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Abstract

We investigate the use of information in repeated principal-agent relation-

ships with imperfect public monitoring and report three results. First, if we only

consider information garbling within each period, then, consistent with Kan-

dori (1992), efficiency of the relationship is increasing in the informativeness of

the signal in the sense of Blackwell. Second, contrary to Abreu, Milgrom, and

Pearce (1991), bundling signals across periods and then fully revealing them

hurts efficiency of the relational contract. Third, and most importantly, we

construct an alternative intertemporal signal garbling process that transforms

the repeated relationship into one with private monitoring. The main finding

of the paper is that in the transformed game, there exists a belief-based pure-

strategy equilibrium that can be more efficient than the optimal equilibrium in

the original game with imperfect public monitoring.



1 Introduction

The prevalence and importance of relational contracts, contracts enforced not by the

rule of the court but rather by the self-interests of the participating parties in concern

of future contracts, have been emphasized both inside and outside the economics

literature. The existing theoretical literature on relational contracts, see for example

MacLeod and Malcomson (1988), Baker, Gibbons, and Murphy (2002), Levin (2003),

and Fuchs (2007), has focused on the efficiency of the relational contract taking the

information structure as fixed. Less attention has been focused on how the efficiency

of relational contract is affected by the information structure.

In contrast, in the literature of repeated-game (without transfers), some studies

have focused on how the use of information affects the efficiency of repeated game.

The two most influential papers in this literature are Abreu, Milgrom, and Pearce

(1991) and Kandori (1992).1 Kandori (1992) shows that in a repeated game with

imperfect public monitoring, the efficiency of the game is weakly increased if the

commonly observed public signal of the output becomes more informative in the sense

of Blackwell. Kandori (1992) also provides conditions under which the efficiency of the

game can be strictly increased. Abreu, Milgrom, and Pearce (1991) (AMP hereafter)

show that, when the players play strongly-symmetric strategies and their discount

factors approach 1, the efficiency of the game can be enhanced through bundling

signals across several consecutive periods and then fully revealing them at the end of

these periods.

In this paper, we examine the efficiency of relational contracts in repeated principal-

agent relationships with imperfect public monitoring under different information

structures. We show that the logic of Kandori (1992) developed in repeated game

without transfers carries through to repeated principal-agent relationship and the ef-

ficiency of the relational contract is enhanced if the signals are more informative in

the sense of Blackwell. On the other hand, contrasting AMP’s finding, we show that

bundling signals across periods and fully revealing them every T periods decreases the

efficiency of the relational contract. While these two results seem to suggest the effi-

ciency of the relational contract increases when the signals become more informative

and are revealed more frequently, our main result shows that this is not true.
1Kandori and Obara (2006) show that when the discount factor is close to one, reducing observ-

ability allows for asymmetric punishment in repeated games with imperfect public monitoring. This
can expand the equilibrium payoff set.
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In our main result, we construct an signal garbling process according to which

information is linked intertemporally and is revealed partially. Since the distribu-

tion of future (garbled) signals depends on the entire history of the past outputs

yet these outcomes were only piratically revealed, when the agent deviates from the

equilibrium strategy, he will have a different belief about the future signals from the

principal. This information structure transforms the repeated principal-agent rela-

tionship (with transfers) of public monitoring into one with private monitoring. With

this information structure, we identify a belief-based pure-strategy equilibrium which

is strictly more efficient than any Pareto dominant equilibrium under imperfect public

monitoring when the likelihood of success is low.

Our setup can be viewed is a simplified version of Levin’s (2003), except that we

allow the public signal in each period to potentially depend on the entire history of

previous outputs. A principal and an agent trade repeatedly until at least one of them

decides to terminate the relationship. Every period the principal offers a contract

specifying some court enforceable fixed wage and a relational bonus. Production

technology is that if the agent exerts a fixed positive effort, then with a positive

probability the output is positive, and if the agent does not exert effort, then the

probability of a positive output is lower (or for simplicity, zero in part of our analysis).

If we restrict attention to information garbling within each period, then Kandori’s

(1992) result that more precise signals in the sense of Blackwell lead to a larger

equilibrium payoff set continues to hold in the context of relational contracts. The

intuition is that noisier signals are less indicative of effort, so the principal has to

pay a larger bonus upon observing a good signal in order to induce effort. Requiring

the principal to pay a larger bonus leads to a stronger incentive for her to renege,

rendering the relational contract harder to sustain.

AMP’s result that the equilibrium payoff set of a repeated game may be expanded

when public signals are pooled and revealed once every multiple periods does not gen-

eralize to relational contracts with public monitoring for the following reason.2 The

idea behind their finding is that pooling signals across periods allows players to coor-

dinate on punishment more efficiently, punishing only when the worst possible signals

2Fuchs (2007) shows that with private monitoring, similar signal pooling helps reduce the proba-
bility of inefficient termination (a form of money burning). One way to see why such signal pooling
does not enhance efficiency in repeated principal-agent relationships with public monitoring is that
there is no inefficient termination when monitoring is public.

2



are realized and punishing harshly in these realizations. Such arrangement lowers

the overall inefficiency due to punishment because the likelihood ratio in the test

for deviation is highest at the worst signals. Applying AMP’s insight to a relational

contract with T-period signal pooling would be to pay a bonus to the agent at the

end of every T periods except when the worst outcomes are realized. To make the

punishment in the worst possible outcomes harsh, the bonus has to be large. This

is problematic, however, because the maximal bonus the principal is willing to give

is constrained by the present discount value of the future surplus of the relationship

which remains unchanged. In summary, reducing the frequency of signal revelation

necessarily increases the maximum bonus required to induce effort from the worker,

and this increase makes the principal’s incentive to pay out the bonus harder to

sustain.

Nevertheless, a closer investigation suggests that an alternative form of signal gar-

bling can address a limitation of relational contract under full revelation of (imperfect)

signal. Here we describe the limitation and explain how it can be addressed. When

the signal is perfectly indicative of the output (but not the effort) and it is revealed in

each period, the bonus required to induce effort from the worker is decreasing in the

probability of success. In other words, when a success is highly unlikely even if the

agent puts in effort, the bonus needs to be very large to induce effort. But such large

bonus hurts the incentive of the principal, who will not find it incentive compatible

to pay out the bonus to the agent if the bonus exceeds the future surplus of the

relationship. Therefore, a relational contract is hard to sustain when the probability

of success is small.

An alternative way to provide incentive to the worker we propose is to break the

total reward for success into two parts: a) a lowered bonus to be paid out immediately

and b) a higher future continuation payoff for the agent. In this way, the principal’s

incentive to renege on the bonus is weakened (as long as he does not know about

the agent’s higher continuation payoff which implies more bonus will be required in

the future). For the agent, a success not only brings bonus in the immediate future,

but also increases the likelihood that future bonus will be paid out. In particular,

we construct an equilibrium in which the bonus is paid out based on a garbled signal

which is generated with the following garbling process, as illustrated in Figure 1.
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Figure 1: Signal Garbling Process

In each period, the garbled signal may be good or bad, but given any signal, there

are two secrete states: up and down. Players only observe the garbled signal but

do not know the state within the signal. If the output is a success, a good signal is

publicly observed and the state is up. If the output is a failure, there are two cases.

If the state is up in the previous period, then a good signal is publicly observed and

the state is down. If the state is down in the previous period, then a bad signal is

publicly observed and the up state is generated with a fixed probability. This signal

garbling process may be interpreted as the consequence of a specific exogenous signal

generating process in which the information about the output is gradually released.

Alternatively, this can be viewed as the evaluation of the agent’s performance written

by a supervisor and given to the principal who does not directly observe the worker’s

production.

