but not to

the sellers. We shall call w also the type of the buyer.

At the beginning of every sampling round, the buyer draws one seller at a cost s. The seller

receives a signal that is correlated with the state. The signal is jointly observed by the buyer and

the seller. Then, the buyer and the seller bargain over the terms of trade, to be described below. If

they reach an agreement and trade, the game is over. If they do not trade and if the buyer chooses

to proceed, the next round starts according to the same rule and the buyer samples another seller

at cost s.

The bargaining process that takes place after a seller is sampled by the buyer is a critical part of

the model. Due to the information asymmetry, we cannot use the simple surplus sharing solutions

that are common in the search literature with symmetric information. A simple surplus sharing rule

is characterized by a number � 2 [0; 1] such that the buyer receives a share � of the surplus. With
complete information, a surplus sharing rule is equivalent to a game in which, with probability �,

the buyer has all bargaining power and makes a take-it-or-leave-it price o¤er to the seller (and with

probability (1� �) the seller makes such an o¤er).

We extend this simple game to a setting with asymmetric information and interdependent

valuations. We assume that the buyer has all the bargaining power and o¤ers a mechanism which

the seller can either accept or reject. If the mechanism is accepted, an allocation (trading probability

and price) is implemented, depending on the reported type of the buyer. Thus, we model bargaining

as a principal-agent problem, with the buyer being the informed principal as in Myerson (1983),

proposing a trading mechanism to the seller (agent). Since the principal has information that
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a¤ects the preferences of the agent, the mechanism proposal game is a signaling game. In general,

the game su¤ers from large multiplicity of equilibria due to the freedom of specifying beliefs o¤ the

path. We therefore employ a number of re�nements. Given these re�nements, we characterize the

set of equilibrium mechanisms. The identi�ed mechanisms are interim e¢ cient and the full surplus

of trade is extracted by the buyers.3 We show that the mechanism can be implemented as the

outcome of a price proposal game between the buyer and the seller. Modelling the interaction as

a mechanism proposal game has the advantage that we can concentrate ourself on pure strategy

equilibria (thanks to the inscrutability principle). In a price proposal game, the price o¤er and

acceptance strategies are generally mixed.

While the buyer can commit for the current period, he cannot commit not to trade in future

periods. The buyer can also not provide evidence about the number of sellers already sampled,

let alone provide evidence about their signals. (The buyer would have an incentive to commit

to sample only a �nite number of sellers and/or the buyer would like to truthfully communicate

the number of sampled sellers, provided he has sampled only a few.) Equilibrium would be more

e¢ cient if the buyer could fully commit.

Our main result concerns the limit of the equilibrium outcomes when s becomes small. Let Fw
denote the distribution of the sellers beliefs in state w, conditional on their signal. We show that in

the limit of every equilibrium the two types of buyers will trade at a price equal to the true costs

cw if and only if the appropriately de�ned tail of Fw is thick enough.

More formally, we show that an appropriately transformed tail of the signal distribution can

be approximated by an exponential distribtion function. Concentrating on the tail of the signal

distribution for a low cost buyer, FL, the parameter � 2 [0; 1] of the approximating exponential
distribution directly determines the equilibrium price. If � = 0, (if the tail is thick), the low cost

buyer will trade a price equal to cost cL; If � 2
�
0; 12
�
, the limit price will be between cL and ex

ante expected cost; the limit price is strictly increasing in �. If � � 1
2 , the limit price is equal to

prior expected cost.

We analyze the relation between information aggregation and welfare. In our base model,

welfare is only a¤ected by the accumulated search costs (buyers will purchase the good in every

equilibrium and price are welfare irrelevant transfers). We show that accumulated search cost

become zero in the limit, if the limit is separating (because then almost no bad buyer searches).

However, accumulated search cost stay positive in all (partial) pooling equilibria, except when the

tail of the signal distribution is arbitrarily thin.

3By allocating bargaining power randomly and allowing a seller to be the proposer of a mechanism with some
probability as well, we could capture situations with intermediate degrees of bargaining power as well.
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In an extension (not included in the current submission), we consider buyers with heterogeneous

willingness to pay. In the e¢ cient allocation, buyers with a low willingness to pay should receive

service if and only if their type is good (only then is the cost of the service smaller than the

valuation by the buyer). Whether or not the limit allocation is e¢ cient depends on whether sellers

can distinguish the types of the buyer. If the limit involves complete pooling (if signals are weak),

the outcome is e¢ cient.

