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Abstract

This paper studies shill bidding in the VCG mechanism applied to combinatorial auctions. Shill
bidding is a strategy whereby a single decision-maker enters the auction under the guise of multiple
identities (Sakurai, Yokoo, and Matsubara 1999). I formulate the problem of optimal shill bidding
for a bidder who knows the aggregate bid of her opponents. A key to the analysis is a subproblem–
the cost minimization problem–which searches for the cheapest way to win a given package using
shills. This formulation leads to an exact characterization of the aggregate bids b such that some
bidder would have an incentive to shill bid against b. It is well known that when goods are substi-
tutes, there is no incentive to shill bid. In contrast, I show that when goods are pure complements,
the incentive to shill takes a simple form: there is an incentive to disintegrate and bid for each
item using a different identity. With a mix of substitutes and complements, I show that the winner
determination problem (for single minded bidders)–the problem of finding an efficient allocation in
a combinatorial auction–can be embedded into the optimal shill bidding problem. Shill bidding is
closely related to collusion. Setting aside the ordinary incentive to suppress competition, the disin-
centive to disintegrate using shills when facing a substitutes valuation translates into an incentive
to merge for a coalition facing the same valuation. Only when valuations are additive can the incen-
tives to shill and merge simultaneously disappear. The paper also shows that there does not exist a
dominant strategy in the VCG mechanism when shill bidding is possible. I find a large class of shill
bidding strategies which sometimes outperform truthful bidding, but also show that no shill bidding
strategy dominates truthful bidding.
JEL Classification: C72, D44
Keywords: shill bidding, VCG mechanism, combinatorial auctions, winner determination problem,
collusion
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1 Introduction

The Vickrey-Clarke-Groves (VCG) mechanism serves as an important benchmark for com-
binatorial auctions–or in other words, auctions in which many items are sold simultaneously
and bidders may submit bids on packages of items. Assuming transferable utility, the VCG
mechanism is essentially the unique mechanism that implements efficient outcomes in domi-
nant strategies on smoothly connected domains (Green and Laffont 1977, Holmstrom 1979).
On the other hand, the VCG mechanism is known to suffer from a host of problems
(Milgrom 2004, Ausubel and Milgrom 2006, Rothkopf 2007). The purpose of this paper
is to contribute to the assessment of one such problem: namely, the problem of shill bid-
ding, which was introduced by Sakurai, Yokoo, and Matsubara (1999). Consider a VCG
auction conducted over the internet in which the seller observes screen names belonging to
the different bidders participating in the auction. Suppose, however, that the seller cannot
verify that these different screen names actually correspond to different bidders. In this
case, when the items on auction may be complements, a bidder may have an incentive to
enter the auction under the guise of multiple identities, and manipulate the mechanism.
This problem does not require the internet–but may occur in a VCG auction whenever
there are multiple bidders who appear independent but who actually bid on behalf of a
single decision-maker.1

The main contribution of this paper is to study optimal shill bidding. Let Ann be a
bidder who is considering the use of shills. This paper studies the following optimization
problem: if Ann knows or guesses the profile of bids submitted by her opponents, what is
her optimal use of shills? Theorems 1 and 2 formulate Ann’s optimization problem. This
formulation decomposes Ann’s problem into two parts: (i) for any package B, what is the
cheapest way that Ann could win B using shills? (ii) which package does Ann want to win
given that she wins it in the cheapest way? (i) is referred to as the shill bid cost minimization
problem (CMP). The theorems also show that the optimal shill bidding strategy will always
have the characteristic that the different shills which are sponsored by Ann do not compete
with one another.

Theorem 3 uses the formulation of Ann’s problem to characterize the circumstances in
which some bidder may have an incentive to use shills. The characterization is related to
similar results by Lehmann, Lehmann, and Nisan (2006) and Ausubel and Milgrom (2002).2

1Rastegari, Condon, and Leyton-Brown (2007) and Day and Milgrom (2008) show that shill bidding can
be a problem not just in the VCG mechanism, but for a larger class of auctions. Several papers have proposed
solutions to the shill bidding problem, either in the form of limited verification of identities (Conitzer 2007)
or in the form of proposed auctions which do not suffer from the shill bidding problem (Ausubel and
Milgrom 2002, Matsuo, Takayuki, Day, and Shintani 2006, Yokoo 2006, Yokoo and Iwasaki 2007, Day and
Milgrom 2008). Of course, as these papers point out, verification of identities may sometimes be infeasible,
and the auctions which avoid the shill bidding problem do not have all of the attractive features of the VCG
mechanism.

2Another characterization is due to Yokoo, Sakurai, and Matsubara (2004); this characterization is slightly
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In general, shill bidding is not worthwhile if goods are substitutes. At the other extreme,
when goods are pure complements (by which I mean that Ann faces an aggregate bid which
is supermodular), optimal shill bidding takes on a simple form; there is an incentive for
Ann to disintegrate and bid for each item that she would like to win, using a different
identity. The intermediate case, in which Ann faces a mix of complements and substitutes,
is complex: Ann may want to break up into different identities to some degree, but each shill
bidder may bid for a package and not just an item. I show that there is a close relationship
between the cost minimization part of the shill bidding problem–part (i)–and the winner
determination problem (WDP), which is the problem of finding an efficient allocation in a
combinatorial auction. This relationship provides an economically interesting interpretation
of the optimal shill bidding problem. WDP is known to be an NP-hard problem; the NP-
hardness of optimal shill bidding also follows from Sanghvi and Parkes (2004) (See Section
6.3).3

The analysis of shill bidding is a worst-case analysis. The optimal shill bidding strategy
is analyzed under the assumption that Ann knows or can correctly guess the aggregate bid
of her opponents. This is a highly unrealistic assumption, but it is meant to show that
in the worst case, Ann may have an incentive to attempt to manipulate the mechanism.
Whether this will actually happen in equilibrium is another matter. What is clear is that
the dominant strategy incentive compatibility of the VCG mechanism does not survive the
introduction of shill bidding.4 I go on to show that not only is truthful bidding no longer a
dominant strategy in the VCG mechanism with shill bidding, but there does not exist any
dominant strategy in the VCG mechanism with shill bidding. Moreover, I find a large class
of strategies which are sometimes better than truthful bidding when shill bidding is possible.
I also examine the worst case from Ann’s perspective. In some cases, the strategies which
solve Ann’s shill bidding optimization problem are risky in the sense that if Ann is wrong
about the aggregate bid of her opponent, Ann may receive a negative utility, which is not
possible under truthful bidding. However, I show that sometimes, Ann has an optimal shill
bidding strategy which gives Ann a zero utility in the worst case, matching the performance
of truthful bidding along this dimension. This is possible even in cases when optimal shill
bidding leads to an inefficient allocation.

Finally in Section 9, I show that the analysis in this paper has relevance to more general
forms of collusion. In the VCG mechanism, there is almost always an incentive to collude
in order to reduce the prices. This is because losing bids for packages determine the op-
portunity cost, and hence the VCG price of that package. However, given a collection of

further removed from the current characterization than those mentioned above.
3Conitzer and Sandholm (2006) have a related–but distinct–result on the complexity of collusive strategies

in the VCG mechanism. The relationship is also discussed in Section 6.3.
4Some authors that study this problem refer to the VCG mechanism as dominant strategy incentive

compatible, but say that it is not shill proof. I prefer to say that the VCG mechanism is dominant strategy
incentive compatible if shill bidding is impossible, but not if shill bidding is possible.
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bidders J and a collection of packages (Bj : j ∈ J) that they would win at the efficient
allocation, one can ask: what is the minimum payment possible for the members of J sub-
ject to the constraint that each member j of J wins Bj , holding fixed the bids of bidders
outside of J? Given that bidders suppress competition in this way, the question remains
as to whether they would be better off merging, and bidding under a single identity. From
this perspective, merging is simply the inverse of shill bidding. Whereas complementarities
in the aggregate bid of one’s opponents make shill bidding attractive, complementarities
make merging unattractive. In contrast, when the opposing aggregate bid is a substitutes
valuation, shill bidding is unattractive, but merging is attractive.5 In general–whether con-
sidering shill bidding or collusion–substitutes valuations create an incentive for integration,
and complements valuations create an incentive for disintegration.

2 Preliminaries

In this section, I introduce several concepts and issues which will be necessary for the
development of the main ideas of the paper.

2.1 Combinatorial Auctions

A combinatorial auction is an auction in which bidders may bid for packages of goods.
Formally, assume a finite collection N of goods, and a finite collection I of bidders. Each
bidder i ∈ I has a valuation vi : 2N → R+, which assigns to each package the maximum
amount that bidder i would be willing to pay to receive exactly that package. If i receives
package B for a price p, his utility is vi(B)− p. We assume that vi(∅) = ∅ and:

A ⊆ B ⇒ vi(A) ≤ vi(B)

The latter assumption is called monotonicity, or alternatively free disposal.
Actual or potential uses of combinatorial actions of actual or potential uses of com-

binatorial auctions include auctions for provision of transportation services (Caplice and
Sheffi 2006, Cantillon and Pesendorfer 2006) industrial procurement (Bicheler, Davenport,
Hohner, and Kalagnanum 2006), arrival and departure times at airports (Rassenti, Smith,
and Bulfin 1982), and use of radio spectrum (Milgrom 2000). Complementarities are often
important in combinatorial auctions. For example, in a spectrum auction, a firm may need
to win licenses for several regions in order to have a viable business, and therefore the firm
may assign a value to the package of licences for this region which is higher than the sum
of the values of the stand alone licenses.

5Milgrom (2004) presents an example which illustrates the incentive to merge in the VCG mechanism
when goods are substitutes. In this paper, I provide an exact and general characterization of such incentives.
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2.2 The VCG Mechanism

The VCG Mechanism is an example of a combinatorial auction. In the VCG Mechanism a
bid is a valuation. The VCG mechanism then implements an efficient allocation taking the
bids at face value. In other words, the goods are divided among the bidders in such a way
as to maximize the sum of their reported valuations. Formally, let

X := {(Xi : i ∈ I) : ∀i, j ∈ I,Xi ⊆ N,Xi ∩Xj = ∅}

be the set of allocations, where Xi is the package received by i. Similarly let X−i be the set
of allocations such that i does not receive any items, or equivalently such that Xi = ∅. Let
(vi : i ∈ I) be the profile of bids, and let X∗i be the package which is assigned to i at the
efficient allocation. In other words (X∗i : i ∈ I) solves:

max{
∑
i∈I

vi(Xi) : (Xi : i ∈ I) ∈ X}

If there are multiple efficient allocations, then the VCG mechanism selects one such alloca-
tion according to some tie-breaking rule. The VCG payment of bidder i is:

pi = max{
∑
j∈I\i

vj(Xj) : (Xj : j ∈ I \ i) ∈ X−i}︸ ︷︷ ︸
(∗)

−
∑
j∈I\i

vj(X∗j )

︸ ︷︷ ︸
(∗∗)

Term (*) refers to the value of the efficient allocation in the marginal economy excluding
bidder i, and term (**) refers to the total value to bidders other than i at the efficient allo-
cation in the economy including i. The difference between (*) and (**) can be interpreted
as the externality imposed by bidder i on other bidders, or alternatively as the opportunity
cost of the items won by i. Truthful bidding–or in other words, submitting a bid equal
to one’s value–is a dominant strategy in the VCG mechanism. The VCG mechanism is
essentially unique efficient auction in which truthful bidding is a dominant strategy (Green
and Laffont 1977, Holmstrom 1979). By essentially unique, I mean that for each bidder i
the payments may be altered by a constant depending on the reports of other bidders. The
VCG mechanism is known to suffer from a host of problems (Milgrom 2004, Ausubel and
Milgrom 2006, Rothkopf 2007) and it is not commonly in use for selling multiple heteroge-
nous objects. The motivation for studying this mechanism is that–as explained above–it is
the unique auction with certain desirable properties, and we would like to understand how
these properties inevitably lead to certain defects.
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2.3 Shill Bidding

Imagine that a VCG auction is conducted over the internet, and that a single bidder may
enter the auction under multiple screen names. Suppose that it is impossible to verify
that different screen names correspond to different bidders. The incentive to undertake
such a manipulative strategy in the VCG mechanism is related other forms of collusion
and has been studied in a series of papers (Sakurai, Yokoo, and Matsubara 1999, Yokoo,
Sakurai, and Matsubara 2000, Yokoo, Sakurai, and Matsubara 2004, Lehmann, Lehmann,
and Nisan 2006, Ausubel and Milgrom 2006, Conitzer and Sandholm 2006). The following
example shows how shill bidding may be effective.

