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Abstract

A recent result in reputation games is that after an arbitrarily long history, any equilibrium

of the continuation game must be an equilibrium of the complete information game. We show

that for a particular class of games, this result assumes that the uninformed player has in�nite

memory. In fact, we show that if the game is su¢ ciently noisy, a bounded memory player

may never be able to learn anything at all. Our result implies that bounded memory can be

an explanation to long-term relationships, even in the extreme case of parties with zero-sum
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1 Introduction

An important recent result in reputation games is that after an arbitrarily long history, any equilib-

rium of the continuation game must be an equilibrium of the complete information game. A player

may bene�t from a reputation in the short-run, but this strategic use of reputation will eventually

wash o¤. Many recent papers have shown that this convergence result holds with an impressive

generality, robust to di¤erent monitoring technologies and di¤erent underlying games. Particu-

larly important papers include Benabou and Laroque (1992), and Cripps, Mailath and Samuelson

(2004).1 This leaves open the question of how to explain reputation in long-term relationships.

We study a particular class of reputation games and show that this learning result assumes

in�nite memory on the uninformed player. Thus, our result shows that bounded memory can

explain long-run reputation incentives. Our setting is a two-player in�nitely repeated game with

one-sided incomplete information and perfect monitoring. One uninformed player faces a player

that, with some exogenous probability, is committed to a speci�ed mixed strategy.

Memory is modeled as a set of states. If the player has unlimited memory, then each memory

state is associated to a di¤erent history. When the player�s memory is �nite, his strategy is to choose

an action rule, which is a map from memory states to the set of actions, but also a transition rule

from state to state. At the beginning of every stage game the only information that the player has

about the history of the game is his current memory state. He can then compute a best response

based on the beliefs about the actual history at that point, knowing that he is forgetful across

periods. We say that a memory is �nite if the set of beliefs that the player can hold in equilibrium

is �nite. We do, however, impose sequential rationality on the equilibrium strategies. This rules

out the possibility of commitment ex-ante; in particular it rules out the automata models.2

We think of memory constraints as a categorization procedure. A bounded memory agent can

categorize the world in only a �nite number of ways. This captures the fact that in reality we may

not be able to distinguish very similar histories. Our view is that people categorize histories and

form coarse impressions, instead of precise beliefs.

We consider the case of public beliefs in this paper. This is done for technical reasons that will

become clear later in the paper. This assumption can be motivated in at least three di¤erent ways.

First, a slightly modi�ed model in which the uninformed player takes an observable continuous

1Kalai and Lehrer (1993), Aumann and Maschler (1995), Jackson and Kalai (1999), Sorin (1999), and Cripps,
Mailath and Samuelson (2007) also prove important results on learning and reputations, but are less related to the
underlying model of our paper.

2 In Monte (2007) we discuss the di¤erence between bounded memory and �nite automaton.
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action before the agent acts together with a single peaked utility function would give us the same

results as in this paper�without the assumption of observable memory states. Second, one can think

of this as literally being public beliefs, such as institutions that publish credit ratings. Finally, in a

psychological approach, we think of this model as one in which agents are not able to dissimulate

their emotions.3

Our main result is shown in proposition 2 in the text. We compute an upper bound on the

belief spread of the bounded memory player as a function of his memory size and the exogenous

mixed strategy of the commitment type. If this mixed strategy is su¢ ciently noisy, albeit still

informative, we show that the bounded memory player will never be able to learn his opponent�s

true type. In fact, learning may not be possible at all if the noise is large relative to the memory

size.

The intuition for our result is that with bounded memory the agent can hold only a �nite

number of beliefs in equilibrium. And, these beliefs cannot be too far apart from each other, or

else the sequential rationality constraints would not be satis�ed.

Other authors have worked on alternative explanations for permanent reputations. In a game

where types are continuously changing, permanent reputation can be sustained as shown by Holm-

strom (1999), and Mailath and Samuelson (2001). In a related study, Bar-Isaac (2004) showed that

a model of reputation in teams can endogenously introduce this type uncertainty and thus sustain

reputation.

Ekmecki (2005) showed that if the memory of the uninformed player is restricted (in the form

of a �nite set of ratings) then there exists a rating system (set of ratings and a transition rule)

that can explain permanent reputation. The main di¤erence between our paper and Ekmecki�s is

that here memory is endogenous. It is part of the uninformed player�s strategy and has to satisfy

sequential rationality constraints. In Ekmecki (2005) the memory process is exogenous: designed

by a third party.