Moving the state to up following a high output regardless of the current state

in the garbling process is certainly intended to provide additional incentive for the

agent to put in effort. The disincentivizing forces of such scheme are, however, that

a) when the agent is in the up state, he will be rewarded a bonus regardless of the

outcome of production, and b) when the state is low, the agent will be moved to the

up state with a positive probability even when the output is low. It will become clear

in our formal analysis that these disincentivizing parts of the signal garbling process

are needed for maintaining the stationarity of the process and ensuring that both the
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principal and agent never know which state they are in on the equilibrium path. One

part of our equilibrium construction is to show that when the probability of success

in production becomes small, the disincentivizing forces become less important will

be eventually dominated by the incentivizing force. The basic intuition is that when

the probability of success is small, then the (stationary) probability that players are

in the up state is small. Therefore, the probability that disincentivizing bonus reward

in (a) is given out in a small probability and the increased chance of being in the up

state in (b) is also small.

With such signal generating process, we construct an equilibrium in which the

principal pays out a bonus whenever the garbled signal is good. The agent’s strategy

is to put in effort whenever he believes that his probability of being in the up state

is weakly small than a threshold. On the equilibrium path, the agent always puts

in effort and he believes his probability of being in the up state is exactly equal to

the threshold. For all discount factors, this equilibrium performs better than the

imperfect public equilibrium without signal garbling when the probability of success

is small. And its degree of improvement is increasing in the discount factor of the

agent.

The key to this construction is to specify the action of the agent off the equilibrium

path. In the above-constructed signal generating process, the signal in each period

can depend on the entire history of past outputs, and thus it may depend on the

entire private history of past actions of the agent. In other words, while the principal

always forms one (equilibrium) belief, the agent’s belief of the probability he is in an

up state can depend on his entire private history of efforts. When it is possible for

the principal and the agent to form different beliefs (following the agent’s deviation),

checking one-stage deviation no longer guarantees that a strategy profile constitutes

an equilibrium. To check that the agent’s strategy is an optimal response to the

principal’s strategy, one needs to check multi-stage deviations as well. Since this is

an infinitely repeated game, checking such multi-stage deviations can be difficult3.

In our construction, conditional on the current period’s output, the signal is com-

pletely determined by the previous period’s state the agent was in. In other words,

3The need to check multi-stage deviation also appears in Abreu, Milgrom, and Pierce (1991),
and Fuchs (2007). These two papers consider T-period review strategies, so there is no need to
check deviations that exceed T-stages. In contrast, there is a priori no upper bound in the number
of stages of deviation.
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with this two-state construction, the only payoff relevant belief of the agent is the

probability that he is in an up state. This allows for a recursive formulation of the

agent’s value function with the state variable being the (privately known) probability

that the agent is in an up state. With this recursive representation, we show that the

optimal action of the agent is to put in effort if and only this probability falls weakly

below a threshold.

In standard relational contracts with imperfect public monitoring, one way to

maximize the enforceable bonus payment from the principal is to give the agent his

individually rational continuation payoff after each bonus payout. Such arrangement

will not be sustainable in our current setup with intertemporally garbled signals.

This is because the agent can shirk and after privately knowing being punished by

placed on the low state, quits the game, rendering the punishment of low state inef-

fective. We show that this incentive problem can be resolved by always postponing

the bonus payment to be paid out as part a higher base wage offered by the principal

in the following period. Since now the base wage is made contingent of the previous

period’s signal, it suggests that the optimal relational contract with intertemporal

signal garbling may be necessarily nonstationary.

For the rest of the paper, we set up the model in Section 2. We analyze the model

in Section 3, with our main result presented in Subsection 3.3 and some generalization

relegated to the Appendix. In our discussion in Section 4, we show that the “belief-

free” approach does not enhance efficiency and that signal garbling helps enhance

efficiency only when the probability of success in production is not equal to half.

Section 5 concludes.

2 Setup

Time is discrete and indexed by t ∈ {1, 2, ...,∞}.

2.1 Players

There’s one principal and one agent. Both are risk neutral, infinitely lived, and have a

common discount rate of δ. The agent’s per period outside option is u; the principal’s

per period outside option is v.
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2.2 Production

If the principal and the agent engages in production together, there is one task that

has two outcomes. If the agent puts in effort, the outcome Y is y with probability

p and 0 with probability 1 − p. When no effort is put in, the outcome is y with

probability q < p. The effort costs c.

We assume that effort is efficient. And moreover, the relationship is less efficient

than the outside options if the effort is not put in.

py − c > u+ v ≥ v > qy.

2.3 Timing

At the beginning of each period t, the principal decides whether to offer a contract

to the agent, dPt ∈ {0, 1}. If the principal chooses not to offer the contract (dPt = 0),
then the two parties receive their outside options.

If the contract is offered, it specifies a base wage wt ∈ R and a performance bonus

bt ∈ R+4. We assume that wt is legally enforceable and is paid out as soon as the

contract is accepted. The bonus bt depends on public information to be described in

the next section. This information is observable to both parties but not verifiable to

the outside world, so the bonus cannot be contracted upon. The bonus is paid out at

the end of the period.

The agent chooses dAt ∈ {0, 1}, and if he rejects the contract (dAt = 0), the two
parties receive their outside options. Otherwise, the relationship starts. The agent

chooses effort et ∈ {0, 1}, and the output Yt is realized.

2.4 Information Set

We assume that it is publicly observed in each period whether the principal offers the

contract, whether the agent accepts the contract, and whether the bonus is paid out.

We also assume that the action of the agent’s effort is his private information.

The key element of the information structure is the observability of the outputs. In

the standard analysis of relational contract model with imperfect public monitoring,
4It is without loss of generality to specify a nonnegative bonus in this model.
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it is assumed that the output per period (yt) is publicly observed. Here we assume

that the parties observe at the end of the period a signal st that contains information

about the entire past history of outputs.

In particular, define the set of signals as S. In each period, there is a signal

distribution function St that maps the history of outputs to a probability distribution

on the set of signals, i.e.

St :
tY

j=1

Yj → ∆S,

where ∆S is the set of probability distribution on S.

The signal distribution function incorporates several special cases. First, we give

two examples that are commonly used in the literature.

Example 1 (Output perfectly observable)

In the standard relational contract model, see for example Malcomson andMacleod

(1988), Levin (2003), it is assumed that the output each period can be perfectly ob-

served. To incorporate this information structure, we can have the set of signals be

S = {0, Y }, and in period t the signal st = yt, where recall that yt is the output in

period t. More formally, the signal distribution function is given by

Pr(St(y1, ..., yt) = yt) = 1, for all {y1, ..., yt}.

Example 2: (T-period Revelation)

One type of information structure that has received considerable attention from

the literature is the T-period revelation, see for example Abreu, Milgrom, Pearce

(1991) and Fuchs (2007). This information structure specifies that the information

becomes public every T periods and no information is revealed in public in between.

To incorporate these cases, we let S = {0, Y }T ∪ {N}, where N stands for no in-

formation. When t 6= nT for each n ∈ N, the signal st = N . When t = nT,

st = (y(n−1)T+1, ..., ynT ). More formally, when t 6= nT, the signal distribution function

is given by

Pr(St(y1, ..., yt) = N) = 1.
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When t = nT,

Pr(St(y1, ..., yt) = (y(n−1)T+1, ..., ynT )) = 1, for all {y1, ..., yt}.

In addition to allowing for the standard information structures in the literature,

the signal distribution function also incorporates cases that are relevant to real life

but are less studied. We give two examples below.

Example 3: (Delayed Information Revelation)

In many economic situations, information of the outcome is not readily available.

The time it takes to collect the information is an obvious reason why information

is delayed. But even if information collection can be done in real time, information

about the "right outcome" may not be known right after the actions are taken. For

example, computer system can track the sales of each item, but the real sales figure

(that the firm should care about) should account for the returns from the customers,

and it will not be known right after the salesperson made the sale.

The simplest case of modelling delay in this model is to have the set of signals be

S = {0, Y } ∪ {N}, where again N stands for no information. In period t = 1, the

signal s1 = N, and in period t > 1, the signal st = yt−1. More formally, the signal

distribution function is given by

Pr(S1(y1) = N) = 1, for t = 1

Pr(St(y1, ..., yt) = yt−1) = 1, for t > 1 and all {y1, ..., yt}.

