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Abstract

I derive a lower bound on the ex-ante surplus in communication equilibria in the all-pay auc-

tions. For the case of two symmetric bidders and no reserve price the communication equilibrium

is essentially unique, and is outcome equivalent to the Nash equilibrium of this game.

1 Introduction

In many situations an auctioneer is able to prevent bidders from organizing an explicit cartel that

enforces coordinated behavior of the bidders and facilitates exchange of side payments. However it

may be very difficult to prevent the bidders from simply engaging in cheap talk before the auction,

and such communication can affect the outcomes of the auction. For example, in the second-price

auctions pre-play communication allows to sustain the following “phases-of-the-moon” rotation

scheme. Before the auction a designated winner is randomly chosen; during the auction the bidders

coordinate on the equilibrium where the designated winner obtains the good for free by submitting

a very high bid while the other bidders submit zero bids.1 In the first-price and the all-pay auctions

such a scheme would not work, because (under standard assumptions) there is only one equilibrium

for any given prior beliefs. However there may exist other communication equilibria. In this paper I

∗Acknowledgements to be added.
†Department of Economics, University of Western Ontario, Social Science Centre, London, Ontario N6A

5C2, Canada, gpavlov@uwo.ca
1McAfee and McMillan (1992) show that such collusive scheme is bidder optimal in many environments as long as

side payments are not allowed.
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investigate how communication before the auction can affect the outcomes of the sealed bid all-pay

auctions, and make some preliminary observations for the sealed bid first-price auctions.

By the revelation principle (Myerson (1982)) the outcome of any communication protocol can

be replicated by the procedure whereby the bidders first secretly report their valuations to a neutral

trustworthy mediator, who then makes private non-binding recommendations on how to bid to each

bidder. Thus a communication equilibrium is a joint probability distribution over the valuations

and the bids of the bidders, subject to the constraints that the bidders should find it optimal first

to report their true valuations, and then submit the recommended bids. For each communication

equilibrium there is an associated outcome function that maps profiles of the bidders’ valuations

into their probabilities of winning and their expected bids.

I derive a lower bound on the ex-ante surplus in communication equilibria in the all-pay auctions.

To show this I consider the constraints on the equilibrium outcome imposed by one particular kind

of deviation strategies available to each bidder. At the reporting stage the bidder randomizes over

all possible reports according to the prior probability distribution of her valuations; at the bidding

stage the bidder ignores the recommended bids and uses a particular deviational bidding strategy.

Such behavior at the reporting stage assures that at the bidding stage the deviating bidder is bidding

against the ex-ante distribution of the bids of the opponents. Hence, in the equilibrium each type of

each bidder should do at least as well as she would do if he was just facing the ex-ante distribution

of the bids of the opponents. This observation allows to derive a bound on the ex-ante distribution

function of bids and thus on the expected profits from each bidder, that in turn yields a set of

constraints on the equilibrium outcome.

For the case of two symmetric bidders and no reserve price there is only a single equilibrium

outcome that satisfies these constraints. Thus the communication equilibrium is essentially unique,

and is outcome equivalent to the Nash equilibrium of this game. I conjecture that the uniqueness

result also holds in other cases, i.e. when the bidders are asymmetric, when there are more than

two bidders, and when there is a binding reserve price. I hope that a similar approach can be used

to analyze communication equilibria of other related games like all-pay contests with asymmetric

information, as well as first-price auctions. I make some preliminary observations for the sealed bid

first-price auctions in the last section of the paper.

Most of the studies of the bidder collusion in static auctions focus on a scenario when the
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bidders organize an explicit cartel that enforces coordinated behavior of the bidders and facilitates

exchange of side payments. For example, Graham and Marshall (1987) study collusion in second-

price auctions, and McAfee and McMillan (1992) study collusion in first-price auctions.2 A more

recent mechanism design literature, like Laffont and Martimort (1997) and Che and Kim (2006),

studies the optimal response of the principal to collusion between the agents. A scenario when

the bidders do not organize an explicit cartel is for the most part considered in the context of

repeated auctions. For example, Aoyagi (2003) studies self-enforcing collusion with pre-auction

communication. The case of tacit collusion without communication is studied by Skrzypacz and

Hopenhayn (2004) in the environment with public monitoring and by Blume and Heidhaus (2006)

in the environment with private monitoring.

There is also a number of recent papers that study collusion in static auctions when coordinated

behavior of the bidders in the auction cannot be enforced. For example, Lopomo, Marshall and

Marx (2005) and Garratt, Troger and Zheng (2008) show how a possibility of resale facilitates self-

enforcing collusion in English auctions. Marshall and Marx (2007) consider a scenario with no resale

when pre-auction side payments between the bidders are allowed, and show that it is much harder

to collude in the first-price auction than in the second-price auction. Lopomo, Marx and Sun (2009)

further study this model of collusion in the first-price auctions in a discretized framework with two

symmetric bidders. Using linear programming techniques they show that the collusive equilibrium

is essentially unique, and is outcome equivalent to the Nash equilibrium.