We proceed as follows. Section 2 describes the model. In section 3 we solve the model for the

full memory case. In section 4 we de�ne memory and describe the game when the uninformed

player is restricted to a bounded memory. Section 5 is the main part of the paper where we show

that under bounded memory reputation will always be sustained. We conclude in section 6.

3There are no reasons to believe that our results would not extend to the case of private beliefs. However, the
case of private beliefs greatly complicates the analysis, so we leave it for future work.
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2 Reputation Game

We study a two-player in�nitely repeated game with incomplete information. One player is informed

about a choice of nature and the other one is uninformed. Before the �rst stage game, nature draws

one of two possible types for the informed player: either a commitment type (c) or a normal type

(n). The commitment type is chosen with probability � whereas the normal type is the true type

with probability 1� �. The uninformed player is not aware of nature�s choice.

The commitment type is playing a given mixed strategy known by both players. The normal

type maximizes his payo¤. The payo¤s of the stage game are shown in �gure 1. Players discount

their repeated game payo¤ by a discount factor � < 1. We de�ne � = (1� �), where � is an

exogenous probability that the game ends.4

Informed
Head Tail

Uninformed
Head
Tail

1;�1 �1; 1
�1; 1 1;�1

Fig. 1: Matching Pennies

One interpretation for this game is the following. A policy maker is uninformed about his

adviser�s motives. With some exogenous probability �, this adviser is playing a known action,

which can be thought of as giving the correct advice about some issue. This loyal adviser makes

mistakes with a �xed probability (committed to a mixed strategy). The adviser may, instead, be

(with probability 1� �) a player with opposite preferences to the policy maker.

The action space is fHead; Tailg. A public history in this game is denoted by h and is a

sequence of actions played by both players. The set of all public histories is H. The commitment

type is playing a behavioral strategy with �xed probability:

�q � Pr (Headjh) > 1

2
;

for any history h 2 H, where �q is common knowledge in the game. A behavioral strategy for the

normal type is

q : H ! �(fHead; Tailg) ;

where with some abuse of notation we denote q (h) the probability that the normal type will play

action Head given a public history h.

4This is done to ensure that beliefs are consistent, as will be discussed on section (4.2).
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We have restricted our attention to the repeated matching pennies game, however there are

no reasons to think that our results would not hold in a general game. There are, however, two

main reasons for considering this particular game. First, the question of learning under bounded

memory is more clear cut here. In a repeated game with incomplete information, a player with a

bounded number of states faces two constraints: bounded complexity on implementing a strategy

and bounded ability on updating beliefs about the actual type. The literature on automata has

focused on the �rst issue, while we focus on the second.5 In the setting of this paper, the bounded

memory player is uninformed about the type of his opponent. Moreover, the complete information

game has a unique equilibrium in the repeated game and, thus, the complexity of implementing a

strategy is simple. Therefore, the issue is on updating beliefs and learning.

The second reason for choosing this game is that we want to emphasize that an in�nitely renew-

able reputation can happen even in a world in which parties have completely opposite interests. In a

general two-player game (not zero-sum) the di¤erent types may be pooling in the same equilibrium

of the repeated game, in which case the question of learning looses its byte. The zero-sum nature

of our game will ensure that the types will not play the same equilibrium continuation strategy in

any subgame. In other words, the normal type will not mimic the commitment type forever.

3 Full Memory

In this section we show that when both players have full memory, types are revealed asymptotically.

The normal type of the informed player has a current incentive for misleading the uninformed

player. However, he might �nd it pro�table to �pretend�to be the commitment type, and explore

the bene�ts of a higher reputation in a future period.

The uninformed player can condition his action on the entire public history of the game, so his

behavioral strategy is

a : H ! �(fHead; Tailg) ;

where we denote a (h) to be the probability that the uninformed player will play action Head

given a public history h 2 H. The strategy spaces for the uninformed and the informed player are

denoted by �a and �q; respectively. Players are maximizing their repeated game expected utility,

which can be written as:

Ui (a; q) =

1X
t=1

�t�1ui
�
at; qt

�
;

5See, for example, Neyman (1985), Rubinstein (1986), Abreu and Rubinstein (1988) and Kalai and Stanford (1988)
for repeated games with automata.
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where player i can be the normal type or the uninformed player,
�
at; qt

�
is the induced action

pro�le, and ui (�) is the expected stage game payo¤.