Importantly, in this extension, smaller search cost can have a negative impact on welfare. With

smaller search cost, bad buyers engage in more search and separation is harder to achieve. This is

contrast with standart models of search in which smaller search cost increase welfare (directly) by

increasing the match quality and (indirectly) by reducing the negative impact local market power.

In another extension (not included in the current submission), we consider a more structured

search: a buyer �rst samples a small set of friends, before sampling strangers. Friends and strangers

make di¤erent inference about the type of the buyer upon encounter. It takes stronger signal for a

stranger to be willing to trade with a buyer than for a friend, i.e., strangers are more distrusting. We

compare this result to the situation of an entrepreneur of a start-up company looking for an early

investor. Convincing a friend (a member of an extended social network) to invest into a project

seems much easier than convincing a stranger who is not socially connected to the entrepreneur.

We analyse limit equilibria for tractability. When search costs are not small, we cannot rule

out multiplicity of equilibrium. For example, when good buyer sample more, sellers become more

optimistic, making search more valuable. We discuss this in a separate section. We also illustrate

the use of our re�nements (for the principal agent game) in two lemmas following the main result.

We show that we can get separating equilibria even without arbitrarily informative signals; however,

such equilibria will involve (Pareto) dominated trading mechanisms. We also show that we can get

pooling equilibria even if signals have a thick tail; however, such equilibria are supported by beliefs

that fail devinity.

We discuss a numer of potential extensions. Most prominently, one can assume that the seller�s

signal is not observed by the buyer. As another extension, the buyer would learn his own type from

either the signals or the rejection decisions by sellers (if the buyer does not observe sellers�signals.)

2 The Model

A buyer searches sequentially among sellers to obtain a service. To have a story in mind, one may

think of a procurement scenario in which the buyer is seeking to �x a problem (repair or cure) and
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samples service providers sequentially to obtain bids4. The value of the service is commonly known

and denoted by u. The buyer incurs a cost s > 0 ("search cost") to sample a seller and engage in

bargaining. A seller�s cost of providing the service, cw, is the same for all sellers and it depends on

an underlying state w 2 fL;Hg with cH > cL. The prior probabilities of L and H are gL and gH
respectively. The state w is known to the buyer but not to the sellers. We shall call w also the type

of the buyer. The value of the service u is su¢ ciently larger than cH + s (the cost of the service

and the cost of �nding a seller) so that both types of the buyer would like to participate. We also

assume that s > cH � cL , otherwise search never pays.

At the beginning of every sampling round, the buyer draws one seller at a cost s. The seller

receives a signal x 2 [a; b] � [0; 1] that is correlated with the state. The distribution of x given

w is Fw. We assume that Fw is atomless and Fw satis�es the montone likelihood ratio property

and a low signal is indicative of the low state. The buyer observes the signal of the seller. Then,

the buyer o¤ers a direct mechanism M to the seller. The seller can either accept or reject the

mechanism. If the mechanism is accepted, the buyer reports his type and the mechanism implements

the prescribed allocation. If the mechanism is accepted and if trade happens, the game stops. If

either the mechanism is rejected or if the mechanism prescribes no trade, the buyer can choose to

stop the game.5 If the buyer chooses to proceed, the next round starts according to the same rule

and the buyer samples another seller at cost s.

If the buyer transacts at a price p after having sampled n sellers, his payo¤ is u� p� ns. The
payo¤ of the seller who agreed to the transaction is p � cw. The payo¤ of all other sellers is zero.
The realized surplus is u� cw � ns.

A collection of strategies - the mechanism o¤erM , acceptance decision A, and reporting decision

R - and beliefs � of the seller is called a constellation �. A direct mechanism M is a vector

[pL; qL; pH ; qH ], where pw; qw are the trading price and the trading probability conditional on a

report R = w.6 A typical mechanism will be

M =
�
cL; q

C ; cH ; 1
�
,

which implies the following: If the seller accepts M and if the buyer reports a type H , then

4Alternatively, one may reverse the roles of what we call buyer and sellers to obtain an even more standard story
of sale of an object of uncertain quality w.

5A seller always accepts a price above cH . Since u > cH + s, this implies that it is always worthwhile to continue
and the buyer will never stop sampling. We therefore do not include a stopping decision in the formal analysis.