Example 1 Suppose that there are two bidders, Ann and Bob, and two goods, good 1 and
good 2. Bob values an individual good at $1, but the package containing both at $4. Ann
values each good at $1.50 and the package at $3. It is efficient to give the package to Bob.
Under truthful bidding, the VCG mechanism gives package to Bob and charges Bob $3.
Now suppose that, rather than bidding truthfully, Ann enters auction under two identities
i and j. i claims only to value good 1 at $3.50, and j claims only to value good 2 at $3.50.
Taking these bids at face value, it would be efficient to give bidder i good 1 and bidder j
good 2. Thus ultimately Ann would receive both items. Bidder i’s VCG payment would be
$1 = $4.50−$3.50. $4.50 is the total value to all bidders in the marginal economy excluding
i: j would still receive good 2, and Bob would receive good 1. $3.50 is the combined value
to j and Bob in the economy including i. Similar reasoning shows that j’s VCG payment
would also be $1. Since Ann is responsible for the payments of all of her shill bidders, Ann’s
total payment is $2. Since Ann receives both goods, her utility is 3− 2 = 1, which is higher
than her utility to truthful bidding. One can show that the strategy described here is Ann’s
optimal use of shills in this example.

The main problem is that under shill bidding, a decision-maker no longer corresponds
to a single bidder. The idea behind the VCG mechanism is that each decision-maker is
charged his externality. However, with shill bidding, it is no longer possible to identify the
decision-maker.

This paper will focus on two characters, Ann and Bob. Ann is the character who shill
bids. Therefore, rather than submitting a single bids, Ann may submit a profile of bids
(vj : j ∈ J). Ann selects not only the values vj but also the (finite) set J . When Ann
submits (vj : j ∈ J), the VCG auction is run as if these were distinct legitimate bids. Bob
is not interpreted as Ann’s only opponent, but rather as Ann’s aggregate opponent. In other
words, Ann is assumed to face a set I of opponents, who submit bids (vi : i ∈ I). Bob’s bid
is then defined by:

vb(A) := max{
∑
i∈I

vi(Xi) :
⋃
i∈I

Xi = A, i 6= j ⇒ Xi ∩Xj = ∅}
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Ann’s payment and allocation–whether or not she uses shills–depends only on the aggregate
bid of her opponent.6 Therefore, the analysis that follows applies to situations in which
Ann faces an arbitrary (finite) number of opponents.

2.4 Partitional Bid Profiles

For any B ⊆ N , let Π(B) be the set of partitions on B. Formally, a partition P ∈ Π(B) is
a collection of nonempty subsets of B satisfying:

∀P, P ′ ∈ P P 6= P ′ ⇒ P ∩ P ′ = ∅⋃
P = B

In other words, the elements of P are pairwise disjoint and the union of all elements in
P is equal to B. An element P of the partition P is called a cell of P. For example,
P = {{1, 2}, {3}} is a partition of B = {1, 2, 3}, and so belongs to Π(B). P = {1, 2} is a
cell of P.

For any A,B ⊆ N and r ∈ R+, define:

vB,r(A) :=

{
r, if B ⊇ A;
0, otherwise.

Valuations of the form vB,r are single-minded. A bidder with a single-minded valuation
vB,r assigns a value of r to package B but does not care about anything else. If the bidder
fails to receive even one item in B, his utility is 0, and his marginal utility for additional
items is 0 once he has received B.

A partitional bid profile is a profile of valuations of the form (vP,rP : P ∈ P) for
some partition P of some package B, where for all P ∈ P, rP ∈ R+. In other words,
a partitional bid profile is a profile of pairwise disjoint single-minded bids. For example
consider the bid profile (v{1,2},7, v{3},10) is a partitional profile corresponding to the partition
P = {{1, 2}, {3}} of B = {1, 2, 3}. One bidder bids single-mindedly for the package {1, 2}
at a value of 7, and the other bidder bids single-mindedly for the package {3} at a value of
10. Note that the bidders using a partitional bid profile do not compete with one another
in the sense that they bid on mutually disjoint collections of items. If Ann shill bids using
a partitional bid profile (vP,rP : P ∈ P), then we can identify each of her shill bidders with

6The one possible exception is when there are multiple efficient allocations and the VCG mechanism selects
one. In that case, in principle, depending on how the VCG mechanism breaks ties, different configurations
of bids by the members of I which lead to the same aggregate valuation vb may lead to different allocations
and payments for Ann because they effect the outcome of the tie-breaking rule. If Ann bids truthfully, then
Ann is indifferent among all of these allocation-payment combinations, but if Ann uses shills she might not
be indifferent. In the main body of the text, I will ignore this knife-edge case. None of the theorems would
be altered by taking this possibility seriously. However, the exposition would definitely be lengthened if I
were explore this possibility.
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the package P that he bids for; in other words, bidder P bids for package P .

2.5 Worst Case Analysis vs. Equilibrium Analysis

Before preceding to the analysis, it is important to discuss the interpretation of the results
presented here. The analysis to be presented below should be considered as a worst-case
analysis. For example, Theorem 3 gives a necessary and sufficient condition for the VCG
mechanism to be vulnerable to shills if Ann knows or guesses the valuation of her aggregate
opponent. We do not actually assume that Ann has such knowledge; the situation in which
Ann has such knowledge is the worst case. This is to be contrasted with the traditional
analysis of the VCG mechanism in which shills are implicitly assumed to be unavailable. In
this case, truthful bidding is a dominant strategy, so even in the extreme case in which Ann
knows the aggregate bid submitted by her opponents, she has no incentive to do anything
other than bid truthfully. Traditionally, the term strategy-proof is used in the context in
which it is assumed that a single agent cannot enter a mechanism under the guise of multiple
identities, and the terms shill-proof or false-name-proof have been introduced to account
for manipulation when entry under multiple identities is possible; however, I think that a
better interpretation is that the VCG mechanism ceases to be strategy-proof given this new
possibility. Even when I study optimal shill bidding–this should be considered as a worst
case analysis; how would Ann optimally manipulate the VCG mechanism in the extreme
case in which she knows the aggregate valuation of her opponent? The analysis of optimal
shill bidding is closely related to the analysis of the exact conditions under which there is
an incentive to use shills.

A further question concerns equilibrium analysis. Just because Ann has the incentive
to use shills under extreme assumptions about her knowledge, does not mean that Ann will
actually use shills given more reasonable assumptions. For various assumptions about the
distribution of valuations, one may ask whether Ann would actually use shills in equilibrium.
This appears to be a difficult question, and while I have little to say about it, I will discuss
it briefly in the conclusion.

3 Optimal Shill Bidding

The main contribution of this paper is to study the problem of optimal shill bidding. Assume
that Ann knows or correctly guesses the aggregate bid that she is facing. In this case, what
is Ann’s optimal use of shills? As explained above, the assumption that Ann knows the
aggregate bid that she faces is extreme. In reality, Ann would typically have to decide
on her shill bidding strategy in the face of uncertainty about the bids of her opponents.
Nevertheless, studying Ann’s optimization problem in this case sheds insight on the general
problem of shill bidding.
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In what follows, I decompose the problem of optimal shill bidding into two subproblems.
The first subproblem concerns the lowest price at which Ann can buy any package using
shills. The second subproblem concerns which package Ann would like to buy given the
prices established by the first problem. I will now explore these two subproblems in turn.

3.1 Shill Bidding Cost Minimization Problem

The Shill Bidding Cost Minimization Problem (CMP) is as follows:

Input A valuation vb for Bob and a subset B of N .

Output A shill bid profile (vj : j ∈ J) that wins B but makes the smallest possible payment
among all shill bid profiles that win B.

So the CMP deals with the following scenario: Ann knows vb, and she would like to win
package B. What is the cheapest way for Ann to win B using shills? The following theorem
presents an optimization problem who solution provides a solution to the CMP.

Theorem 1 Fix bid vb for Bob. Suppose P∗ solves:

min{
∑
P∈P

[vb((N \B) ∪ P )− vb(N \B)] : P ∈ Π(B)} (1)

Then (vP,rP : P ∈ P∗) is the cheapest way Ann can win B using shills provided that the
numbers (rP : P ∈ P∗) are chosen large enough so that:

1. Bidder P wins package P (in original economy).

2. Bidder P would still win package P in marginal economy excluding any other shill
bidder P ′.7

Ann’s payment when she uses shills optimally to purchase B is given by the value of (1).

A proof of this theorem as well as a discussion occur in Section 1. Here I discuss a few
points. The optimization problem 1 has as its feasible set, the set of all partitions P of
B. The objective is to find such a partition which minimizes a certain objective function.

7Formally conditions 1 may be written as follows:

∀Q ⊆ P∗,
∑
P∈Q

rP > vb([
⋃
Q] ∪ [N \B])− vb(N \B)

Condition 2 may be written as:

∀P ′ ∈ P∗, ∀Q ⊆ P∗ \ P ′,
∑
P∈Q

rP > vb([
⋃
Q] ∪ P ′ ∪ [N \B])− vb(P ′ ∪ [N \B])

Whether the strict inequalities can be changed into weak inequalities depends on the tie-breaking rule.
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The objective function is a sum of terms such that there is a term for each cell P of the
partition P. Each of these terms give the marginal value to Bob of partition cell P given
that Bob already has all items outside of B. We would like to find the partition of B which
minimizes the sum of these marginal values.

Once we find a partition P∗ solving (1), then there is an optimal shill bid profile for Ann
which is partitional, and such that the shill bidders correspond to the cells of P∗. For each
cell P in P∗, there is a shill bidder P who bids single-mindedly for P . Shill bidder P must
bid high enough for P so that he wins P (Condition 1), but also high enough so that he
would still win P if some other shill bidder P ′ were excluded from the auction (Condition
2).

Condition 2 does not follow from Condition 1. In particular, imagine that there are two
disjoint packages P and P ′ which are complements for Bob. Bob’s marginal value for P is
zero unless Bob also wins P ′. Suppose that Ann uses two shill bidders, one to bid on P

and another to bid on P ′. Suppose that Ann wins both P and P ′ through her shills. The
shill bidder P ′ submits a very high bid for P ′ and shill bidder P submits a low bid for P .
This low bid is sufficient to win P because without P ′, Bob does not value P . However,
in the marginal economy excluding P ′, bidder P ’s bid might not be high enough to win P

because once Bob receives P ′, he has a higher marginal value for P .
Notice that a sufficient condition for the profile (rP : P ∈ P) to be above all of the lower

bounds given by Conditions 1 and 2 in Theorem 1 is for rP ≥ vb(N) for all P ∈ P. An
exact mathematical formulation for these conditions is given in footnote 7. Notice that in
general, Ann may want to make her bids as small as possible subject to conditions 1 and
2 because Ann may be bidding above her value for certain packages, and although we are
assuming that Ann knows the aggregate bid vb that she is facing, if there is a small chance
that Ann is mistaken, she may want to minimize the chances that she has to overpay for
certain packages. Of course, depending on Ann’s valuation and beliefs, Ann may not want
to minimize her bids subject to conditions 1 and 2 taking into account a small probability
of a mistake.

3.2 Shill Prices vs. VCG Prices

One way of viewing Ann’s problem in the VCG mechanism–without shills–is as of the
problem of choosing the optimal bundle given VCG prices, where the VCG price for a
package B is given by:

pV CG
B := vb(N)− vb(N \B) (2)

vb(N) is Bob’s utility if Ann were absent from the economy, since in this case, it would be
efficient to reward Bob all goods. vb(N \ B) would be Bob’s utility if Ann bid sufficiently
high on B to win B (and won nothing else). Thus, if Ann knows vb, then Ann effectively
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faces price pV CG
B for every package B. If Ann chose to win B her utility would be:

va(B)− pV CG
B = va(B) + vb(N \B)− vb(N)

Since the term vb(N) is subtracted in Ann’s utility regardless of which package she pur-
chases, Ann would like to select the package B which maximizes:

va(B) + vb(N \B)

In other words, if Ann knew, vb then Ann would be motivated to choose the package which
maximizes social welfare. Of course, we usually assume that Ann does not know Bob’s
valuation, but by truthfully revealing her value, Ann is effectively asking the mechanism to
purchase the package which maximizes her utility at the VCG prices on her behalf. This is
one way of understanding the dominant strategy incentive compatibility and efficiency of
the VCG mechanism.

In contrast, it follows from Theorem 1 that the price that Ann faces for a package when
she may use shills is:

pShill
B := min{

∑
P∈P

[vb((N \B) ∪ P )− vb(N \B)] : P ∈ Π(B)} (3)

This is the cheapest way that Ann may win B using shills. Observing that {B} is a partition
in Π(B), and and for the unique cell P = B in {B}, (N \B)∪P = N , it follows that value
of the objective in (3) at the feasible argument {B} is simply equal to the VCG price (2).
It follows that:

pShill
B ≤ pV CG

B (4)

Another–essentially equivalent–way of seeing that (4) must be true is by observing that
with shills, Ann simply has more strategies than without, and therefore the price she pays
for any given package must be weakly less than the VCG price. It will be useful to think
in terms of the shill prices pShill

B below.

3.3 Optimal Shill Bidding Problem

We are now in a position to discuss Ann’s overall optimization problem. The Optimal

Shill Bidding Problem is as follows:

Input A valuation vb for Bob and a valuation va for Ann.