Under full memory, the uninformed player updates his beliefs using Bayes�Rule. Thus, given a

strategy pro�le (a; q), the uninformed player�s posteriors are obtained as follows. The belief of the

uninformed player that his opponent is the commitment type, after some history h 2 H, is denoted

as

� (h) := Pr (cjh) :

If the public history is h and informed player plays Head; the uninformed player�s belief in the

beginning of the following stage game is:

�H;ht+1 =
�t�q

�t�q + (1� �t) q (h)
; (1a)

while if the informed player plays Tail, the uninformed player�s belief is:

�T;ht+1 =
�t (1� �q)

�t (1� �q) + (1� �t) (1� q (h))
: (1b)

We will focus on Markovian equilibria only, since they su¢ ce for our purposes. We de�ne a

Markov Perfect Equilibrium under full memory to be a Perfect Bayesian Equilibrium in which the

strategies of both players are conditioned on the current posterior of the uninformed player only.

De�nition 1 (Markov Perfect Equilibrium under Full Memory) A strategy pro�le (a; q) is

a Markov Perfect Equilibrium if after any history h 2 H:

Ui (a; qjh) � Ui
�
a0; qjh

�
; for 8a0 2 �a;

Ui (a; qjh) � Ui
�
a; q0jh

�
; for 8q0 2 �q:

a (h) = a
�
h0
�
for any h; h0 2 H in which � (h) = �

�
h0
�
;

q (h) = q
�
h0
�
for any h; h0 2 H in which � (h) = �

�
h0
�
:

And beliefs are computed according to (1a) and (1b).

In this game Markov Perfect Equilibrium does exist and is unique. Moreover, the repeated game

expected payo¤ of the normal type is non-decreasing in his reputation level and the uninformed

player�s belief is such that � (h) = ��q + (1� �) q (h) > 1
2 , for any history h 2 H; (Benabou and

Laroque (1992, Theorem 1)).
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The reputation f�tgt2N is a Markov process (as shown above in (1a) and (1b)). It depends

on the sequence of actions, and on the actual type of the informed player. From the uninformed

player�s point of view the reputation of the opponent follows a martingale:

E
�
�t+1j�t = �

�
= � (�) �Ht+1 + � (1� �q) + (1� � (�)) �Tt+1

= �t:

However, conditional on the actual type of the opponent, the reputation evolves di¤erently.

When the actual type is a commitment type, we have that:

E
�
�t+1j�; c

�
= �q�Ht+1 + (1� �q) �Tt+1:

We use equations (1a), (1b) and also the fact that:

�q2

� (�)
+
(1� �q)2

1� � (�) > 1:

This implies that conditional on the actual type being commitment, the reputation of this type

will evolve according to:

E
�
�t+1jc; �

�
= �

(
�q2

� (�)
+
(1� �q)2

1� � (�)

)
> �: (2)

The reputation tends to increase every period and is a strict submartingale.

We show that the evolution of beliefs on the informed player�s type given that the actual type

is a normal type follows, instead, a supermartingale. Before we can show this result, we �rst prove

the following lemma.

Lemma 1 In any Markov Perfect Equilibrium, the normal type plays Head less often than the

commitment type:

q (h) < �q; 8h 2 H.

Proof. Suppose that there exists a history h 2 H in which the reputation level is � (h) and

such that q (h) > �q: This implies that � (h) > �q > 1
2 . Also it must be that the updating is given by:

pH;h =
� (h) �q

� (h)
< � (h) ;

whereas

pT;h =
� (h) (1� �q)
(1� � (h)) > � (h) :
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Thus, playing Tail gives the normal type a better current payo¤, but also induces a higher reputation

level, which implies a contradiction.

Conditional on the type of the informed player being normal, the reputation of this normal type

will evolve according to:

E
�
�t+1j�; n

�
= q (�) �Ht+1 + (1� q (�)) �Tt+1:

Using equations (1a) and (1b) we can write this expected increase in the belief on the type

being commitment given that it is actually the normal type is given by:

E
�
�t+1j�; n

�
= �

�
�qq (�)

� (�)
+
(1� �q) (1� q (�))

1� � (�)

�
< �; (3)

thus the belief �t follows a supermartingale when the actual type is normal.

We use the Martingale Convergence Theorem together with (2) and (3) to show that the beliefs

will converge to the correct ones.