6The price is paid conditional on trading, i.e., the expected transfer given a mechanism M and a report R is
tR = qRpR. This is without loss of generality relative to specifying transfers if the trading probability is positive
whenever transfers are nonzero. This will the case in equilibrium.
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trade happens at a price equal to cH with probability one; if the buyer reports a type L, then

trade happens at a price equal to cL with probability qC � 1. In general, M (x;w) describes the

mechanism o¤ered by a buyer w if the seller has a signal x and a mechanism o¤er strategy is

M (�; �) : fL;Hg�X ! R4+.7 Given a mechanism o¤erM , the seller believes that the probability of
the high state is � (M;x), so beliefs are � (�; �) : X�R4+ ! [0; 1]. A (M;x) describes the acceptance

decision by a seller of type x, A (�; �) : R4+ �X ! [0; 1], where A is the acceptance probability. If

the mechanism is accepted, R (w; x;M) describes the report conditional on the state w, the signal

x, and the o¤ered mechanism M , R : fL;Hg �X � R4+ ! fL;Hg. We will de�ne an equilibrium
as a constellation in which strategies are mutually optimal and beliefs are consistent. By the

inscrutability principle, there is no loss of generality in assuming that both buyers o¤er the same

mechanism, the mechanism is accepted, and reports are truthful. Let us de�ne these requirement

precisely.

Given a constellation � describing the behavior of the other players and their beliefs, expected

payo¤s of the buyer who samples a seller with signal x and who uses strategy M;R is recursively

de�ned. The payo¤ is the probability of trading with the current seller times the expected pro�t

conditional on trading plus the expected continuation payo¤ if no trade happens minus the search

costs:

Uw (M;R; x; �) = A (M (x) ; x) q
M(x)
R(w;x;M(x))

�
u� pM(x)

R(w;x;M(x))

�
+
�
1�A (M (x) ; x) q

M(x)
R(w;x;M(x))

�Z
x
Uw (M;R; x; �)� s

where qMR is the trading probability in mechanismM given report R and similarly for pMR . Let Vw (�)

be the expected payo¤ of the buyer who uses the strategies prescribed by �. The payo¤ of a seller

with signal x who accepted an o¤er M is equal to the expected pro�t from the contract conditional

on the high cost and the low cost buyer, respectively, weighted by the relative probabilities

� (M;x; �) = � (M;x) qMR(H;x;M)

�
pMR(H;x;M) � cH

�
+ (1� � (M;x)) qMR(L;x;M)

�
pMR(L;x;M) � cL

�
:

Let � (�) denote the ratio of the number of sellers who are sampled in expectation,

� (�) =
E [# of sellers sampledjw = L; �]
E [# of sellers sampledjw = H;�] :

If the low cost buyer L samples many more sellers than the high cost buyer, a seller who is sampled

should update towards the low state. Let �0 (x; �) denote the "interim" belief of a seller with signal

7We disregard all measurability issues throughout the paper,e.g., we do not restrict the set of mechanisms by
requiring M (�) to be measureable.
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x who is sampled by a buyer (�0 does not condition on the price o¤er). The belief the seller depends

on the relative prior likelihood of the types gLgH , the relative likelihood of the the signals,
dFL(x)
dFH(x)

and

the relative likelihood of being sampled � (�). As shown in the appendix, the interim belief of the

seller can be de�ned as

�0 (x; �) =
1

1 + gL
gH

dFL(x)
dFH(x)

�
:

(We implicitly assume an in�nite number of sellers and the probability of being sampled follows an

improper (uniform) prior. We derive �0 as the limit of a Bayesian update with �nitely many sellers

when the number of sellers becomes large.) Note that the belief of a sampled seller depends on the

equilibrium only through the ratio �. In equilibrium, both buyers will o¤er the same mechanism and

thus, the beliefs of a seller following an on-equilibrium mechanism o¤er are just � (x;M) = �0 (x; �).

O¤-equilibrium beliefs are not restricted.

The acceptance decision by the seller is sequentially rational if he plans to accept mechanisms

that lead to strictly positive pro�ts and if he plans to reject mechanisms that lead to negative

pro�ts, given his beliefs � (M;x), i.e.,

A� (M;x) =

(
1 if � (M;x; ��) > 0

0 if � (M;x; ��) < 0
:

By the inscrutability principle (Myerson, 1983), we can restrict attention to equilibria in which

both types of the buyer o¤er the same, direct mechanism, the mechanism is accepted, and reports

are truthful. Every equilibrium outcome of a larger game in which the buyer can o¤er more complex

mechanism is equivalent to an outcome of an equilibrium in which both types of buyers o¤er the

same, direct mechanism that is incentive compatible and individually rational. We will therefore

drop the dependency of the o¤er strategy M (w; x) on w during the analysis.