It is straightforward to model information structure that has more than one period

of delays.

Example 4: (Partial Information Revelation)

Information about outputs is often only revealed partially. For example, when

a building or bridge is finished, information about its reliability can take years or

decades to be revealed. That how well the building stands up in an earthquake is, in

most cases, not known. Costs of collecting information also prevents the information

from being completely revealed. For instance, when senior executives decide the

bonus of a worker at the end of the year, it is difficult and very costly to know the
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performance of the worker on each single day. Instead, the senior executives may base

the bonus of the worker on a crude performance evaluation measure (often supplied

by some middle-level manager).

One example that captures partial information revelation is the following. Let the

set of the signal be S = {Success, Failure}. In period t, the signal st = Success if

more than half of the previous outcomes y = Y, and st = Failure otherwise. More

formally,

Pr(St(y1, ..., yt) = Success) = 1, if
tX

j=1

yj >
ty

2

Pr(St(y1, ..., yt) = Success) = 0, if
tX

j=1

yj ≤
ty

2

Note that in this example, the signal in each period only captures the average of

the existing outputs. Consequently, the exact output in many periods may not be

publicly known. More interestingly and importantly here, even if the output yt in

period t may not be known, it has an impact on all future signals. While this seems

to suggest that the signal generating process is very complicated and may require an

infinite memory, some simplification is actually possible by having the right "state

variable". In the example above, even if the signal st depends on all of the previous t

outputs, it can be determined by the output in period t (yt) and the average output

in all previous periods (the state variable).

2.5 Strategy and Equilibrium Concept

2.5.1 History

We denote ht = {dPt , wt, d
A
t , st, bt} as public events that happens in period t. Denote

ht = {hn}t−1n=0 as a public history path at the beginning of period t. h1 = Φ. Let

Ht = {ht} be the set of public history paths till time t. Finally, define H = ∪tHt

as the set of public histories. For the principal, the public history is all that he

observes. For the agent, at the beginning of period t, he also observes his past actions

et = {ej}t−1j=1. Denote Ht
A = Ht ∪ {et} as the set of agent’s private history at the

beginning of period t.
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2.5.2 Strategy

In period t, the principal chooses an offering action DP
t from Ht to {0, 1}; wage

action Wt from Ht to R; and bonus action Bt from Ht ∪ {st} to R. The strategy

of the principal is {DP
t ,Wt, Bt}∞t=1. We assume that the principal may use mixed

strategy, and we denote σP as the mixed public strategy of the principal. We define

σPht as the principal’s mixed strategy following public history h
t.

In period t, the agent chooses an accepting decision DA
t from Ht

A ∪ {wt, bt} to
{0, 1}, effort action et from Ht

A ∪ {wt} to {0, 1}. And the strategy of the agent is
{DA

t , At, }∞t=1.We also assume that the agent may use mixed strategy, and we denote
σA as the mixed public strategy of the agent. We define σAhtA as the agent’s mixed

strategy following agent’s private history htA.

2.5.3 Payoff and Equilibrium Concept

Suppose the principal chooses strategy σP and the agent chooses strategy σA. Fol-

lowing the private history of the agent htA, the agent’s expected continuation payoff

is given by

U(htA, σ
A
htA
, σPht)

= E[
∞X
τ=t

δτ−t{u+ 1{DP
τ D

A
τ =1}(−ceτ + wτ +Bτ − u)}|htA, σAhtA, σ

P
ht].

The principal’s continuation payoff following the private history of the agent htA is

given by

v(htA, σ
A
htA
, σPht)

= E[
∞X
τ=t

δτ−t{v + 1{DP
τ D

A
τ =1}(y(q + (p− q)eτ)− wτ −Bτ − v)}|htA, σPhtA , σ

P
ht].

Of course, the principal does not know that agent’s private history, his expected

payoff following the public history ht is given by

V (ht, σP , σA) = E[v(htA, σ
A
htA
, σPht)|ht]
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The solution concept we use in this setting is Perfect Bayesian Equilibrium (PBE).

In this setting, when the principal uses strategy σ∗P and the agent uses strategy σ∗A,

the PBE requires that following any private history of the agent htA, the agent’s

expected continuation payoff

U(htA, σ
∗A
htA
, σ∗Pht ) ≥ U(htA, σ

A
htA
, σ∗Pht ) for all σAhtA .

Following any public history ht, the principal’s expected payoff

V (ht, σ∗P , σ∗A) ≥ V (ht, σP , σ∗A) for all σP .

And the beliefs of the principal (on the probability distribution of htA) is updated

through Bayes rule.

Note that while the principal and the agent will share the same belief along the

equilibrium path, this is not true if the agent deviates. When the agent deviates, his

belief of the output distribution in the past is different from the equilibrium belief

of the principal. Since the future signals depend on the realization of past outputs,

the agent’s belief of the signal distribution in the future will be different from the

principal as well. This difference in beliefs imply that checking one-stage deviation is

satisfied will no longer be sufficient to guarantee that a strategy profile is a PBE.

3 Analysis

In this section, we study how the information structure affects the efficiency of the

relational contract. In Section 3.1, we show that garbling of information within a

period worsens the efficiency of relational contract. This result is consistent with

a related result in repeated game; see Kandori (1992). In Section 3.2, we show

that the T-period review contracts, in which the signals of performance becomes

public every T periods, is strictly worse than the contract in which information about

output is fully revealed in each period. This result contrasts with the finding in the

repeated game literature in which bundling information across periods can expand the

equilibrium payoff set; see Abreu, Milgrom, and Pearce (1991). While the preceding

results seem to suggest that the efficiency of the relational contract increases with the

informativeness of the signal and the frequency at which the signal is disseminated,
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we show in Section 3.3 that the efficiency of the relationship can be enhanced through

some form of intertemporal garbling of signals that transforms the game between the

principal and agent into one of private monitoring.

3.1 Within-Period Information Garbling

In this subsection, we restrict attention to garbling information within each period and

we study how the efficiency of the relationship is affected by the informativeness of the

signal. We focus on the two-signal case, which eases the analysis and helps highlight

the intuition of the result. The general case with multiple action and multiple signals

is analyzed in the appendix.

Let the set of signals be S = {0, y}. And we start with the case in which the
signal is perfectly informative of the output, i.e. st = yt. Note that even if the signal

is perfectly informative, the output still does not correspond one-to-one to the effort

level. In particular, this information structure is a special case of relational contract

with imperfect public monitoring studied by Levin (2003). Levin (2003) shows that

the optimal relational contract with public monitoring can be implemented by a

sequence of stationary contracts.

In the stationary contract, the principal pays out a base wage w in each period,

and he also pays out a bonus b if the high output is realized. Note that to induce the

effort from the worker, we need the bonus to be big enough such that

w − c+ pb ≥ w + qb

b ≥ c

p− q
. (1)

With the bonus big enough so that the agent will put in effort per period, the

principal can lower the base wage of the worker to his outside option, i.e.

w − c+ pb = u.

In this way, the principal can capture the entire surplus of the relationship.

Finally, since the bonus is non-contractible, we need to check that the principal

is willing to pay the bonus. It is incentive compatible for the principal to pay the
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bonus if the future gain of doing so exceeds the short-term loss of paying the bonus.

We may assume without loss of generality that if the principal fails to pay the bonus

the two parties will receive their outside options forever. This implies that for the

principal to pay the bonus, we need

b ≤ δ(py − c− u− v)

1− δ
, (2)

where δ(py−c−u−v)
1−δ is the discounted expected future surplus of the relationship, which

is completely captured by the principal.

Note that equation (1) and (2) combined implies that an relational contract can

induce effort in this setting if and only if

c

p− q
≤ δ(py − c− u− v)

1− δ
. (3)

In other words, the incentive cost should be smaller than the discounted expected

future surplus.