The rest of the paper is organized as follows. The model of the all-pay auction and the discussion

of communication and Nash equilibria are in Section 2. The case of two bidders and no reserve price

is studied in Section 3. The cases of non-zero reserve price and more than two bidders are analyzed in

Section 4. Section 5 contains preliminary results on the first-price auction. The Appendix contains

the analysis of the all-pay auction in the discrete model with two types.

2McAfee and McMillan (1992) also consider the case of “weak cartels” when side payments are not allowed.
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2 Model and preliminaries

2.1 Environment and all-pay auction rules

There are n ≥ 2 bidders; each bidder i has a valuation vi for the good which is known only to

him. Valuation vi is distributed according to a continuous cumulative distribution function Fi and

everywhere positive density fi with support [vi, vi], where 0 ≤ vi < vi < +∞. Valuations v1, ..., vn

are distributed independently. This information structure is assumed to be common knowledge.

Bidder i’s utility is vipi − ti, when pi is his probability of getting the good and ti is his payment.

The bidders bid in a sealed bid all-pay auction with a reserve price r ≥ 0. Each bidder i

chooses an action from a set A := [r,∞) ∪ {∅}, he can either submit an “active” bid bi ≥ r or

a “null” bid bi = ∅. Bidders who submit the null bid do not receive the good and there is no

payment. If bidder i with valuation vi submits an active bid bi ≥ r, while the other bidders submit

b−i = (b1, ..., bi−1, bi+1, ..., bn), then his payoff is





vi − bi

−bi

1
#{k: bk=bi}vi − bi

if

if

if

bi > max {r,maxj �=i bj}

bi < max {r,maxj �=i bj}

bi = maxj �=i bj ≥ r

2.2 Communication equilibria

According to the revelation principle (Myerson (1982)), any equilibrium outcome of any communi-

cation protocol can be replicated by the procedure whereby the bidders first privately report their

valuations to a neutral trustworthy mediator, who then makes non-binding private recommendations

(possibly stochastic) to each bidder of what bid to play.

Formally define a communication rule µ to be a family of probability distributions µ(·|v1, ..., vn)

over the action profiles of the bidders (An), indexed by the profile of the valuation reports submitted

to the mediator ((v1, ..., vn) ∈
n

Π
i=1
[vi, vi]). Suppose first that all players truthfully report their

valuations and obey the mediator’s recommendations. Denote the expected payoff of bidder i with

valuation vi as follows:

Ui (vi) =

∫

v−i

(∫

bi,b−i

(Pr {i wins | bi, b−i} vi − bi) dµ(bi, b−i|vi, v−i)

)
dF−i (v−i)
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where Pr {i wins | bi, b−i} is determined by the rules of the auction:

Pr {i wins | bi, b−i} = 1

{
bi > max

{
r,max

j �=i
bj

}}
+

1

# {k : bk = bi}
1

{
bi = max

j �=i
bj ≥ r

}
(1)

Next suppose that all bidders other than i are still truthful and obedient. Bidder i with valuation

vi reports v̂i ∈ [vi, vi], and is bidding according to a strategy which is a function of the mediator’s

recommendation b̂i : A→ A. Denote the expected payoff of bidder i as follows:

Ui
(
vi; v̂i, b̂i (·)

)
=

∫

v−i

(∫

bi,b−i

(
Pr

{
i wins | b̂i (bi) , b−i

}
vi − b̂i (bi)

)
dµ(bi, b−i|v̂i, v−i)

)
dF−i (v−i)

The revelation principle implies that without loss of generality reporting the true valuation

should be optimal for each bidder, and obeying the mediator’s recommendation should be optimal

for each bidder.

Definition 1 A communication rule µ is called a communication equilibrium if each type of

each player finds it optimal to report the truth and obey the mediator’s recommendations, i.e.

Ui (vi) ≥ Ui
(
vi; v̂i, b̂i (·)

)
for every i, vi, v̂i and b̂i (·) .

Suppose bidder i with valuation vi reports v̂i �= vi but obeys the mediator’s recommendations

(i.e. b̂i (bi) = bi for every bi ∈ A). Denote by Pi (v̂i) and Ti (v̂i) the expected probability of winning

and expected payment of bidder i, respectively, from using such strategy in a given communication

rule µ:

Pi (v̂i) =

∫

v−i

(∫

bi,b−i

Pr {i wins | bi, b−i}dµ(bi, b−i|v̂i, v−i)

)
dF−i (v−i) and

Ti (v̂i) =

∫

v−i

(∫

bi,b−i

bidµ(bi, b−i|v̂i, v−i)

)
dF−i (v−i)

Then we can derive a set of incentive constraints which is familiar from the mechanism design

literature with hidden types. The result is stated without proof since the argument is standard.3

Lemma 1 In every communication equilibrium µ

3See for example Myerson (1981).
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(i) Ui (vi) = Pi (vi) vi − Ti (vi) ≥ Pi (v̂i) vi − Ti (v̂i) for every i and vi, v̂i ∈ [vi, vi].