Output A shill bid profile (vj : j ∈ J) that maximizes Ann’s utility in the VCG mechanism.

So we assume that Ann knows Bob’s valuation vb, and Ann has valuation va. What is Ann’s
optimal shill bidding strategy? The following theorem gives a program which answers this
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question:

Theorem 2 Fix a bid vb for Bob. For some B∗ ⊆ N and P∗ ∈ Π(B∗), Ann has optimal
shill bid profile: (vP,rP : P ∈ P∗) that is partitional.

• B∗ solves:
max{va(B)− pShill

B : B ⊆ N} (5)

• P∗ solves the CMP (i.e., program (1)) for B∗.

• The profile (rP : P ∈ P∗)’s must be chosen large enough to satisfy Conditions 1 and
2 in Theorem 1 for B∗.

Some properties of optimal shill bidding are notable. In the canonical solution to the
shill bidding problem identified by Theorem 2:

1. Each shill bidder bids single-mindedly for only one package.

2. Different shill bidders do not compete with one another, in the sense that they bid on
disjoint collections of items.

3.4 Proof and Discussion of Theorems 1 and 2

Theorem 2 about optimal shill bidding is an immediate consequence of Theorem 1 about
the shill bid cost minimization problem. Therefore, to prove both theorems, it is sufficient
to prove Theorem 1. Let us think for a moment about why Theorem 1 is not obvious. If
we do not know that there is a cost minimizing shill bid profile that is partitional, then it
is possible that the payment of one shill bidder depends on the bids of other shill bidders.
Even if we know that the cost minimizing shill bid profile is partitonal, there may be a subtle
dependence of the payment of one shill bidder on the bid of another, and moreover, the
payment of shill bidder P may be different from vb((N \B)∪P )− vb(N \B). In particular,
if Condition 2 is not satisfied, then in the marginal economy excluding some shill bidder
P , Bob will receive package P . If P and P ′ are complements and shill bidder P ′ did not
submit a sufficiently high bid for P ′, then Bob may receive P ′ as well, in which case shill
bidder P ’s payment may be:

vb((N \B) ∪ P ) + rP ′ − vb((N \B) ∪ P ∪ P ′) (6)

However, if we know that Condition 2 is satisfied, then bidder P ’s payment will be vb((N \
B)∪P )−vb(N\B). Of course Condition 1 must also be satisfied since bidder P must actually
win package P . It follows that to prove Theorem 1, it is sufficient to prove that there is
always a cost minimizing shill bid profile which is partitional and which satisfies Conditions
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1 and 2. In order to do this, we start with an arbitrary shill bid profile (vj : j ∈ J) winning
B, and construct a partitional profile satisfying Conditions 1 and 2 that wins B but makes
a smaller payment.

So let us consider a shill profile (vj : j ∈ J) that wins B against vb. Then there must
exist a partition (Pj : j ∈ J) ∈ Π(B) such that bidder j wins package Pj .8 Let us tentatively
set rPj := vj(Pj) and suppose that Ann submitted the partitional profile (vPj ,rPj : j ∈ J)
instead of (vj : j ∈ J). Notice that for all packages A, vPj ,rPj (A) ≤ vj(A), which implies
that the value of every allocation is lower under (vPj ,rPj : j ∈ J) than under (vj : j ∈ J).
However, the value of the efficient allocation X selected by the VCG mechanism when
Ann submits (vj : j ∈ J) is unchanged. Therefore X is still efficient when Ann submits
(vPj ,rPj : j ∈ J). I will ignore the possibility that there are multiple efficient allocations
as this case complicates the proof slightly but does not present any real problems.9 Given
that X is the unique efficient allocation, the VCG mechanism will still select X, when
Ann submits (vPj ,rPj : j ∈ J), and so shill bidder j will still win Pj . Let v̂j be either vj

or vPj ,rPj . Then j’s VCG payment–both when Ann submits (vj : j ∈ J) and when Ann
submits (vPj ,rPj : j ∈ J)–takes the form:

pj = max{vb(Xb) +
∑

`∈I\j

v̂`(X`) : (X` : ` ∈ (J ∪ b) \ j) ∈ X−j}︸ ︷︷ ︸
(∗)

− [vb(N \B) +
∑

`∈J\j

v̂`(P`)]︸ ︷︷ ︸
(∗∗)

,

where X−j is the set of allocations in the marginal economy excluding j. Notice that term
(**) has the same value when Ann submits (vj : j ∈ J) as when Ann submits (vPj ,rPj :
j ∈ J). However term (*) is (weakly) lower when Ann submits (vPj ,rPj : j ∈ J) than
when Ann submits (vj : j ∈ J) because as explained above, the value of every allocation is
weakly lower when Ann submits (vPj ,rPj : j ∈ J). Therefore, pj is lower when Ann submits
(vPj ,rPj : j ∈ J) for all shills j, and thus Ann’s total payment is lower. Now suppose that
for some shill bidder k, rPk is not large enough to win Pk in marginal economies excluding
shills j exactly in some set H ⊆ J \k.10 Suppose that Ann raises rPk slightly. Of course this
will not alter the VCG allocation, nor does it alter k’s payment, as in the VCG mechanism,
a bidder’s payment is independent of his bid conditional on the allocation. Let us consider
the effect on the payments of the other shill bidders. There are two cases to consider.
First suppose that j ∈ H. Raising rPk by a sufficiently small amount raises (**), but does

8Observe that we may assume that each member j of J wins at least one item, since otherwise we could
eliminate the members of J who do not win any items. This would simply eliminate possible allocations
and therefore reduce the value of the optimal allocation in the marginal economy excluding any shill bidder
j who actually wins some items, and thus reduce j’s payment.

9If there are multiple efficient allocations, then Ann may instead submit the profile (v
Pj ,rPj

+ε
: j ∈ J)

for small ε > 0 so that X becomes the unique efficient allocation and the proof would proceed similarly.
10Here I mean that H is the set of shill bidders j such that rPk is not large enough for k to win Pk in any

efficient allocation in the marginal economy excluding j.
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not alter (*), because if rPk is sufficiently small, it will still be inefficient to allocate Pk

to k in the marginal economy excluding k, and so the efficient allocation in this marginal
economy is unchanged. It follows that in this case pj is lowered. Next consider shill bidders
j ∈ J \ (H ∪ k). Then raising rPk raises (*) and (**) by the same amount and therefore
leaves pj unaltered. It follows that if the components of the profile (rPj : j ∈ J) are not
initially large enough to satisfy Conditions 1 and 2, we may raise them until they do, and
Ann’s payment will be lowered in the process. This completes the proof.

4 Characterization of the Incentive to Shill

The optimization problem presented in Theorem 1 immediately generates an necessary and
sufficient condition on the aggregate bid vb for a collection of bidders I such that there
exists a potential bidder outside of I who would have an incentive to use shills against vb.

Definition 1 Ann has a profitable shill bid against vb if Ann has some shill bidding
strategy that outperforms truthful bidding against vb.

Theorem 3 The following conditions are equivalent:

1. (Submodularity at the Top (SubTop)): For all B ⊆ N and P ∈ Π(B):

vb(N)− vb(N \B) ≤
∑
P∈P

[vb((N \B) ∪ P )− vb(N \B)] (7)

2. For all valuations for Ann, there is no profitable shill bid for Ann against vb in the
VCG auction for N .

Proof. SubTop is equivalent to:

vb(N)− vb(N \B) ≤ min{
∑
P∈P

[vb((N \B) ∪ P )− vb(N \B)] : P ∈ Π(B)}, ∀B ⊆ N

which in turn, is equivalent to:

pV CG
B ≤ pShill

B , ∀B ⊆ N

This means that the price that Ann has to pay for any package without shills is no more
than the price that she has to pay with shills. (In fact, the two prices must be equal by
(3)). So SubTop implies that Ann does not have a profitable shill bid.

Going in the other direction, suppose that SubTop fails. This means that there exists
B ⊆ N such that pShill

B < pV CG
B . Then if Ann values B sufficiently, and values nothing

outside of B, she will have an incentive to use shills. �
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The condition SubTop as well as the proof of the theorem come directly out of the cost
minimization problem (1) in Theorem 1.

4.1 Comparison to a Result by Lehmann, Lehmann, and Nisan (2006)

I will now discuss the relation of Theorem 3 to the analysis of shill bidding in Lehmann,
Lehmann, and Nisan (2006), which is the most closely related analysis in the literature.

Definition 2 A valuation v is submodular if for all A ⊆ B ⊆ N and x ∈ N \B:

v(B ∪ x)− v(B) ≤ v(A ∪ x)− v(A)

Submodularity means that there is a decreasing marginal utility of additional goods as the
set of goods already acquired increases. Therefore submodularity states that the different
goods in N are substitutes for one another. Lehmann, Lehmann, and Nisan (2006) establish
the following theorem:

Theorem 4 (Lehmann, Lehmann, and Nisan 2006) If vb submodular, then, regardless of
her valuation, there is no profitable shill bid for Ann against vb in the VCG auction for N .

What is the relationship between submodularity and SubTop? It is an immediate conse-
quence of Theorems 3 and 4 that SubTop is weaker than submodularity. However, what is
the precise relation between Theorems 3 and 4? The following well-known theorem–which
can be found in Fujishige (2005) and Lehmann, Lehmann, and Nisan (2006), who also refer
to Topkis (1998)–answers this question:

Theorem 5 The following conditions are equivalent:

1. vb is submodular.

2. For all A,B ⊆ N with A ∩B = ∅ and all P ∈ Π(B):

vb(A ∪B)− vb(A) ≤
∑
P∈P

[vb(A ∪ P )− vb(A)]

In expressing the result in terms of partitions, I have phrased the result differently than in
Fujishige (2005) and Lehmann, Lehmann, and Nisan (2006); the way the theorem is more
commonly expressed is to say that vb is submodular if and only if for all A ⊆ N , the function
vb(·|A) is subadditive, where vb(·|A) : 2N\A → R is defined by vb(B|A) := vb(A∪B)−vb(A).
In other words, an alternative definition of submodularity of a valuation is that the marginal
value of additional goods is subadditive conditional on any package already acquired. We
can now directly compare SubTop and submodularity:
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• Submodularity For all A,B ⊆ N with A ∩B = ∅ and all P ∈ Π(B):

vb(A ∪B)− vb(A) ≤
∑
P∈P

[vb(A ∪ P )− vb(A)] (8)

• SubTop For all B ⊆ N and P ∈ Π(B):

vb(N)− vb(N \B) ≤
∑
P∈P

[vb((N \B) ∪ P )− vb(N \B)]

Both conditions impose a set of inequalities of the form (8): the sum of marginal values
of the cells of a partition of B conditional on A is (weakly) greater than the marginal
value of B conditional on A. However, submodularity imposes these inequalities for all A
and B such that A ∩B = ∅, whereas SubTop only imposes the subset of these inequalities
corresponding to situations where A = N \B. In other words, SupTop imposes the condition
that the marginal value of adding the cells of a partition of B one at a time is greater
than the marginal value of B only when Bob already has all goods outside of B, whereas
submodularity imposes this condition regardless of which goods outside of B Bob already
has. This shows the precise way in which submodualrity is a stronger condition than
SubTop. For any D ⊆ N , define the VCG auction for D as the application of the VCG
mechanism for allocating all goods in D. In this case we may assume either that bidders
submit valuations vb for all packages B ⊆ N , but that the marginal value for goods outside
of D are ignored, or that bidders submit the restriction of vb to packages contained within
D. It is now an immediate consequence of Theorems 3 and 5 that:

Theorem 6 (The Incentive to Shill in SubAuctions) The following conditions are
equivalent:

1. vb is submodular.

2. For all D ⊆ N , and for all valuations for Ann, there is no profitable shill bid for Ann
against vb in the VCG auction for D.

This follows because when we eliminate all goods outside of D submodularity implies that vb

satisfies SubTop with respect to the set of goodsD. This theorem provides a characterization
of submodularity in terms of the incentive to shill in subauctions, and therefore provides
a sort of converse to the result of Lehmann, Lehmann, and Nisan (2006). However, notice
that the hypothesis of this converse is that Ann does not have a profitable shill bid in the
VCG auction for D, for all D ⊆ N , not just in the VCG auction for N . If one wants
instead the exact equivalent of the statement that Ann does not have a profitable shill bid
in the VCG auction for N , then one needs to look to Theorem 3. An alternative analysis
of the incentive to shill was provided by Yokoo, Sakurai, and Matsubara (2004). Lehmann,
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Lehmann, and Nisan (2006) discuss the relation of their result to that of Yokoo, Sakurai,
and Matsubara (2004).

I conclude this section by presenting an example of a valuation that satisfies SubTop
but not submodularity.

Example 2 Suppose that N = {1, 2, 3}, and:

vb(A) :=


3, if |A| ≥ 2;
1, if |A| = 1;
0, if A = ∅.