Now suppose that instead of having signal as being a perfect indicator of the

output, the signal is noisy instead. In particular, we assume that

Pr(st = y|Yt = y) = θ1

Pr(st = 0|Yt = y) = 1− θ1

Pr(st = 0|Yt = 0) = θ2

Pr(st = y|Yt = 0) = 1− θ2,

where θ1 > 1
2
and θ2 > 1

2
so that the signal is indicative of the true output. This

information structure is a garbling of the perfect signal. In other words, the garbled

signal is less informative than the perfect signal in the sense of Blackwell.

With this information structure, it can be shown that the optimal contract can

again be implemented by a sequence of stationary contracts. In the stationary con-

tract, a bonus b0 is paid out when a signal st = y is realized. To induce the agent to
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put in effort, we need

−c+ (pθ1 + (1− p)(1− θ2))b
0 ≥ (qθ1 + (1− q)(1− θ2))b

0

b0 ≥ c

(p− q)(θ1 + θ2 − 1)
.

Now the principal can again set the wage to capture the entire surplus of the

relationship. In this case, the incentive constraint of the principal to pay the bonus

is again given by

b0 ≤ δ(py − c− u− v)

1− δ
.

Combining the two equations above, we have that, with noisy signals, the necessary

and sufficient condition to induce effort in a relational contract is given by

c

(p− q)(θ1 + θ2 − 1)
≤ δ(py − c− u− v)

1− δ
.

It is clear from the expression above that, as along as θ1 < 1, or θ2 < 1, i.e. the

signal does not reflect the output perfectly, we have

c

(p− q)(θ1 + θ2 − 1)
>

c

(p− q)
,

so the condition for sustaining effort is strictly more stringent here.

The intuition for this result is straightforward. When the signals are noisy, they

are less indicative of effort, so it requires a larger bonus to induce effort. But the

larger bonus makes the principal more likely to renege, and it follows that efforts are

harder to sustain in equilibrium.

While the analysis above was based on a two-action, two-output setting, the in-

tuition carries over to more general settings. For example, the idea that noisy signals

require larger bonus is directly related to the idea that larger prizes are required to

induce effort in a tournament setting with continuous effort and outputs. We also

perform a similar analysis in a multiple signal, multiple action setting in the appendix.
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3.2 Bundling T Periods

In this subsection, we analyze how the efficiency of the relational contract is affected

when the signals are not revealed in each period, but rather are bundled together and

revealed once every several periods.

In particular, we assume that the information becomes public every T periods and

no information is revealed in between. Let S = {0, Y }T ∪ {N}, where N stands for

no information. When t 6= nT for each n ∈ N, the signal st = N . When t = nT,

st = (y(n−1)T+1, ..., ynT ). More formally, when t 6= nT, the signal distribution function

is given by

Pr(St(y1, ..., yt) = N) = 1.

When t = nT,

Pr(St(y1, ..., yt) = (y(n−1)T+1, ..., ynT )) = 1, for all {y1, ..., yt}.

In this game, it is straightforward to show that the optimal contract can be im-

plemented as a sequence of stationary contracts. In particular, the bonus will be paid

out at the end of each T periods, and there is a bonus function B(y(n−1)T+1, ..., ynT )

that maps {0, y}T to R+ for all n.

Now define the maximum bonus the principal ever pays out as

Bmax = max
{(y(n−1)T+1,...,ynT )}

{B(y(n−1)T+1, ..., ynT )}.

To induce the principal to pay out this bonus, we need that

Bmax ≤
δ(py − c− u− v)

1− δ
.

In other words, the bonus cannot be larger than the discounted expected future

surplus.

Now consider the agent’s incentive to exert effort. Let {e∗nT+1, e∗nT+2, ....e∗(n+1)T}
be the equilibrium effort of the agent from period nT + 1 to (n+ 1)T. For the agent

to find it incentive compatible to exert effort in period nT +1, it is necessary that he
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does not find it profitable to shirk in that period:5

c ≤ E[δT−1B(ynT+1, ..., y(n+1)T )|enT+1 = 1, e∗nT+2, ....e
∗
(n+1)T ]

−E[δT−1B(y(nT+1, ..., y(n+1)T )|enT+1 = 0, e∗nT+2, ....e
∗
(n+1)T ].

Now

E[B(ynT+1, ..., y(n+1)T )|enT+1 = 1, e∗nT+2, ....e∗(n+1)T ]
= pE[B(y, ..., y(n+1)T )|, e∗nT+2, ....e∗(n+1)T ] + (1− p)E[B(0, ..., y(n+1)T )|, e∗nT+2, ....e∗(n+1)T ].

Similarly,

E[B(ynT+1, ..., y(n+1)T )|enT+1 = 0, e∗nT+2, ....e∗(n+1)T ]
= qE[B(y, ..., y(n+1)T )|, e∗nT+2, ....e∗(n+1)T ] + (1− q)E[B(0, ..., y(n+1)T )|, e∗nT+2, ....e∗(n+1)T ].

Therefore, the expected benefit of putting effort in period nT +1 while keeping other

periods’ efforts fixed is given by

(p− q)δT−1(E[B(y, ..., y(n+1)T )|, e∗nT+2, ....e∗(n+1)T ]−E[B(0, ..., y(n+1)T )|, e∗nT+2, ....e∗(n+1)T ])
≤ (p− q)δT−1Bmax.

It follows that a necessary condition to induce effort in period nT + 1 is that

c

p− q
≤ δT−1Bmax.

It is also immediate that a necessary condition to induce effort in any period

nT + k is given by
c

p− q
≤ δT−kBmax. (4)

Since (4) is the easiest to satisfy for k = T , the necessary condition for some effort

to be exerted in some period is c/(p − q) ≤ Bmax. Combining with the incentive

constraint of the principal, a necessary condition for inducing effort in any period is

5The sufficient condition would be that the optimal deviation, which potentially involves changing
efforts in subsequent periods, is also not profitable.
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given by
c

p− q
≤ δ(py − c− u− v)

1− δ
,

and this is exactly the necessary and sufficient condition for inducing effort in the

case in which information is revealed in each period. In other words, bundling periods

together cannot help sustain cooperation in the relational contract.

3.3 Intertemporal Garbling with Partial Revelation

In the previous tow subsections, the analysis seems to suggest that the relational

contract is more efficient when the signals are more precise and are revealed more

frequently. In this section, we show that when the success probability is low, the

efficiency of the relationship can be enhanced through linking information intertem-

porally but not fully revealing them. To keep the analysis tractable, we look at the

special case that q = 0.

To describe the signal generating process, we imagine that there is a supervisor

who privately observes the output and then publicly announces a garbled signal of

his observation. Every period, the supervisor reports whether the (garbled) signal

is good or bad. The report of a good signal can be viewed as a recommendation for

the principal to pay the agent a bonus although the principal will pay only if it is

incentive compatible to do so. Apart from that, the supervisor is also required to

privately keep tract of a state which may be up or down. It is important that the

supervisor never discloses the state to the principal nor the agent. We also assume

the supervisor has no interest in the game and can be asked to garble the signal in

any way the principal would like him to, with the restriction that the agent is fully

aware of the garbling process.

We further restrict our attention to a specific garbling process which is described

as follows. If the output is high, then regardless of the state, the supervisor publicly

announces the signal good (g) and privately move the state to up. Conditional of the

state being up, if the output is low, he will publicly announce good but at the same

time move the state to down. If both the state is down and the output is low, then

he will announce bad (∼g) and at the same time he will randomize and move to the
up state with probability ρ∗ and to the down state with probability 1− ρ∗.
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The following figure illustrates how different outputs and previous states lead to

different signals and states. It is similar to Figure 1 except the probability of each

path is labeled.

Up
ρ*

Down
(1 - ρ*)

State
Up

Down

Up

Down

High output

Low output

Good

Bad

Garbled Signal

Figure 2: Signal Garbling Process with Details

 ρ*

(1 - ρ*)

p
p
(1 - p)

(1 - p)

Suppose ρ∗ is chosen to satisfy

ρ∗ =
p

p+ (1− p)ρ∗
.