Note that we de�ne strategies to be history independent, i.e., the buyer can condition his

mechanism o¤er only on his own type and the signal of the seller and the reporting strategy may

depend in addition on the o¤ered mechanism. The seller�s acceptance strategy depends only on the

signal and on the mechanism o¤er (since sellers do not observe anything else). Our basic equilibrium

de�nition is therefore essentially that of a Markov Perfect equilibrium:

De�nition 1 A constellation �� is an inscrutable equilibrium if

1. M� (x;w) and R� are optimal, M�; R� 2 argmaxUw (M;R; x; �).

2. �� is derived from Bayes Rule whenever applicable.
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3. A� is sequentially rational.

4. M� is accepted and reporting is truthful, A� (M�; x) = 1 and R� (w; x;M�) = w:

5. The equilibrium is inscrutable, M� (x;H) =M� (x; L).

As indicate before, we impose re�nements. We discuss the implications of these re�nements in

the discuss section.

Beliefs following an o¤ equilibrium mechanism o¤er M 0 satisfy "Divinity" if they put (weakly)

higher probability on a type of buyer who is strictly better o¤ ifM 0 is accepted (rather than trading

at the equilibrium mechansim). With U�w (x) denoting the equilibrium payo¤, let Uw (M
0; x) be the

payo¤ to buyer w if the mechanism M 0 is accepted,

Uw
�
M 0; x

�
= qM

0
R

�
u� pM 0

R

�
+
�
1� qM 0

R

�
Vw � s,

given optimal reporting. Beliefs � (x;M 0) satisfy divinity given � if

�
�
x;M 0� � �0 (x; �) if UH

�
M 0; x

�
> U�w (x)

�
�
x;M 0� � �0 (x; �) if UL

�
M 0; x

�
> U�L (x)

Divinity (rather than re�nements like D1/D2) is used because it makes the construction of

equilibrium easier; for example, assigning the belief �0 (x; �) o¤ the equilibrium path would ensure

that an equilibrium satis�es Divinity. Note that � (x;M 0) = �0 (x; �) whenever both buyers strictly

prefer M 0 to the equilibrium mechanism.

Divinity (as well as most of the other re�nements) for signaling games relies on a single crossing

condition on preferences. The condition does hold in our setup if the expected payo¤ of the low cost

buyer is higher than the expected payo¤ of the high cost buyer. We restrict attention to equilibria

in which the payo¤s VH (�) and VL (�) are ordered in this way. Thus, we rule out a class of pooling

equilibria in which both types of buyers trade at the same price.8

Divinity in the current de�nition implies that equilibrium mechnisms must be undominated.

We state this as an extra requirement for transparency. A mechanism M is undominated if there

is no other mechansim M 00 such that both types of the buyer seller strictly prefer M 00 to M and

seller�s expected pro�ts under M 0 are strictly higher than under M , given the interim belief �0.

(Of course, if both types of buyers strictly prefer a mechanism M 00 to M , then divinity requires

8 Intuitively, this restriction makes it harder to �nd pooling equilibria and thus strengthens the result that sepa-
ration is unlikely.
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that the belief of the seller is equal to �0. If seller�s pro�ts are positive, sequential rationality

requires him to accept a mechanism. Therefore, divinity implies that equilibrium mechanisms must

be undominated.)

Here is the equilibrium de�nition which we will use most of the time. Whenever we use the

term equilibrium without quali�cation, we mean an undominated, monotone equiilibrium:

De�nition 2 A constellation �� is an undominated, montone equilibrium if �� is an unscrutable

equilibrium and if

1. M� (x) is undominated given � for all x.

2. �� (x;M) satis�es Divinity given � for all x and M .

3. Payo¤s are monotone, VL (��) > VH (��).

3 Existence and Preliminary Observations

In this section we discuss and show existence of an undominated, monotone equilibrium. We

also characterize the set of mechanisms M (x) that satisfy the equilibrium de�nition for given

continuation payo¤s Vw (�) and interim beliefs �0 (x; � (�)).

Given a ratio �, the expected cost of a seller with signal x is

E0 [cjx; �] = �0 (x; �) cH + (1� �0 (x; �)) cL.