Proposition 1 (Learning Under Full Memory)

There is complete learning in this game:

lim
t!1

E [�tjc] = 1;

lim
t!1

E [�tjn] = 0:

For the formal proof see Benabou and Laroque (1992, p953-954). The intuition for the proof is

the following. We know from (2) that E
�
�t+1j�; c

�
� � with strict inequality if � 2 (0; 1). From the

martingale convergence theorem, limt!1E
�
�t+1j�; c

�
! x1 for some random variable x1 2 [0; 1]

with distribution d�1. Then, for all period t, it must be true that:

E
�
�t+1jc

�
=

Z 1

0
E
�
�t+1j�; c

�
d� (�) :

Taking the limit as t!1, means that we are taking the expectation for the reputation of the

player conditional on the true type being the commitment type. This expectation depends on the

initial reputation, which is given by some known distribution � (�). As we take the limit for t!1

we want to know the expectation of future reputation when the distribution itself converged to �1.

From (2) we know that E
�
�t+1j�; c

�
> �: Thus, for � 2 (0; 1) it must be that the reputation should

converge to either zero or one. It should be intuitively clear, though, that there can be no mass at

0: Thus, the reputation must converge to one. The same reasoning is true for the case of a normal

type.
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4 Bounded Memory

4.1 Memory and Strategies

We now study the case in which the uninformed player has bounded memory. We make no re-

strictions on the normal type�s memory. He can recall the exact public history of the game. The

uninformed player�s memory is de�ned as a �nite set of states M = fs1; s2; :::; sng : The strategy

of the bounded memory player is to choose a map from states to action, which we call the action

rule,

a :M!� fHead; Tailg :

Also, the bounded memory player chooses a transition from state to state

' :M�fHead; Tailg2 ! �(M) ;

which determines how he updates beliefs. Finally, he decides on an initial state '0 2 �(M), which

is decided before he enters the �rst stage game. We denote 'H (i; j) as the probability of moving

from state i to state j given that the opponent has played Head, regardless of his own action.6

As we discussed in the introduction, it will be assumed that the memory state of the uninformed

player is observed by the normal type of player at every point in time. Thus, a history h of the game

with a bounded memory uninformed player includes the sequence of action pro�les but also the

sequence of memory states of the uninformed player: h� = f(at; qt; st)g�t=1. The set of all histories

of this modi�ed game is denoted H�. Notice that histories are now private, only the informed player

can recall the history h 2 H�.

4.2 Beliefs

We view memory as a conscious process. A bounded memory player knows that he is forgetful.

At every memory state he will hold a distribution of beliefs over the set of histories. This implies

that there is an equilibrium reputation level associated to every memory state. Given that this

is an in�nitely repeated game, the set of possible histories in a particular memory state may be

unbounded. We will assume that the beliefs of the bounded memory player are computed using

relative frequencies, following Piccione and Rubinstein (1997).

Given a strategy pro�le � = ('; a; q), the memory states form a partition of the possible histories.

Let � (hjsi; �) denote the belief of the uninformed player in state si that the correct history is h,
6The player ignores his own action in the transition rule because it does not reveal anything about his opponent�s

type. This is due to the simultaneous nature of the stage game. We discuss this further in section 4.3.
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given the strategy pro�le �. As usual, at any information set the beliefs about all histories must

sum up to one X
h2si

� (hjsi; �) = 1:

Let f (hj�) be the probability that a particular play of the game passes through the history h

given the strategy pro�le �. For each history h and memory state si, let the uninformed player�s

belief be given by the relative frequency as de�ned below.

De�nition 2 (Consistency)

A strategy pro�le � is consistent with the beliefs � if, for every memory state si and for every

history h 2 si; we have that the beliefs are computed as follows:

� (hjsi; �) =
f (hj�)X

h02si

f (h0j�)
: (5)

At the beginning of a stage game, given some memory state si, the uninformed player�s prior

belief that his opponent is a commitment type is denoted by:

�i � Pr (cjsi; �) =
X
h2si

� (hjsi; �; c) : (6)

At the beginning of every stage game, we denote �i � Pr (Headjsi; �) as the probability that

the informed player will play Head in that stage game, given the current memory state si. After

observing the action played by the informed player, the bounded memory player updates his belief

on his opponent�s type. We denote this posterior belief as pHi � Pr (cjHead; si; �) if the last action

was Head and pHi � Pr (cjHead; si; �) if the last action was Tail: Since the player is not forgetful

within the period, but only across periods, at the end of the stage the player updates his beliefs

using Bayes�rule. These posteriors are computed as:

pHi =
�i�q

�i
; (7)

pTi =
�i (1� �q)
1� �i

:

4.3 Sequentially Rational Equilibrium

In games with forgetfulness, an agent may visit the same information set at di¤erent points in time.