It can be verified that if the probability that the state is up is ρ∗ and the agent puts

in effort every period, leading to a probability p of high output, then the probability

that the state is up is always maintained at ρ∗.

Garbling signal the way suggested here has three effects on the incentive to exert

effort. If being in the up state is indeed valuable, then rewarding success by moving

the agent to the up state on top of paying him bonus provides additional incentive to

exert effort. However, (a) paying bonus regardless of outcome of production whenever

the agent is in the up state, which happens with probability ρ∗ in equilibrium, weak-

ens incentives to exert effort. Similarly, (b) moving the agent to the up state with

probability ρ∗ following a failure in production in the down state also hurts effort

incentives. Note that the disincentivizing forces vanish as ρ∗ goes to zero but the

incentivizing force does do. And ρ∗ clearly goes to zero as we let p go zero (but at

the same time also let B go to infinity so that pB is still comparable to the cost of
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effort c). This explains why intertemporally signal garbling enhances efficiency as p

is sufficiently small.

Now we construct an equilibrium with positive effort under the garbled informa-

tional structure which we term as Productive Garbled-Signal Relational Contract.

Definition 1 (Productive Garbled-Signal Relational Contract) At the begin-
ning of the game, the supervisor sets ρ = ρ∗. In period t, the principal offers a

contract with an contractible base wage ωt = w if t = 1 or if st−1 =∼g. She offers an
contractible base wage ωt = w + B

δ
if st−1 = g. 6

The agent accepts the principal’s contract offer if the base wage is at least w + B
δ

when the previous period’s signal was good or if the base wage is at least w when the

previous period’s signal was bad. Any other contract will be rejected. After accepting

a contract, the agent exerts effort if and only if he believes ρ ≤ ρ∗.

Note that in a Productive Garbled-Signal Relational Contract, effort is exerted

every period because ρ stays at ρ∗. The main result of this section in that this

equilibrium is sustainable for a wider range of discount factors compared to the case

when the (imperfect) signal fully revealed every period.

Define B(p) as the infimum of the maximal bonus the principal needs to pay to the

agent to induce effort. If fully revealing the output signal per period is the optimal

information structure, then B(p) ≥ c/p. However, next theorem says that we can do

better.

Theorem 1: As p→ 0,

lim
p→0

c

pB(p)
≥ 1 + δ.

Since the maximum bonus the principal is willing to pay is B = δ(y−c−u−v)
1−δ , Theo-

rem 1 implies that as p→ 0, a Productive Garbled-Signal Relational Contract exists

6Here B is interpreted as a bonus payment for the good signal but it is paid out as part of the
larger base wage in the following period. Note that in Levin (2003), it is unimportant whether a
bonus is paid out at the end of a period or at the beginning of the following period as part of the
base wage (now contingent on previous period’s output signal) because the agent does not have a
private history in his setting. Here postponing the bonus payment helps ensures that even after the
agent shirks and privately knows that ρ < ρ∗, he still chooses to accept the principal’s contract. The
importance of this point will become clear in the proof of Theorem 1.
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if and only if
c

p (1 + δ)
≤ δ (y − c− u− v)

1− δ
.

This condition is obviously easier to satisfy than

c

p
≤ δ (y − c− u− v)

1− δ
,

which is the condition for sustainability of positive effort under imperfect public mon-

itoring with fully revealed output signal every period. Intertemporal signal garbling

cuts down the requirement on the size of the surplus by a factor of 1/ (1− δ) which

goes to 50 percent as δ approaches 1.

Before formally proving the theorem, here we explain part of the idea behind the

theorem. Let β be the benefit of being in the up state instead of the down state. The

payoff from exerting effort can be viewed as

[p+ ρ∗(1− p)]B + δ[p+ (1− p)(1− ρ∗)ρ∗]β

and the payoff from not exerting effort can be viewed as

ρ∗B + δ(1− ρ∗)ρ∗β.

In other words, the benefit of exerting effort or the difference in these payoffs is

p(1 − ρ∗)B + δp [1− (1− ρ∗) ρ∗]β. As p goes to zero, ρ∗ also goes to zero. In other

words, both the equilibrium probability of receiving a bonus and the equilibrium

probability of being in the up state are close to zero. On the other hand, once the

agent is in the up state, he receives a bonus with probability one, as compared to

p if he is in the down state. As p goes to zero, being in the up state increases the

probability of getting a bonus from almost zero to one. Therefore, β goes to B as p

goes to zero. This explain why the benefit of exerting effort can reach (1 + δ) pB, as

compared to pB when the signal is not garbled. In other words, with intertemporal

signal garbling, the same amount of bonus can provide a stronger incentive to put in

effort.

The formal proof of the theorem is complicated by the fact that the signal garbling

process transforms the repeated principal-agent relationship into one of private mon-

itoring . To see this, consider an agent’s deviation. If the agent deviates, then he will
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privately know the actual probability that he is in the up state. As a result, following

such reporting rule, the belief and action of the agent can depend on the entire past

history of private actions he takes. In other words, the one-stage deviation principle

will not hold in this setting. To show that with this signal garbling process, there

exists some appropriately chosen B ∈ ( c
p(1+δ)

, c
p
) such that the agent puts in effort in

each period along the equilibrium path, it remains to that any arbitrary multi-stage

deviation is unprofitable.

Proof. An important observation is that in this two-state example, there is a re-
cursive formulation. Let V (ρ) denote the agent’s value function conditional on his

believing that he is in the up state with probability ρ. In order to use the same value

function following different signal announcements, suppose the previous period’s sig-

nal is good and the agent’s continuation payoff at the beginning of this period is

Ṽ (ρ, g), then V (ρ) := Ṽ (ρ, g) − B/δ. However, if the previous period’s signal is

bad and the agent’s continuation payoff at the beginning of this period is Ṽ (ρ,∼g),
then V (ρ) := Ṽ (ρ,∼g). Recognizing that the agent can choose between exerting
and not exerting effort given every ρ, the value function has the following recursive

representation:

V (ρ) = max{w − c+ (p+ (1− p)ρ)(B + δV (
p

p+ (1− p)ρ
))

+(1− (p+ (1− p)ρ))δV (ρ∗), w + ρ(B + δV (0)) + (1− ρ)δV (ρ∗)}.

In the above expression, we implicitly assume that the agent does not choose his

outside option. This will be verified.

Now note that the operator on the right hand side satisfies the Blackwell Suffi-

ciency Conditions, so it is a contraction mapping. Therefore, there is a unique value

function V that satisfies this equation. Moreover, it is clear that changing the value

of w will only affect the value function by a constant. Therefore, we can choose w

so that V (ρ∗) = v. In particular, we let

w − c+ (p+ (1− p)ρ∗)(B + δv) + (1− (p+ (1− p)ρ∗))δv = v

w = c+ (1− δ)v − (p+ (1− p)ρ∗)B

= c+ (1− δ)v − p

ρ∗
B.
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This normalization would indeed be valid if we can show that

w + ρ∗(B + δV (0)) + (1− ρ∗)δv = v

We now conjecture that in equilibrium the agent will not put in effort if ρ > ρ∗ and

will put in effort if ρ ≤ ρ∗ and will later show that this indeed happens in equilibrium.

This implies that for ρ > ρ∗,

V (ρ) = w + ρ(B + δV (0)) + (1− ρ)δv

= v − (ρ∗(B + δV (0)) + (1− ρ∗)δv) + ρ(B + δV (0)) + (1− ρ)δv

= v + (ρ− ρ∗)[B + δ(V (0)− v)]

For ρ < ρ∗,

V (ρ) = w − c+ (p+ (1− p)ρ)(B + δV (
p

p+ (1− p)ρ
)) + (1− (p+ (1− p)ρ))δv

= w − c+ (p+ (1− p)ρ)(B + δ

∙
v + (

p

p+ (1− p)ρ
− ρ∗)[B + δ(V (0)− v)]

¸
)

+(1− (p+ (1− p)ρ))δv

We first show that the agent has the incentive to accept the principal’s contract

for all ρ. First, it is clear this is the case when ρ ≥ ρ∗ because V (ρ) ≥ V (ρ∗) = v

v + (ρ− ρ∗)[B + δ(V (0)− v)] ≥ v

B

δ
+ V (0) ≥ v.