(ii) Pi is non-decreasing for every i, and Ui (vi) = Ui (vi)+
∫ vi
vi
Pi (ṽi)dṽi for every i and vi ∈ [vi, vi].

Let us also consider another type of deviation which will be repeatedly used in the remainder

of the paper. Denote by G−i : [0,∞) → [0, 1] the ex-ante cumulative distribution function of the

maximal bid among the opponents of bidder i, in the given communication equilibrium µ:

G−i (βi) =
∫

vi

∫

v−i

(∫

bi,b−i

1

{
βi > max

j �=i
bj

}
dµ(bi, b−i|v̂i, v−i)

)
dF−i (v−i) dFi (vi) for every βi ∈ [r,∞)

(2)

Lemma 2 In every communication equilibrium µ

Ui (vi) ≥ G−i (βi) vi − βi, for every vi ∈ [vi, vi] and βi ∈ [r,∞) .

Proof. Suppose bidder i with valuation vi randomizes over reports v̂i according to his ex-ante

distribution function Fi, and bids βi ∈ [r,∞) regardless of the mediator’s recommendation (i.e.

b̂i (bi) = βi for every bi ∈ A). The expected payoff from such deviation is as follows:

∫

vi

∫

v−i

(∫

bi,b−i

(Pr {i wins | βi, b−i} vi − βi) dµ(bi, b−i|v̂i, v−i)

)
dF−i (v−i) dFi (v̂i)

=

(∫

vi

∫

v−i

(∫

bi,b−i

Pr {i wins | βi, b−i}dµ(bi, b−i|v̂i, v−i)

)
dF−i (v−i) dFi (v̂i)

)
vi − βi

≥

(∫

vi

∫

v−i

(∫

bi,b−i

1

{
βi > max

j �=i
bj

}
dµ(bi, b−i|v̂i, v−i)

)
dF−i (v−i)dFi (v̂i)

)
vi − βi

= G−i (βi) vi − βi

The first equality makes use of the fact that bidder i bids βi regardless of the mediator’s recom-

mendation, the inequality is implied by the rules of the auction given in (1), the last equality is by

definition of G−i given in (2).

2.3 Nash equilibria

In this section I briefly review the existing results for Nash equilibria in all-pay auctions. Nash

equilibrium does not allow for pre-play communication, or more generally rules out any possibility
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of correlated play (unless the bidders’ private valuations happen to be correlated). One may view

Nash equilibria as a special class of communication equilibria where the mediator’s recommendation

to bidder i (bi) is independent of the other bidders’ reports (v̂−i) as well as of the recommendations

made to them (b−i). Below I use a more standard approach to describing Nash equilibria in terms

of the players’ bidding functions.

A pure strategy of bidder i is a measurable function bi : [vi, vi] → A. In case there exists an

inverse function of bi on an interval
(
b, b

)
⊂ [r,∞), then it is denoted by φi :

(
b, b

)
→ [vi, vi]. First

I state a well-known result for the case of ex-ante symmetric bidders.

Proposition 1 Suppose r ∈ [0, v) and v1, ..., vn are identically distributed with a cumulative distri-

bution F and a density f on [v, v]. Then

(i) There exists an equilibrium such that each bidder uses the following strategy

b (v) =




r +

∫ v
vr
ṽdFn−1 (ṽ)

∅

if

if

v ∈ (vr, v]

v ∈ [v, vr)
, where vr is such that F

n−1 (vr) vr = r;

(ii) If n = 2 then this equilibrium is unique.

The existence of this type of equilibrium is a consequence of the revenue equivalence theorem

(Myerson (1981)). Weber (1985) advanced a conjecture that this is a unique equilibrium. To the

best of our knowledge, this conjecture was so far confirmed only for the case of two bidders: Amann

and Leininger (1996) show uniqueness for the case r = 0; Lizzeri and Persico (2000) show uniqueness

for the case r �= 0.

Next I state a result for the case of two asymmetric bidders, which can be found in Lizzeri and

Persico (2000).