First, we would like to verify SubTop, namely that the expression on the left hand side
(LHS) is less than the expression on the right hand side (RHS) in inequality (7). If B = N ,
and P = {{1}, {2}, {3}}, then LHS = 3 and RHS = 3. If B = N and P = {{1, 2}, {3}},
then LHS = 3 and RHS = 4. If B = {1, 2} and P = {{1}, {2}}, then LHS = 2 and RHS
= 4. These three cases are representative of all nontrivial cases, and so it follows that vb

satisfies SubTop. So by Theorem 3, there does not exist a valuation for Ann such that she
has an incentive to shill in the VCG auction for N .

In contrast, notice that vb({1}) − vb(∅) = 1 < vb({1, 2}) − vb({2}) = 2. So vb is not
submodular. On the other hand Theorem 6 implies that there is some subset D of N and
some valuation for Ann such that Ann has a profitable shill bid in the VCG auction for D.
In particular, let D = {1, 2}. Suppose that Ann has a single minded valuation for {1, 2}
that assigns a very high value to this bundle. Then Ann will have an incentive to enter
the auction for D using two shills one of which bids single mindedly for the first item with
a very high bid, and the other of which does the same for the second item. In this case,
Ann wins both items and submits a payment of 2 rather than a payment of 3, which is what
would happen under truthful bidding.

4.2 Comparison to a Result by Ausubel and Milgrom (2002)

Theorem 3 is also related to a result due to Ausubel and Milgrom (2002). For any valuation
v, define the demand correspondence induced by v by:

D(p; v) := argmax{v(A)−
∑
x∈A

px : A ⊆ N}

v is a gross substitutes valuation if for all p, p′ ∈ RN
+ with p ≤ p′ and A ∈ D(p), there

exists a B ∈ D(p′) such that {x ∈ A : px = p′x} ⊆ B. Gul and Stacchetti (1999) showed
that the every gross substitutes valuation is submodular. We can think of the set of all
valuations V = {v ∈ R2N+ : v(∅) = 0, ∀A,B ⊆ N,A ⊆ B ⇒ v(A) ≤ v(B)} as a subset
of R2N

+ . Lehmann, Lehmann, and Nisan (2006) showed that–considered in this way–while
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the set of gross substitutes valuations has zero Lebesgue measure, the set of submodular
valuations has positive Lebesgue measure, so in this sense the latter is a much larger set.
Let VGS be the set of gross substitutes valuations.:

Theorem 7 (Ausubel and Milgrom 2002) Suppose that (v1, . . . , vn) ∈ V n
GS. Then assuming

that all bidders other than 1 bid truthfully, then bidder 1 has no incentive to use shills. On
the other hand, for any V∗ with V ⊇ V∗ ) VGS, there exists a profile (v1, v2, . . . , vn) ∈ V n

∗

such that bidder 1 has an incentive to use shills.11

In contrast to the characterization of the incentive to shill in terms of the aggregate valuation
of Ann’s opponent, the result of Ausubel and Milgrom (2002) provides a maximal domain
such that if valuations are drawn from this domain, there is no incentive to shill. Ausubel
and Milgrom (2006) argue that this sort of a maximal domain characterization is superior
to a characterization in terms of the aggregate valuation of Ann’s opponents because the
a priori knowledge that one is likely to have about bidders is likely to concern the domain
from which valuations are drawn rather than the aggregate valuation of the opponent.

Say that a set U ⊆ V of valuations is a maximal domain for a set W ⊆ V of valuations
if (i) for all n ∈ N and all (u1, . . . , un) ∈ Un,

w(A) := max{
n∑

i=1

ui(Xi) : ∀i, j = 1, . . . , n, i 6= j ⇒ Xi ∩Xj 6= ∅,
n⋃

k=1

Xi = A} (9)

is such that w ∈ W , and (ii) for all U∗ ⊆ V , with U∗ ) U , there exists n ∈ N and
(u1, . . . , un) ∈ Un

∗ , such that w defined by (9) does not belong to W . The following result
explains the relationship between the characterization of the incentive to shill found in this
paper and the characterization of Ausubel and Milgrom (2002).

Theorem 8 1. The gross substitutes valuations are a maximal domain for the submod-
ular valuations.

2. The gross substitutes valuations are a maximal domain for the SubTop valuations.

Proof. In Appendix. �
This result may be of independent interest.

5 Pure Complements

The results of the previous section show roughly that when goods are substitutes, there is
no incentive to use shills, but when goods are not substitutes, there may be an incentive

11Actually, Ausubel and Milgrom (2002) show something stronger, namely that every set V∗ of valuations
that contains either the additive valuations or the unit demand valuations and at least one valuation which
violated the gross substitutes property is such that one can use valuations from V∗ to construct a profile of
valuations such that some bidder has an incentive to use shills. It is possible to strengthen the statement of
Theorem 8 in a similar way. The proof in the appendix already accommodates such a strengthening.
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to use shills. This conclusion is in line with previous research on the topic. When goods
fail to be substitutes for Bob, then they may be pure complements, or else a mixture of
substitutes and complements. While the literature has distinguished the case of substitutes
from its negation, shill bidding in the case of pure complements has not been explored.
The assumption of pure complements is at the opposite extreme from the assumption pure
substitutes, and it is the case in which the incentive to shill bid takes its purest form. In
this section, I will examine this case.

Definition 3 A singleton valuation is a valuation for a single item x ∈ N . In other
words, a singleton valuation is a valuation of the form v{x},r for some x ∈ N and r ∈ R+.

For notational simplicity, I will write vx,r instead of v{x},r. The following example shows
that even when Ann has a profitable shill bidding strategy, Ann may not have a profitable
shill bid strategy in which all of her shills submit singleton bids. In fact, even when shill
bidding is worthwhile, the best shill bid strategy in which uses only singleton bids may be
worse than truthful bidding.

Example 3 Let N = {1, 2, 3}. Suppose that Bob’s valuation is given by:

1 2 3 12 13 23 123

vb 3 3 1 4 4 4 6

The top row gives the package. For example, 12 represents the package containing items
1 and 2. The bottom row represents the value of each package. For example, the value of
package 12 is 3. Notice that Bob’s valuation involves a mix of substitutes and complements.
In particular the marginal value of item 2 is lower if Bob already has item 1 than if Bob
has nothing, but the marginal value of item 3 is higher if Bob already has item 1 than if
Bob has nothing. Assume that Ann’s true valuation is single minded for the package 123,
and we assume that Ann’s value for 123 is sufficiently large that she would win 123 if she
reported truthfully, and hence in any shill bid which outperforms truthful bidding, Ann wins
123. Then Ann’s utility if she reports truthfully is:

va(123)− 6.

Now suppose that Ann sponsors two shills, one of which submits bid v12,z∗ and the other of
which bids v3,z∗, where z∗ is a very large number. Then again Ann will win the package 123
and her utility will be:

va(123)− 4− 1 = va(123)− 5,

where 4 is the opportunity cost of bundle 12 and 1 is the opportunity cost of item 3. So in
this case, shill bidding is better than truth-telling for Ann. Next suppose that Ann submits
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three shill bids, v1,z∗ , v2,z∗, and v3,z∗. Then here utility will be:

va(123)− 3− 3− 1 = va(123)− 7.

This is worse than truth-telling. If it were possible for Ann to have a profitable shill bid in
which all of her shills bid singleton valuations, then three distinct shill bidders for Ann must
win three distinct items, in which case–if they place very high bids on each of these items–
Ann’s payment will be 7. Given that Ann would still win the items, Theorem 1 shows that
Ann would not do better by having her shills submit lower bids. So this example shows that
it is possible for shill bidding to be profitable even when there is no profitable shill bidding
strategy in which all shills submit singleton valuations.12

Recall from above that for any A ⊆ B, we define:

vb(A|N \B) = vb((N \B) ∪A)− vb(N \B)

vb(A|N \B) is the marginal value of A given that Bob already has everything outside of B.
vb(·|N \B) is superadditive if, for all nonempty C,D ⊆ B:

C ∩D = ∅ ⇒ vb(C ∪D|N \B) ≥ vb(C|N \B) + vb(D|N \B)

Say that vb is strictly superadditive if the above inequality is strict for all nonempty
pairwise disjoint C and D contained in N . Superadditivity represents a notion of comple-
ments. The whole package C ∪D is worth more than the sum of its parts C and D. The
following theorem characterizes the solution to the CMP when vb(·|N \B) is superadditive.

12Consider the following condition:

∀B ⊆ N vb(N)− vb(N \B) ≤
∑
x∈B

[vb((N \B) ∪ x)− vb(N \B)] (10)

Clearly (10) is implied by SubTop. An example similar to the one just presented shows that (10) does not
imply SubTop. In particular, suppose that vb is given by:

1 2 3 12 13 23 123

vb 3 3 1 4 6 6 6

If B = N , then the left hand side (LHS) of (10) is equal to 6 and the right hand side (RHS) is equal to 7.
If B = {1, 2}, the LHS equals 5 and the RHS equals 10. If B = {1, 3} or B = {2, 3}, the LHS equals 3 and
the RHS equals 4. For all other sets B ⊆ N , (10) is satisfied trivially. On the other hand:

vb(N)− vb(∅) = 6 > 5 = [vb({1, 2})− vb(∅)] + [vb({3})− vb(∅)]

So vb does not satisfy SubTop.
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Theorem 9 Assume vb(·|N \B) superadditive. If (rx : x ∈ B) ∈ RB
+ is sufficiently large:

1. Then (vx,rx : x ∈ B) solves the CMP for B.

2. The value of the CMP for B is given by:

pShill
B =

∑
x∈B

[vb((N \B) ∪ x)− vb(N \B)]

If vb(·|N \B) is strictly superadditive then all solutions to the CMP are of the form (vx,rx :
x ∈ B)–given that redundant shill bidders that do not win any items are eliminated.

Proof. Superadditivity of vb(·|N \B) implies that for all P ∈ Π(B):∑
x∈B

vb((N \B) ∪ x)− vb(N \B) ≤
∑
P∈P

vb((N \B) ∪ P )− vb(N \B)

This, together with Theorem 1 implies the result. �
This theorem says that in the case of pure complements–represented as superadditivity

of vb(·|N \ B)–the cheapest way for Ann to win a given package B is to sponsor one shill
per item x in B, and have that shill place a high bid for the single item x. In other words,
Ann has an incentive to totally disintegrate into one identity per item. The case of pure
complements demonstrates the incentive to shill in its purest form. In contrast to the
general case, we are able to display not only a program for the optimization problem, but
the solution to the optimization problem as well.

Definition 4 A valuation v is supermodular if for all A ⊆ B ⊆ N and x 6∈ B:

v(B ∪ x)− v(B) ≥ v(A ∪ x)− v(A)

v is srictly supermodular if all of the above inequalities are strict.

Supermodularity is the dual of submodularity which was defined above. A valuation is
supermodular exactly if it exhibits increasing marginal utility of additional goods as the
set of goods already acquired increases. Thus, supermodularity represents a notion of
complements.

Given that we have solved the CMP (Theorem 9), it is straightforward to characterize
the optimal shill bidding program in the case of complements as well:

Theorem 10 Assume that vb is supermodular. Then there exists B∗ ⊆ N such that for
sufficiently large profile (rx : x ∈ B): (vx,rx : x ∈ B) is an optimal shill-bidding strategy.
If vb(·|N \ B∗) is strictly supperadditive, then shill bidding is strictly better than truthful
bidding.
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Proof. This theorem is an immediate consequence of Theorem 9 and the fact that super-
addivity of vb(·|N \ B) for all B ⊆ N is equivalent to the supermodularity of vb. This fact
is simply the dual of Theorem 5. �

Observe that strict supermodularity of vb is equivalent to strict superadditivity of vb(·|B\
N) for all B ⊆ N , and therefore–by Theorem 10–strict supermodularity is a sufficient
condition for shill bidding to strictly outperform truthful bidding.

6 Mixture of Substitutes and Complements:

Computational Complexity

In the previous section, we presented a solution to the CMP when goods are pure com-
plements. We saw in Section 4 that in the case of pure substitutes, it is optimal not to
use shills at all. What can be said about the intermediate case when there is a mix of
substitutes and complements? This section discusses evidence that the general problem of
optimal shill bidding is computationally intractable.13 In the course of doing this, I will
provide an interesting economic interpretation of the problem of optimal shill bidding. In
particular, I will show that the CMP is equivalent to the winner determination problem,
which is the problem of finding an efficient allocation in a combinatorial auction.