A subscript zero refers to the evaluation of the expectation at the "interim belief," accounting for

the information contained in the signal x and being sampled, but not accounting for the information

contained in the mechanism o¤er.

We show that in any equilibrium, the mechanism that is o¤ered in any given buyer-seller pair

must maximizes the payo¤ of the L buyer, subject to feasibility constraints (the mechanism should

be weakly pro�table for the seller, reporting should be truthful, and the H buyer should not prefer

to reveal his type and trade at a price equal to high cost cH). Furthermore, every equilibrium is

equivalent (in terms of expected prices, number of expected searches and payo¤s) to an equilibrium

that is characterized by three numbers: x =
�
x�; x��; qCL

�
. With Ec = E0 [cjx; �] denoting the

interim expected cost of a seller, the mechanism that is o¤ered to a seller with signal x is given by

M (x) =

8><>:
[1; Ec; 1; Ec] If x � x��
qCL ; cL; 1; cH

�
if x 2 (x�; x��)

[ 0; cL; 0; cH ] if x � x��.
(1)
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Thus, if the signal is low, x 2 [0; x�], both buyers trade at the same price equal to the interim
expected cost. If the signal is high, x � x��, the trading probability is zero. The trading probability
is positive if the signal is intermediate, x 2 (x�; x��), but, of course, the trading probability at the
lower price cL cannot be one; otherwise, the mechanism would not be incentive compatible. Instead,

qCL will make the H buyer just indi¤erent between trading at cH with probability one and trading

at cL with probability qCL ;

qCL (VH ; VL; �) =

(
u�cH�VH
u�cL�VH if u� cH � VH > 0

0 if u� cH � VH � 0

The trading probability at cL in the intermediate region (x�; x��) is positive only if u�cH�VH > 0;
otherwise, it is not possible to make the H buyer indi¤erent. The cuto¤x� is always strictly positive

while x�� can be one. The cuto¤ x� corresponds to a signal such that the L buyer is indi¤erent

between trading at a price equal to the expected cost of the seller and trading at the price cL with

probability qC :

x� (VH ; VL; �) : u� E0 [cjx�; �] = qCL (u� cL) +
�
1� qCL

�
VL,

The cuto¤ x�� can be anything in [x�; 1].

The next lemma states that every equilibrium is equivalent to one in which the mechanism is

as described before:

Lemma 1 Given any equilibrium �� with payo¤s VH (��) and VL (��), and ratio � (��). Then

there is an equilibrium ��� in which the o¤ered mechanism is described by some x =
�
x�; x��; qCL

�
,

with x� = x� (VH ; VL; �), x�� � x�, and qCL = qCL (VH ; VL; �) such that with Ec = E0 [cjx; �]

M�� (x) =

8><>:
[1; Ec; 1; Ec] If x < x��
qCL ; cL; 1; cH

�
if x 2 (x�; x��)

[ 0; cL; 0; cH ] if x > x��.

And ��� leads to the same payo¤s and ratio as ��.

We also show that equilibrium exists:

Theorem 1 Equilibrium exists.

4 Main Result

The question is to what extent is information revealed in equilibrium when s is small. The extent of

revelation is captured here by the price paid by the L buyer when s is small. If the price that the L
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buyer pays is close to cL and (therefore) the price that the H buyer pays is close to cH , revelation is

maximal. Recall that the literature on auctions considered a related question. It inquired to what

extent the equilibrium price in a common values auction re�ects the correct information when

the number of bidders is made arbitrarily large (Wilson(1977) and Milgrom(1979)). Milgrom�s

result translated to an auction version of our model is that the price approaches the true value i¤

limx!a
fL(x)
fH(x)

=1. That is, when there are signals that are exceedingly more likely when the true
state is L than when it is H. In our model the number of bidders is endogenous. The counterpart

of increasing the number of bidders in our model is reduction of the sampling cost s. The following

proposition claims that in our model revelation requires even stronger requirements on the quality

of the signals.

To analyse the case of continuous signals, we make two normalizations that are without loss of

generality. First, we set the low cost to zero, cL = 0. Also, without loss of generality, signals are

normalized such that the posterior probability of the high state is equal to x, i.e., for all x,

x =
1
2fH (x)

1
2fH (x) +

1
2fL (x)

.