Since, as usual, an agent cannot distinguish di¤erent histories in the same information set, if the
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player deviates at some point in time, he will not remember it, unless his memory explicitly accounts

for deviations. The beliefs that the player holds at all information sets are the ones induced by the

strategy pro�le �.

We view memory as a conscious process. The player makes conscious decisions on how to

think about his opponent. However, the solution concept for games with bounded memory is

not the sequential equilibrium. Sequential equilibrium implies that at any information set, the

continuation strategy is optimal for the player given his opponent�s strategy and given his beliefs at

that information set. In a game with bounded memory, the continuation strategy at an information

set need not be optimal. The player is not able to revise his entire strategy, since he does not

remember actions, or �revised plans�.

Our concept of sequential rationality with bounded memory involves optimal actions and tran-

sitions given the beliefs induced by the strategy pro�le and taking as given the player�s own be-

havior in future nodes. This concept was used by Piccione and Rubinstein (1997), Wilson (2003)

and Monte (2007).7

We will say that the pair (�; �) ; is sequentially rational if two conditions hold. First, for the

informed player we must have that his strategy is a best response for him given a memory rule

('; a), after every history h. Second, for the uninformed player there are no incentives to deviate

from the speci�ed memory rule ('; a) at any time t given the strategy q and assuming that at all

other period t0 6= t, he was (will be) using the same strategy ('; a) :

For the �rst condition, we can write:

Un ('; a; qjh) � Un
�
'; a; q0jh

�
8q0 2 ��q ;8h 2 H�: (8)

Where Un ('; a; q) is the expected repeated game payo¤ for the normal type of the informed player,

given the strategy pro�le ('; a; q).

To de�ne the second condition formally, we need extra notation. For every strategy pro�le

� = ('; a; q) each memory state has an associated expected continuation payo¤. We denote vki as

the expected continuation payo¤ for the bounded memory player at memory state si, given that

the actual type of the informed player is k 2 fc; ng. We can write these payo¤s as a sum of two

terms. The �rst term of vki corresponds to the expected payo¤ in the stage game given that the

memory state is si. The second term corresponds to the expected continuation payo¤ after the �rst

stage game at memory state si, which depends on the vki of all states and on the transition rule '.

7Piccione and Rubinstein (1997) denoted this concept as modi�ed multiself consistent. Wilson (2003) and Monte
(2007) refer to it by incentive compatibility.
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Formally we write that given a commitment type, the uninformed player�s expected continuation

payo¤ at memory state si is given by:

vci = (2ai � 1) (2�q � 1) + �

0@�qX
j2M

'H (i; j) v
c
j + (1� �q)

X
j2M

'T (i; j) v
c
j

1A :
The expected continuation payo¤ given the normal type, vni ; must account for the entire prob-

ability distribution over the set of histories H�. The reason for this is that the informed player

may be using a non-stationary strategy. The following result will allow us to greatly simplify the

notation.

First, remember that histories are private in the game with bounded memory: only the informed

player recalls the history h. Thus, the uninformed player cannot condition his action on the

history, but only on the current memory state. This implies that in any equilibrium of this game,

the expected continuation payo¤ of the normal type must depend only on the current memory

state. Suppose that this is not so and that there are two histories h; h0 2 si \ H� such that:

Un (h) > Un (h
0) given some equilibrium strategy �� = ('�; a�; q�). In this case, the informed

player can play a modi�ed strategy q�� such that q�� is identical to q� for every history di¤erent

than h0 or any other history h00 in which h0 is a subhistory: h0 � h00. Following history h0, the

modi�ed strategy q�� plays the same continuation strategy as q�(h). Informally, this means that

the informed player can always pretend to be in a di¤erent history. Therefore, we can write:

vni = �Un (si)

The important thing for us is to realize that vni depends only on the current memory state. Thus,

when deciding on which memory state to move to, the bounded memory player will �evaluate�the

memory states in a stationary way.

We de�ne a sequentially rational strategy for the bounded memory player as follows.