Proposition 2 Suppose n = 2 and r ∈ [0, v). There exists a unique equilibrium. In this equilibrium

each bidder i is using a bidding function which has a strictly increasing inverse φi :
(
r, b

]
→ [vi, vi]

such that

1

φ′i (b)
= gi (φi (b))φj (b) for every b ∈

(
r, b

]
and i �= j
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Depending on the distributions F1, F2 and the reserve price r it may be that both, one or none of

the bidders have a nondegenerate interval of types (at the low end of the support) who bid 0 (or

equivalently, ∅).

Parreiras and Rubinchik (2008) show that the case of three or more heterogeneous bidders is

considerably more complicated. For example, they prove that different bidders may have different

ranges for their equilibrium bids, unlike in the case of two bidders. It is also not clear at this point

whether Nash equilibrium is unique.

3 Case of two bidders and no reserve price

In this section I show that for the case of two bidders and no reserve price communication equilibria

cannot be too inefficient.

Theorem 1 Suppose r = 0 and n = 2. Then in every communication equilibrium µ the ex-ante

expected surplus is bounded from below as follows:

2∑

i=1

vi∫

vi

Pi (vi) vidFi (vi) ≥
1

2

2∑

i=1

vi∫

vi

vidF
2
i (vi)

Proof. Fix a communication equilibrium µ. Consider a function βi (vi) =
∫ vi
vi
vidFi (vi) defined on

[vi, vi]. It has an inverse φi : [0, βi (vi)]→ [vi, vi]. Using Lemma 2 we must have

G−i (b) ≤
Ui (φi (b)) + b

φi (b)
for every b ∈ [0, βi (vi)] (3)

Note that the ex-ante expected profit is equal to

Π =
2∑

i=1

+∞∫

0

bdGi (b) =
2∑

i=1

+∞∫

0

(1−G−i (b)) db

The profit can be bounded from below using (3) as follows:

Π ≥
2∑

i=1

βi(vi)∫

0

(1−G−i (b))db ≥
2∑

i=1

βi(vi)∫

0

(
1−

Ui (φi (bi)) + bi
φi (bi)

)
db
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Changing variables vi = φi (b) and then using integration by parts we get

Π ≥
2∑

i=1

vi∫

vi

(
1−

Ui (vi) +
∫ vi
vi
ṽidFi (ṽi)

vi

)
vifi (vi)dvi (4)

=
2∑

i=1

vi∫

vi

viFi (vi)dFi (vi)−
2∑

i=1

vi∫

vi

Ui (vi)dFi (vi)

Note that an alternative way to express the ex-ante profit is as follows:

Π =
2∑

i=1

vi∫

vi

Ti (vi)dFi (vi) =
2∑

i=1

vi∫

vi

Pi (vi) vidFi (vi)−
2∑

i=1

vi∫

vi

Ui (vi) dFi (vi) (5)

Combining (4) and (5) we get the result.

The key observation used in the above proof comes from Lemma 2, which provides an upper

bound on the cumulative distribution of equilibrium bids of any given bidder. It translates into

a lower bound on the equilibrium expected payments of the bidders. As in the mechanism design

literature with hidden types, higher expected payments are associated with more efficient allocation.

In this way we obtain a lower bound on the expected surplus.

For the case homogeneous bidders Theorem 1 actually pins down the essentially unique commu-

nication equilibrium.

Corollary 1 Suppose r = 0 and v1, v2 are identically distributed with a cumulative distribution F

and a density f on [v, v]. Then the outcome of any communication equilibrium coincides a.s. with

the outcome of the Nash equilibrium (given in Proposition 1).

Proof. In the symmetric case the outcome of the Nash equilibrium is efficient. Thus the ex-ante

expected surplus from the Nash equilibrium is the highest possible, and is equal to the expectation

of the first-order statistic.

By Theorem 1 the ex-ante expected surplus from any communication equilibrium is at least
∫ v
v
vdF 2 (v), which is the expectation of the first-order statistic.

Given the uniqueness of the Nash equilibrium it is clear that, say, a simple coordination device

like a publicly observed sunspot does not give rise to any new equilibria. Also it is quite intuitive
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that some simple minded pre-play communication scenarios where, say, one or both of the bidders

announce whether the valuation is “high” or “low” would not work, since the high valuation bidders

would have an incentive to lie to make the opponent bid less aggressively. However there still

remains an abundance of other complicated (possibly stochastic) pre-play coordination/information

revelation scenarios, and it is not clear a priori that none of them could work. Quite surprisingly,

Corollary 1 shows that the possibility of pre-play communication in this case does not add any new

equilibria in addition to the Nash equilibrium. In the Appendix I verify the robustness of this result

by considering a discrete model with two types.