6.1 The Winner Determination Problem

Consider a profile (vSi,ri : i ∈ I) of single-minded valuations. As above vSi,ri is the single
minded valuation for package Si at value ri. We refer to vSi,ri as the valuation for bidder i.
Now consider the problem of finding an efficient allocation given valuation profile (vSi,ri :
i ∈ I). This problem is known as the winner determination problem for single-minded
bidders (WDSMB). For simplicity, let us assume that i 6= j ⇒ Si 6= Sj , since if there are
multiple bids for the same package, we can easily eliminate all but the highest bid. We can
formulate WDSMB as an integer program:

max
∑
i∈I

rix(Si) (11)

∀j ∈ N
∑

Si:i∈I,Si3j

x(Si) ≤ 1 (12)

∀i ∈ I x(Si) ∈ {0, 1} (13)

x(Si) = 1 means that package Si is allocated to bidder i, and x(Si) = 0 means that Si is
not allocated to bidder i. The constraints of the form (12) say that each item j can be

13That, in general, the problem of optimal shill bidding is NP-hard follows from the work of Sanghvi and
Parkes (2004). Conitzer and Sandholm (2006) is also closely related. Section 6.3 discusses this work.
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allocated to at most one bidder. Lehmann, O’Callaghan, and Shoham (2002) has shown
that WDSMB is NP-hard.14

6.2 Reduction from The Winner Determination Problem

We now examine the CMP. The general strategy of this section will be to embed WDSMB
into a special case of the CMP. This will show on the one hand, that solving the CMP
implicitly involves solving an efficient allocation problem, and on the other hand, that the
CMP is computationally hard.

We begin by restricting attention to the special case of the CMP in which B = N . Then
since N \B = ∅ and vb(∅) = 0, the CMP becomes:

min{
∑
P∈P

vb(P ) : P ∈ Π(N)}

In other words, we would like to find a partition of N which minimizes the sum of values
of the partition cells is minimized. This may be represented as an integer program:15

min
∑
S⊆N

vb(S)x(S) (14)

∀j ∈ N
∑
S3j

x(S) = 1 (15)

∀S ⊆ N x(S) ∈ {0, 1} (16)

Notice that this program has exponentially many variables (that is, exponential in |N |).
Let us consider a subproblem which allows us to express the problem with a smaller number
of variables. First restrict attention to valuations vb such that:

∀S ⊆ N, |S| − 1 ≤ vb(S) ≤ |S| (17)

Now consider the valuation v̂ such that for all S ⊆ N , v̂(S) = |S| for all S ⊆ N . v̂ is the
additive valuation such that v̂(x) = 1 for all x ∈ N . Of course v̂ satisfies (17). Now we will
express each valuation vb in terms of its deviation from v̂. That is to say, suppose that for
any valuation vb satisfying (17), we define the function v̂b : 2X → [0, 1] by the equation

vb(S) = v̂(S)− v̂b(S)

Since v̂b and vb determine one another, we can take v̂b as our input instead of vb. Notice
14See also Blumrosen and Nisan (2007).
15Recall that vb represents the aggregate bid of Ann’s opponent. However for the purposes of analyzing

the complexity of the CMP, it may be more conceptually straightforward to think in terms of the special
case in which Ann has just one opponent with valuation vb. Of course, if this special case is complex, so is
the problem in general.
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that since v̂b(S) ∈ [0, 1] for all S, it follows that vb = v̂ − v̂b is monotone and any valuation
satisfying (17) can be generated in this way. One way of specifying v̂b is by a profile
(Si, ri)i∈I where for all i ∈ I, Si ⊆ N, ri ∈ [0, 1], and for all i, j ∈ I, i 6= j ⇒ Si 6= Sj . Then
suppose that (Si, ri)i∈I corresponds to the function v̂b defined by v̂b(Si) = ri for all i ∈ I
and v̂b(S) = 0 otherwise. Then for vb = v̂ − v̂b, and (x(S) : S ⊆ N) satisfying (15):

∑
S⊆N

vb(S)x(S) =
∑
S⊆N

(v̂(S)− v̂b(S))x(S) =
∑
S⊆N

|S|x(S)−
n∑

i=1

rix(Si) = |N | −
n∑

i=1

rix(Si)

Given this observation we may rewrite (14)-(16) on input (Si, ri)i∈I as (11)-(13) where we
may change the equality in (15) to an inequality in (12) because if T :=

⋃
{Si : i ∈ I, x(Si) =

1} 6= N , then either (i) N \ T = Sj for some j ∈ I or (ii) N \ T 6= Sj for all j ∈ I. In
case (i), it follows that we are not at an optimal solution under the relaxed constraint (12)
(assuming ri > 0 for all i ∈ I, which is without loss). In case (ii), we can set the variable
x(N \ T ) which does not occur in the objective (11) equal to 1.

So we have just re-interpreted the CMP as the WDSMB. More precisely, when we assume
(17) and represent valuations by their deviation from the additive valuation v̂, the CMP
(for B = N) is equivalent to the WDSMB. As mentioned above, WDSMB is NP-hard. It
follows from this simple translation given here that any algorithm that solves CMP solves
WDSMB, and so:

Theorem 11 The CMP is NP-hard.

Here it is understood that we restrict attention to the CMP for all goods N , that we assume
(17), and we represent valuations in terms of their deviation from the additive valuation
v̂(S) = |S|. Of course, lifting these restrictions would not undo the complexity result. It is
interesting that there is such a close relationship between the problem of shill bidding and
the problem of efficient allocation.

The interpretation of this result presents some interesting issues. On the one hand, we
have just presented evidence that it is difficult for Ann to find the optimal shill bidding
strategy. This may be thought of as evidence that the problem of shill bidding may not be
as severe as one might otherwise think, because Ann may fail to find a profitable shill bid
even when one exists. On the other hand, it is also difficult to find an efficient allocation in
a combinatorial auction, and therefore to implement the outcome of the VCG mechanism.
So this is an additional problem for the VCG mechanism. Is the VCG mechanism better
or worse off for being both hard to manipulate and hard to implement?16

16For a related discussion, see Sanghvi and Parkes (2004).
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6.3 Relation to a Results by Sanghvi and Parkes (2004) and Conitzer and

Sandholm (2006)

Sanghvi and Parkes (2004) studied the following decision problem, which they called the
false-name manipulation problem: given a profile of bids for all agents other than
some bidder i (who plays the role of Ann in this paper), does i have a strategy using
shills which gives i a utility of ε more than truthful bidding? Sanghvi and Parkes (2004)
showed that the false-name manipulation problem is NP-hard, by reduction from EXACT-
COVER-BY-THREE-SETS, a known NP-hard problem. It is an immediate consequence
of this result that the problem of optimal shill bidding is also NP-hard, as Sanghvi and
Parkes (2004) point out. The contribution of Section 6 relative to Sanghvi and Parkes
(2004) is the elucidation of the relationship between the problem of optimal shill bidding
and the problem of efficient allocation within a combinatorial auction. This relationship is
economically interesting. The new complexity proof presented in this paper by reduction to
the winner determination problem for single minded-bidders established a simple translation
between the problems of shill bidding and efficient allocation, which shows how the winner
determination problem can be embedded in the optimal shill bidding problem. A further
contribution with regard to the understanding of the complexity of optimal shill bidding
comes from the context set by Section 5, which showed that with pure complements, the
problem of optimal shill bidding has a simple solution. Of course, it is well known that
there is also a simple solution with substitutes: simply tell the truth. Thus the analysis of
this paper shows that it is the mixture of substitutes and complements which makes the
problem complex.

Conitzer and Sandholm (2006) discuss the complexity of collusive strategies in the VCG
mechanism. They focus on the case in which all bidders are single-minded, and they ask the
question of when a cartel can win all goods and make a payment of zero. They show that
answering the question of whether a collusive strategy achieving this exists is NP-complete.
Comparing their result with the discussion in this section, the most important difference is
as follows. Conitzer and Sandholm (2006) assume that there is a fixed cartel with a fixed
number of bidders, and what makes their question hard is the question of whether there
are enough members in the cartel to win all items for free. If one always has access to an
unlimited number of shills, as in this paper, then this question becomes computationally
trivial: it is possible to win all items for no payment against a collection of single-minded
bidders if and only if there are no bids on individual items (Conitzer 2008). More generally,
allowing for valuations which are not single-minded, it is possible to win all items for free
if and only if the aggregate bid of the opponent assigns a value of zero to each package
containing only a single item. To summarize, the analysis of Conitzer and Sandholm (2006)
shows that the optimal shill bidding strategy is NP-complete if there is a fixed bound on
the number of shills one may use, but it has no consequences for the complexity of finding
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the optimal shill bidding strategy without such a bound. This paper–as well as the analysis
of Sanghvi and Parkes (2004)–did not assume such a bound.

6.4 Interim Summary: Substitutes, Complements, and a Mixture of the

Two

The following table summarizes our knowledge of shill bidding in the VCG mechanism under
different assumptions on the aggregate bid:

Substitutes Truthful Bidding 1 Identity

Complements Incentive to Disintegrate 1 Identity
per Item Won

Mix of Complements Partial Incentive 1 Identity
And Substitutes to Disintegrate per Package

In the case of substitutes, it is optimal not to shill bid at all, but rather to bid truthfully using
only one identity. In the case of complements, it is optimal for Ann to totally disintegrate
into one bidder per item. When there is a mix of complements and substitutes, Ann has
a partial incentive to disintegrate, but typically this will fall short of one bidder per item;
rather Ann will split up the bundle for which she bids into multiple packages and split up
into one bidder per package. While the previous literature has separated the case of pure
substitutes from its negation, this is the first paper to study the case of pure complements.
This case is interesting because it is the case in which the incentive to use shills is at its
purest.

7 Shill Bidding and Dominance

In this section, I explore the issue of dominant strategies in the presence of shill bidding. In
order to discuss this issue, it is necessary to have some means of dealing with situations in
which there are multiple efficient allocations. It is well known that if Ann bids truthfully,
then her utility does not depend on which efficient allocation the VCG mechanism selects.
However, if Ann does not bid truthfully, or uses shills, then when there are multiple efficient
allocations, Ann’s utility may be different depending on which tie-breaking rule the VCG
mechanism uses. One way to proceed would be to fix a given tie-breaking rule and analyze
dominance given this rule. However, this is somewhat artificial and complicates the analysis.
Therefore, I will proceed in another way. Let v := (vj ; j ∈ J) be a profile of shill bids for
Ann, let vb be a bid for Bob, and let va be Ann’s true valuation. Let Ua(v, vb; va) be
the highest utility that Ann could receive given any efficient allocation–based, of course, on
reported valuations–when she uses shill bid profile v, Bob’s bid is vb and Ann’s true valuation
is va. Likewise, let Ua(v, vb; va) be the lowest utility that Ann could receive given any
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efficient allocation in these circumstances. Whenever there is a unique efficient allocation
given the reports, Ua(v, vb; va) = Ua(v, vb; va). Also, as explained above Ua(va, vb; va) =
Ua(va, vb; va).

Definition 5 1. Shill bid profile v = (vj : j ∈ J) dominates v′ = (v′j : j ∈ J ′)
for va if for all vb, Ua(v, vb; va) ≥ Ua(v′, vb; va) and Ua(v, vb; va) ≥ Ua(v′, vb; va),
and (ii) there exists at least one vb such that either Ua(v, vb; va) > Ua(v′, vb; va) or
Ua(v, vb; va) > Ua(v′, vb; va).

2. Sill bid profile v = (vj : j ∈ J) is dominant for va if for all vb, Ua(v, vb; va) ≥
Ua(v′, vb; va) and Ua(v, vb; va) ≥ Ua(v′, vb; va).

Notice that unlike the standard definition, the definition of a dominant strategy allows
for the possibility that that there is another strategy that always performs equally well.
The reason for this is that one can always add shills that value all packages at 0 without
affecting one’s payoff. Therefore a notion of dominance which implies that for a strategy
to be dominant, it must be always at least as good and sometimes better than any other
strategy is trivially too demanding in this setting.

For any index set I, let RI
++ := {r ∈ RI : ∀i ∈ I, ri > 0}. By a non-shill bidding

strategy, I mean a strategy under which Ann submits a bid under a single identity.

Theorem 12 Consider B ⊆ N with va(B) > 0. For any P ∈ Π(B) with |P| ≥ 2, and
(zP )P∈P ∈ RP++, there does not exist any non-shill bidding strategy that dominates v :=
(vP,zP )P∈P for va. In particular, truthful bidding does not dominate v for va.

Proof. Since truthful bidding dominates any non-shill bidding strategy, it is sufficient to
show that truthful bidding does not dominate v. In particular, suppose that Bob is com-
prised of two bidders, Carol and Dan. Carol values each item x in N \B at a value greater
than va(N), and she assigns a value of zero to all items in N . Carol’s valuation is additive.17

Dan’s valuation is vB,r, where 0 < r < min{
∑

P∈P rP , va(B)}. If Ann bids truthfully, she
will win package B and pay r.18 In contrast, if Ann submits shill profile (vP,rP : P ∈ P),
she will win B and make a zero payment. �

Without shills, it is well known that truthful bidding is a dominant strategy. Theorem
12 presents a large class of strategies which are sometimes better than truthful bidding in
the VCG mechanism.

Theorem 13 There does not exist a shill bidding strategy that dominates truthful bidding.