De�nition 3 (Sequential Rationality: Memory Rule)

If a strategy ('; a) is a sequentially rational strategy given the strategy of the informed player q,

then it satis�es the following conditions. For 8si; sj ; sj0 2M 8k 2 fHead; Tailg:

'k (i; j) > 0) pki v
c
j +

�
1� pki

�
vnj � pki vcj0 +

�
1� pki

�
vnj0 ; (IC1)

a�i = arg max
a2[0;1]

(2a� 1) f�i � (1� �i)g : (IC2)
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The �rst condition, says that when taking the decision of to which memory state to move, the

bounded memory player chooses the optimal state, with its associated expected payo¤, given his

beliefs about the opponent�s type.

The second condition, (IC2), says that if � = ('; a; q) is a sequentially rational equilibrium, then

the action rule implies taking the myopic best action every stage game. Suppose a 6= a� where a� is

the optimal myopic action. If the bounded memory player deviates and play a�, and then transition

to state sj ; for example, the informed player will play a best response to this deviation. The fact

that the uninformed player is forgetful implies that whenever he reaches state sj he will assume that

on-equilibrium path actions were taken. Now suppose that the informed player�s best response to

this deviations is more pro�table than ignoring the deviation and playing the continuation strategy

that he would otherwise play. Then, he could have used this best response strategy even if no

deviation had taken place.

Under the multi-self interpretation, a strategy is sequentially rational if no interim self wants

to deviate from the equilibrium strategy assuming that all future selves are following it, and all

past selves have been following the equilibrium strategy as well. The bounded memory player can

deviate from his equilibrium strategy, but he cannot revise his entire strategy. In other words, he

cannot trigger a sequence of deviations.

De�nition 4 (Sequentially Rational Equilibrium)

The strategy pro�le � = ('; a; q) is a sequentially rational equilibrium if there exists a belief � such

that the pair (�; �) is consistent and sequentially rational.

In this game, the question of existence is not an issue. In fact, there are typically multiple

equilibria in games with imperfect recall.8 In this game, for example, there is always an equilibrium

in which all memory states induce the same belief. The action taken is the same regardless of the

state and the transition rule is identical regardless of the action pro�le in the stage game. In this

case, the bounded memory player plays a sequence of one shot games and never learns anything (as

if he had no memory at all). In the next section we compute bounds on the posterior that must

hold for any equilibrium of the game, including the most informative equilibria in which learning

is maximized.
8See Piccione and Rubinstein (1997) and Aumann et al. (1997).
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5 Learning with Bounded Memory

In a game with full memory, we say that an agent learns if his beliefs approach the correct probability

distribution of states of the world. We showed that the uninformed player�s beliefs about the actual

type of the informed player either converges to one (if the informed player is a commitment type)

or to zero (if he is a normal type).

A bounded memory player will only hold a �nite number of beliefs in equilibrium. Thus, the

maximum that an agent can learn is given by the extreme beliefs of this player: his highest belief

and his lowest belief. We show that, under bounded memory, there is a limit on learning. We

compute this bound, which is a function of the commitment type�s strategy and the memory size,

and show that the player may learn close to nothing if the game is su¢ ciently noisy.

We �rst show the result for irreducible memories. I.e., if a memory is such that the only ergodic

set is the entire set of states, then types are never fully separated. We then show the proof for the

case of a reducible memory.

The main intuition for the result is the following. The player has only a �nite set of states,

thus the number of posteriors after a particular action induced in equilibrium is �nite. If a memory

state is ever to be reached in equilibrium, the uninformed player must have had an incentive to do

so. This implies that the beliefs in all memory states that are reached through the transition rule

must not be �too far apart�.

5.1 Irreducible memories

We will �rst consider only irreducible memories and leave the case of reducible memories for the

following section. An irreducible memory is a set of states with no transient states (in which you

leave with probability one and never return).

The proposition below is the main result of the paper. It shows that under irreducible memories

there is an upper bound, function of the parameters, on the distribution of types over the memory

states.

A given strategy pro�le � will induce an expected continuation payo¤ for the uninformed player

for every memory state. We label the memory states such that they are non-decreasing in the

expected payo¤ when the true type of the informed player is c. I.e. vc1 � vc2 � ::: � vcn.

Lemma 2 Consider any sequentially rational equilibrium �. Then, for all memory states that are

reached with positive probability we must have that vn1 � vn2 � ::: � vnn

14



Proof. Consider two memory states si; si0 2 M reached in equilibrium through �. Suppose

that i0 < i, so that vci � vci0 . If it were also true that vni > vni0 , then for any belief p�j 2 [0; 1] ; for

� 2 fHead; Tailg and 8si0 2M; we must have that:

p�j (v
c
i � vci0) +

�
1� p�j

�
(vci � vci0) � 0;

which implies that state si0 would only be reached in equilibrium if p�j = 1 for some state sj

and vci = vci0 . However, if p
�
j = 1, then �j = 1 and the uninformed player is in a state where

with probability one he faces a commitment type. This state is then absorbing, which contradicts

irreducibility.