One implication of this result is that an auctioneer does not have to bother to try to pro-

hibit pre-play communication between the bidders. Moreover, if the bidders’ virtual valuation

v− ((1− F (v)) /f (v)) is strictly increasing on [v, v], then the expected profit is maximized among

all possible mechanisms that do not allow the auctioneer to withhold the good.4

The bidders on the other hand do pretty badly. If the inverse hazard rate (1− F (v)) /f (v)

is strictly decreasing on [v, v], then the bidders’ ex-ante payoffs are minimized among all possible

mechanisms that do not allow the auctioneer to withhold the good.5

The case of heterogeneous bidders is less clear cut, so to give some sense of the extent of the

result in Theorem 1 I consider the following example.

Example 1 Suppose r = 0, v1 is uniformly distributed on [0, 1], and v2 is uniformly distributed on

[0, 2]. The Nash equilibrium bidding functions (see Proposition 2) are: b1 (v) =
2
3v
3, b2 (v) =

1
3
1√
2
v
3

2 .

Bidder 1 wins the good whenever 2 (v1)
2 > v2, and thus the outcome of the Nash equilibrium is

inefficient. It is straightforward to calculate that the ex-ante surplus from Nash equilibrium is

Sne =
21
20 , while the ex-ante surplus from efficient allocation is Seff =

13
12 . By Theorem 1 the ex-

ante surplus in any communication equilibrium (Sce) is at least
1
2

(
2
∫ 1
0 v

2dv + 1
2

∫ 2
0 v

2dv
)
= 1. As

another point of comparison consider a hypothetical scenario when the good is randomly allocated

to bidder 1 and 2 with probabilities p and 1− p. The ex-ante surplus from such random allocation

is Srand = 1−
1
2p ∈

[
1
2 , 1

]
.

4See for example Myerson (1981).
5See for example Section 3 in McAfee and McMillan (1992).
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4 Other settings

4.1 Non-zero reserve price

In this section I restrict attention to the case of two symmetric bidders.

Lemma 3 Suppose r > 0, n = 2 and v1, v2 are identically distributed with a cumulative distribution

F and a density f on [v, v]. Then in every communication equilibrium µ

min
i
{sup {vi : Pi (vi) = 0}} ≤ vr

where vr is the “cutoff type” in the Nash equilibrium (given in Proposition 1).

Proof. First note that for any given communication equilibrium µ̃ there exists a corresponding

symmetric communication equilibrium µ.6 For the remainder of the proof fix a symmetric commu-

nication equilibrium µ.

Denote by U (v), P (v) and T (v) the equilibrium expected payoff, the probability of winning

and expected payment of any bidder with valuation v. Let G : [0,∞) → [0, 1] be the cumulative

distribution function of the bids of any bidder. Denote v∗ = sup {v : P (v) = 0}, and suppose that

v∗ > vr.

Consider the Nash equilibrium bidding function given in Proposition 1: β (v) = r +
∫ v
vr
ṽdF (ṽ)

defined on [vr, v]. It has an inverse φ : [r, β (v)]→ [vr, v]. Then using Lemma 2 we must have

G (b) ≤
U (φ (b)) + b

φ (b)
for every b ∈ [r, b (v)]

Similar to the proof of Theorem 1 we can bound the profits from below as follows

Π = 2

+∞∫

0

(1−G (b))db ≥ 2

β(v)∫

0

(1−G (b)) db = 2


b (v)−

r∫

0

G (b)db−

β(v)∫

r

G (b) db




≥ 2


b (v)−G (r) r −

β(v)∫

r

U (φ (b)) + b

φ (b)
db




6 If µ̃ is asymmetric, then by symmetry there exists another asymmetric communication equilibrium µ̂ where the
roles of the bidders are reversed. But then we can construct a symmetric communication equilibrium µ by randomizing
over µ̃ and µ̂ with equal probabilities. See for example Section 1 in Maskin and Riley (1984).

11



Changing variables v = φ (b) then using integration by parts we get

Π ≥ 2





r +

v∫

vr

ṽdF (ṽ)


−

(
U (vr) + r

vr

)
r −

v∫

vr



U (v) + r +

∫ v

vr

ṽdF (ṽ)

v


 vf (v)dv


 (6)

= 2




r +

v∫

vr

ṽdF (ṽ)


−

(
U (vr) + r

vr

)
r −

v∫

vr

U (v) dF (v)−

v∫

vr

(
r +

∫ v

vr

ṽdF (ṽ)

)
dF (v)




= 2


−

(
U (vr) + r

vr

)
r −

v∫

vr

U (v)dF (v) + rF (r) +

v∫

vr

vf (v)F (v)dv




=

v∫

vr

vdF 2 (v)− 2

v∫

v∗

U (v) dF (v)

where the second equality uses integration by parts; the last equality uses the fact that U (v) = 0

for every v ≤ v∗ and the definition of vr (F (vr) vr = r).