Rewriting shows that this requires fHfL =
x
1�x . Therefore, the distribution FL (�) determines FH (�)

and we can concentrate on characterizing FL (�), the distribution of signals from the viewpoint of

the L�Buyer. In addition, sellers�posteriors can be expressed very as a function of the signal and
the relative number of searches as shown below. For further simpli�cation, we often set cH = 1, so

that expected cost of a seller are equal to the belief �.

Signals x > 0 are not revealing. If there are no revealing signals for the low state, the limit

with s! 0 involves complete pooling. Let EL [pj�k] be the expected price paid by the L buyer in
expectation in an equilibrium �k, given sk. We say that the limit of a sequence of equilibria ��k
involves complete pooling if EL [pj��k]! gHcH + gLcL.

Theorem 2 Suppose the suppport of FL is [a; b] � [0; 1]. If a > 0, then the limit involves complete
pooling at the ex ante expected price, i.e.,EL [pj��k]! gHcH + gLcL.

Proof : Take a sequence of constellations �k for sk ! 0. Let Vkw = Vw (�k) and �k =

u � cH � VkH . In general, a subscript k denotes parameters of the constellation �k (like xk, �k,
etc.). We distinguish three cases according to whether or not �k is positive, zero, or negative when

k is large (if the sign of �k does not converge, the analyis is for an arbitrary convergent subsequence

which is su¢ cient for the conclusion). We will only consider the �rst case, �k < 0, here. The other

cases are appendicized. For k large enough, in equilibrium �k < 0.

12



Case 1: �k < 0 for all k large enough. Then x��k = x�k and both buyers search for a seller with

a signal x � x�k. The ratio of the number of searches is

�k =
FH (x

�
k)

FL
�
x�k
� .

The cuto¤ x�k is determined by indi¤erence of the L buyer between trading at the expected cost of

a seller with this signal and continuing search

x�k : E0 [cjx�k; �k]�
Z x�k

a
E0 [cjx; �k]

dFL (x)

FL
�
x�k
� = sk

FL
�
x�k
� .

The cuto¤ x�k must converge to the lower bound of the support, a. Otherwise, search cost on the

right hand side converge to zero, while the expected saving from search on the left hand side would

be positive: Since x�k is bounded away from a, the ratio �k is bounded away from the extremes, 0

and 1. Hence, sellers with di¤erent signals will o¤er di¤erent price.

Let x�k ! a. Then the ratio becomes equal to the inverse likelihood ratio,

lim �k = lim
FH (x

�
k)

FL
�
x�k
�

= lim
fH (x

�
k)

fL
�
x�k
� = a

1� a .

The expected price at which the L buyer is trading is

limEL [pj��k] = lim

Z x�k

a

1

1 + 1�x
x �k

cH
dFL (x)

FL
�
x�k
�

=
1

1 + 1�a
a

a
1�a

cH =
1

2
cH = E0c.

Hence, if �k < 0 for all k, the limit involves complete pooling. QED

The intuition is this: When search cost are small, both buyers search for sellers with the most

favorable signals close to the lower bound a. The resulting ratio of the number of searches is

lim �k =
a

1� a .

Of course, this is just the inverse likelihood ratio of the signals

lim
fL (x

�
k)

fH
�
x�k
� = 1� a

a
.

13



Intuitively, if a high cost buyer is less likely to generate a signal close to the lower bound a, high

cost buyers are searching even more. Hence, the informational content of the signals at the lower

bound is just balanced by the informational content of being sampled.

We ask now whether the limit will be separating with a continuous signal distribution if its

support includes zero, ie., if signals can be arbitrarily close to zero and therefore, signals can be

arbitrarily informative. As noted before, in auctions it has been shown that the existence of such

signals is su¢ cient for revelation of the state in the limit. As we will now see, this is not the case

with search. The limit does not need to involve information revelation. Indeed, we will see that

even with arbitrarily informative signals the limit can involve complete pooling. Thus, in a search

model, the outcome can be very uninformative even in the presence of almost perfect information.

The intuition is this: If the limit is separating, the L buyer trades at cL while the H buyer trades

at cH . It can be shown that the accumulated search cost of the L buyer must become zero. Hence,

the L buyer must be able to �nd prices close to cL at almost no cost. However, the search cost for

the H buyer must be strictly positive. As we have seen before, this is not possible if the support of

the signal distribution is bounded away from zero. Our main result shows that something similar

happens when the support of the signal distribution is too thin near zero.