Proof. In Appendix.
17In other words, Carol values any package at the sum of the values of the items in the package.
18More precisely, Ann will win a package C such that va(C) = vb(B) and pay r. It is possible that B 6= C

if there exists x ∈ B such that va(B \ x) = va(B).
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Corollary 1 When shill bidding is possible, Ann does not have a dominant strategy.

Proof. During the course of the proof of Theorem 12, we construct situations in which
shill bidding strictly outperforms truthful bidding. Since truthful bidding dominates any
other strategy not involving shills, it follows that if there is a dominant strategy it must
involve the use of shills. However, Theorem 13 shows that for any strategy using shills is
either sometimes worse than truthful bidding, or always leads to the same utility as truthful
bidding; in neither case can such a strategy be dominant. �

8 The Riskiness of Shill Bidding

In this section, I explore the riskiness of shill bidding. Notice that the canonical optimal
shill bidding strategies found in Theorems 1 and 2 may often involve bids which are above
Ann’s valuation for certain packages. Such strategies may be risky in the sense that if Ann
is wrong about Bob’s bid, then she may end up paying more for a package than it is worth
to her. In a setting where Ann is uncertain about Bob’s bid, she may not want to use such
a strategy. Given any shill bid profile v = (vj : j ∈ J), minv̂b Ua(v, v̂b; va) is the lowest
utility that Ann can receive if she submits shill bid profile v when her true valuation is va.
Observe that minv̂b Ua(va, v̂b; va) = 0. In other words, if Ann bids truthfully, the lowest
utility that Ann can get for any bid that Bob might submit is zero. Because it is always
possible that Ann will be outbid on all items for which she bids, it must be the case that
minv̂b Ua(v, v̂b; va) ≤ 0 for all v and va. One may regard a shill bidding strategy v as risky
for Ann when her true value is va if minv̂b Ua(v, v̂b; va) < 0. In other words, in the worst
case, the strategy delivers a strictly lower utility to Ann than does truthful bidding.

In general, there are two motives for shill bidding:

1. Sponsoring shills may reduce the prices that a bidder would have paid on items that
they would have won without shills.

2. Sponsoring shills may allow a bidder to win items that the bidder would not otherwise
have won at acceptable prices.

Fix a bid vb for Bob, and suppose that Ann chooses a shill bidding strategy that is a best
reply to vb. It is easy to construct examples in which an optimal shill bidding strategy v

against vb does not alter the allocation and but merely reduces prices achieving 1 in a way
which is not “risky” in the sense described above, i.e., minv̂b Ua(v, v̂b; va) = 0. What is
more surprising is that it is possible to construct situations in which there is an optimal
shill bidding strategy v that achieves 2 as well, attaining for Ann a package which is more
valuable than the one she would have attained under truthful bidding but which is not risky,
i.e., Ua(v, v̂b; va) = 0. This is shown by the following example.
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Example 4 N = {1, 2, 3}

va(A) =


5, if {1, 2} ⊆ A;
4, if 3 ∈ A, {1, 2} * A;
2, if 3 6∈ A, |A| = 1.
0, otherwise.

vb(A) =


6, if A = N ;
5, if A = {1, 2};
3, if 3 ∈ A, {1, 2} 6⊆ A;
0, otherwise;

Then the efficient allocation gives package {1, 2} to Bob and item 3 to Ann for a social
utility of 9. Ann pays a VCG price of 1 for a net utility of 3. Bob’s VCG payment is also 1
and Bob receives a net utility of 4. So the total utility to the bidders is 7 and the payment
to the seller is 2. Suppose that instead Ann entered the auction under two shills, and bid
for items 1 and 2 with single-minded bids of 2 for each. Then Ann would win {1, 2} and
Bob would win item 3 for a social utility of 8, which is lower. Ann’s payment is then 0,
and her utility is therefore 5. (Of course, this must be Ann’s optimal shill bidding strategy).
Bob’s payment is 0 and his net utility is 3. The seller receives nothing. Notice that in this
situation, using shill bidders upsets the efficient allocation and even delivers a package to
Ann which she values more than the package that she would receive under truthful bidding,
Ann’s worst case utility is 0, so from a minimax perspective, she is no worse off than she
would be under truthful bidding.

It would be interesting to study the optimal shill bidding strategy subject to the con-
straint that Ann does not risk overpaying for any package, or in other words, subject to
the constraint that minv̂b Ua(v, v̂b; va) = 0, As we have just seen, sometimes this constraint
would not be binding.

9 Collusion

This section uses the results about shill bidding derived above to draw some conclusions
about collusion. Consider some coalition J with valuations (vj : j ∈ J). Let vJ be the
aggregate valuation for J . Let us assume away any internal problems of enforcing the
collusive arrangements, so that J can efficiently collude. In the VCG mechanism, J bids
against Bob, who–as above–is assumed to be J ’s aggregate opponent. Throughout this
section, I fix Bob’s aggregate valuation vb, and assume, for expositional simplicity, that
Bob bids truthfully–or more precisely, that the bidders comprising Bob bid truthfully. I
also assume, for expositional simplicity, that there is a unique efficient allocation. Let B∗j
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be the package assigned to bidder j at the efficient allocation, and let B∗ =
⋃
{B∗j : j ∈ J}

be the set of items assigned to members of J collectively at the efficient allocation.
In what follows it will be useful to define the dual of SubTop:

• Supermodularity at the Top (SupTop): For all B ⊆ N and P ∈ Π(B):

vb(N)− vb(N \B) ≥
∑
P∈P

[vb((N \B) ∪ P )− vb(N \B)] (18)

Just as SubTop is weaker than submodularity, SupTop is weaker than supermodularity.
Whereas SubTop is a substitutes property, SupTop is a complements property.

9.1 VCG prices vs. Merged Prices

For any member j ∈ J and any B ⊆ N , the VCG-price for B, assuming that all others bid
truthfully is:

pV CG,j
B = v(J\j)∪b(N)− v(J\j)∪b(N \B),

where v(J\j)∪b is the aggregate valuation for the collection consisting of Bob and all members
of J other than j. Next define:

pV CG,J
B∗ :=

∑
j∈J

pV CG,j
B∗j

So pV CG,J
B∗ is the total payment made by members of J if they all bid truthfully. Notice

here that if B∗j = ∅ then pV CG,j
B∗j

= 0. Since truthful bidding is a dominant strategy, pV CG,J
B∗

represents the total payment made by J if players behave noncooperatively. This is so given
any assumptions about player’s knowledge of others’ bids.

Next, for any package B ⊆ N , define:

pMerged
B := vb(N)− vb(N \B)

pMerged
B is the price that the entire coalition J would have to pay for B, if J merged and

presented a single sufficiently high bid for B. pMerged
B is also the price that the coalition J

would pay for any package B that it wins if J submitted a only a single bid equal to the
aggregate valuation vJ of J .

9.2 Collusion in The Second Price Auction For a Single Item

Even in the absence of any issues involving shill bidding, it is well known that the VCG
mechanism is prone to collusion (Graham and Marshall 1987). For example consider an
auction for a single item. Then the VCG mechanism is the second price auction. With only
one item up for auction all conditions such as gross substitutes, submodularity, and SubTop
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which are sufficient for the absence of shill bidding are trivially satisfied, and therefore there
is no incentive to use shills. However there is still an incentive to collude. This is expressed
by the fact that in a second price auction for a single item x, if it is efficient to assign x to
some member of J , then:

pMerged
x ≤ pV CG,J

x , (19)

and, in fact, the inequality is sometimes strict. Assuming that all bidders outside of the
coalition J submit truthful bids and that the highest value for x resides within J , pV CG,J

x

is the second highest value for x among all bidders. This is because pV CG,J
x represents

the price that J would have to pay for x if its members did not collude. On the other
hand, pMerged

x represents the highest value outside of J . When both the highest and second
highest value reside within J , then the highest value outside of J is less than the second
highest value among all bidders and therefore pMerged

x < pV CG,J
x . In this case there is a

strict incentive to collude. In fact the following is true:

(*) Abstracting away from internal problems of enforcing collusive behavior, in the second
price auction (the VCG mechanism for auctioning a single item), it is a dominant
strategy for the coalition to submit a single bid equal to its aggregate value for the
item (which is equal to the valuation of the member j of J who values it most).

9.3 Competition and Integration Effects

In a second-price auction, the benefit to merging comes from suppression of competition.
In the combinatorial version of the second price auction, it is always beneficial to suppress
competition, but merging does more than just suppress competition. In the simple second
price auction, merging is only beneficial when some member of the coalition would win
the item on auction, and the effect of merging is simply to eliminate losing bids within the
coalition, and therefore potentially lower the price of the winner. In a combinatorial auction,
we may think of an analogous strategy. Suppose that the coalition knows the aggregate
opposing bid vb. Then all losing bidders may simply withhold their bids. Moreover, all
winning bidders may withhold their bids on all packages that they do not win. However,
even after this is done, it may be possible for the coalition to further reduce the prices for
the packages that it wins. All winning bidders should raise their bids on the packages they
win until they arrive at a state at which they would still win the the same package in all
marginal economies excluding some other winning member of the coalition. This may not
initially be so because of complementarities in Bob’s bid vb; once Bob receives a new package
in the marginal economy excluding some winning coalition member j, this may raise his
marginal value for k’s package, and therefore Bob may win k’s package as well. If all winning
bidders j in J bid r > vb(N) on the packages B∗j that they win at the efficient allocation,
this would be sufficient to win these packages at all the relevant marginal economies as well.
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Of course a profile of bids below vb(N) may also be sufficient. In the scenario that we have
been discussing the coalition enters bid profile (vB∗j ,r : j ∈ J,B∗j 6= ∅) instead of (vj : j ∈ J),
and then makes a total payment of:

pSuppressed
B∗ =

∑
j∈J

[vb((N \B∗) ∪B∗j )− vb(N \B∗)]

Theorem 14 pSupressed
B∗ is the smallest payment possible for the coalition J when facing

aggregate bid vb subject to the constraint that for all j ∈ J , bidder j wins B∗j .

The proof of this theorem is the same as part of the proof of Theorem 1 and therefore
is omitted. The superscript “Suppressed” refers to suppressed competition. pSuppressed

B∗

represents the smallest payment the coalition can make without upsetting the efficient
allocation, and without having to reallocate items among themselves after the auction. In
other words, each bidder keeps whatever items he wins during the auction. So pSuppressed

B∗

represents the payment of the coalition if the members of the coalition agreed to suppress
competition.19

We can then decompose the effect of merging on the price that the coalition has to pay
into two terms:

pMerged
B∗ − pV CG,J

B∗ = (pMerged
B∗ − pSuppressed

B∗ )︸ ︷︷ ︸
Integration Effect

+ (pSuppressed
B∗ − pV CG,J

B∗ )︸ ︷︷ ︸
Competition Effect

The Competition Effect represents the reduction in payment due to suppressing competition.
The Integration Effect represents the change in payment due to merging once competition
has already been suppressed.

Theorem 15 The Competition Effect is always nonpositive. The Integration Effect can
be positive or negative. If goods are substitutes (i.e., vb satisfies SubTop), then the Inte-
gration Effect is nonpositive. If goods are complements (i.e., vb satisfies SupTop) then the
Integration Effect is nonnegative.

Proof. That the Competition Effect is always nonpositive is a restatement of Theorem 14.
The question of whether the Integration Effect is negative or positive is equivalent to the
resolution of the following inequality:

vb(N)− vb(N \B∗) S
∑
j∈J

[vb((N \B∗) ∪B∗j )− vb(N \B∗)]

19Note that suppression of competition among a coalition of bidders in this sense does not mean that
removal of any member of the coalition would have no effect on the prices paid by others. It means only
that prices for the coalition members cannot be further reduced without altering the allocation selected by
the VCG mechanism.
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SubTop implies that S becomes ≤, and SupTop implies that S becomes ≥. �

9.4 Merging is the Inverse of Shilling

Theorem 15 shows that suppression of competition always reduces the coalition’s payment,
but once competition has been suppressed, whether the members of the coalition would like
to merge or not depends on whether goods are complements or substitutes for Bob. Theorem
15–as well as Theorem 16 below–formalizes an observation made by Milgrom (2004) that
when goods are substitutes, the VCG mechanism often creates an incentive for mergers.
The proof of Theorem 15 depends on the following simple intuition: once competition has
been suppressed shill bidding is simply the inverse of collusion. If goods are substitutes for
Bob, this dissuades a single bidder from sponsoring shills, and for the same reason, this
encourages a coalition to merge. On the other hand if goods are complements for Bob, then
this encourages a single bidder to sponsor shills–and in the case of pure complements, as
was shown by Theorem 9, this encourages a single bidder to sponsor one shill per item he
wins. Looked at from the standpoint of a coalition, the incentive to use shills translates
into the disincentive to merge.20 The following observation captures the notion that shill
bidding and merging are inverses of one another.