Note that an alternative way to express the ex-ante profit is as follows:

Π = 2

v∫

v

T (v) dF (v) = 2

v∫

v∗

P (v) vdF (v)− 2

v∫

v∗

U (v) dF (v) (7)

Combining (6) and (7) we get

2

v∫

v∗

P (v) vdF (v) ≥

v∫

vr

vdF 2 (v)

But on the other hand we have

2

v∫

v∗

P (v) vdF (v) ≤ 2

v∫

v∗

F (v) vdF (v) =

v∫

v∗

vdF 2 (v)

Hence there is a contradiction since v∗ is assumed to be greater than vr.

The case of positive reserve price presents some difficulties for using the same argument as

in Theorem 1. In particular, we can use Lemma 2 to get a bound cumulative distribution of

equilibrium bids of each bidder only for the values above the reserve price r. Nonetheless, I view
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the partial characterization provided above as saying that the communication equilibria cannot be

too inefficient, which is a similar message to the one in the previous section.

4.2 More than two bidders

In this section I assume no reserve price and continue to restrict attention to the case of symmetric

bidders.

Lemma 4 Suppose r = 0 and v1, ..., vn are identically distributed with a cumulative distribution F

and a density f on [v, v]. Then in every communication equilibrium µ the ex-ante expected surplus

is bounded from below as follows:

n∑

i=1

v∫

v

Pi (vi) vidF (vi) ≥
1

2

n

n− 1

v∫

v

vdF 2n−2 (v)

Proof. Fix a symmetric communication equilibrium µ.7 Denote by U (v), P (v) and T (v) the

equilibrium expected payoff, the probability of winning and expected payment of any bidder with

valuation v. Let G : [0,∞) → [0, 1] be the cumulative distribution function of the bids of any

bidder, Gmax : [0,∞) → [0, 1] be the cumulative distribution function of the maximal bid among

the opponents of any given bidder.

Consider the Nash equilibrium bidding function given in Proposition 1: β (v) =
∫ v
v
ṽdFn−1 (ṽ)

defined on [v, v]. It has an inverse φ : (0, β (v)]→ [v, v]. Using Lemma 2 we get

Gmax (b) ≤
U (φ (b)) + b

φ (b)
for every b ∈ [0, β (v)]

Using symmetry and the fact that E
[∑

j �=i bj
]
≥ E [maxj �=i bj ] we can bound the profits from below

as follows

Π = E

[
n∑

i=1

bi

]
≥

n

n− 1
E

[
max
j �=i

bj

]
=

n

n− 1

+∞∫

0

bdGmax (b) =
n

n− 1

+∞∫

0

(1−Gmax (b))db

7As argued in Lemma 3 we can restrict attention to symmetric communication equilibria.
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Similar to the proof of Theorem 1 we further bound the profits from below as follows

Π ≥
n

n− 1

β(v)∫

0

(1−Gmax (b)) db ≥
n

n− 1

β(v)∫

0

(
1−

U (φ (b)) + b

φ (b)

)
db

Changing variables v = φ (b) then using integration by parts we get

Π ≥
n

n− 1

v∫

v

(
1−

U (v) +
∫ v
v
ṽdFn−1 (ṽ)

v

)
vdFn−1 (v) (8)

=
n

n− 1




v∫

v

vdFn−1 (v)−

v∫

v

U (v) dFn−1 (v)−

v∫

v

(∫ v
v
ṽdFn−1 (ṽ)

)
dFn−1 (v)




=
1

2

n

n− 1

v∫

v

vdF 2n−2 (v)− n

v∫

v

U (v)Fn−2 (v) dF (v)

Note that an alternative way to express the ex-ante profit is as follows:

Π = n

v∫

v

T (v) dF (v) = n

v∫

v

P (v) vdF (v)− n

v∫

v

U (v)dF (v) (9)

Combining (8) and (9) we get

n

v∫

v

P (v) vdF (v) ≥
1

2

n

n− 1

v∫

v

vdF 2n−2 (v) + n

v∫

v

U (v)
(
1− F n−2 (v)

)
dF (v)

Since U (v) ≥ 0 for every v we have the result.

When there are more than two bidders there is a new difficulty: we are interested in the dis-

tribution of each individual bid (bi), while Lemma 2 provides us only with information about the

distribution of the maximal bid among the opponents of any given bidder (maxj �=i bj). So while the

obtained lower bound is tight for the case of two players, it becomes less restrictive as the number

of bidders increases.