We will �rst look at equilibria in which the surplus of the H buyer is non-positive, �k � 0. In
such equilibria, the cuto¤ x�k must converge to zero. This is intuitive: The L buyer can otherwise

search for signals x close to zero, ensuring trade at a price close to cL at almost no cost.

The incentive of the L buyer will depend strongly on the shape of the conditional distribution
dFL(x)

FL(x�k)
on the left tail (0; x�k). If this conditional distribution has a "thick" tail and puts a high

mass on signals strictly below x�k, search will be more valuable (because the average seller will o¤er

a strictly better deal) than in the case of a "thin" tail, when the conditional distribtion puts high

mass on signals very close to x�k itself (because the average seller x � x�k will o¤er almost the same
deal as x�k). We therefore introduce a way of characterising the limiting tail distribution.

Given a constellation �k, the cuto¤ x�k is determined by indi¤erence of the L buyer

E0 [cjx�k; �k]� E0 [cjx � x�k; �k; L] =
sk

FL
�
x�k
� .

The assumption �k � 0 implies that the H buyer has a weak incentive to not trade at cH but

rather incure search cost and �nd some x � x�k,

I (x�k; �k) = cH � E0 [cjx � x�k; �k;H]�
sk

FH
�
x�k
� � 0.
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We can use the indi¤erence condition of the L buyer to substitute sk. Using that dFH (x) =
x
1�xdFL (x), we get (see Appendix):

I (x�k; �k)FH (x
�
k) =

Z x�k

0

0B@ 1� 1

1 + (1�x)
x �k

!
x

1� x �
1

1 +
(1�x�k)
x�k

�k

+
1

1 + (1�x)
x �k

1CA dFL (x)

We rewrite this expression further. Let Ck be the likelihood ratio
fL(x�k)
fH(x�k)

�k at the cuto¤ seller,

E0 [cjx�k; �k] =
1

1 + dFL(x�)
dFH(x�)

�
=

1

1 + Ck
.

The price at the cuto¤ seller converges to prior expected cost if Ck ! 1. The price converges to

cL = 0 if Ck !1. If Ck ! �C 2 (1;1), the limit price at the cuto¤ seller is in between.

We also do a change of variables. For each x�k, we map the interval (0; x
�
k] into [0;1) via the

continuous transformation

t (x; x�k) =
x�k � x
xx�k

which de�ned as the solution to x = x�k
1+x�kt(x;x

�
k)
. So, t (x�; x�) = 0 and limx!0 t (x; x�) = 1.

Therefore, for each x�, FL (�) induces a distribution F x
�

L on [0;1) via

F x
�

L (t) = 1�
FL

�
x�

1+x�t

�
FL (x�)

.

Substituting into Ik we get

I (x�k; �k) =
x�FL (x

�
k)

FH
�
x�k
� Z 1

0

 
Ck

1� x�k + (1 + x� (t� 1))Ck
� tCk

(1 + Ck)
�
1� x�k + (1 + x� (t� 1))Ck

�! fx�k (t) .
When x�k ! 0, we can evaluate the sign of the limit of I (x�k; �k) if we can pass the limit into

the integral. As we will discuss now, if fx
�
k (t) converges, it must converge to an exponential with

parameter �. This will allow us to characterise the incentives of the buyer by the parameter �.

More precisely, given a sequence x�k ! 0, we have a sequence of distributions F
x�k
L (t) of t on

[0;1). Each of these distributions corresponds to a distributions FL(x(t))

FL(x�k)
of signals x (t) on the

tail [0; x�k]. A tail
FL(x(t))

FL(x�k)
is called regular if the corresponding distribution F x

�
k

L (t) converges to a
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limit F �L. (The limit F
�
L does not need to be a cumulative distribution function itself.) The set of

distributions FL which are regular is �,

� =

8><>: FL (�) : 9 F � (t) � 1� limx�!0
FL

�
x�

1+x�t

�
FL(x�)

2 [0; 1] , 8t

and F � (t) � 1�
FL

�
x�

1+x�t

�
FL(x�)

, 8t 2 (0;1); 8x�:

9>=>;
Note that by Helley�s selection theorem, all distribution functions have a pointwise convergent

subsequence, so a limit as in line one exists for all distributions. The second line of the de�nition is

a technical condition which is needed for the proof. It ensures that the integral of a linear function

converges. A generic example of functions FL 2 � is FL (x) = e�k
1
x
+k, since � (FL) = k and

F
x�k
L (t) = 1� e

�k
�

x�
1+x�t

��1
+k

e�k
1
x�+k

= 1� e�kt 8x�k.