Notice that B
δ
+ V (ρ) is the agent’s continuation payoff if he accepts a contract with

ωt = w+ B
δ
after a good signal is reported, privately knowing ρ. Therefore, the agent

always accepts the contract after a good signal is reported. After a bad signal is

reported, ρ is reset to ρ∗. Since V (ρ∗) = v, the agent will also have the incentive to

accept the contract.

In the rest of the proof, we make the simplifying assumption that v = 0.

This allows us to simply the value function as follows.

For ρ > ρ∗,

V (ρ) = (B + δV (0))(ρ− ρ∗).
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For ρ < ρ∗,

V (ρ) = w − c+ [p+ (1− p)ρ][B + δV (
p

p+ (1− p)ρ
)]

= w − c+ [p+ (1− p)ρ]

∙
B + δ(B + δV (0))(

p

p+ (1− p)ρ
− ρ∗)

¸
= w − c+ [(p+ (1− p)ρ][B − δρ∗(B + δV (0))] + δ(B + δV (0))p

= (1− p)(B − δρ∗(B + δV (0)))(ρ− ρ∗),

where the last equality follows from the fact that V (ρ) is affine in ρ with slope

(1− p)(B − δρ∗(B + δV (0))), and its value at ρ∗ is 0.

For the value function defined above to be the real value function, we need to

check that a) the functional equation is satisfied given the agent’s actions; and b)

The actions specified are optimal.

We first check a). Here, we need to choose B and V (0) to make sure that the

functional equation is satisfied.

Note that given V (0) and the action profile, the functional equation is satisfied

immediately for ρ > ρ∗.

For ρ ≤ ρ∗, since the equation is linear, we essentially need to satisfy the following

two equations:

w + ρ∗(B + δV (0)) = 0.

V (0) = w − c+ p(B + δV (1))

= − p

ρ∗
B + p(B + δ(B + δV (0))(1− ρ∗)).

The second equation implies that

V (0) =
p(1− 1

ρ∗ + δ(1− ρ∗))

1− pδ2(1− ρ∗)
B. (5)

The first equation implies that

c+
p

ρ∗
B + ρ∗(B + δ

p(1− 1
ρ∗ + δ(1− ρ∗))

1− pδ2(1− ρ∗)
B)

= c+ (− p

ρ∗
+ ρ∗ + δ

pρ∗(1− 1
ρ∗ + δ(1− ρ∗))

1− pδ2(1− ρ∗)
)B

= 0.
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Or equivalently,

B =
c/p

( 1
ρ∗ −

ρ∗

p
+ δ (1−ρ

∗−δ(1−ρ∗)ρ∗)
1−pδ2(1−ρ∗) )

. (6)

With B and V (0) so chosen as above, the functional equation is satisfied.

Now we check that the actions specified are optimal. To ensure that the actions

are optimal, we first need to make sure that for ρ ≤ ρ∗,

w + ρ(B + δV (0))

≤ w − c+ [(p+ (1− p)ρ)(B + δV (
p

p+ (1− p)ρ
))

= (1− p)(B − δρ∗(B + δV (0)))(ρ− ρ∗),

Note that the above is satisfied if

B + δV (0) ≥ (1− p)(B − δρ∗(B + δV (0))).

Let x = B + δV (0), and define T (x) = (1 − p)(B − δρ∗x), then the above can be

rewritten as

T (x) ≤ x.

We also want to make sure that for ρ > ρ∗, we have

w + ρ(B + δV (0))

≥ w − c+ [(p+ (1− p)ρ)(B + δV (
p

p+ (1− p)ρ
))

= w − c+ [(p+ (1− p)ρ)(B + δ(1− p)(B − δρ∗(B + δV (0)))(
p

p+ (1− p)ρ
− ρ∗))]

= (1− p)(B − δρ∗(1− p)(B − δρ∗(B + δV (0))))(ρ− ρ∗).

If we again have x = B + δV (0) and T (x) = (1− p)(B − δρ∗x), then the slope of

ρ in the expression above is given by T (T (x)), and we need

T (T (x)) ≤ x.

Now note that T (x) is an affine function of x with slope −δρ∗(1 − p) > −1. Let
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x∗ be such that T (x∗) = x∗, then

(1− p)(B − δρ∗x∗) = x∗

x∗ =
(1− p)B

1 + δρ∗(1− p)
.

Now note that if x ≥ x∗, then

T (x) ≤ x.

Moreover, since the slope of T (x) is equal to −(1− p)δρ∗ > −1, this implies that,
for x > x∗,

T (x∗)− T (x)

x− x∗
=

x∗ − T (x)

x− x∗
< 1.

By the linearity of T, it follows that,

T (T (x))− T (T (x∗))

T (x∗)− T (x)
=

T (x∗)− T (x)

x− x∗
< 1

so that

T (T (x))− T (T (x∗)) ≤ x− x∗,

or

T (T (x)) ≤ x.

The discussion above implies that, as long as

B + δV (0) = x ≥ x∗ =
(1− p)B

1 + δρ∗(1− p)
,

the action profile is optimal. In other words, we need

V (0) ≥ −1
δ
(
p+ δρ∗(1− p)

1 + δρ∗(1− p)
)B.

Recalling from (5) that

V (0) =
p(1− 1

ρ∗ + δ(1− ρ∗))

1− pδ2(1− ρ∗)
B.
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Now

p(1− 1
ρ∗ + δ(1− ρ∗))

1− pδ2(1− ρ∗)
+
1

δ
(
p+ δρ∗(1− p)

1 + δρ∗(1− p)
)

=
1

δρ∗
δ((ρ∗)2(1− p)− p(1− ρ∗)) + pρ∗

(1− pδ2(1− ρ∗))(1 + δρ∗(1− p))

Now note that

(ρ∗)2(1− p) = p(1− ρ∗),

so the expression above is always positive. And so the actions are optimal. This

shows that the proposed value function is truly the value function.

Following directly from (6),

c

Bp
=

1

ρ∗
− ρ∗

p
+ δ

(1− ρ∗ − δ(1− ρ∗)ρ∗)

1− pδ2(1− ρ∗)

=
ρ∗ − p

(1− p)ρ∗
+ δ

(1− ρ∗ − δ(1− ρ∗)ρ∗)

1− pδ2(1− ρ∗)
,

where we have used (ρ∗)2(1− p) = p(1− ρ∗) in simplifying 1
ρ∗ −

ρ∗

p
.

Now since

(1− p)ρ∗2 + pρ∗ − p = 0,

ρ∗ =
−p+

p
4p− 3p2
2

In other words, when p is small, ρ∗ is roughly in the order of
√
p.

It is clear that as p goes to 0, both ρ∗−p
(1−p)ρ∗ and

(1−ρ∗−δ(1−ρ∗)ρ∗)
1−pδ2(1−ρ∗) go to 1, so

lim
p→0

c

Bp
= 1 + δ.

Since the equilibrium is only one of the many possible equilibria, B(p) ≤ B, and the

proof is complete.

Now we verify that the agent finds it optimal not to exercise the outside option

for all ρ and we also show that this is independent of the normalization of V (ρ∗) = 0.
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Instead, we restate the value function setting V (ρ∗) = v:

V (ρ) = max{w − c+ (p+ (1− p)ρ)(B + δV (
p

p+ (1− p)ρ
)) + (1− (p+ (1− p)ρ))δV (ρ∗),

w + ρ(B + δV (0)) + (1− ρ)δV (ρ∗)}.

for ρ > ρ∗ This implies that for ρ > ρ∗,

V (ρ) = w + ρ(B + δV (0)) + (1− ρ)δv

= v − (ρ∗(B + δV (0)) + (1− ρ∗)δv) + ρ(B + δV (0)) + (1− ρ)δv

= v + (ρ− ρ∗)[B + δ(V (0)− v)]

v + (ρ− ρ∗)[B + δ(V (0)− v)] > v

B

δ
+ V (0) > v

Note that B + δV (0) is the agent’s continuation payoff from accepting a contract

with wage ωt = w + B
δ
following a period with a good signal. Recall that for ρ > ρ∗,

V (ρ) = (B + δV (0))(ρ− ρ∗) > V (ρ∗) = 0. Therefore,

B + δV (0) >
V (ρ∗)

(ρ− ρ∗)
> V (ρ∗) = 0.