Example 2 Let r = 0 and v1, ..., vn be uniformly distributed on [0, 1]. The Nash equilibrium given in

Proposition 1 is efficient, with the ex-ante surplus equal to Seff =
n
n+1 . By Lemma 4 the ex-ante sur-
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plus in any communication equilibrium (Sce) is at least n
∫ 1
0 v

2n−2dv = n
2n−1 . Below I present numer-

ical values for the surplus from efficient allocation (Seff ), the surplus from a fair random allocation

(Srand), the bound on the surplus from communication equilibria (Sce), and the bound on the increase

in the surplus from communication equilibria over the random allocation relative to the difference

between efficient surplus and the surplus from random allocation ((Sce − Srand) / (Seff − Srand)).

n 2 3 5 10 ∞

Seff ≈ 0.667 0.75 0.833 0.909 1

Srand = 0.5 0.5 0.5 0.5 0.5

Sce � 0.667 0.6 0.556 0.526 0.5

Sce−Srand
Seff−Srand � 1 0.4 0.167 0.064 0

5 First-price auction

5.1 Preliminaries

In this section I use a similar approach to study communication equilibria in the first-price auction

with a reserve price r ≥ 0.

Each bidder has the same set of actions as in the all-pay auction: A := [r,∞)∪{∅}. Bidders who

submit the null bid ∅ do not receive the good and there is no payment. If bidder i with valuation

vi submits an active bid bi ≥ r, while the other bidders submit b−i = (b1, ..., bi−1, bi+1, ..., bn), then

his payoff is





vi − bi

0

1
#{k: bk=bi} (vi − bi)

if

if

if

bi > max {r,maxj �=i bj}

bi < max {r,maxj �=i bj}

bi = maxj �=i bj ≥ r

The definition of the communication equilibrium µ is the same as in Definition 1, with the

expected payoff of bidder i with valuation vi, when all players are truthful and obedient, given by

Ui (vi) =

∫

v−i

(∫

bi,b−i

(Pr {i wins | bi, b−i} (vi − bi))dµ(bi, b−i|vi, v−i)

)
dF−i (v−i)

and the expected payoff of bidder i with valuation vi, when he reports v̂i ∈ [vi, vi] and disobeys the
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mediator’s recommendation according to b̂i : A→ A (while all players other than i are still truthful

and obedient), given by

Ui
(
vi; v̂i, b̂i (·)

)
=

∫

v−i

(∫

bi,b−i

(
Pr

{
i wins | b̂i (bi) , b−i

}(
vi − b̂i (bi)

))
dµ(bi, b−i|v̂i, v−i)

)
dF−i (v−i)

The exact analog of Lemma 1 holds, with the definition of Ti (vi) changed to according to

the rules of the first price auction. If we denote by G−i : [0,∞) → [0, 1] the ex-ante cumulative

distribution function of the maximal bid among the opponents of bidder i, then we have the following

analog of Lemma 2.

Lemma 5 In every communication equilibrium µ

Ui (vi) ≥ G−i (βi) (vi − βi) for every vi ∈ [vi, vi] and βi ∈ [r,∞) .

5.2 The case of uniform distribution

In this section I restrict attention to the case when v1, ..., vn are independently uniformly distributed

on [0, 1]. There is no reserve price: r = 0.

First, note that there exists a unique Nash equilibrium such that each bidder uses the following

strategy: b (v) = n−1
n
v for every v ∈ [0, 1].8 This equilibrium is efficient, with the the ex-ante surplus

equal to Seff =
n
n+1 .

Lemma 6 Suppose r = 0 and v1, ..., vn are uniformly distributed on [0, 1]. Then in every commu-

nication equilibrium µ the ex-ante expected surplus is bounded from below as follows:

n∑

i=1

1∫

0

Pi (vi) vidvi ≥ 1−
1 + lnn

2n

Proof. Fix a symmetric communication equilibrium µ.9 Denote by U (v), P (v) and T (v) the

equilibrium expected payoff, the probability of winning and expected payment of any bidder with

valuation v. Note that uniform distribution and symmetry implies that U (1) =
∫ 1
0 P (v)dv =

1
n
.

Let Gmax : [0,∞) → [0, 1] be the cumulative distribution function of the maximal bid among all

8See for example Lebrun (1999).
9As argued in Lemma 3 we can restrict attention to symmetric communication equilibria.
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bidders, G−1 : [0,∞) → [0, 1] be the cumulative distribution function of the maximal bid among

the opponents of any given bidder.

Using Lemma 5 we get

G−1 (b) ≤
U (1)

1− b
=

1
n

1− b
for every b ∈

[
0,
n− 1

n

]
(10)

Using symmetry and the fact that E [maxj bj] ≥ E [maxj �=i bj ] we can bound the profits from below

as follows

Π = E

[
max
j
bj

]
≥ E

[
max
j �=i

bj

]
=

+∞∫

0

bdG−1 (b) =

+∞∫

0

(1−G−1 (b)) db

Using (10) we can further bound the profits from below as follows

Π ≥

n−1
n∫

0

(1−G−1 (b)) db ≥
n− 1

n
−
1

n

n−1
n∫

0

1

1− b
db (11)

=
n− 1

n
+
1

n

(
ln

(
1

n

)
− ln (1)

)
= 1−

1 + lnn

n

Note that an alternative way to express the ex-ante profit is as follows:

Π = n

1∫

0

T (v) dv = n

1∫

0

P (v) vdv − n

1∫

0

U (v)dv (12)

= 2n

1∫

0

P (v) vdv − n

1∫

0

P (v)dv = 2n

1∫

0

P (v) vdv − 1

where the third equality uses integration by parts; the last equality uses the fact that
∫ 1
0 P (v) dv =

1
n
.