Observation 1 The following are equal:

1. Coalition J ’s utility to submitting profile (v̂j : j ∈ J) against vb.

2. Ann’s utility to submitting shill bid profile (v̂j : j ∈ J) against vb, when Ann’s true
valuation is equal to vJ .

In particular, J attains the same utility to submitting a single bid vJ as Ann would attain
from truthful bidding if her valution were vJ . On the other hand, by playing straightfor-
wardly, and submitting its true profile of valuations (vj : j ∈ J), coalition J attains the
same utility as Ann would attain through the shill bid profile (vj : j ∈ J).

Theorem 15 and Observation 1 have a variety of consequences. One such consequence
is the generalization of (19) and (*) from the VCG mechanism for single item auctions to
the VCG mechanism for combinatorial auctions, as well as an analysis of the limits of this
generalization:

20The relationship between the incentive to split into multiple identities and the incentive for multiple
identities to merge has been studied in other contexts; for instance, Moulin (2008) studies split-proofness
and merge-proofness in scheduling problems.
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Theorem 16 1. If vb satisfies SubTop, then for the package B∗ which is assigned to J

in the efficient allocation, pMerged
B∗ ≤ pV CG,J

B∗ .

2. Assume members of J know a priori that vb satisfies SubTop–which would be true,
for example, if members of J know that all bidders that comprise Bob submit gross
substitutes valuations. Then it is a dominant strategy for coalition J to submit a single
bid equal to the aggregate valuation vJ of J .

3. Suppose that vb fails to satisfy SubTop. Then there exists a coalition J with some
profile of valuations (vj : j ∈ J) such that for a package B∗ which would be allocated
to J at an efficient allocation, pV CG,J

B∗ < pMerged
B∗ .

4. Assume that vb fails to satisfy SubTop. Then there exists a coalition J with some
profile of valuations (vj : j ∈ J) such that it is suboptimal for the coalition to submit
a single bid equal to the aggregate valuation vJ of J .

Proof. In Appendix.
The difference between the situations in which merging is attractive and the situations

in which it is unattractive is accounted for by the integration effect. When the Integration
Effect is sufficiently large and of opposite sign from the Competition Effect, then merging
will be worse than truthful bidding. Note again that the conditions which make collusion
attractive (pMerged

B∗ < pV CG,J
B∗ ) are the same as the conditions which make the shill bid profile

(vj : j ∈ J) unattractive to Ann. Thus SubTop–which prevents the VCG mechanism from
being prone to shills, makes the VCG mechanism prone to certain forms of collusion. The
next theorem makes this more precise. Say that a coalition of bidders J with valuations
(vj : j ∈ J) is minimally competitive when facing vb if pV CG,J

B∗ = pSuppressed
B∗ , where B∗

is the package that would be efficiently allocated to J when J faces Bob with valuation vb.
Say that vb is additive if for all B ⊆ N , v(B) =

∑
x∈B v({x}). If vb is additive, then Bob

views all goods as being independent. Say that a coalition J has an incentive to merge

against vb, if the coalition J could do better by submitting a single bid on behalf of all of
its members than by having all of its members bid truthfully in the VCG mechanism. It is
important to note that it is possible that a coalition J may not have an incentive to merge
against Bob, while some sub-coalition K of J may have an incentive to merge against the
aggregate of Bob’s bid and the truthful bids of the players in K \J . The following theorem
considers only merger of the entire coalition J , and not of its subcoalitions as just described.

Theorem 17 The following are equivalent:

1. vb is additive.

2. There exists neither (a) a bidder who has an incentive to shill against vb, nor (b) a
minimally competitive coalition that that has an incentive to merge against vb.
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In order to prove this theorem, it is necessary to prove the following lemma:

Lemma 1 The following are equivalent:

1. vb is additive.

2. vb satisfies both SubTop and SupTop.

It is well known that among valuations vb such that vb(∅) = 0, the additive valuations
are the intersection of the submodular and supermodular valuations. Since SupTop is
strictly weaker than supermodularity and SubTop is strictly weaker than submodularity, it
is conceivable that the intersection of the SubTop and SupTop valuations is larger than the
set of additive valuations. However, Lemma 1 shows that indeed the intersection of SubTop
and SupTop valuations is exactly the set of additive valuations. The proofs of Lemma 1
and Theorem 17 are in the appendix.

Theorem 17 shows that unless vb is additive, the VCG mechanism is prone either to
shill bidding or to merging by a minimally competitive coalition of bidders. Notice that
the set of additive valuations is a maximal domain for itself, so that it is also true that
when all bidder valuations are additive, then the VCG mechanism is prone to neither shill
bidding nor merger by a minimally competitive coalition, but if it is possible that some
bidder fails to satisfy this property, then the VCG mechanism will be prone to one of these
manipulations. It is also worth noting that when vb violates both SubTop and SupTop,
then the VCG mechanism may be simultaneously prone to both manipulations, depending
on who Bob is facing. Unlike shill bidding, while merging reduces the seller’s revenue, it
is not harmful in terms of efficiency. This issue is discussed further in Section 9.6. A key
intuition which is articulated by Theorem 17 is that while complements create an incentive
for disintegration, substitutes create an incentive for integration.

9.5 The Optimal Collusive Strategy

Ignoring the problem of providing incentives within the coalition and making the extreme
assumption that the coalition knows the aggregate bid it is facing, the problem of finding
the optimal collusive strategy is essentially the same as that of finding the optimal shill
bidding strategy. For any package B ⊆ N , define:

p
Shill,|J |
B := min{

∑
P∈P

[vb((N \B) ∪ P )− vb(N \B)] : P ∈ Π(B), |P| ≤ |J |}

p
Shill,|J |
B is the price that the coalition J would have to pay if it submitted the collection

of bids which would minimize their payment for B. I assume that–unlike in the case of
shill bidding–the coalition cannot manufacture identities, and therefore can submit at most
|J | bids. The superscript “Shill” on the price represents the fact that this price is found
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by solving an optimization problem which is similar to the shill bidding CMP. The only
difference is that there is now an additional constraint |P| ≤ |J |, representing the fact that
the coalition cannot manufacture identities, and therefore must select a partition with no
more cells than there are members of J . The validity of the formula for pShill,|J |

B follows
from Theorem 1 and its proof. The coalition’s optimal strategy can be found by solving the
optimization problem determining pShill,|J |

B , and then solving:

max{vj(B)− pShill,|J |
B : B ⊆ N} (20)

Observe that the constraint |P| ≤ |J | is trivially satisfied and hence never binding when
|J | ≥ |N |, or in other words, the coalition contains at least as many members as there are
goods on auction; in this case, the program for optimal collusion (20) is identical to the
program for optimal shill bidding (5).

9.6 Efficiency

Theorem 18 Fix a bid vb for Bob. Then the following are equivalent:

1. vb satisfies SubTup.

2. Every coalition J has an optimal strategy against vb which leads to an efficient allo-
cation.

3. For all collections of bidders I with aggregate valuation vb (more precisely, vb(B) =
max{

∑
i∈I vi(Xi) : ∀i, j ∈ I, i 6= j ⇒ Xi ∩Xj = ∅,

⋃
i∈I Xi = B}), every coalition J

has an optimal strategy against vb which does not lower the utility of any member of
I (assuming that bidders in I bid truthfully) in comparison to the situation in which
members of J were to bid truthfully.

Proof. In Appendix. �
In the statement of the theorem, it is possible to replace 2 by:

• Every optimal strategy of every coalition against vb leads to an efficient allocation.

This would strengthen the theorem when 2 is viewed as a necessary condition and weaken
it when 2 is viewed as a sufficient condition.

Theorem 18 is strongly related to a result of Ausubel and Milgrom (2002), which shows
that for any collection of bidders with gross substitutes valuations (*) there does not exist a
profitable joint deviation of losing bidders, but for any larger domain one can find a counter-
example to (*). Of course, a profitable joint deviation by losing bidders will always create
inefficiency. The relation of Theorem 18 to this result of Ausubel and Milgrom (2002) is
partly explained by Theorem 8.

35



One consequence of Theorem 18 is that while violations of SupTop may lead to incen-
tives for a coalition–even a minimally competitive coalition–to merge, this leads neither to
inefficiency nor lowers the utility of bidders outside of the coalition. Of course, such behav-
ior may be detrimental to the seller. In contrast, a failure of SubTop may lead to collusive
behavior, which–like shill bidding–leads to inefficiency. Such collusive behavior will not in
general require the coalition to manufacture identities, but will cause the coalition to distort
its bidding behavior so as to win items at lower prices, and in so doing, to win items that
the coalition would not have won otherwise.

10 Conclusion

This paper has studied the problem of optimal shill bidding in the VCG mechanism. The
problem was decomposed into two parts: a cost minimization problem (Theorem 1) and an
optimal shill bidding problem (Theorem 2). I identified a necessary and sufficient condition
on aggregate bids such that there is an incentive for some outside bidder to use shills,
namely Submodularity at the Top. In line with the previous literature, it was shown that
when goods are substitutes, there is no incentive to shill. However, a new finding was also
presented, namely, that when goods are pure complements, then the optimal shill bidding
strategy involves total disintegration: there is an incentive to sponsor one shill per item that
one expects to win. The incentive to disintegrate is attenuated when there is a mixture of
substitutes and complements; disintegration may only be partial with several shill bidders
bidding on several packages, but not necessarily on individual items. With a mixture of
substitutes and complements, the problem becomes quite complex, and I provided a new
proof by reduction from the winner determination problem with single-minded bidders
that optimal shill bidding is NP-hard.21 This last result is interesting economically, as it
establishes a strong relationship between optimal shill bidding and the problem of finding
an efficient allocation in a combinatorial auction. I also showed that when shill bidding is
possible, there is no longer a dominant strategy in the VCG mechanism; in particular, no
strategy employing shills is dominant. Finally, the analysis of this paper had consequences
for other forms of collusion.

Several interesting questions remain. In particular, the optimization problem that I
study assumes that the bidder considering the use of shills knows the aggregate bid of the
opponent. It would be interesting to study the optimization problem which results when
the bidder instead has a probability distribution over aggregate bids. This would certainly
change the character of the solution. The analysis of this paper has been of a worst case
variety. It was shown that under extreme assumptions about a bidder’s knowledge, there
is an incentive to shill. It remains to be seen whether this incentive would translate into

21Section 6.3 discusses an earlier result implying the NP-hardness of optimal shill bidding problem by
Sanghvi and Parkes (2004).
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shill bidding in equilibrium. Of course any equilibrium analysis involves some specification
of a probability distribution over valuations of bidders. One relatively trivial observation
is that there is a degenerate distribution in which some specific valuation profile is given
probability one, and therefore it follows from the analysis of this paper that shill bidding
can occur in equilibrium for some probability distribution over valuations.22 Putting this
degenerate case aside, there is the issue of the riskiness of shill bidding. The canonical
shill bidding strategies presented in Theorems 1 and 2 may often involve bids for certain
packages above one’s valuation for those packages. While such strategies are not dominated,
they are generally risky in the sense that in using them, a bidder exposes himself to the
risk that he will have to pay more for a package than it is worth to him. This risk might
deter shill bidding in equilibrium. However, in Section 8, it was shown that the there are
circumstances in which a bidder may benefit from shill bidding even to the extent that he
may win items which it is inefficient for him to win but in which he does not expose himself
to the risk of overbidding. This issue along with the general analysis of equilibria in such
complex auctions deserves further exploration.

11 Appendix

Proof of Theorem 8

Theorem 6 of Gul and Stacchetti (1999) shows that the aggregate valuation w formed by
a collection of gross substitutes valuations is submodular. Since SubTop is weaker than
submodularity, w also satisfies SubTop. Since SubTop is weaker than submodularity in
order to establish both parts 1 and 2 of Theorem 8, it is sufficient to show that for any
strict superset of the gross substitutes valuations, one can construct an aggregate valuation
which violates SubTop. This is achieved by the following two lemmas.

Lemma 2 Suppose that v satisfies SubTop. Then for all A ⊆ N , if A,N ∈ D(p; v), then
for all B with A ⊆ B ⊆ N , B ∈ D(p; v).

Proof. That A,N ∈ D(p; v) implies that:

v(N)− v(A) =
∑

x∈N\A

px (21)

22For example, suppose that there are two bidders, Ann and Bob. Suppose that Bob has a strictly
supermodular valuation. Then, Ann will have an incentive to use shills against Bob (if Bob bids truthfully),
and indeed one shill per item that she will ultimately win, but if she does this, then the aggregate valuation
of Ann’s shills will be additive, and so Bob will not have an incentive to use shills, and so, it will optimal
for Bob to bid truthfully.
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SubTop implies that for all P,Q such that {P,Q} ∈ Π(N \A),

v(N)− v(A) ≤ [v(A ∪ P )− v(A)] + [v(A ∪Q)− v(A)] (22)

In particular, we may choose P so that A ∪ P = B. (21) and (22) imply that:∑
x∈N\A

px ≤ [v(A ∪ P )− v(A)] + [v(A ∪Q)− v(A)], (23)

Moreover, A ∈ D(p; v) implies:∑
x∈P

px ≥ v(A ∪ P )− v(A) and
∑
x∈Q

px ≥ v(A ∪Q)− v(A) (24)

(23) and (24) together imply:∑
x∈P

px = v(A ∪ P )− v(A) and
∑
x∈Q

px = v(A ∪Q)− v(A)

which in turn implies that B = A ∪ P ∈ D(p; v). �

Lemma 3 Suppose that v is not a gross substitutes valuation. Then there exists a gross
substitutes valuation u such that:

w(B) := max{v(B \A) + u(A) : A ⊆ B} (25)

violates SubTop.