Every tail F � (t) for F 2 � is exponential: (The appendix contains the proof.)

Lemma 2 If F 2 �, then the limit tail F � (�) is exponential, i.e., for some � 2 [0;1],

F � (t) = 1� e��t.

The lemma is immediate if the limit F � (t) is constant at 0 or constant at 1. In these cases,

� = 0 and � =1, respectively. Many distributions will have such a degenerate limit. If F � is not
constant, then it must have a stationarity property, since it must be independent of the cuto¤ x�.

This property requires that F � is exponential. Therefore, we can de�ne a mapping

� : �! [0;1] ;

which assigns a hazard rate � (FL) to each distribution FL 2 �.

Using the substitions from before, the sign of I in the limit is the sign of

Z 1

0
lim

 
Ck

1� x�k + (1 + x� (t� 1))Ck
� tCk

(1 + Ck)
�
1� x�k + (1 + x� (t� 1))Ck

�! lim fx�k (t)
=

�C�
1 + �C

�2 Z 1

0

�
1 + �C � t

�
�e��tdt

=
�C�

1 + �C
�2 �1 + �C � 1

�

�
.

(In the appendix we discuss why we can pass the limit into the integral given our assumptions on

FL.)
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The H buyer has an incentive to search if and only if Ik � 0. We can use this to characterize
equilibria with �k � 0. (To characterize equilibria �k > 0, we need to take care of qCk which makes
the limit expressions more complicated.) Under which conditions �k < 0 for all k large enough?

If �k < 0, the equilibrium must involve complete pooling in the limit: both buyers search and the

expected price must be equal to the prior expected price (the search cost of the L buyer converge

to zero; hence, the expected price conditional on x � x�k must be equal to the price at the cuto¤
type for indi¤erence.) Hence Ck ! �C = 1. Furthermore, �k < 0 requires I (x�k; �k) > 0 for all k.

Inspecting the limit expression shows that his is the case only if

1 + 1� 1

�
� 0, � � 1

2
.

Hence, we will get an equilibria with �k < 0 for all k only if � � 1
2 .

Now, under which conditions �k = 0 for all k large enough? �k = 0 requires that

1 + �C � 1

�
= 0.

Hence, �k = 0 for k large only if the limit price is �p = 1
1+ �C

= �. And hence, �k = 0 only if � � 1
2

(otherwise, �p > 1
2 , which contradicts seller�s zero pro�ts.)

In the appendix we show that �k > 0 for all k only if � = 0. Of course, �k > 0 implies that the

H buyer does not search while the L buyer searches for a seller with a signal close to zero. Hence,

the limit must be revealing, Ck !1.

We can characterize equilibrium prices by �. Let EL [pj�k] be the expected price paid by the L
buyer in expectation in an equilibrium �k. We call the limit of a sequence of equilibria ��k revealing

if EL [pj��k]! cL. Recall, cL = 0 and cH = 1, and prob fw = Hg = prob fw = Lg = 1
2 .

Theorem 3 (Main Result.) Fix some distribution FL 2 � and some sequence fskg, sk ! 0.

Let ��k be a sequence of equilibria given sk. Then the limit price paid by the L buyer is

limEL [pj��k] =

8><>:
0 if � (FL) = 0

� if � (FL) 2
�
0; 12
�

1
2 if � (FL) � 1

2 .

Thus, revelation in the search model with small s requires that there are signals that separate

L from H even in a more pronounced way than in the large auction model. When both models

the signals that make L exceedingly more likely are needed to counteract the winner�s curse. This

di¤erence between the strengths of the requirement in the two models owes to the somewhat di¤erent
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form of the winner�s curse in these models. As explained before, in the search model the winner�s

curse is produced both by the larger expected number of sellers who participate in the bidding (like

in the auction) and by the worsened distribution that a sampled seller is facing due to the longer

search duration of the H type.9

Furthermore:

Theorem 4 The limit is e¢ cient, gHVH + gLVL = gH (u� cH) + gL (u� cL), if and only if either
� (FL) = 0 or � (FL) =1.

Thus, the limit is only e¢ cient if either the limit is separating or signals are extremely weak.

(An earlier example of an e¢ cient limit with weak signals was the case with a > 0.)

9 [Conclusion, Appendix and Literature to be added.]
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