Lemma 3 At least one memory state has a belief (weakly) lower than the original prior and at

least one memory state must have a belief (weakly) higher than the prior: �i � � and �j � � for

some si; sj 2M:

Proof. Suppose that �i > �, 8si 2 M. Given a strategy pro�le � = ('; a; q), the memory

states form a partition of the set of all possible histories H. Let Hc be the set of histories in which

the type of the informed player is c. Similarly, Hn is the set of histories for which the type is n;

hence, Hc [Hn = H.

From (5) and (6) we have that:

X
h2si\Hc

0BBB@ f (hj�)X
h02si

f (h0j�)

1CCCA > �;

which implies that: X
h2si\Hc

f (hj�) > �
X
h02si

f
�
h0j�

�
:

This must hold for all si, thus:

X
si2M

0@ X
h2si\Hc

f (hj�)

1A >
X
si2M

0@�X
h02si

f
�
h0j�

�1A ;
summing over the expressions we have that:X

h2Hc

f (hj�) > �
 X
h02H

f
�
h0j�

�!
: (9)

However, note that the sum of the frequency of all possible histories in the set Hc is �
1�� .

Therefore, (9) implies that: �
1�� > �

1
1�� ; which is a contradiction.

The same reasoning applies to show that �i � �.
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Proposition 2 (Bound on Learning)

For 8�; �; �q; n if � = ('; a; q) is an equilibrium, then:

�

�
�q

1� �q

�n�1
� �i � �

�
1� �q
�q

�n�1
; for 8si 2M:

Proof. Consider only the case where memory is irreducible. Thus, there must exist sj ; sj0 2

Mn fsng such that '� (n; j) > 0 and '�0 (j
0; n) > 0; for some �; �0 2 fHead; Tailg. This implies

that

p�j0 (v
c
n � vci ) +

�
1� p�j0

�
(vnn � vni ) � 0; (10)

8si 2M.

The posterior in a state si is given by:

pHi =
�i�q

�i
;

and

pTi =
�i (1� �q)
1� �i

:

We also know that pHi > p
T
i , 8si, since

�q

�n
>
(1� �q)
1� �n

;

and the fact that in any equilibrium of this game, �i � 0:5; for 8si 2M. 9

Now suppose that pHn > p
T
n > p

�
i ; 8si 2M: Using (10) and lemma (2) we have that:

p�n (v
c
n � vci ) + (1� p�n) (vnn � vni ) > 0;

for any � 2 fHead; Tailg and 8si 2Mnfsng : This, implies that sn is absorbing, which contradicts

our assumption of irreducible memory state. Thus, there exists at least one memory state si for

which pHi � pTn .

Since pHi � pTn , we have that:
�i�q
�i
� �n(1��q)

1��n , thus:

�i � �n
�i (1� �q)
(1� �n) �q

� �n
�i (1� �q)
(1� �n) �q

: (11)

Given that the memory is irreducible, we must have that at least one state si0 , where i0 � i; is

such that pTi � pHj : for j < i0. Using (11) we have that:

�j � �n
�i�j (1� �q)2

(1� �n) (1� �i) �q2
:

9This result is analogous to the full memory case. Suppose �i < 0:5 for some state si 2 M . Then, the normal
type bene�ts from playing Head, both in the stage game and in reputation, since pHi > pTi , and by sequential
rationality, the uninformed player will move to a state that would give him a weakly higher payo¤ if his opponent is
the commitment type.
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We then repeat the procedure above and note that the highest upper bound for the lowest belief

�i is given when the transition occurs without any jump and such that �1 � �2 � ::: � �n (thus,

�n � �). This lowest belief is such that:

�1 � �n
�n�1�n�2:::�1 (1� �q)n�1

(1� �n) (1� �n�1) ::: (1� �1) �qn�1
:

We again use the fact that in any equilibrium of this game, �i � 0:5; for 8si 2M to obtain the

following inequality:

�1 � �
�
1� �q
�q

�n�1
: (12)

To obtain an upper bound on the highest belief we use the same reasoning as above, but in

the opposite direction. I.e., for an irreducible memory we must have that pH1 � pTi for some state

si 2Mnfs1g. Similarly, pHi � pTi+1. This gives us the following inequality:

�n � �1
�

�q

1� �q

�n�1 (1� �n) (1� �n�1) ::: (1� �2)
�n�1�n�2:::�1

;

which implies that:

�n � �
�

�q

1� �q

�n�1
: (13)

We know from (12) and (13) that �
�

�q
1��q

�n�1
� �i � �

�
1��q
�q

�n�1
; for 8si 2M: Thus:

lim
�q! 1

2

�i = �:

Corollary 1 (No Learning when Game is Noisy)

For any memory size n, and any " > 0, there exists a �q > 0:5 such that any equilibrium in the

game is such that:

�+ " � �i � �� "; for 8si 2M:

Remark 1 Note that under full memory, the result on learning by the uninformed player holds

even for �q arbitrarily close to 0:5 (as long as �q > 0:5).

Corollary 2 (No Learning when Memory is Small)

For any �q > 0:5, and any " > 0, there exists a memory size �n such that any equilibrium in a game

in which the uninformed player is restricted to a memory of size n < �n is such that:

�+ " � �i � �� "; for 8si 2M:
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5.2 Reducible case

We now turn to the reducible case. Our result is that the uninformed player cannot learn more

when using a reducible memory than when using an irreducible one. The intuition for this is that

there are less states to �dilute�the posteriors. We prove the result in this section.

Consider a memory with k recurrent classes R1;R2; :::;Rk and a set of transient states T . We

want to show that in this case there is also a bound on learning and, in fact, it is smaller than in

the irreducible case.

Proposition 3 (Bound on Learning: the Reducible Case)

For 8�; �; n if � = ('; a; q) is an equilibrium in the n�memory state game with k recurrent classes

and one transient state, then:

�

�
�q

1� �q

�n�1
� �i � �

�
1� �q
�q

�n�1
; for 8si 2M:

Proof. For every recurrent class Ri let si be the memory state for which pTi is lower. Also

denote sh as the memory state in the transient class that has the highest posterior, denoted pHT ;

among all states that reach some state si0 2 Ri with positive probability:

s 2 fsh 2Mj'� (sh; si0) > 0;8� 2 fHead; Tailg ; si0 2 Rig :

From an argument identical to the one in lemma (3), which we omit here, it must be the case

that pHT � pTi . Informally, we say that this is true since all the mass of normal types that enter a

recurrent class will stay there forever. Similarly, if pTT is the lowest posterior in T ; and pHj is the

highest posterior in some recurrent class, then: pHj � pTT .

The lowest bound is achieved (or highest possibility of learning) when every state in the transient

class connects to each other and every state in the recurrent classes also connect to each other.

Using the same reasoning as in proposition 2 we have that the lower bound on the uninformed

player�s belief is given by:

�i � �
�
1� �q
�q

�Pk
i=1 ni+nT �1

;

where ni is the number of memory states in Ri that are reached through each other and n� is the

number of memory states in T that are reached through each other. This number is smallest whenPk
i=1 ni + nT = n: the bound is smallest when all the states communicate with each other.

Similarly, the upper bound on the belief of the uninformed player is given by:

�i � �
�

�q

1� �q

�Pk
i=1 ni+nT �1

;

which achieves its maximum when
Pk
i=1 ni + nT � 1 = n:
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6 Conclusion

A celebrated recent result in the literature on reputation and repeated games with incomplete

information is that the play of the game converges asymptotically to the play of a complete infor-

mation game. This means that players can pro�t from a �false�reputation only in the short-run.

Constant opportunistic behavior will lead to statistical revelation of the actual type, which means

no long-run reputation.

Thus, Cripps, Mailath and Samuelson (2004, p409) conclude that: �We view our results as

suggesting that a model of long-run reputations should incorporate some mechanism by which the

uncertainty about types is continually replenished.�This leaves an open question in the study of

reputation games: how to explain long-term relationships when preferences are not changing over

time?

We show that under bounded memory we may not have learning (or type separation) even in

the long-run. Therefore, bounded memory on the uninformed player can explain how long-term

reputations can be sustained, even in the extreme case where agents have opposite preferences.

In fact, players can learn close to nothing if their memory is small enough compared to the noise

(commitment type�s mixed strategy) in the game.

The recent results on reputations and long-term relationships are shown to be robust to di¤erent

underlying games and di¤erent monitoring technologies. From what we show in this paper, though,

it may not be robust to cognitive constraints on the individuals.
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