Proof. Suppose that v is not a gross substitutes valuation. It follows from Theorem 1 of
Gul and Stacchetti (1999) that there exists p ∈ RN

+ , A,B ∈ D(p; v), and X ⊆ A \ B such
that:

(*) for all Y ⊆ B \A, (A \X) ∪ Y 6∈ D(p; v).

Define valuation u by:
u(C) :=

∑
x∈C∩[N\A]

px

u is an additive valuation and hence is a gross substitutes valuation. Define w via (25).
Then, for all C ⊆ N :

w(C)−
∑
x∈C

px = max{v(E) +
∑

x∈C\E

px : A ∩ C ⊆ E ⊆ C} −
∑
x∈C

px

= max{v(E)−
∑
x∈E

px : A ∩ C ⊆ E ⊆ C} (26)
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It follows that:

max{w(C)−
∑
x∈C

px : C ⊆ N} = max{max{v(E)−
∑
x∈E

px : A ∩ C ⊆ E ⊆ C} : C ⊆ N}

= max{v(E)−
∑
x∈E

px : E ⊆ N}, (27)

where the least inequality follows from the fact that for all E ⊆ N , A ∩ C ⊆ E ⊆ C when
C = E. Next observe that for any C ∈ D(p; v):

w(C)−
∑
x∈C

px ≥ v(C)−
∑
x∈C

px

= max{v(E)−
∑
x∈E

px : E ⊆ N}

= max{w(E)−
∑
x∈E

px : E ⊆ N}

So D(p; v) ⊆ D(p;w). In particular A ∈ D(p;w), which implies that:

w(N)−
∑
x∈N

px = max{v(E)−
∑
x∈E

px : A ⊆ E ⊆ N} = v(A)−
∑
x∈A

px = w(A)−
∑
x∈A

px

It follows that N ∈ D(p;w). Notice also that since B ∈ D(p; v), B ∈ D(p;w). Now
assume for contradiction that w satisfies SubTop. Then by Lemma 2, and the fact that
B ⊆ (A ∪B) \X ⊆ N , N also satisfies SubTop, (A ∪B) \X ∈ D(p;w). But:

w((A ∪B) \X)−
∑

x∈(A∪B)\X

px = max{v(E)−
∑
x∈E

px : A \X ⊆ E ⊆ (A ∪B) \X}

< max{v(E)−
∑
x∈E

px : E ⊆ N} (28)

= max{w(E)−
∑
x∈E

px : E ⊆ N},

where the first equality follows from (26), the inequality from (*), and the last equality from
(27). (28) contradicts (A ∪B) \X ∈ D(p;w). It follows that w violates SubTop. �

Proof of Theorem 13

Fix va, and assume for contradiction that there exists some shill bidding strategy v =
(vj : j ∈ J) that dominates truthful bidding. Let vJ be the aggregate valuation induced
by v. First suppose that there exists some B ⊆ N and some x ∈ B such that vJ(B) −
vJ(B \ x) < va(B) − va(B \ x). Suppose that Bob is composed of two bidders, Carol
and Dan. Carol’s valuation is vN\B,r∗ where r∗ > max{vJ(N), va(N)}. Dan’s valuation is
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vx,r, where vJ(B) − vJ(B \ x) < r < va(B) − va(B \ x). Then if Ann bids truthfully, her
utility will be va(B) − r > va(B \ x), whereas va(B \ x) will be an upper bound on Ann’s
utility if she reports v, a contradiction. Next suppose that for all C ⊆ N and all y ∈ C,
vJ(C)−vJ(C \y) ≥ va(C)−va(C \y), and for some B ⊆ N and x ∈ B, vJ(B)−vJ(B \x) >
va(B) − va(B \ x). Then suppose that Carol is as above, and that Dan’s utility is vx,r for
vJ(B) − vJ(B \ x) > r > va(B) − va(B \ x). Then Bob’s utility from truthful bidding is
exactly va(B \ x) and Bob’s utility from submitting v is exactly va(B)− r < va(B \ x),23, a
contradiction. The only case that remains is when vJ(B)− vJ(B \ x) = va(B)− va(B \ x)
for all B ⊆ N and all x ∈ B. Since vJ(∅) = va(∅) = 0, it follows that vJ = va. This implies
that for any aggregate bid vb, the set of packages that Ann could win in some efficient
allocation given that she bids truthfully is the same as the set of packages that Ann could
win in some efficient allocation given that she submits shill bid profile v. The fact that
v dominates truthful bidding then implies that there must exist aggregate bid vb for Bob
and resulting efficient allocations such that Ann wins the same package B under both v

and va and Ann pays less under v than under va. This implies that at least two of Ann’s
shill bidders win items in B, and therefore that B contains at least two elements. We may
assume that for all x ∈ B, vJ(B)− vJ(B \ x) = va(B)− va(B \ x) > 0.24 Suppose that for
each shill bidder j ∈ J , Bj is the package that shill bidder j wins, so that

⋃
j∈J Bj = B.

Now suppose that Bob is composed of two bidders, Carol and Dan. Carol’s valuation is as
above. Dan’s valuation vd is such that 0 < vd(B) < min{va(B)−va(B\x) : x ∈ B} and that∑

j∈J vd(Bj) > vd(B). Notice that when Ann bids against Dan and Carol with valuations
as just described, and submits shill bid profile v, it must still be efficient to allocate Bj to
shill bidder j for all j ∈ J . Ann’s payment will then be at least

∑
j∈J vd(Bj). On the other

hand, if Ann bids truthfully she will win B and her payment will be exactly vd(B), which
is lower, and so she will be better off, a contradiction. �

Proof of Theorem 16

During the course of the proof of Theorem 16, it will be useful to think of Ann’s problem of
selecting an optimal shill bidding strategy side-by-side with coalition J ’s problem of finding
the optimal collusive strategy. In the proof that follows pV CG

B is the VCG price that Ann
would have to pay in the VCG mechanism when bidding against Bob, and is given by (2).
From a mathematical point of view pV CG

B = pMerged
B , although these two terms have different

interpretations. pV CG
B is to be contrasted with pV CG,j

B for j ∈ J , where the latter is the
VCG price that j has to pay when bidding against both Bob and the other members of J .

1: This an immediate consequence of Theorem 15.
23Here we have used the fact that for all C ⊆ N and all y ∈ C, vJ(C)− vJ(C \ y) ≥ va(C)− va(C \ y)
24This follows from the fact that if va(B) − va(B \ x) = 0, then it is also efficient for Ann to win B \ x,

and x must have zero marginal value to all bidders at the efficient allocation, so whether Ann receives x or
not does not affect her payment (both when she bids truthfully and when she bids v).
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2: Theorem 3 implies that under SubTop, Ann never has an incentive to use shills.
It follows that if there existed a shill bidding strategy which was sometimes better than
truthful bidding for Ann, there would also be a strategy not using shills that was sometimes
better than truthful bidding. This would contradict the fact that without shills, truthful
bidding is a dominant strategy. The result now follows from Observation 1.

3: If SubTop fails, then there exists B ⊆ N such that pShill
B < pV CG

B . Let P∗ solve the
CMP for B. Then |P∗| = 2. Then set J := P∗ and for all j = P ∈ P∗ set vj := vP,rP

for sufficiently large rP (in the sense that conditions 1 and 2 of Theorem 1 are satisfied).
When coalition J has valuations (vj : j ∈ J), it is efficient to allocate exactly package B to
J . Note finally that pV CG

B = pMerged
B , and by construction, pShill

B = pV CG,J
B . In other words,

we have just constructed the coalition J so that the valuations of the different members of
J just happen to coincide with the valuations of the shill bidders that solve the CMP for
B. Part 4 is also proven by using this construction. �

Proof of Lemma 1

Throughout the course of this proof, I will relax the assumptions that the valuation vb

is monotone and that vb(B) ≥ 0 for all B ⊆ N . If the equivalence holds without these
assumptions, then of course it holds with these assumptions as well. Note that I will
maintain the assumption that vb(∅) = 0.

It is well known that a valuation vb (with vb(∅) = 0) is additive if and only if it is both
submodular and supermodular. Since SubTop is weaker than submodularity and SupTop is
weaker than supermodularity, it follows that any additive valuation satisfies both SubTop
and SupTop.

If vb satisfies both SubTop and SupTop, then for all B ⊆ N with 1 ≤ |B| ≤ |N | − 2:

vb(N)− vb(B) =
∑

x∈N\B

[vb(B ∪ x)− v(B)] (29)

(29) is equivalent to:

vb(B) =
[
∑

x∈N\B vb(B ∪ x)]− vb(N)

|N \B| − 1
(30)

Applying (30) recursively, it follows that given (vb(B) : B ⊆ N, |B| = |N −1|), it is possible
to derive (vb(B) : B ⊆ N, 1 ≤ |B| ≤ |N | − 2). Moreover, if vb satisfies SubTop and SupTop,
it must also satisfy (29) for B = ∅, and since vb(∅) = 0, this means that:

vb(N) =
∑
x∈N

vb(x),

so this means that if we know (vb(B) : B ⊆ N, |B| = |N − 1|), we can derive vb(N) as well.
Next observe that for any additive valuation vb and for any x ∈ N and A ⊆ N with
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|A| = |N | − 1:

vb(x) =
[
∑

B3x:|B|=|N |−1 vb(B)]− (|N | − 2)vb(N \ x)

|N | − 1
(31)

On the other hand, if given (vb(B) : B ⊆ N, |B| = |N − 1|), we define vb(x) by (31), then
a simple calculation shows that for all B ⊆ N with |B| = |N − 1|,

∑
x∈B vb(x) = vb(B).

It follows that for every profile (vb(B) : B ⊆ N, |B| = |N − 1|), there exists exactly one
additive valuation w such that for all B ⊆ N with |B| = |N | − 1, w(B) = vb(B).

Because (i) any profile (vb(B) : B ⊆ N, |B| = |N − 1|) uniquely determines an additive
valuation and also uniquely determines a valuation satisfying both SubTop and SupTop,
and (ii) any additive valuation satisfies both SubTop and SupTop, it follows that the set of
additive valuations equals the set of valuations satisfying both SubTop and SupTop. �

Proof of Theorem 17

If vb is additive, then it satisfies SubTop, so from Theorem 3, there is no incentive to shill.
Next consider the incentive to merge. Since it is a dominant strategy for a single agent to
bid truthfully in the VCG mechanism if shills are unavailable, it follows that conditional on
submitting only one bid for an entire coalition J , it is optimal for the coalition to submit
a bid equal to the aggregate valuation vJ of J . However, if the coalition is minimally
competitive against vb, so that the Competition Effect is null. Moreover, any additive
valuation satisfies SubTop. It now follows from Theorem 15 that the integration effect is
nonnegative–meaning that the coalition cannot reduce its payment by merging–and hence
submitting the single bid vJ is no better than having each member of J submit a truthful
bid.

Next suppose that vb is not additive. Then Lemma 1 implies that vb violates either
SubTop or SupTop. If vb violates SubTop, then by Theorem 3, there is an incentive to shill.
If vb violates SupTop, then there exists B and partition P such that (18) is violated. Then
a noncompetitive coalition J = P such that it would be efficient for j = P ∈ J to win
package P would have an incentive to merge. �

Proof of Theorem 18

First suppose that vb satisfies SubTop. Theorem 16 implies that it is optimal for J to submit
vJ , which leads to an efficient allocation, not only in the original economy, but also in the
marginal economies excluding any member i of Bob; moreover, social welfare calculated
based on submitted bids in these economies is equal to true social welfare. Since i’s utility
depends only on social welfare in the original economy and the economy excluding i, it now
follows that 1 implies both 2 and 3.

If |J | is large enough, pShill,|J |
B = pShill

B . If vb violates SubTop, this implies that there
exists B ⊆ N such that pShill

B < pMerged
B . Suppose that vJ = vB,r for r such that pShill

B <
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r < pMerged
B . Then at the unique efficient allocation, Bob receives N . However, given the

optimal shill bidding strategy, J would receive B, implying inefficiency, so 1 implies 3. Next
suppose that I contains only a single member–who we may also call Bob–with valuation vb.
Notice that in this example, Bob’s utility is reduced from vb(N)− r to vb(N \ B) which is
smaller by the definition of r. This shows that 1 implies 3. �
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