Combining (11) and (12) gives the result.

Here we face a difficulty similar to the one in Lemma 4: we are interested in the distribution

of the maximal bid among all bidders (maxj bj), while Lemma 5 provides us only with information

about the distribution of the maximal bid among the opponents of any given bidder (maxj �=i bj).

This distinction becomes less restrictive as the number of bidders increases, and so the lower bound

on the surplus from communication equilibrium (Sce) converges to the surplus from Nash equilibrium

(Seff ). I believe that this lower bound can be further tightened and that it is possible to prove
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analogous results for distributions other than uniform.

Below I present numerical values for the surplus from efficient allocation (Seff ), the surplus

from a fair random allocation (Srand), the bound on the surplus from communication equilibria

(Sce), and the bound on the increase in the surplus from communication equilibria over the random

allocation relative to the difference between efficient surplus and the surplus from random allocation

((Sce − Srand) / (Seff − Srand)).

n 2 3 5 10 ∞

Seff ≈ 0.667 0.75 0.833 0.909 1

Srand = 0.5 0.5 0.5 0.5 0.5

Sce � 0.577 0.65 0.739 0.835 1

Sce−Srand
Seff−Srand � 0.46 0.601 0.717 0.819 1

6 Appendix

6.1 Discrete model with two types

Here I check whether the conclusion of Corollary 1 carries over to the all-pay auction model with

discrete types. Suppose there are two bidders. Valuation of bidder i is vi which can take two

values v and v, where 0 ≤ v < v. Valuations v1, v2 are distributed independently and identically:

Pr (v) = p, Pr (v) = 1− p where p ∈ (0, 1). There is no reserve price: r = 0.

First let us describe the Nash equilibrium. The result is stated without proof since the argument

is standard.10

Lemma 7 There exists a unique Nash equilibrium in the discrete model with two types such that

each bidder uses the following strategy:

(i) Let v > 0. Type v = 0 randomizes according to cumulative distribution function H (b) = b
(1−p)v

on [0, pv], type v randomizes according to cumulative distribution function H (b) = b
(1−p)v on

(pv, pv + (1− p) v].

(ii) Let v = 0. Type v = 0 bids 0, type v randomizes according to cumulative distribution function

H (b) = b
(1−p)v on (0, (1− p) v].

10See for example Section 6 in Fudenberg and Tirole (1991).
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For future reference note that the outcome of the Nash equilibrium is efficient, and the ex-ante

expected surplus is equal to p2v +
(
1− p2

)
v.

Lemma 8 The outcome of any communication equilibrium in the discrete model with two types

coincides a.s. with the outcome of the Nash equilibrium.

Proof. I prove the result only for the case when v > 0. The argument for the other case is identical.

Fix a symmetric communication equilibrium µ.11 Denote by U (v), P (v) and T (v) the equilib-

rium expected payoff, the probability of winning and expected payment of any bidder with valuation

v. Let G : [0,∞)→ [0, 1] be the cumulative distribution function of the bids of any bidder.

Using Lemma 2 we get

G (b) ≤
U (v) + b

v
for every b ∈ [0, pv] , and (13)

G (b) ≤
U (v) + b

v
for every b ∈ (pv, pv + (1− p) v] .

Similar to the proof of Theorem 1 we can bound the profit from below using (13)

Π = 2

+∞∫

0

(1−G (b))db ≥ 2

pv+(1−p)v∫

0

(1−G (b)) db (14)

≥ 2


(pv + (1− p) v)−

pv∫

0

U (v) + b

v
db−

pv+(1−p)v∫

pv

U (v) + b

v
db




=
(
p2v +

(
1− p2

)
v
)
− 2 (pU (v) + (1− p)U (v))

Note that an alternative way to express the profit is as follows:

Π = 2 (pT (v) + (1− p)T (v)) = 2 (pP (v) v + (1− p)P (v) v)− 2 (pU (v) + (1− p)U (v)) (15)

Combining (14) and (15) we get

2 (pP (v) v + (1− p)P (v) v) ≥ p2v +
(
1− p2

)
v

11As argued in Lemma 3 we can restrict attention to symmetric communication equilibria.
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The expression on the right is the ex-ante expected surplus from the Nash equilibrium, which is the

highest possible, since the outcome of the Nash equilibrium is efficient.
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