The reason that this type of intertemporal garbling can do better than fully re-

vealing the information every period, especially when the success probability is small,

is the following. Under relational contract with perfect signals, the principal will be

required to pay a big bonus (c/p) to the agent when the probability of success is

small. Consequently, relational contract is hard to sustain because the bonus cannot

exceed the expected discounted future surplus of the relationship.

By linking information intertemporally, the reward for high output is decomposed

into two parts: the bonus at the end of this period, and a higher continuation payoff

in the future. This decomposition of reward reduces the immediate bonus to be paid

out and helps softens the incentive constraint of the principal. On the other hand,

delaying the reward does have a cost: the absolute amount of total bonus paid out will

be larger due to discounting and the higher continuation payoff of the agent makes
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it difficult to induce effort. Therefore, this intertemporal garbling can more easily

outperform perfect signal when the success probability is extreme and the discount

factor is high.

4 Discussion

The equilibrium constructed in Theorem 1 uses a two-state representation. It is

natural to ask whether one can do better with more states. We think that the

answer is yes, but proving those strategies with more than two states are equilibrium

is difficult. This is because one needs to check more than one-stage deviation in

this setting, and the recursive structure in Theorem 1 becomes unwieldy when there

are multiple states. One possible way in the literature to deal with this problem is

the “belief-free” approach, in which the marginal benefit of having a high output is

independent of which state the agent is in. Unfortunately, such approach will be

unable to work here, as the next proposition shows.

Proposition 2 If an information set has n states, and the difference in payoffs (be-
tween a high to low output) is independent of which state the agent is in, such infor-

mation structure can do no better than perfect signals.

Proof. Suppose that there are n states within an information set, with value k1 >
k2 > .... > kn. (The argument extends naturally to the case where n is infinity or

represents a continuum.)

Let xHs be expected payoff following a high output when the agent is in state s.

We define xLs accordingly.

Belief free requires that there exists a D such that

xHs − xLs = D for all s.

Now note that

ks = pxHs + (1− p)xLs .

This implies that

xHs = ks + (1− p)D

xLs = ks − pD
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Now note that

xH1 = k1 + (1− p)D ≤ b+ δk1,

where b is the per period bonus. This implies that

k1 ≤
b− (1− p)D

1− δ

Also note that

xLn = kn − pD ≥ δkn

This implies that

kn ≥
pD

1− δ
.

Since k1 > kn,

b− (1− p)D

1− δ
≥ pD

1− δ
b ≥ D.

Since the intertemporal garbling creates improvement through exploiting the ex-

tremeness of the information, such linkage is less likely to be useful when the infor-

mation content on the equilibrium path of perfect signal is more even. In fact, when

p = 1
2
, revealing information perfectly is optimal.

Theorem 2:When p = 1/2, the optimal information structure is given by st = Yt

for all t.

Proof. First recall that when st = Yt for all t, the necessary and sufficient condition

for sustaining cooperation is given by

c

p− q
≤ δ

1− δ
(py − c− u− v).

Let b = c
p−q , then we need to show that in any equilibrium that induces the effort,

the maximum bonus is at least b.

Now suppose that information of the past outputs is not perfect. Suppose the

value of a state x within an information set is V (x). Now for each x, denote xi ∈ {xy,
x0} as the value from state x after a new outcome (but before a bonus is paid out).
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Since effort is induced, we have

V (x) = V (x) + p(V (xH)− V (x)) + (1− p)(V (xL)− V (x)).

Note that whether a path becomes H or L is independent of which state x the

agent is in. It follows that the variance of the values following the y or 0 becomes

V ar(V (xi)) = V ar(V (x)) + V ar(V (xi)− V (x))

= V ar(V (x)) +E[V ar(V (xi)− V (x))|Y ] + V ar(E[V (xi)− V (x)|Y ])
≥ V ar(V (x)) +E[V ar(V (xi)− V (x))|Y ] + p(1− p)b2

≥ V ar(V (x)) + p(1− p)b2.

where the first inequality follows from the requirement to induce effort, namely,

V (xH)− V (xL) ≥ b.

Now let J be the set of information sets after the outcome is realized, bj be the

bonus associated with information set j. Note that for the principal to be willing to

pay out the bonus in information set j, we must have

bj ≤
δ

1− δ
(py − c− u− v) ≡ S,

so

max bj ≤ S,

and

V ar(bj) ≤
1

4
S2.

Now note that V (xi) must be an element in some information set j ∈ J :

V (xi) = bj + δVj(xij),

where we denote bj and Vj(xij) as the bonus and the continuation payoff of the agent

following the output of xi and being in the information set j.

Using the formula of variance decomposition on each information set j,

V ar(V (xi)) = V ar(E[bj + δVj(xij)|j]) +E[V ar(bj + δVj(xij)|j)]

≤ 1

4
S2 + δ2E[V ar(Vj(xij)|j)],
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where the inequality follows because

max
j

E[bj + δVj(xij)|j]−min
j

E[bj + δVj(xij)|j] ≤ S,

which follows from the principal’s reneging constraint, so V ar(E[bj + δVj(xij)|j]) ≤
1
4
S2.

The two inequality together implies that

1

4
S2 + δ2E[V ar(Vj(xij)|j)] ≥ V ar(V (xi)) ≥ V ar(V (x)) + p(1− p)b2.

Now note that within each information set, the variance of values must be bounded.

We will show that this requirement will be violated when p = 1/2.

When p = 1/2, the above inequality becomes

δ2E[V ar(Vj(xi)|j)] ≥ V ar(V (x)) +
1

4
(b2 − S2).

Now if b > S, or equivalently,

c

p− q
>

δ

1− δ
(py − c− u− v),

then the equation implies that for some information set j, we must have the variance

of values in that information set

V ar(Vj(xij)|j) ≥
1

δ2
V ar(V (x)),

so the variance will blow up along some equilibrium play path, and this cannot be an

equilibrium.

Therefore, the only way this equilibrium is sustainable is when

c

p− q
≤ δ

1− δ
(py − c− u− v),

which is the condition under which cooperation can be sustained when st = Yt.
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5 Conclusion

When probability of success is low, it is difficult to sustain efficient production with

a relational contract because, to motivate the agent, it requires the principal to pay a

large bonus payment upon observation of successful production, leading to a stronger

incentive for her to renege. Our analysis showed that intertemporal garbling of the sig-

nals of the agent’s success/failure can restore efficient production by reducing amount

of bonus needed to be paid out by the principal. We believe this not only of theoretical

interest.

There are many situations in which senior managers have to rely on supervisors/mid-

level managers to monitor and evaluate employees’ performances. Our result implies

that there are situations in which it is suboptimal for an organization to require super-

visors to write the most accurate year-end evaluations for their subordinates. In fact,

it is better for the supervisor to privately keep track of the employee’s performance

in previous years and use that information to determine the employee’s performance

evaluation in the current year.

Due to intractability of relational contract with private monitoring, characteriza-

tion of the optimal signal garbling process remains an open question and will be the

focus of future research.

Appendix A: Extension to General Production Func-
tion and Signals

In this section, we generalize the production function and the signal structure to

show that the results in Subsections 3.1-3.2 hold generally.

If the principal and the agent engage in production together, the agent chooses

effort e ∈ [0, e], incurring an effort cost of c (e). Assume that c(0) = 0, c0 > 0 and

c00 > 0. The outcome Y is a random variable distributed with the c.d.f. F (·|e), where
f(·|e) exists, and the support of Y is independent of e.

We assume that there exists an effort level such that if this effort level can be

induced in the relationship, then it is efficient to form the relationship. However,

forming the relationship is less efficient than each player receiving his/her outside

option if no effort can be induced in the relationship. In other words, there exists
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e ∈ [0, ē] such that Z
y

yf(y|e)dy − c(e) > u+ v,

where u and v are respectively the agent and the principal’s per-period outside option,

and Z
y

yf(y|0)dy < u+ v.

Define

u(e|Y ) = (1− δ)[w0 − c(e) +

Z
b̃(y)f(y|e)dy] + δ

Z
ũ(y)f(y|e)dy.

v(y) = −(1− δ)[−y + w0 + b̃(y)] + δṽ(y)

v(e|Y ) =

Z
−(1− δ)[−y + w0 + b̃(y) + δṽ(y)]f(y|e)dy

Note that every feasible payoff set is characterized by an upper bound on the total

surplus s∗ and can be written as the following:

W = {(u, v) : u ≥ u, v ≥ v and u+ v ≤ s∗} .

For any set W ∈ R2, a vector (e, b, ũ, ṽ) is called admissible with respect to W under

Y if

(1) (ũ(y), ṽ(y)) ∈W for all y in the support, and

(2) u(e|Y ) ≥ u(e0|Y ) for all e0 ∈ [0, e] (agent’s IC)
(3) −(1− δ)b̃(y) + δṽ(y) ≥ δv for all y in the support (principal’s IC)

Let B(W |Y ) be defined by

B(W |Y ) = {(u, v)|(e, b, ũ, ṽ) is admissible w.r.t. W under Y }.

A payoff set W is self-generating under Y if W ⊆ B(W |Y ).

A.1 Within-period Information Garbling

Now, consider a modified setup in which the output is X. Let X ∼ G(·|e), where
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g(·|e) exists, such thatZ
y

yf(y|e)dy =
Z
x

xg(x|e)dx ∀e ∈ [0, e]. (7)

This restriction is to preserve the overall productivity of the relationship. Further-

more, we assume that X is less informative than Y of the agent’s effort in the sense

of quasi-garbling. Following Kandori (1992), we impose that

φ(x|y) ≥ 0 a.e. x and yZ
φ(x|y)dx = 1 a.e. y (8)

g(x|e) =

Z
φ(x|y)f(y|e)dy,

and that the support of X is independent of e.

Proposition A (Kandori, 1992) Suppose X is a quasi-garbling of Y . Then if W

is a compact self-generating set under X, it is also self-generating under Y .

Proof. Since W is self-generating under X, for any w = (u, v) ∈ W there exists a

vector (eX , b̃X , ũX , ṽX) which is admissible with respect to W under X and satisfies

u(e|X) = (1− δ)[w0 − c(e) +

Z
b̃X(x)f(x|e)dy] + δ

Z
ũX(x)f(x|e)dy.

v(x) = −(1− δ)[−x+ w0 + b̃X(x)] + δṽX(x)

v(e|X) =

Z
−(1− δ)[−x+ w0 + b̃X(x) + δṽX(x)]f(x|e)dx.

Define ũY and b̃Y by

ũY (y) =

Z
ũX(x)φ(x|y)dx

ṽY (y) =

Z
ṽX(x)φ(x|y)dx

b̃Y (y) =

Z
b̃X(x)φ(x|y)dx.
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Then, for all e ∈ [0, e],Z
y

ũY (y)f(y|e)dy =

Z
y

Z
x

ũX(x)φ(x|y)dxf(y|e)dy

=

Z
x

ũX(x)[

Z
y

φ(x|y)f(y|e)dy]dx

=

Z
x

ũX(y)g(x|e)dx

and similarly Z
y

ṽY (y)f(y|e)dy =
Z
x

ũX(y)g(x|e)dx.

It is clear that u(e|Y ) = u(e|X) and v(e|Y ) = v(e|X). It follows that
(1) (ũ(y), ṽ(y)) ∈ coW for all y in the support, and

(2) u(e|Y ) ≥ u(e0|Y ) for all e0 ∈ [0, e] (agent’s IC)
(3) −(1− δ)b̃(y) + δṽ(y) ≥ δv for all y in the support (principal’s IC).

Therefore, u(e|Y )and v(e|Y ) are admissible with respect to W under Y . Hence

W ⊆ B(W |Y ).

A.2 T-period Bundling

Suppose signals (outputs) are released once every T periods. We call every T

periods a stage. We reindex each period as (i−1)T+τ where i ∈ N and τ ∈ {1, 2, ...T},
as the period in the τth period of the ith stage. We prove that if some efforts in the

T periods of a stage, {ẽ1, ẽ2, ..., ẽT} are sustainable, then max {ẽ1, ẽ2, ..., ẽT} can be
supported by a fully revealing relational contract, i.e., when T = 1.

Suppose {ẽ1, ẽ2, ..., ẽT} are supported by b̃(yT ), where yT ≡ {y1, y2, ..., yT}. Then
maxyT

n
b̃(yT )

o
is no larger than the surplus of the relationship. Moreover, for these

efforts to be sustainable, it requires that it is sequentially rational for the agent to

exert the corresponding effort each period. In other words, ẽT solves

max
eT

Z
yT

b̃
¡
yT
¢
f(yT |ẽ1, ẽ2, ..., ẽT−1, eT )dyT + w0 − c (eT ) , (9)

taking ẽ1, ẽ2, ..., ẽT−1 as given.
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Similarly, ẽT−1 solves

max
eT−1

Z
yT

δb̃
¡
yT
¢
f(yT |ẽ1, ẽ2, ..., eT−1, ẽT (ẽ1, ẽ2, ..., eT−1))dyT + w0 − c (eT ) (10)

taking ẽ1, ẽ2, ..., ẽT−2 as given and anticipating ẽT to be the solution to (9).

More generally, ẽτ solves for τ ∈ {1, 2, ..., T − 1},

max
eτ

Z
yT

δT−τ b̃
¡
yT
¢
f(yT |ẽ1, ẽ2, ..., eτ , ẽτ+1(ẽ1, ..., ẽτ−1, eτ ), ..., ẽT (ẽ1, ..., ẽτ−1, eτ)dyT+w0−c (eT )

which is equivalent to solving

max
eτ

Z
yT

b̃
¡
yT
¢
f(yT |ẽ1, ẽ2, ..., eτ , ẽτ+1(ẽ1, ..., ẽτ−1, eτ), ..., ẽT (ẽ1, ..., ẽτ−1, eτ)dyT−

c (eT )

δT−τ
.

(11)

Now, we define

b̂(yT ) =

Z
y−T

b̃
¡
yT
¢
f(yT |ẽ1, ẽ2, ..., ẽT−1, eT )dy−T

and, for τ ∈ {1, 2, ..., T − 1},

b̂(yτ) =

Z
y−τ

b̃
¡
yT
¢
f(yT |ẽ1, ẽ2, ..., eτ , ẽτ+1(ẽ1, ..., ẽτ−1, eτ), ..., ẽT (ẽ1, ..., ẽτ−1, eτ )dy−τ .

Now consider a one-period relational contract in which the principal pays the agent

a bonus δT−τ b̂(yτ ) in each period. Obviously, maxyτ δ
T−τ b̂(yτ) ≤ maxyT

n
b̃(yT )

o
.

With such a contract, the agent solves

δT−τ max
yτ

Z
yτ

Z
y−τ

b̃
¡
yT
¢
f(yT |ẽ1, ẽ2, ..., eτ , ẽτ+1(ẽ1, ..., ẽτ−1, eτ), ..., ẽT (ẽ1, ..., ẽτ−1, eτ)dy−τdyτ−c(eT ).

Obviously, the solution is identical to that of (??). In other words, each of the efforts
{ẽ1, ẽ2, ..., ẽT} can be induced in an unbundled relational contract. In particular,
the unbundled relational contract inducing max {ẽ1, ẽ2, ..., ẽT} every period weakly
dominates the T -period relational contract.
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